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Abstract
Post-Compromise Security (PCS) is a property of secure-
channel establishment schemes, which limits the security
breach of an adversary that has compromised one of the end-
point to a certain number of messages, after which the channel
heals. An attractive property, especially in view of Snowden’s
revelation of mass-surveillance, PCS was pioneered by the Sig-
nal messaging protocol, and is present in OTR. In this paper,
we introduce a framework for quantifying and comparing PCS
security, with respect to a broad taxonomy of adversaries. The
generality and flexibility of our approach allows us to model the
healing speed of a broad class of protocols, including Signal,
but also an identity-based messaging protocol named SAID,
and even a composition of 5G handover protocols.

1 Introduction

Secure-channel establishment is a cornerstone of modern
communication. It allows users to exchange messages whose
confidentiality and authenticity are guaranteed, even with
respect to potential Person-in-the-Middle attackers. Authen-
ticated Key-Exchange (AKE) protocols have, for decades now,
enabled such channels to be established: for Internet browsing
(TLS protocol), for mobile networks (AKA protocol), for
secure remote access to another machine (SSH), and so on.

The revelations of Edward Snowden, who exposed the
reality of mass surveillance by security agencies such as the
NSA or GCHQ, were a boost to the widespread deployment of
secure channels. It is now confirmed that powerful adversaries
can, and do, fully corrupt the private information stored on
a targeted device, thus learning most (if not all) of its secrets.
Even then, secure channels open prior to the adversary’s
intrusion can still preserve confidentiality and authenticity if
Perfect Forward Secrecy (PFS) is guaranteed. Unfortunately,
however, all sessions following the party’s compromise will
no longer guarantee either confidentiality or authenticity.

The lack of future security is particularly problematic for
secure channels that are meant to last for a long time, such

as those generated by asynchronous messaging applications.
Say that a civilian, Alice, has a journalist friend, Bob, with
whom she communicates via a secure messaging application.
While abroad, Alice receives sensitive documents from a
whistle-blower, whose request is that she sends them to Bob.
She messages Bob about them. But as she travels back home,
Alice’s phone might be compromised at border control. At this
point, she would like to have three guarantees: that her past com-
munication with Bob is secure; that no one can impersonate her
to bait Bob; and that in a little while, she will be able to resume
talking to Bob without (for instance) destroying her phone.

The PFS of the channel could guarantee the first of these
requirements. For the second and third, Alice requires a prop-
erty pioneered by Marlinspike and Perrin in the context of the
Signal protocol [22], called Post-Compromise Security (PCS)
by Cohn-Gordon et al. [15]. This attractive feature implies that
the secure channel established in Signal by Alice and Bob can
repair (or “heal") its security, even after a full compromise.

But of course, Alice wants to know: how fast will the
channel’s security return, and under what conditions?

Cohn-Gordon et al. [13] showed that in the original Signal
protocol, Alice can recover security after she and Bob have
switched speakers (i.e., exchanged sender/receiver roles) twice
in the conversation. So, if Bob was the current sender when
Alice’s phone was compromised, then Alice must first send (at
least) a message, and wait for Bob’s reply before they are safe
again. All messages sent between the moment of corruption
and Bob’s second reply are compromised by the attacker.

Even more problematic is the case in which the attacker
uses the data recovered from Alice to insert itself into the
communication, choosing whether it wants to just impersonate
Alice to Bob, impersonate Bob to Alice, or both, and set itself
up as a permanent Person-in-the-Middle between them. For
active attackers, Alice’s conversation with Bob will never heal.

Hailed as a revolutionary design in secure-channel
establishment, Signal was used as a basis for group messaging
schemes, such as ART [14] and MLS [5]; the protocol can
also be used directly if group messaging is implemented as
a composition of pairwise secure channel between all the
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participants. Other messaging protocols, such as OTR [9],
Matrix [1], Wire [21], also guarantee some measures of PCS.

To improve the healing speed of Signal, Blazy et al. [7] used
identity-based cryptography and introduced SAID, a protocol
which provides much better security against active attacks. As
SAID relies on a different paradigm than Signal, it is hard to
compare their respective security levels. Yet, at a high level
both protocols guarantee post-compromise security – so are
they perhaps equivalent?

In our chosen example, the healing speed makes a huge dif-
ference to Alice. She would moreover ideally like to know that
healing depends entirely on her (rather than, say, on Bob return-
ing online). Finally, from a designer’s point of view it is crucial
to understand how different protocols handle different adver-
saries: would the attacker only require short-term (potentially
more vulnerable) values, or does it need long-term secrets?

Our contributions. We propose a metric allowing to assess
and compare the post-compromise security of apparently-
incomparable protocols, such as Signal and SAID. Our aim
is to quantify the healing speed and healing conditions of a
scheme with respect to various classes of attackers.

More precisely, our contribution is threefold: we formally
define a broad category of two-party protocols that enable
key-evolution (which we call SCEKE, for Secure-Channel
Establishment schemes with Key-Evolution); we then define
a framework, consisting of a post-compromise security (PCS)
metric and several classes of adversaries, varying in strength
and abilities; and we provide a comparison of three SCEKE
protocols, thus exemplifying our framework.

For this, we introduce a taxonomy of adversaries, in terms
of 3 characteristics: their access (is it a trusted party or not),
their power (active or passive), and their reach (which values
does it compromise?). A weak adversary may only be able
to compromise stage-specific values (which are always in
memory). A very strong adversary might be a trusted party
(like Signal’s credential server), able to actively hijack sessions
and fully compromise all the data belonging to a party.

Our PCS adversaries attack SCEKE protocols, in which
channel keys are only used for a short time (i.e., during a stage).
We index stages by pairs of positive integers (x,y), and con-
sider an evolution of stages that is either horizontal (from stage
(x,y) to (x+1,y)), or vertical (from stage (x,y) to (1,y+1)).
Stages with the same y value are said to be on the same chain.

PCS adversaries will target a specific channel (also called
message) key, having compromised an endpoint to that
channel. Our metric measures the number of messages
required, per message-chain, for the security of the channel
to heal after this corruption. Thus, a protocol is (∞,1)-PCS
resistant with respect to some class of adversaries if the honest
parties lose channel security for all the stages obtained through
horizontal evolution, and at most 1 stage obtained through
vertical evolution, starting from the last stage (x∗,y∗) at which
the adversary compromised either endpoint. Optimal healing

corresponds to (1,0)-PCS security, while the worst healing is
(∞,∞)-PCS security, i.e., the protocol’s security never heals.

To showcase the broad reach of our metric, we use it to
compare 3 schemes that would otherwise be hard to compare:
the PKI-based Signal asynchronous messaging protocol
(analyzed by Cohn-Gordon et al. [13]), the identity-based
SAID asynchronous-messaging protocol [7], and the 5G
handover protocols in mobile networks [2, 3]. For the latter
protocol, we are the first (to our knowledge) to model and
analyze the post-compromise security afforded by sequential
compositions of handovers. We also show how to easily tweak
5G handovers to obtain much faster healing. Our results are
summarized in Fig. 4. Our framework can also be used to
analyse the security of many other PCS protocols.

Related work. Provable-security analyses of known protocols,
such as those of Signal [13] and SAID [7] are cornerstones to
our work, and enable us to show how our framework compares
with existing results. This is one of the reasons those two
protocols were chosen. However, in our work we go beyond
current results, both in terms of scope and of provable results.

Although comparatively infrequent, taxonomies and
metrics exist and are very useful in cryptography. An eminent
example is the taxonomy of privacy notions by Pfitzmann
and Hansen [23], which ranks and classifies subtly-different
terms referring to user privacy (such as anonymity, privacy,
unlinkability, undetectability, etc.). We choose to focus on
the property of channel security in the context of a particular
type of scheme; moreover, while we classify attacks by three
types of parameters, our taxonomy focuses on a precise
quantification of healing speed, which is out of scope for [23].

Our methodology better resembles taxonomy efforts such
as [17, 20], whose purpose is to categorize security definitions
in information-flow, or electronic voting, respectively. Our
work, however, focuses on a very different type of protocol
than in these two fields; moreover, we use a provable-security,
rather than a formal-methods approach.

The mechanics of our model resemble those of Fischlin
and Günther [19], which extend prior work [6, 12] to complex,
multi-stage key-agreement. Our main security notion (Post-
Compromise Security), however, is atypical for [19]; moreover,
we are the first to define the generic notion of SCEKE proto-
cols. A parallel line of work recently introduced by Brzuska
et al. [10] analyzes, in a compositional framework (using state-
separating proofs [11]), the security of the multi-party asyn-
chronous messaging protocol MLS. Unlike that technique,ours
is not composable1, but unlike [10] we do take into account au-
thentication, which is crucial in the case of active adversaries.

Finally, we note that our main contribution in this work is
the taxonomy of attackers and quantification of PCS-security.
This is why we carefully chose only three protocols (with
apparently incomparable degrees of PCS) to analyze: Signal,

1This is, technically speaking, because we quantify PCS-security within
the winning conditions.
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SAID, and the 5G Handover protocols. We discuss how our
framework applies to other protocols below.

Other protocols. Although we choose to showcase our metric
by means of the three protocols cited above, our framework can
be applied to other PCS-providing protocols, such as OTR, Ma-
trix’ Olm protocol for 2-party rooms, and Wire. Signal ratchets
are actually a combination of OTR and SCIMP ratchets2.
Notably, the former provides PCS security. However, note that
OTR’s focus is privacy, not necessarily (PCS-)security, and
thus limits and encrypts any explicit long-term-authentication
steps. This gives it a relatively weak security in our framework
when we consider active adversaries, but interestingly provides
less advantages for insider attackers. An interesting future
research question is how to optimally balance the kind of
privacy desired by OTR and its PCS healing speed.

The Olm protocol used by Matrix resembles Signal (some
differences exist with respect to the type of keys used, signed
or unsigned) and would provide similar metric results in our
framework – which is why we do not treat it. On the other
hand, Wire is more complicated to analyse. Although the core
protocol relies on an independent implementation of Signal,
its use of cookies and access tokens for authentication and
synchronization complicates matters, particularly with respect
to powerful adversaries such as insiders. Moreover, the ability
to have multiple synchronized devices raises the questions
of modelling individual-device compromise and device
revocation, for which we would need an extended framework,
akin to what is needed to capture MLS security (see below).

A limitation of our approach is that we only consider two-
party protocols: as such, even if our taxonomy of adversaries
is easily extendable to multi-party schemes, such as ART and
MLS [5, 14], our metric is not. A particular difficulty with ex-
tending our framework to multiple parties is the dynamic addi-
tion and removal of participants. In two-party schemes,we have
two types of evolution, which correspond –roughly– to one, or
the other participant’s messages. In that case, our metric quanti-
fies the response to the question: if Alice is compromised, after
how many of her, and Bob’s messages will the channel security
heal? However, when we have a dynamically-adaptable set of
parties, we would need to account – not only how many turn-
switches there are between Alice and non-Alice participants,
but also over added and removed users. It is not immediately
apparent how best to achieve this, which is why we leave the
extension of our metric to multi-party protocols as future work.

2 Our PCS metric for SCEKE protocols

Our framework applies to a generalization of two-party
secure-channel establishment, which features key-evolution.
We call such protocols Secure-Channel Establishment
schemes with Key-Evolution (SCEKE), and emphasize that,
while post-compromise security (PCS) is particularly relevant

2See https://signal.org/blog/advanced-ratcheting/.

to long-lived secure channels, it can also be an attractive
property for short-lived channels whose keys evolve from (or
depend on) each other.

2.1 Definition of SCEKE Protocols
SCEKE schemes allow two parties, Alice and Bob, to initially
establish a secure channel (by agreeing on some initial
key-material), and then preserve the security of that channel
over a long period of time by sequential evolutions of the key
material, meant to ensure two properties:
PFS: If a user or an instance is fully corrupted at a given

moment, all keys established prior to that corruption
remain secure;

PCS: Even if a user or instance is fully corrupted at some
moment, thus breaking channel security, that security
will return after a given, finite interval.

Our metric measures the interval required for security to
return, with respect to several classes of adversaries (Sec. 2.3).
We begin by formalizing the syntax for SCEKE protocols.

Participants. We consider schemes featuring participants
of two types: parties P making up a set P , and a super-user
Ŝ playing a special part in the protocol (like the registration
server used in Signal or the key-derivation center present in
identity-based infrastructures). Channel-establishment takes
place between two parties (rather than a party and Ŝ), which
compute keys and have them evolve.

A SCEKE scheme is initiated by means of a setup algorithm,
run by one or more parties, which yield a number of private and
public parameters: the super-user Ŝ is associated with the tuple
(Ŝ.sk, Ŝ.pk), while each party P retains identity-bound creden-
tials (ikP, ipkP). Each of these keys could be a concatenation
of credentials, or – if absent – could be void (denoted by⊥).

Setup precedes user registration, during which parties P reg-
ister with the super-user, and Ŝ builds a database with entries
indexed by unique party identifiers P. The contents associated
to each party ID are protocol-specific and is used during secure-
channel establishment; exploiting registration leads to a partic-
ularly strong type of attack, performed by an insider adversary.

Sessions, instances, and stages. After registration, parties
can run protocol sessions with each other. Following [6, 12]
formalizations, a protocol session occurs between two
party-instances. The i-th instance of P is denoted πi

P.
Each instance must run three types of steps during a protocol

session: an initial, one-time initialisation step; a recurring
message-sending step, occurring every time the instance sends
an (encrypted) message to its partner; and a recurring receiving
step, corresponding to an instance receiving (and retrieving)
a message from its partner. The sending and receiving steps
depend on a crucial notion, that of stage.

In SCEKE protocols, messages are encrypted and authen-
ticated before sending, using one or more message keys. A
stage corresponds to a (protocol-specific) number of messages
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NIKE, AKE

1,1 2,1 3,1 . . . Alice talking

1,2 2,2 3,2 . . . Bob talking

1,3 2,3 3,3 . . . Alice talking

...

Figure 1: Stage evolution in asynchronous messaging. The
protocol initiator begins at stage (1,1) and will continue to
send messages along the first horizontal chain. Bob’s first
reply comes at stage (1,2).

associated with the same message key. When that key evolves,
we have moved on to the next stage. The first stage is indexed
(1,1) and corresponds to message keymk1,1; more generically,
stages are indexed (x,y) with x,y ≥ 1, with keys evolving
through either horizontal or vertical evolution, as follows.

Horizontal evolution: Stage (x,y) turns into (x + 1,y).
This evolution provides weaker security.

Vertical evolution: Stage (x,y) turns into (1,y+ 1) (we
“reset" the x value). This evolution provides stronger security.

As we capture generic key-evolution, our definition of stages
is intentionally vague. We do, however, require that honest
parties always evolve “forwards", that is, always increasing
either the x or the y value. Evolution is depicted in Fig. 1.

Formalization. More formally, instance πi
P of parties P ̸= Ŝ

keeps track of the following attributes:
pid: partner identifier for the session, denoted πi

P.pid.
sid: session identifier πi

P.sid: an evolving set of instance-
specific values.

stages: a list of tuples (s,v), of stages s = (x,y), with values
v ∈ {0,1} indicating whether a message was received
(v = 1) or not (v = 0). By abuse of notation we write
s ∈ πi

P if, and only if, (s,v) ∈ πi
P.stages.

Tr: transcript πi
P.T , indexed by stage s describing all data

sent or received for this stage. We denote πi
P.T [s].

rec: a list of subsets πi
P.rec, indexed by stage s and indicating

messages and metadata received, in order. A special
symbol⊥ is used for sending stages.

var: a set πi
P.var of ephemeral values used to compute stage

keys, indexed by stage. If a value is used for more than
one stage, it will appear under every single stage that it
is required for.

Definition 1 (SCEKE Protocol) A Secure-Channel Estab-
lishment protocol with Key-Evolution (SCEKE) is a tuple of five
algorithms and two interactive protocols:SCEKE= (aSetup,
aKeyGen,ΠUReg,ΠStart,aSend,aReceive,aRGen):
aSetup(1λ)→ (Ŝ.sk, Ŝ.pk,pparam) : outputs the pub-

lic/private long-term keys of super-user Ŝ and the public
system parameters pparam implicitly taken in input by

all other algorithms.
aKeyGen(1λ)→ (ik, ipk) : run by a party P to output

public/private long-term credentials (ik, ipk), used at
registration (and perhaps further). Either key could be
set to a special symbol⊥.

ΠUReg(P, Ŝ)→ ({sk,pk},b) : an interactive protocol run by
party P and super- user Ŝ. The latter outputs a bit b (set to
1 for a successful registration), while the former outputs
public/private credentials (sk,pk) for Ŝ. The super-user
keeps track of a registration database.

ΠStart(P, role,pid, Ŝ)→ (πi
P,b) : run interactively between

P and super-user Ŝ, so as to create an instance of P meant
to be talking to an instance of pid, such that P has either
the role of initiator or responder. If successful, Ŝ outputs
b, while P outputs a handle πi

P on its i-th instance. Some
initial key material might be computed during this phase
(like a master secret).

aSend(πi
P,s,M,AD)→ (πi

P,C,AD∗)∪⊥ : on input a state
instance πi

P, a stage s, a message M, and associated data
AD, the algorithm outputs an updated state of the instance
πi

P, a ciphertext C, associated data AD∗ or a symbol⊥.
aReceive(πi

P,s,C,AD∗)→ (πi
P,M,AD)∪⊥ : on input an

instance πi
P, a stage s, a ciphertext C, and associated data

AD∗, it outputs an updated state of the same instance πi
P,

a message M and some (possibly transformed) associated
data AD, or symbol⊥.

aRGen(1λ)→ (rchk,Rchpk) : outputs a public/private
keypair used to refresh keys. We call these ratchet
keys, though they are more generic than the original
asymmetric-messaging concept. Either key could be a
special symbol⊥.

Protocol correctness relies on matching conversation
(intuitively, the partnering of instances running a session).

Definition 2 (Matching conversation) Let SCEKE be a
SCEKE protocol, and A, B two parties with instances πi

A and
π

j
B respectively. πi

A and π
j
B have matching conversation if and

only if πi
A.sid= π

j
B.sid and πi

A.pid= B and π
j
B.pid= A.

A note on out-of-order messages. A property not considered
in our analysis is out-of-order (OOO) messaging (or message-
loss resilience [4]). Both Signal and SAID provide this feature
by design, allowing intermediate messages that are lost to still
be recovered in spite of the key having evolved beyond that
point. This implies storing several message or chain keys in
memory (until they can be used). There are two consequences
to our including OOO messaging. First, this implies that even
when having matching conversation, Alice and Bob might have
non-identical session identifiers (one might have “holes" in the
messages that are received). Second, message keys are now
computed and stored beyond a single stage. In our formaliza-
tion, this changes the type of security that is achieved with
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respect to the values we present in Sec. 3. However, note that
capturing message-loss resilience is conceptually compatible
with our model.

Correctness. If πi
A and π

j
B have matching conversation, then

a SCEKE protocol SCEKE is correct if both conditions hold:
• for each stage s = (x,y), both instances have identical
mkx,y, and

• A uses aSend to output (πi
P,C,AD∗) from M and B inputs

C for aReceive then πi
A and π

j
B are still matching.

2.2 Adversarial Model

Our adversary is a Probabilistic Poly-Time adversary A , which
manipulates honest parties by using oracles. Depending on A’s
strength (see the taxonomy in the next section) the attackers
may query all, or just some of the oracles presented below.

For reasons that will become apparent when we present our
taxonomy, we divide the private keys that parties use during
SCEKE sessions into three categories:
Cross-session Keys: keys that (intentionally) repeat

in at least two sessions3. More formally, a key k is
cross-session if there exist distinct instances πi

P, π
j
P of

registered party P, and (potentially) distinct stages s ∈ πi
P

and s′ ∈ π
j
P such that k ∈ πi

Pvar[s] and k ∈ π
j
Pvar[s

′]. By
definition, the identity and registration keys ikP and sk
of P are cross-session. We denote the set of cross-session
keys of party P as P.Xsid.

Cross-stage Keys: keys that (intentionally) repeat in at
least two stages of the same session, but not across
sessions. More formally, there exists an instance πi

P and
distinct stages s ∈ πi

P and s′ ∈ πi
P, such that k ∈ πi

Pvar[s]
and k ∈ πi

Pvar[s
′], but k ̸∈ P.Xsid. We denote the set of

cross-stage keys belonging to instance πi
P as πi

P.Xstage.
Stage-specific Keys: keys occurring in only one stage of one

protocol instance πi
P, i.e., k ∈ πi

P.var[s] for some stage s,
but k ̸∈ (P.Xsid

⋃
πi

P.Xstage). We denote by πi
P.1stage

the set of all stage-specific keys of instance πi
P.

Oracles. The adversary can register malicious users; compro-
mise users to reveal, respectively, cross-session, cross-stage,
and stage-specific private values; and manipulate communi-
cation by instantiating new sessions and sending/receiving
messages. The adversary’s goal will be distinguished from
random a target message-key that is freshly and honestly
generated. Thus, each instance needs to also store the attribute
πi

P.b[s]: a challenge bit randomly chosen for each instance for
stage s. If b = 1, the output is the real message key, else the
output is a random key.

We describe the PCS-game in Sec. 2.4, while a taxonomy
of adversarial types are introduced in Sec. 2.3. In the game,
the adversary may query (a subset of) the following oracles:

3We thus formally exclude collisions in randomness

oUReg(P): runs aKeyGen on party P i.e., A can register
malicious P to an honest Ŝ.

oStart(P, role,pid,hon): runs ΠStart to create a new instance
of an existing honest party with the role role and intended
partner pid. The added value hon is a bit, which, if set
to 1, runs the protocol with the challenger posing as Ŝ,
whereas if hon = 0, the protocol is run with the adversary
posing as Ŝ.

oTestb(π
i
P,s): for honest parties, valid instances, valid stages,

and a computed message-key at stage s, returns that
key (if πi

P.b[s] = 1) or a random key of the same length
(πi

P.b[s] = 0). This oracle can only be queried once.
oSend(πi

P,s,AD): two modes for this oracle: honest or
maliciously-controlled. For AD = ⊥ (other values are
valid), πi

P generates new key pair using aRGen for stage
s then it runs aSend, and outputs the additional data.
Otherwise, the oracle simulates the sending algorithm
with adversarially-chosen AD.

oReceive(πi
P,s,AD): oracle also in two modes. In honest

mode, AD is valid since output by oSend at stage s by
πi

P’s partner. For the adversarial mode, AD is always
considered correct (allowing communication hijacking
for instance).

oReveal.XSid(P): corrupts P, giving A access to P.Xsid.
oReveal.XStage(πi

P,s): for stage s, it leaks the set of keys
πi

P.Xstage
⋂

πi
Pvar[s] of cross-stage values.

oReveal.1Stage(πi
P,s): for stage s, it leaks the set

πi
P.1stage

⋂
πi

Pvar[s] of stage-specific values.
Like in [7], A does not have access to the real ciphertext,

which is a trivial distinguisher.

2.3 A taxonomy of adversaries

We classify adversaries in terms of: reach; power; and access,
as discussed below. Although the security games and winning
conditions are mostly equivalent, different adversaries will
learn a different subset of values upon compromising a party,
and will be allowed different sequences of oracle queries.

Reach. Our model features three types of corruption oracles:
oReveal.XSid,oReveal.XStage, and oReveal.1Stage, reveal-
ing, respectively, the party’s cross-session (long-term) keys,
cross-stage keys, and stage-specific keys. Of these, the latter
are assumed to be the least protected because as they are
the least impactful during key-evolution. We distinguish the
following adversarial classes:

• Local adversaries: are only allowed access to the
oReveal.1Stage oracle;

• Medium adversaries: may query both oReveal.1Stage
and oReveal.XStage, but not oReveal.XSid;

• Global adversaries: may query all three oracles.

Power. We distinguish between attackers which extract
information from honest participants via their reveal oracles,
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and stronger adversaries, which extract data and then use it
to hijack honest sessions, or for other (evil) purposes. This
reasoning leads to a classification between:

• Active adversaries: The attacker may use the malicious
modes of the oSend and oReceive oracles on the
target instance πi

P, or on the instance it has matching
conversation with. We define below one potential strategy
of such attackers, namely session hijacking, but active
adversaries are not restricted to only it. In short, (success-
fully) hijacking a session enables the adversary to insert
its own key material and increase the interval required
before healing (or make the channel unable to heal at all);

• Passive adversaries: These attackers may not use the
malicious modes of the sending and receiving oracles
on the target instance, nor its partner.

We define the hijacking of a session run between πi
A and its

partner π
j
B at some stage sh = (xh,yh) (for which we assume

w.l.o.g. that A is the sender) the event that the following
conditions hold simultaneously:

1. A has queried oReceive(πj
B,sh,ADh);

2. ADh were never output by an oSend(πi
A,sh, ·) query;

3. there exists a value v ∈ ADh, but such that
v ̸∈ πi

A.var[sh]∪πi
B.var[sh].

We call stage sh successfully hijacked if in addition the
oReceive query in 1. yielded an output different from⊥.

Access. The last criterion in our taxonomy is access. Typically,
channel-security is defined with respect to a Person-in-the-
Middle attacker. However, some such protocols also feature a
centralized entity with more extensive access and thus greater
potential to wreak havoc – in our framework, the super-user
Ŝ. We divide attackers into two categories:

• Insider adversaries: they are in fact the super-user.
Throughout the game, they receive from the challenger all
the private keys and database information amassed by Ŝ.

• Outsider adversaries: these attackers do not receive any
Ŝ data. Since additionally A has no oracle-access to
corrupting Ŝ, the latter will remain honest.

Adversarial types. We consider adversaries whose types are
a composition of three characteristics, in the order (power,
reach, access). The weakest adversary is a passive local
outsider. The strongest is an active global insider. All other
characteristics being equal, active attackers are stronger than
passive ones; also, global attackers are stronger than medium
ones, which are in turn stronger than local ones; finally,
insiders are stronger than an outsiders.

Nevertheless, intermediate adversaries with more than
two varying characteristics are not as easy to compare. This
is particularly the case for insider attacks, for which the
information obtained by the insider is highly protocol-specific.
The same holds for active local adversaries versus passive
global ones. In our case, moreover, comparing such adversaries
asymptotically is not as interesting as quantifying, for each
adversary, the exact healing speed of the scheme. In Fig. 2, we
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1Stage ✓ ✓ ✓ ✓
XStage ✓ ✓ ✓ ✓
XSession ✓ ✓ ✓ ✓

Access Ŝ.sk ✓ ✓ ✓ ✓ ✓ ✓

oReceive H H H H H H ✓ ✓ ✓ ✓ ✓ ✓
oSend H H H H H H ✓ ✓ ✓ ✓ ✓ ✓
oUReg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
oStart ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 2: Available oracles depending on type, labelled
reach∥power∥access. For instance, LAO denotes Local Active
Outsider adversary. We omit oTest oracle since all adversaries
may query it. H denotes an honest call to the oracle.

recap the adversary’s access to oracle depending on its type.

2.4 A metric for PCS

The adversary A plays against a challenger C in the following
security gameExpPCS

SCEKE(λ,A), which is also depicted in Fig. 3:
• C runs aSetup and forwards all the public values to A .

C also simulates the registration of all the honest parties.
• A has access to algorithms aKeyGen and aRGen and,

depending on its type, may adaptively query a subset of
these oracles (see also Fig. 2):

– oUReg(P) (all attackers);
– oStart(P, role,pid,1) (outsider A) and
oStart(P, role,pid,0) for (insiders);

– oSend(πi
P,s,⊥) (passive A) and oSend(πi

P,s,AD)
(active A);

– oReceive(πi
P,s,⊥) (passive A) and

oReceive(πi
P,s,AD) (active A);

– oReveal.XSid(P) (global A);
– oReveal.XStage(πi

P,s) (medium A);
– oReveal.1Stage(πi

P,s) (local A).
• At some point, A outputs a party instance π⋆

P and a stage
s⋆ = (x⋆,y⋆). The challenger C runs oTestb(π

⋆
P,s

⋆) and
outputs the true π⋆

P.mks or a random key.
• The attacker may continue to use its oracles/algorithms,

until it outputs a final bit d.
We say that A wins ExpPCS

SCEKE(λ,A) if and only if
d = π⋆

P.b[s
⋆], and if the winning conditions below

hold. The advantage of the adversary is computed as:
|Pr[A wins ExpPCS

SCEKE(λ,A)]− 1
2 |.

Further winning conditions. In order to win the
ExpPCS

SCEKE(λ,A) game, A must guess the real-or-random bit
b for the target message key, and must do so by a non-trivial
attack (for instance, it would be trivial to win by revealing
the target message key, and then attempting to distinguish
it). Attacks are classified as trivial or non-trivial depending on
adversary type. We express them as a conjunction of predicates
parametrized by A’s type and resulting PCS security.
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ExpPCS
SCEKE(λ,A)

(Ŝ.sk, Ŝ.pk,pparam)← C aSetup(1λ)

(P = {P1, · · ·PnP })← C (λ,nP )

(iki, ipki)← C aKeyGen(1λ) ∀i ∈ {1, · · · ,nP}

Otype←
{

oUReg(·),oStart(·, ·, ·, ·),oReveal[A .reach](·, ·),oSend(·, ·, ·, ·),
oReceive(·, ·, ·, ·), ,R O1(·),R O2(·)

}
;

(π⋆
P,s

⋆)← AOtype(1λ)
K← oTestb⋆(π

⋆
P,s

⋆)
d← AOtype(λ,nP ,K)

A wins iff. d = b⋆ and (¬oUReg(P)∨¬oUReg(πi
P.pid)) =⊤

Figure 3: The PCS game ExpPCS
SCEKE(λ,A) between adversary

A and challenger C , parametrized by the security parameter λ

and number of honest parties nP . A can query a set of oracles
Otype, subject to type. We denote by oReveal[A .reach] the
precise reveal oracle allowed to A , subject to its reach (local,
medium, or global).

Definition 3 ((χ,ϒ)-PCS security) A SCEKE protocol is
(χ,ϒ)-PCS-secure against an adversary A , for χ,ϒ∈N and A
of one of the 12 types above if, and only if, assuming oTest will
be queried for instance πi

P, the last stage for which A queried
oReveal.XStage or oReveal.1Stage for either πi

P or its match-
ing instance is s∗ = (x∗,y∗) and the following conditions hold:

• The adversary has a non-negligible advantage to win
the game ExpPCS

SCEKE(λ,A) when querying oTest for
sTest = (xTest,yTest) such that:

– If ϒ = 0, xTest < x∗+χ and yTest = y∗;
– If ϒ > 0, xTest is arbitrary and yTest < y∗+ϒ.

If, moreover, the adversary is allowed to query
oReveal.XSid, then A has a non-negligible chance to win
for all instances of party P which are not yet instantiated,
or have not yet reached stage s = (x,y) such that:

– If ϒ = 0, then x≥ χ and y≥ 1;
– If ϒ > 0, then x > 1 and y≥ ϒ.

• The adversary has a neglibile advantage to win if oTest
is queried for sTest other than those specified in the first
bullet point.

We allow both χ and ϒ to take a special value ∞, which
corresponds to ”an arbitrary number of stages” obtained
through horizontal and respectively through vertical evolution.

3 Case Studies

We apply our metric to 3 use cases: the PKI-based messaging
protocol Signal, the Identity-Based messaging protocol SAID,
and the suite of mobile 5G Handover protocols. Although
seemingly very different, they all can be modelled as SCEKE
schemes, which shows the generality of our framework.

3.1 Signal as a SCEKE protocol
Signal is a natural instantiation of SCEKE protocols. Like
most asynchronous-messaging schemes, Signal conversations

Outsider Reach Signal SAID 5G-SCEKE 5G-SCEKE+

Passive
Global (∞,2) (∞,2) (∞,∞) (1,0)

Medium (∞,2) (∞,2) (∞,∞) (1,0)
Local (∞,1) (1,0) (∞,1) (1,0)

Active
Global (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Medium (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Local (∞,1) (1,0) (∞,1) (1,0)

Insider Reach Signal SAID 5G-SCEKE 5G-SCEKE+

Passive
Global (∞,2) (∞,2) (∞,∞) (∞,∞)

Medium (∞,2) (∞,2) (∞,∞) (∞,∞)
Local (∞,1) (∞,1) (∞,∞) (∞,∞)

Active
Global (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Medium (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Local (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Access

Access

Figure 4: Results for our metric on PCS-security for Signal,
SAID, 5G handover and its variant denoted Ext-5G-SCEKE.

are turn-based, between speakers who need not be online
simultaneously. Each message corresponds to one stage, i.e.,
each message-key is used only once. New keys are generated
in two different ways: when the person who was speaking
sends a new message, we have a horizontal evolution; when
the speaker changes, we have a vertical evolution.

Signal also features a natural super-user: a centralized
credential server storing user public keys. Our SCEKE
framework includes security with respect to such powerful
insiders, an aspect often overlooked by prior work [13].

We first compare our model with the one by Cohn-Gordon
et al. [13]; then we model Signal as a SCEKE protocol. The
detailed description of the protocol is provided in Appendix A.
Then we quantify PCS-security with respect to all the adver-
saries in Sec. 2.3. The security proofs are given in Appendix C.

Comparing security models. Our framework can be seen,
in many ways, as a generalization of Cohn-Gordon et
al.’s Signal-specific security model [13]. They described a
real-or-random key-indistinguishability experiment akin to
ours, for which the Person-in-the-Middle adversary A can test
stages freely in order to distinguish their message-keys from
random. A wins assuming that it guesses correctly and that
a given freshness predicate holds.

We begin by stating that the adversary described by [13]
is a passive outsider: they rule out adversarial interventions
within the target session, and do not consider security with
respect to the super-user. Finally, the oracles they consider are
slightly different from ours, as we describe below.

From Fig. 5, we can infer that:
oReveal.1Stage =⇒ RevSessKey∧RevRand∧RevStateMiddle

oReveal.XStage =⇒ RevRand∧RevStateInit
oReveal.XSid =⇒ RevLongTermKey∧RevRand

Thus the adversaries captured in [13] can adopt more
fine-grained strategies than ours. For instance, in our model, if
the adversary wants a particular cross-stage key, it essentially
will receive all such keys. As a consequence, we lose the
ability to rank, say, cross-stage keys in terms of how dangerous
they are to healing. Yet, (instantiations of) the predicates
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ms ephk ck mk rk rchk ik prek
oReveal.1Stage ✓ ✓ ✓ ✓

oReveal.XStage ✓ ✓ ✓ ✓ ✓ ✓
oReveal.XSid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RevSessKey ✓
RevLongTermKey ✓
RevMedTermKey ✓

RevRand ✓ ✓
RevStateInit ✓

RevStateMiddle ✓

Figure 5: Revealed keys per oracle queries: ✓s indicate
revealed keys. The 3 upper rows list oracles in our model,
while the bottom ones are oracles from [13]. Notice that for
Signal, we split oracle RevState into RevStateInit (which
can be used only at the beginning of a stage-chain) and
RevStateMiddle (for queries inside a chain i.e., x > 1).

described above are in fact also found amongst the winning
conditions of [13], signifying that the same

Yet, in reality (as described in the proofs), the winning
predicates of [13] imply that the adversary does not essentially
benefit from the additional freedom given by those fine-grained
queries. Thus, while our two frameworks are syntactically
incomparable, they are akin in spirit. In addition, our model
allows us to account for additional adversary types, including
active adversaries and insiders.

Protocol description. Let P be a set of honest users (with
unique identities). Our super-user Ŝ is a centralized PKI server.
SETUP. During the global setup of the protocol, the super-user
Ŝ chooses a DH-based signature algorithm, hash functions and
KDFs, and a secure-channel establishment protocol required
at registration (such as TLS)4. Then, Ŝ generates keys required
for its authentication in the secure-channel establishment,
notably (Ŝ.sk, Ŝ.pk). We also assume that each user in P has
keys allowing it to register over a secure channel to Ŝ, but
make no assumptions as to their structure; we merely require
that they provide secure authentication. All the algorithms and
Ŝ.pk are part of the public system parameters.
KEY GENERATION. During key-generation, each party
generates signature identity keys (ikP, ipkP) for the signature
scheme chosen at setup.
USER REGISTRATION. Over an AKE-secure channel between
Ŝ and each user P, the latter registers a key-bundle consisting
of: a long-term identity key ipkP, a medium-term key prepkP
signed with ikP, and optional ephemeral public keys ephpkP.
Both ipkP and prepkP are used across multiple sessions,
whereas each ephemeral public key ephpkP is only used in
one session and then removed from the server. Subsequent
calls to this algorithm allow users to update key material they
have previously submitted. We stress that the server is never

4In other words, we assume that whenever they upload keys to the server,
parties do so over a mutually-authenticated secure channel (with standard
AKE security).

X3DH

ms KDFr

DH(rchk0,1,prepkB)

ck1,1 KDFm ck2,1

mk1,1

KDFm ck3,1

mk2,1

. . . chain y = 1

DH(rchk0,1,Rchpk0,2)

KDFr

rk1

tmp

ck1,2 KDFm ck2,2

mk1,2

KDFm ck3,2

mk2,2

. . . chain y = 2

Figure 6: Signal’s key schedule, in which vertical evolutions
are boxed in grey. Horizontal evolutions are along chains
represented horizontally.

given the user’s private keys.

INSTANCE INITIALISATION. Alice (the initiator) begins a
session with Bob by querying the semi-trusted server, over
an authenticated channel, for Bob’s credentials, which allows
Alice to establish the master secret ms.

The master secret will yield an intermediate root key rk1
and the first chain key ck1,1; the latter will be input to a
key-derivation function (KDF) in order to output a new key
ck2,1 and the first message key mk1,1, which will be used
to authenticate and encrypt Alice’s first message to Bob,
corresponding to stage (1,1) of the session.

SENDING AND RECEIVING. For the remainder of the session,
Alice and Bob exchange encrypted messages. On stages with
odd y, Alice is the sender and Bob is the receiver, while on
stages with even y, it is the other way around. In each stage,
corresponding to a single encrypted message, the included
metadata allows that message’s receiver to make his keys
evolve, either horizontally (it receives and decrypts a new
message) or vertically (the receiver decides to start talking).

Fig. 12 gives this key-derivation process.
The associated metadata at stage (x,y) consists of the

identities of the two speakers, a ratchet public key Rchpky

(usable for vertical evolution), and the index x of the message.
Exceptionally, for messages sent at stages (·,1), the metadata
must also include the public key EpkA corresponding to
Alice’s private key ekA used during session initialisation. This
metadata is sent as Associated Authenticated Data (AAD)
within each AEAD-encrypted ciphertext5. Thus, this data
passes in clear, but is authenticated as part of the ciphertext.

The PCS-security of Signal. We begin the analysis by
splitting the key material used in Signal into stage-specific,
cross-stage, and cross-session keys.

The keys used in Signal for a single stage only are: the
message6 keysmkx,y, the chain keys ckx,y, and also a particular
key used only at stage (1,1), namely ephk.

On the other hand, private ratchet keys rchkx,y and the keys
used at the roots of each chain(denoted rky for odd y and tmpy

for even y) are stored throughout the existence of the chain,
until the next vertical evolution. In other words, they are cross-

5AEAD stands for Authenticated Encryption with Associated Data.
6We explicitly do not consider the fact that in Signal keys can actually be

precomputed in the case of out-of-order arrivals, since this is not the most
frequent way in which the protocol is used.
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Keys Signal SAID 5G-SCEKE or
5G-SCEKE+

Cross-Session ik,prek ik,
ID.sk,IBS.sk

K

Cross-Stage rk,rchk, tmp ms, rk,rchk KAMF = rk

Single-Stage ephk,
ms,mk, ck

mk,ck, r rchk =v ,
KAS = mk,
KgNB = ck

Table 1: Taxonomy on keys used in Signal, SAID and our 5G
handover procedures model.

stage keys. We give a summary of the key material in Table 1.

Theorem 1 Consider the Signal protocol modelled as a
SCEKE scheme, as presented above. The following results
hold in the random oracle model (by replacing the KDFs with
random oracles), under the Gap Diffie-Hellman assumption,
and assuming the AKE security of the channels established
between honest users and an honest Ŝ:

• Signal is (∞,1)-PCS secure against: local outsiders
(passive and active), local passive insiders;

• Signal is (∞,2)-PCS secure against: medium passive
adversaries (outsiders and insiders), and global passive
attackers (outsiders and insiders);

• For all other adversaries, Signal is (∞,∞)-PCS secure.

Note that the results are also systematized in Fig. 4. The
proofs of this theorem consist of two types of statements: first,
we need to show an attack for the stages that are vulnerable
to the attacker, then we need to prove that beyond those stages,
security holds. The second parts of the proofs can be found
in Appendix C, but we briefly indicate the attacks providing
the first part of the proofs below.
LOCAL PASSIVE OUTSIDER Here the security loss is a result
of the symmetric ratchets: once ckx,y is compromised, A learns
all the chain and message keys derived symmetrically from it.
The ratchet key rchky is not amongst the data revealed through
oReveal.1Stage. When it is used in input at stage (1,y+1), A
can no longer compute keys derived from this key.
MEDIUM PASSIVE OUTSIDER As opposed to the previ-
ous case, the attacker can now query oReveal.XStage and
learn ratchet keys rchk, and root keys. Knowledge of
the ratchet key rchky allows A to compute DH0,y+1 =
DH(Rchpky,Rchpky+1) at the beginning of chain y+ 1 and
derive all the keys in chain y+1 (hence implying (∞,2)-PCS
security). Fortunately, this stops at stage (1,y+2), since A can-
not use rchky to compute DH0,y+2, thus giving the PCS bound.
GLOBAL PASSIVE OUTSIDER The adversary’s access to
oReveal.XSid provides user identity keys and pre-keys. How-
ever, these values cannot help a passive adversary beyond learn-
ing the master secretms (via oReveal.1Stage). This essentially
reduces a global passive outside to a medium passive adversary.
LOCAL ACTIVE OUTSIDERS In this weakest form of active
outsider attacks, the attacker can still actively use the infor-

mation captured through corruption, in addition to learning
it by compromising either endpoint. Unfortunately, this is not
helpful, since in order to go beyond the (∞,1) bound provided
in the local passive outsider case, A would require knowing
the chain’s current root key. Although this is a Denial of
Service (DoS) attack, it will not affect PCS security.
OTHER ACTIVE OUTSIDERS The attacker has access to
oReveal.XStage, and so to the root key it was missing in
the previous cases. As a result, the attacker can use its
active capacity to learn the message and chain keys of some
stage (1,y) and then use them to inject its own ratcheting
information, towards the receiver at chain y. Then, by using
the root key (via oReveal.XStage) it keeps up with all future
ratchets. This compromises all the future keys in these
sessions, yielding an (∞,∞)-PCS security.
INSIDER PASSIVE ATTACKS The knowledge of the super-
user’s private key Ŝ.sk will not help the adversary beyond
an outsider adversary’s capacity. This is the situation that
corresponds to an honest-but-curious server – for which Cohn-
Gordon et al. considered (and proved) the security we also
explained for the outsider case. This explains why we have the
same bounds for the insider and outsider passive adversaries.
INSIDER ACTIVE ATTACKS At the opposite end of the scale
are active insider attacks, which basically capture a fully
malicious centralized server. At user registration, the malicious
super-user behaves as normal. However, at session setup, when
Alice wants to talk to Bob, Ŝ forwards a key-bundle of its own
making, to which it has the corresponding private keys. The
attacker then does the same when Bob asks for Alice’s creden-
tials (forwarding keys from the same bundles), thus ensuring
that it can run a Person-in-the-Middle attack between the two
users. This type of attack requires no reveal queries on any
of the user key material – hence, Signal provides (∞,∞)-PCS
security (no healing at all) for all insider active attackers.

Signal with acknowledgements. More recent implementa-
tions of Signal have slightly evolved from the core protocol we
described in this paper, and have added an acknowledgement,
which essentially reduces message-chain length to 1. In
addition, root and ratchet keys become stage-local keys, thus
augmenting security against local adversaries to (∞,2).

Signal with two-factor authentication. A way to reduce the
impact of insider attacks is to have users verify the identity
keys of other users prior to instantiating sessions with them – a
type of two-factor authentication. However, such verifications
are not without dangers, as described in recent literature [16].

3.2 SAID as a SCEKE protocol

Introduced in 2019, SAID’s main aim is to strengthen authen-
tication in messaging protocols [7]. The protocol is proposed
in the identity-based (IB) setting, requires a Key-Derivation
Center to replace Signal’s credential server, and makes
substantial modifications to key-evolution. We briefly review
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Figure 7: The key schedule of SAID.

SAID here, and include more details in Appendix B.

Protocol description. Our description below follows that
of [7], but expands upon the user-registration part. We
notably consider additional keypairs for the KDC and protocol
participants – which will allow them to establish the secure
channel they require at registration. Although these keys
do not feature in SAID, Blazy et al. [7] do suppose that a
mutually-secure channel exists during that process.

SETUP. SAID relies on an identity-based signa-
ture scheme IBSig = (aIBS.Setup,aIBS.Extract,
aIBS.Sign,aIBS.Vfy) and a type-3 pairing e. At sys-
tem setup the KDC generates global public and private
parameters. It must notably generate global setup values
(IBS.msk, IBS.mpk) for the IB signature scheme and param-

eters ID.msk
$←− Zp (private) and ID.mpk = gID.msk

2 ∈ G2
(public) for embedding identities into private identity keys.
Ŝ generates a key-pair that enables authentication in the
AKE protocol of its choice (e.g., TLS 1.3), denoting them
(Ŝ.sk, Ŝ.pk), then appends ID.msk and IBS.msk to Ŝ.sk.

KEY GENERATION. This step proceeds as in [7], but we
additionally have parties register some non-IB keypairs
(ik, ipk), usable during registration.

REGISTRATION. Users P register over a secure channel
established with the KDC (P uses its (ik, ipk) tuple and
KDC, (Ŝ.sk, Ŝ.pk)). Over this channel, P sends her iden-
tity P (e.g., a phone number, email address, etc.), to the
KDC. The KDC returns the user’s secret signing key
IBS.skP← aIBS.Extract(IBS.ppar, IBS.msk,P) and secret
identification key ID.skP = H2(P)ID.msk. Thus, the KDC
knows all the users’ private keys.

INSTANCE INITIALISATION. In SAID, instance-initialisation
requires no user-KDC interaction (thus we deem Ŝ’s contri-
bution void). Initiator Alice will choose randomness r and
compute msAB = e(H(B), ID.mpk)r: in other words, Alice
embeds the Bob’s identity into the master secret. Alice also
generates a random tag: tag1,1, and uses it and the master
secret to derive the root key rk1 and the first chain key ck1,1.
The use of fresh tags is specific to SAID and ensures that keys
are unlikely to repeat. A KDF is used to derive the chain key
ck2,1 and first message key mk1,1 from msAB and ck1,1.

Unlike Signal, in SAID the master secret msAB is used at
every stage; thus Bob has to regularly prove knowledge of his
private identity-key, and Alice, of the secret r signed with her

IB signing key. In [7] all parties (P) store values ikP and master
secrets msP∗ of started sessions, and ms∗P of responded ses-
sions in a trusted execution environment – which we abstract.

SENDING AND RECEIVING. Stages and keys evolve in SAID
similarly to Signal:

• Symmetric ratcheting: To go from stage (x,y) to
(x + 1,y), the current speaker generates a new tag
tagx+1,y to be input with chain key ckx+1,y, in order to
output ckx+2,y and mkx+1,y. The two precise substeps are
detailed in Appendix B.

• Asymmetric ratcheting: When speakers change, the
key material is freshened up with Diffie-Hellman
randomness: on input the master secret, a value
∆y−1 = DH(Rchpk0,y−1,Rchpk0,y), and the root key rky,
a KDF outputs rky+1 and ck1,y+1. The chain key, master
secret, and a fresh tag tag1,y+1 are used to obtain the
chain’s first message key mk1,y+1.

The receiver gets the public key material allowing it to
ratchet correctly as authenticated metadata. For the first
message chain, Alice sends the following AAD: the public
value h = gr

2 corresponding to the secret r that the initiator used
to compute the master secret; the stage’s horizontal index x; a

fresh public ratchet key Rchpk1 = grchk1

1 ; the tag of the current
message; the user identities; and a signature over everything ex-
cept the tag: σ← aIBS.Sign(IBS.ppar, IBS.skA,{meta1,h}).

For all the messages in chain y = 2, we have the same
metadata as before, but we no longer need to send h. Starting
from y = 3, we need to add the number Ny−2 of messages sent
in the previous sending chain (i.e., chain y−2). We depict the
key-schedule of SAID in Fig. 7.

Comparing security models. Our framework follows closely
the model by Blazy et al. [7], which describes a real-or-random
key-indistinguishability experiment for identity-based secure
messaging. Their adversaries are either passive or active
outsiders in our taxonomy. The model of [7] has several
features identical to ours: a global setup, malicious-user
registration procedures, sending, and receiving oracles. Since
new-session instantiation is not interactive for SAID, our
model boils down to Blazy et al.’s on this account.

However, [7] gives different leakage possibilities to
its adversaries than we do, through three specific oracles
(presented in the lower half of Fig. 8). The first is corruption,
which yields our cross-session keys, but also all the master
secret values of all ongoing sessions. A can also reveal a
subset of cross- and single-stage keys (specified by name); by
contrast, our framework only splits access by key-type (e.g.,
querying oReveal.XStage yields all cross-stage keys together).
Finally, [7] allows A black-box access to a long-term value:
we denote this in Fig. 8 by a “BB" annotation. We describe
in detail our classification of keys as stage-local, cross-stage,
and cross-session in Table 1 and in the following paragraph.

Although oReveal provides A more fine-grained access
to the local and cross-stage keys (as it can reveal them
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r mk ck tag ms rk rchk ik ID.sk IBS.sk
oReveal.1Stage ✓ ✓ ✓ ✓
oReveal.XStage ✓ ✓ ✓
oReveal.XSid ✓ ✓ ✓

oCorrupt ✓ ✓ ✓ ✓
oReveal ✓ ✓ ✓ ✓ ✓

oHSM BB BB BB BB

Figure 8: Comparison of leakage oracles for SAID (our
framework and [7])

individually), the SAID protocol proofs make no use of this
particular granularity: in other words, security relies on the
fact that the adversary is never given access to the master secret
(obtained in [7] by a oCorrupt query) simultaneously with the
chain or root key allowing A to compute a target message key.

The PCS-security of SAID. As shown in Table 1, we classify
the private-key material of SAID as follows:

• Stage-specific keys: These include, per stage: the chain
and message keys at that stage, its tag, and the randomness
r used only once, at the beginning of the protocol;

• Cross-stage keys: Apart from the root and ratchet keys,
cross-stage keys now include the master secret, which
is input at every stage of the protocol;

• Cross-session keys: These include: initial private key ik,
identity-based signature IBS.sk and identity keys ID.sk.

We state the following theorem, for which we provide
the constructive proofs (PCS security) in Appendix C.2 and
concrete attacks (PCS metric) below.

Theorem 2 Consider the SAID protocol modelled as a
SCEKE scheme. The following results hold in the random
oracle model (by replacing the KDFs and hash functions
with random oracles), under the Bilinear Computational
Diffie-Hellman assumption, and assuming the EUF-CMA
security of the IB-signature scheme IBSig and the AKE
security of the channels established between honest users and
an honest Ŝ at registration:

• SAID is (1,0)-PCS secure against local outsiders
(passive and active);

• SAID is (∞,1)-PCS secure against local passive insiders;
• SAID is (∞,2)-PCS secure against: medium passive

adversaries (outsiders and insiders), and global passive
attackers (outsiders and insiders);

• For other adversary types, SAID is (∞,∞)-PCS secure.

LOCAL OUTSIDERS For both passive and active outsiders,
the SAID PCS bound is (1,0)-PCS-secure, which is actually
optimal in our framework. The main reason this holds is that
the master secret (a cross-stage value) is required for each
evolution; hence, an attacker can only at most learn the current
message key, but no other.
LOCAL PASSIVE INSIDER Note that, according to our game,
insiders might know a long-term secret for a user, but they will
not use them. With its revelation oracle, A will be able to learn

the master secret; however, since A cannot learn root, nor
ratcheting keys, it cannot ratchet past a single message-chain.
OTHER PASSIVE ADVERSARIES For global and medium
passive insider and outsider adversaries the PCS security limita-
tions are given by the fact that A can learn a ratchet key rchkx,y

and the master secret, but, on the other hand, it is a passive
attacker and can thus not use that ratchet key for longer than
two chains. Moreover, in this case, even passive knowledge
of Ŝ.sk is not helpful. In this case, SAID is (∞,2)-PCS secure.
OTHER ACTIVE OUTSIDERS Knowledge of the master secret
is fundamental in SAID. Given this information, an active
attacker can hijack the session by including fresh asymmetric
ratcheting elements once the corruption has been done. Hence,
as in Signal, the protocol never heals ((∞,∞)-PCS security).
ACTIVE INSIDERS We recall that the master secret keys used
by the KDC at setup will now be part of the adversary’s
knowledge, as well as the database of entries containing
identities and private keys. This allows the adversary to learn
the private keys, both for signatures and their identity keys.
This enables the the active, malicious KDC to impersonate
Alice towards Bob and Bob towards Alice, thus endangering
all their future keys ((∞,∞)-PCS security).

3.3 5G AKE Procedures as A SCEKE Protocol
We showcase the flexibility of our SCEKE framework by
modelling a suite of secure-channel establishment protocols
in 5th Generation Mobile Networks (5G) as a single SCEKE
scheme. The latter will include the well-known Authentication
and Key Agreement (AKA) protocol executed during
Registration procedure (Reg), and a series of procedures
called handovers [2, 3]. Unlike the two-party SAID and Signal
protocols, the suite of 5G protocols we target are run between
many entities – we are, nevertheless, able to model them as a
two-party SCEKE, with horizontal and vertical key-evolutions.

We briefly describe the 5G context and 5G handovers (a
longer description is in Appendix D). Then we model these
procedures as a SCEKE scheme and analyze their PCS security.

The 5G handover protocols. In 5G networks, mobile users
(User Equipment (UE)) can subscribe to – and receive service
from – an operator, whose back-end infrastructure is called
the core network. The subscribers and the core will share a
number of long-term cryptographic secrets denoted succinctly
as K. At any point, a user can be given mobile service through
a radio “base-station” denoted Next Generation NodeB (gNB),
which communicates in parallel with the UE’s core network.
We assume existence of mutually-authenticated gNB-to-gNB
and gNB-to-core secure channels, and focus on the security
of UE-to-gNB and UE-to-Core channels.

Actual mobile/application messages, called access-stratum
messages, transit between the UEs and a gNB. During initial
Registration phase (Reg), these two entities establish initial
key material (via AKA protocol). Access-stratum messages
are secured with an access-stratum key (KAS), which is derived

11



Reg 1,1 2,1 3,1 . . .

N2

XN XN

1,2 2,2 3,2 . . .

N2

XN XN

Figure 9: General model of 5G handover procedures.

from an intermediate key called kgNB (Signal’s chain keys).
The latter can be computed through a re-use of the registration
procedure, or they can be obtained through evolution via
handovers, as we explain next.

Handovers are required when the user connects to a new gNB
(e.g., because it physically moves out of reach). At this point,
a handover is initiated, permitting the evolution of kgNB, from
the source node (s-gNB) shared by the UE and its old gNB, to a
tgNB, shared by the UE and its new serving node. There are two
handover procedures in 5G: XN handover procedure (XN) de-
noted here XN, and N2 handover procedure (N2) denoted N2.

The handover procedures. In most cases of handovers, the
XN protocol is run. The s-gNB unilaterally evolves its key kgNB
into a new key kgNB, which s-gNB securely sends to the target
target node (t-gNB). The UE will make its key kgNB evolve by
receiving metadata from (the core and) the s-gNB over their
secure channel. We will call this horizontal evolution.

In N2, the core network computes the new kgNB for t-gNB
by refreshing a larger part of the key-schedule: a vertical
evolution. The highest-level key in the 5G key-schedule that
can be refreshed by N2 is denoted kAMF . The kgNB keys are
lower than kAMF .

The 5G-SCEKE protocol. We consider a SCEKE protocol
that is the composition of the AKA/Reg protocol, which
provides some initial key material to the user and network,
and multiple, sequential runs of various handover procedures
which make that key material evolve. The resulting protocol
is denoted 5G-SCEKE. Each stage corresponds to the protocol
establishing, then using, a new kgNB.

Our framework only supports two-party protocols. We thus
compress the set of all gNB nodes and the core network into
a single entity, representing the responder, Bob7. The initiator
is Alice (the UE). The super-user is a key-escrow entity,
associating initial key-material to sessions (abstracting AKA).

Fig. 9 presents the key evolution in 5G-SCEKE, as a
SCEKE protocol. Following the registration phase, Alice can
horizontally evolve keys by using the XN procedure. When
Bob wishes to respond, it runs the procedure N2 to evolve the
stage vertically. Thus, in the 5G-SCEKE protocol the roles
are asymmetric: only Alice evolves stage-keys horizontally,
and only Bob evolves them vertically.

5G-SCEKE instantiates the initial steps of SCEKE with:
• Setup: The super-user chooses system parameters and

7This works in our framework because we require that the endpoints to
the target session to be honest – if corrupted. However, note that in some cases
in the real world, parts of “Bob" might be malicious.

KDF ck1,1

rk1 KDF K

KDF ck2,1

mk1,1

rchk1,1

KDF ck3,1

mk2,1

rchk1,2

. . . chain y = 1

KDF ck1,2 KDF ck2,2

mk1,2

rchk1,2

KDF ck3,2

mk2,2

rchk2,2

. . . chain y = 2

rk2

Figure 10: Generic key management for 5G-SCEKE. The
values in yellow are modifications only for 5G-SCEKE+.

generates Ŝ.sk, Ŝ.pk for secure-channel establishment;
• Key generation: We assume that parties create some arti-

ficial keys ik, ipk (non-existent in the true 5G context, but
needed here in order to abstract the complexity of AKA);

• User registration: During user registration, each party P
establishes a mutually-authenticated secure channel with
Ŝ and sends a registration request. Then Ŝ generates one se-
cretKPQ for each Q in its database, but does not send them
to P. It then updates its database with an entry indexed P,
with tuples (Q,KPQ) for each user Q already existing.

Instance Initialisation. Our session instances span the entire
duration of 5G-SCEKE. When Alice initiates a session with
Bob, she requests the key KA,B from Ŝ over a new secure
channel, then uses KA,B as a master secret and derives, via
a KDF, a root key (in practice, KAMF ). A KDF computation
later, the endpoints obtain the first chain key ck1,1 (namely
KgNB) and a new root key rk2. The latter yields a new chain
key ck2,1 and a message key mk1,1 (notably KAS).

Any of Alice’s messages, carrying her identity as metadata,
will be sufficient for Bob to initialise a session with her.

Sending and receiving messages. Messages are sent securely
in stages, encrypted with the message keys which evolve.

• Horizontal evolution: When the initiator wants to send
a new message (s goes from (x,y) to (x+1,y)), the chain
key ckx+1,y is fed into a KDF to get ckx+2,y and mkx+1,y.

• Vertical evolution: When the responder sends a message
(s goes from (x,y) to (1,y+1)), a new kAMF is generated
from rk2 and fed into a KDF in order to derive ck1,y+1.

Note that the way to model 5G-SCEKE as a SCEKE
protocol is not unique, and as such, different results could be
obtained for different variations of the protocol. Indeed, this
is an advantage of our framework, as it allows us to compare
those different approaches towards modelling 5G handovers.

The PCS-security of 5G-SCEKE. We divide key material
input into the key-schedule of 5G-SCEKE viewed as SCEKE
protocol:

• Stage-specific keys: These include chain keys, associated
to K,

gNB and message keys, corresponding to KAS.
• Cross-stage keys: The root key, corresponding to KAMF ,

computed at the beginning of each chain and stored for
next vertical evolution.

• Cross-session keys: The pre-computed key K shared
between each two parties. Each registration procedure
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corresponds to new instances of all the aforesaid keys,
where K is used again.

As we describe in the Appendix (and as can be seen
from Fig. 4), the 5G-SCEKE protocol only provides healing
with respect to local outsiders as it lacks any kind of unpre-
dictable freshness. This idea lies at the core of the following
improvement that we propose to 5G-SCEKE.

5G-SCEKE+: Our Improved-PCS 5G-SCEKE. We propose
a simple, yet effective, modification of 5G-SCEKE to enhance
the latter’s PCS-security, and denote the resulting protocol
by 5G-SCEKE+. Notably, we will add freshness into each
horizontal evolution, thus limiting the attacker’s power. These
added values can be viewed boxed in yellow in Fig. 10.

Concretely, we change XN into XN+, a scheme in which
s-gNB does not compute the kgNB key for t-gNB. Instead,
the latter contributes a locally-generated private value called
rchk to kgNB (see the yellow boxes on Fig. 10). Then, t-gNB
sends rchk over its secure channel to the core, which in turn
forwards it to UE, encrypted with kSEAF (i.e., the key on top
of the kAMF in the key-hierarchy in 5G [2, 3]). Now, the UE
can also compute the new kgNB. As the sending of rchk can be
done on existing XN messages, our modification is minimal.
Modifications from XN to XN+ are depicted in Fig. 15.

The key-material in 5G-SCEKE+ is the same as for
5G-SCEKE except that we add the single-stage keys rchkx,y.

The analysis of 5G-SCEKE+. The following theorem holds
for the 5G-SCEKE+ protocol.

Theorem 3 Consider the 5G-SCEKE+ protocol as presented
above. The following results hold in the random oracle model
(by replacing the KDFs with random oracles)

• 5G-SCEKE+ is (1,0)-PCS secure against local active
outsiders and passive outsiders;

• For all other adversary types, 5G-SCEKE+ is (∞,∞)-
PCS secure.

Formal proofs are given in Appendix E.

Interpreting our 5G-SCEKE+ results. Unlike Signal and
SAID for which the rules of evolution are fixed and immutable,
5G handovers can be used in many different configurations,
and the way users move within the 2D-grid of signal-providing
“towers” (i.e., gNBs) impacts their healing interval. Recall that
two protocols are used for evolution: XN (or XN+) – providing
horizontal evolution, or N2 – providing vertical evolution.
For instance, suppose a gNB which we denote as “Tower1” is
configured to only use XN, while some “Tower2” uses only
N2. Finally, some “Tower3” can be configured to use the two
according to some algorithm: e.g., first time XN, and then N2.
If Alice comes across Tower1, then Tower3, then Tower2, she
will horizontally evolve twice, then vertically once, while if she
goes via Tower1, then Tower2, then Tower3, she will evolve:
first horizontally, then vertically, then horizontally again.

The takeaway in this case is two-fold: first, while our
results are generic, they can translate to different compromise

windows for different configurations and topologies; second,
configuring gNBs to use the N2 protocol often and the XN
protocol seldomly is the best way of improving the actual
healing provided via 5G handovers.

4 Discussion and Conclusion

This paper presents a framework for comparing the
post-compromise security achieved by secure-channel estab-
lishment protocols featuring key-evolution. Our taxonomy
of adversaries includes known adversaries in the literature,
but also imagines other type of attacks. The goal of our
security definition is not only to prove that key-evolution
provides healing, but also to quantify how fast protocols heal.
We showcase our framework by applying it to the Signal,
SAID, and a composition of AKA and 5G handover protocols.
Finally, we also propose a small modification to the latter
protocol, which radically improves its healing speed.

Our results (see Fig. 4) indicate that optimal security (i.e.,
(1,0)-PCS security) is achieved by SAID against local passive
outsiders, as well as our improvement of 5G handovers, namely
5G-SCEKE+, against all passive outsiders. An interesting
takeaway is the benefit, in 5G-SCEKE+, of using fresh,
stage-specific, shared private randomness in the key-derivation
process, the unpredictability of which allows us to gain
stronger security than SAID for medium and global passive ad-
versaries. However, this security comes at the expense of using
shared randomness, which requires secondary secure channels.

We also indicate the benefits of the persistent authentication
used in SAID to combat active session-hijacking attacks.
Although the use of identifying information into the key
computation can be privacy-intrusive (especially if signatures
are used), it is able to provide eventual (and even speedy)
healing against powerful attackers, otherwise capable of
rendering a secure channel unhealable.

Through their reliance on both long-term keys and fresh
asymmetric ratchets, Signal and SAID obtain better security
against passive insiders than 5G-SCEKE+.

Finally, note that although active insider security is difficult
to attain, it is a worthwhile goal. A takeaway of our work is
that it is difficult, but essential to design protocols in which
users are able to bypass the ability of superusers to create
unobservable PitM attacks (for instance, one could consider
two-factor authentication of the communication partner).

Our results, while insightful and strong, come with some
disadvantages. We only model two-party protocols, and thus
cannot analyze multi-user messaging like ART or MLS;
yet as we discuss in the introduction, our framework can be
applied beyond the protocols we consider, such as OTR and
Wire. Moreover our approach when modelling 5G handover
protocols could be applied to ratcheted key-exchange or even
TLS 1.3 session resumption. We leave the quantification and
comparison of such – and other – protocols as future work.
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A The Signal protocol

The Signal protocol can be described in terms of four oper-
ations, some only occurring once per user (like registration),
some, once per session (like session setup), and others recur-
ring at specific intervals. We depict all the steps apart from
registration in Fig. 11, abstracting the way in which credentials
are stored and recovered from the semi-trusted server.

• Registration: Each party P registers by uploading on
a semi-trusted server a number of (public) keys: a long-
term key denoted ipkP, a medium-term key prepkP signed
with ikP, and optional ephemeral public keys ephpkP.

• Session Setup: Alice wants to initiate communication
with Bob. She retrieves Bob’s credentials from the server,
generates an initial ratchet key-pair (rchk1

A,Rchpk
1
A)

and an ephemeral key-pair (EpkA,ekA), and uses the
X3DH protocol [22] to generate an initial shared secret
ms (master secret): ms := (prepkB)

ikA ||(ipkB)
ekA ||

(prepkB)
ekA ||(ephpkB)

ekA . This value is used in input to
a key derivation function (KDFr), outputting the root
key rk1 and the chain key ck1,1. The latter is used to
derive the first message key mk(1,1) that Alice uses to
communicate with Bob. The following associated data
(AD) is appended to that message: the value 1 (for the
index x), Alice’s ephemeral public key EpkA, the ratchet
key Rchpk1, as well as Alice’s and Bob’s identities.

• Symmetric Ratchet: Whenever a sender P chooses a new
message to send, the stage changes from (x,y) to (x+1,y)
and a new symmetric ratchet takes place. At stage (x,y),
the message key is mkx,y, derived from a stage secret
ckx,y. In fact, given ckx,y, the sender computed (at stage
(x−1,y)) the values ckx+1,y andmkx,y. At stage (x+1,y),
the sender inputs ckx+1,y to the key-derivation function
KDFm and receives the output ckx+2,y and mkx+1,y. The
key mkx+1,y is then used for the authenticated encryption
of the sender’s message at stage (x+1,y). The AD sent at
this stage will be the ratchet key Rchpky and the stage in-
dex8 x+1. The same process takes place on the receiving
side, in order to authenticate and decrypt messages.

8In the original protocol, the sender also sends the identity public keys
of Alice and Bob; since these values are public and constant for all stages,
we omit them.

• Asymmetric Ratchet: If the speaker changes (that is, Al-
ice stops sending messages and Bob starts instead, or vice-
versa), the new speaker inserts fresh Diffie-Hellman ele-
ments into the key-derivation. Assume that we are at stage
(x,y) and the speaker changes (thus yielding stage (1,y+
1)). Different computations are made depending on
whether the new speaker is the initiator or the responder.

1. First assume that initiator Alice was the speaker at
stages (·,y); therefore y is even at each stage (·,y)
and the encrypted message included associated data
Rchpky. When Bob comes online, he chooses a new
ratchet key rchky+1, and the public keyRchpky+1 is
then computed. A temporary value t and the chain
key ck(1,y+1) are calculated from the root key9 rky

and the Diffie-Hellman product (Rchpky)rchk
y+1

via KDFr. Then, the chain and message keys are
computed as described in the previous item. From
that point onwards, keys evolve by symmetric
ratcheting until the speaker changes again.

2. Now assume that the responder was the speaker at
stages (·,y); therefore y is odd and at each stage (·,y)
the encrypted message includes associated data
Rchpky. When Alice comes online, she chooses
new ratcheting information rchky+1,Rchpky+1

and computes a new root key rky+1 and the base
chain key ck(0,y+1) from the value t computed
at stage (1,y) (see previous bullet point) and the
Diffie-Hellman product (Rchpky)rchk

y+1
. From

here the key derivation proceeds as described in the
bullet point on symmetric ratcheting.

A.1 The insecurity of Signal
In Signal, Alice and Bob each has a long-term private value:
their identity keys ikA and ikB respectively. However, that
key is only embedded into each session at one point: in the
calculation of the master secret ms. The protocol also uses
the responder’s medium-term key prekB (with corresponding
public key prepkB).

During each protocol session, the end users also compute
a number of session-specific values: the master secret, ratchet
keys, root keys, chain keys, and ultimately, message keys.
Some of these values (like used message keys) are removed
from memory after a relatively brief lifetime, while others
(such as root, ratcheting, and to some extent, chain keys) are
retained for longer.

Cohn-Gordon et al. [13] proved the security and healing
properties for a modified version of Signal, in which metadata
including ratchet public keys are sent – not as part of the
associated data in ciphertexts – but outside of the encryption.

9Root keys are only computed when one reverts back to the initiator, so
in our notation, on stages (1,y) for even values of y.
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Alice (ikA, ipkB,prepkB,ephpkB) Bob (ikB, ipkA,prekB,ephkB)
Session initialization: initiator Alice, responder Bob.

Generate: ekA, rchk
1, $←− Zq,

Compute: EpkA← gekA ; Rchpk1← grchk
1
;

Compute: ms← prepkikA
B ||ipk

ekA
B ||prepk

ekA
B ||ephpkB

ekA

Initial keys: rk1,ck
1,1← KDFr

(
prepk

rchk1

B ||ms
)

ck2,1,mk1,1← HKDF(ck1,1)

First message: stage (1,1), Alice is the sender, Bob, the receiver.

Set AD1,1← (x = 1)||Rchpk1||EpkA||ipkB||ipkA
c←AE

mk1,1 (M1,1|AD=AD1,1)

−−−−−−−−−−−−−−−−−→ Compute: ms← ipk
prekB
A ||EpkikB

A ||Epk
prekB
A ||EpkephkB

A
Set: ck1,1← KDFr((Rchpk

1)prekB ||ms)
and: ck2,1,mk1,1← HKDF(ck1,1)
AE decrypt c to M1,1.

ℓ-th message: stage (ℓ,1), Alice is the sender, Bob, the receiver.

Stage keys: ckℓ+1,1,mkℓ,1← HKDF(ckℓ,1)

Set ADℓ,1← (x = ℓ)||Rchpk1||ipkB||ipkA
c←AE

mkℓ,1 (Mℓ,1|AD=ADℓ,1)

−−−−−−−−−−−−−−−−−→ Set ckℓ+1,1,mkℓ,1← HKDF(ckℓ,1)
AE decrypt c to Mℓ,1.

Switching speakers: Bob comes online and begins a new ratcheting chain.

rchk2 $←− Zq

Set tmp,ck1,2← KDFr
(
rk1,Rchpk

1rchk
2)

and: ck2,2,mk1,2← HKDF(ck1,2)

Bob’s message, stage (1,2): Bob is the sender, Alice is the receiver.

Set AD1,2← (x = 2)||Rchpk2||ipkB||ipkA

Set tmp,ck1,2← KDFr
(
rk1,Rchpk

2rchk
1) c←AE

mk1,2 (M1,2|AD=AD1,2)

←−−−−−−−−−−−−−−−−−
and: ck2,2,mk1,2← HKDF(ck1,2)
AE decrypt c to Mℓ,1.

Second speaker switch: Alice is back online.

rchk3 $←− Zq

Set rk2,ck
1,3← KDFr

(
tmp,Rchpk2rchk

3)
and: ck2,3,mk1,3← HKDF(ck1,3)

Figure 11: A Signal protocol session between initiator Alice and responder Bob.

The security statement takes into account the delay in healing
(i.e., up to two full message chains), and also rules out active
hijacking attacks. Their results also factor in a semi-trusted
(rather than potentially-malicious) centralized server.

On compromising Alice. There are different ways in which an
attacker can compromise Alice. If, for instance, an adversary
obtains a message key ckx,y, then it will be able to got through
the remainder of the key-derivations left in that message chain.
An attacker in possession of Alice’s ratchet key rchk1,2k+1 (for
some integer value of k) can compute the next Diffie-Hellman
value; with the aid of the input root key rkk this will directly
yield all the keys for the next chain of messages.

We depict in Fig. 12 one of the worst ways in which an ad-
versary can compromise Alice, without actually obtaining her
long-term private keys. In this case, the adversary has obtained
the master secret value ms and Alice’s ratchet key rchk0,1.
Using these values, it is able to compromise two full message
chains, even in the absence of any further active attacks.

Active attacks. If an adversary actively uses the values it

X3DH

ms KDFr

DH(rchk0,1,prepkB)

ck1,1 KDFm ck2,1

mk1,1

KDFm ck3,1

mk2,1

. . . chain y = 1

DH(rchk0,1,Rchpk0,2)

KDFr

rk1

tmp

ck1,2 KDFm ck2,2

mk1,2

KDFm ck3,2

mk2,2

. . . chain y = 2

Figure 12: The key schedule of Signal where the DH values are
marked with grey boxes. Each stage (x,y) has its x-coordinate
corresponding to a message (horizontal moves) inside a chain
(vertical moves) for y-coordinate.

has compromised, it can hijack a session. This is because in
Signal, parties are authenticated by their knowledge of past
keys, rather than by long-term values. Moreover, because
Diffie-Hellman keys are symmetric in the way they are
computed, the attacker can actually impersonate Alice to Bob,
or Bob to Alice (or both).

Say that we are in the same situation as in Fig. 12. The
adversary has learned ms and the ratchet private key rchk0,1.
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The attacker’s next goal is to hijack the session from Alice,
pretending to be her in her conversation with Bob. To do so,
the adversary can suppress all the messages coming from
the genuine Alice (or, in fact, transmit them, or transmit
modifications of those messages: after all, the attacker has all
the keys). When Bob ratchets and sends his first messages, our
adversary can continue to read those, because knowing rchk0,1

allows it to compromise the security of all the messages
sent by Bob. Then, instead of allowing the genuine Alice to
insert the Diffie-Hellman share which would actually heal
the protocol from the compromise, the adversary chooses a
ratchet key rchk0,3 and mirrors the steps Alice should have
taken to ratchet in message-chain y = 3. From this point:

• Bob falsely believes it is still talking to Alice, across a
channel that is secure with respect to a Person-in-the-
Middle adversary;

• In fact, Bob is talking to the adversary over a channel
that is secure with respect to all outsiders, including the
genuine Alice.

A more insidious attacker would not stop there. At this point,
Alice is locked out of her channel with Bob: in realising this, she
might raise the alarm, thus allowing Bob to realize the hijack.

However, in Signal, compromising Alice’s state also allows
the attacker to hijack the session from Bob, thus impersonating
the latter to Alice. Instead of allowing Bob to ratchet, the
adversary picks its own Diffie-Hellman element rchk0,2 and
using its knowledge of the master secret value as a shortcut,
performs the steps included under the heading “Switching
speakers" in Fig. 11. From this point onwards:

• Alice will believe it is still talking to Bob, across a channel
that is secure with respect to a Person-in-the-Middle
adversary;

• In fact, Alice will be talking to the adversary over a
channel that is secure with respect to all outsiders,
including the genuine Bob.

The adversary can continue to play its Person-in-the-Middle
part, and can choose to either benignly forward the conversa-
tion between Alice and Bob, or insert its own messages into it.
In the former case, the security of the channel will be breached
forever. In the latter, the adversary can choose the information
it will forward to Alice and Bob, potentially extracting from
them some highly-sensitive information, or feeding them
malicious input.

Most importantly, the adversary can achieve this by just
learning some of Alice’s session-specific information. It need
not even be the master secret and corresponding ratcheting key:
the adversary could instead corrupt the root key and ratchet
key for some message chain where Alice is the sender, or the
temporary value tmp and Bob’s ratchet key for a message
chain where Bob is the sender. Unlike the master secret, such

values need to be kept in the device’s memory for a longer
time, so as to allow the party to ratchet.

The credential server. In Signal, users register (public-)key
bundles, which are uploaded onto a centralized server. These
bundles include identity keys ipkP, medium-term pre-keys
prepkP, ephemeral keys ephpkP, and a signature keyed with
ipkP over prepkP.

In order to start a session, both the initiator and the responder
request their partner’s credentials from the server – which
is trusted to forward that data faithfully. If, on the contrary,
the server misbehaves, it can insert Person-in-the-Middle
adversaries in every single new session. The strategy will be
the same every time:

• Instead of forwarding to Alice the credentials of its
desired communications’ partner (say Bob), the server
will forward the credentials of a Person-in-the-Middle
Charlie – either colluding with the server or registered
by the server itself. From this point onwards, Alice will
communicate with Charlie, believing the latter is Bob;

• Simultaneously, Charlie will recover Bob’s credentials
from the centralized server (which this time behaves
honestly), and start a session with the latter, claiming to
be Alice (though including Charlie’s own identity key);

• If queried by Bob for Alice’s credentials, the server will
respond with Charlie’s data. From this point on, Bob will
believe it is communicating with Alice, but instead will
be talking to Bob.

• Subsequently, Charlie can choose to either forward
messages between Alice and Bob, or inject its own
messages in the conversation.

B The SAID protocol

The SAID protocol was designed in the identity-based
paradigm, in which parties can derive the public key of their
interlocutors from their identities. The corresponding private
keys are picked securely by a special entity (the Key Distri-
bution Center), which first runs a global setup, then generates
and distributes the private keys to protocol participants.

In this section, we use an identity-based signature scheme
which supersedes Signal’s key storage server, thus providing
persistent authentication and the additional advantage of
public verification with respect to a known identity (in lieu
of a given verification key).

Identity-based signatures. An identity-based signature [18]
scheme is made up of four possibly randomized algorithms
IBSig=(aIBS.Setup, aIBS.Extract, aIBS.Sign, aIBS.Vfy)
with the following properties:
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• aIBS.Setup: takes in input a security parameter n (in
unary) and outputs: public parameters IBS.ppar, a public
key IBS.mpk, and a private key IBS.msk;

• aIBS.Extract: takes in input all public parameters, the
master secret key msk, and an identity of a user P, and
outputs a private signing key for that user: IBS.skP;

• aIBS.Sign: takes in input all public parameters, a private
key IBS.skP, and a message M, and outputs a signature σ;

• aIBS.Vfy: takes in input the public parameters, the
identity P of the purported signer, a message M and a sig-
nature σ, and outputs a bit, either 1 if the signature verifies
for the given identity and message, and 0 otherwise.

The Existential Unforgeability against Chosen-Message
Attacks (EUF-CMA) notion for identity-based signatures is
similar to the one for tradition signature schemes, and we do
not recall it here, referring users to [18] instead.

B.1 Protocol description
We proceed to describe how users Alice and Bob (denoted A
and B), with Alice playing the role of the initiator, can register,
start, and run a session of our protocol. In the interest of clarity,
we will use the same notation for this protocol as for the
presentation of Signal. Specifically: we begin counting stages
at 1 on both the horizontal and vertical components; we use
the horizontal component (x) to index messages from the same
sender, while the vertical one is used for switching speakers;
our notations for ratchet keys only contain the stage (as this
immediately implies their owner); and we use chain keys ckx,y

instead of base keys, and message keys mkx,y instead of keys.
The SAID protocol has four main phases:

• Parameter Generation: run once, by a trusted party
(typically the KDC), to set up the public parameters of
the protocol;

• User Registration allow users to register to the KDC,
thus receiving their identity-based cryptographic data;

• Session Initialization performed by a user A to begin
a chat with a registered user B. In this phase, A generates
a long-term master-secret which will then be used
throughout the protocol (entering as input to the aSend
algorithm);

• Messaging takes place when two users communicate in
a session. This phase in characterized by sequences of
symmetric and asymmetric ratchets.

Parameter generation. The Key-Distribution Center (KDC)
will first set up the mathematical structure within which the
SAID protocol will run. These parameters are universal to all
the users and all the sessions that will ever be run.

• For the identity-based signature scheme, we need to
generate public parameters IBS.ppar and a master
key-pair (IBS.msk, IBS.mpk);

• For the AEAD cipher suites, the KDC will need to
establish the set of possible keys, nonces, messages, and
headers;

• We generate groups G1,G2,GT generated by g1,g2, and
gT respectively, and a bilinear pairing e

• In addition to the IB Signature scheme, we will also
need to embed user identities into group keys. To do
so, we need a master secret key and master public key:

ID.msk
$←− Zp and ID.mpk= gID.msk

2 ∈G2;

• The KDC chooses hash functions H,H2 with range G∗1;

• The protocol requires two key-derivation functions
(KDFs), like in the case of Signal: KDFr for root-
and chain-key derivation, and KDFm for message and
chain-key derivation (typically instantiated as HKDF).

The cumulative public parameters pparam output by the
KDC will include all the public values and algorithms above.
The master secrets, kept by KDC only, are IBS.msk and
ID.msk.

User Registration. A user A registers to the sys-
tem by sending her identity, A, to the KDC. The
KDC returns the user’s secret signing key IBS.skA ←
aIBS.Extract(IBS.ppar, IBS.msk,A) and her secret identifi-
cation key ID.skA ∈G1 generated as10 ID.skA = H2(A)ID.msk.
The KDC also adds A into a list of registered users, and replies
to any future attempt to register A with the error message
’username taken’.

Session Initialization. In SAID, any registered user A can initi-
ate a session with another registered user B (without requiring
the online presence of the KDC), following the procedure de-
picted at the beginning of Figure 13, which we also detail below.

A begins by choosing a random ratchet secret key

rchk1 $←− Zp and computes its corresponding public key

Rchpk1 = grchk
1

1 . As in Signal, these ratchet keys are not used
yet, but the target responder B will need them to make his first
asymmetric ratchet and respond to A’s messages. In addition,

A picks a random value r $←− Zp and computes h = gr
2. At

this point A uses its identity-based signature credentials to
generate a signature on the metadata of the first message chain
meta1← (A,B,Rchpk1) and the public value h:

σ← aIBS.Sign(IBS.ppar, IBS.skA,{meta1,h}).

The values h and σ will be part of the associated data
(AD) of all the messages sent by Alice along the first

10The user’s secret identification key is essentially a Boneh-Franklin key
for identity based encryption [8].
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Alice (A, IBS.skA, ID.skA) Bob (B, IBS.skB, ID.skB)
Session initialization: initiator Alice, responder Bob.

Generate: rchk1,r, tag1,1 $←− Zp

Compute: Rchpk1← g1
rchk1

and h← gr
2

Let: meta1← (A,B,Rchpk1)
σ← aIBS.Sign(IBS.ppar, IBS.skA,{meta1,h})
Compute: msAB← e(H(B), ID.mpkr)

Initial keys: (rk1,ck
1,1)← KDFr(msAB,g1)

(mk1,1,ck2,1)← KDFm(msAB,ck
1,1, tag1,1)

First message: stage (1,1), Alice is the sender, Bob, the receiver.
AD1,1← (meta1,h,x = 1, tag1,1,σ)

c←AE
mk1,1 (M1,1|AD=AD1,1)

−−−−−−−−−−−−−−−−−→ Let: meta1← (A,B,Rchpk1)
Check 1 = aIBS.Vfy(IBS.ppar,A,{meta,h},σ)

Compute msAB← e(ID.skB,h)
Initial keys: (rk1,ck

1,1)← KDFr(msAB,g1, tag
1,1)

(mk1,1,ck2,1)← KDFm(msAB,ck
1,1)

AE decrypt c to M1,1.
ℓ-th message: stage (ℓ,1), Alice is the sender, Bob, the receiver.

Generate: tagℓ,1 $←− Zp

Keys: (mkℓ,1,ckℓ+1,1)← KDFm(msAB,ck
ℓ,1, tagℓ,1)

Set ADℓ,1← (meta1,h,(x = ℓ), tagℓ,1,σ)
c←AE

mkℓ,1 (Mℓ,1|AD=ADℓ,1)

−−−−−−−−−−−−−−−−−→ Set (mkℓ,1,ckℓ+1,1)← KDFm(msAB,ck
ℓ,1, tagℓ,1)

AE decrypt c to Mℓ,1.
Switching speakers: Bob comes online and begins a new ratcheting chain.

Generate: rchk2, tag1,2 $←− Zp

Compute: Rchpk2← g1
rchk2

Set: ∆2←
(
Rchpk1)rchk2

Compute: (rk2,ck
1,2)← KDFr(msAB,∆

2, rk1)

(mk1,2,ck2,2)← KDFm(msAB,ck
1,2, tag1,2)

Bob’s message, stage (1,2): Bob is the sender, Alice is the receiver.

Let: meta2← (A,B,Rchpk2)
AD1,2← (meta2,(x = 1), tag1,2)

Set: ∆2←
(
Rchpk2)rchk1 c←AE

mk1,2 (M1,2|AD=AD1,2)

←−−−−−−−−−−−−−−−−−
Compute: (rk2,ck

1,2)← KDFr(msAB,∆
2, rk1)

(mk1,2,ck2,2)← KDFm(msAB,ck
1,2, tag1,2)

AE decrypt c to Mℓ,1

Second speaker switch: Alice is back online.

Generate: rchk3, tag1,3 $←− Zp

Compute: Rchpk3← g1
rchk3

Set: ∆3←
(
Rchpk2)rchk3

Compute: (rk3,ck
1,3)← KDFr(msAB,∆

3, rk2)

(mk1,3,ck2,3)← KDFm(msAB,ck
1,3, tag1,3)

Let: meta3← (A,B,Rchpk3)
AD1,3← (meta3,(x = 1),N1, tag

1,3)

Figure 13: The SAID protocol. Note that, for message-chains with index higher than 2, parties add to their associated data the
number of messages they had sent at the immediately-previous message chain for which they played the part of senders.

message-chain. The master secret shared between A and B is
msAB = e(H(B), ID.mpk)r. To generate the initial root key rk1
and chain-key ck1,1, the values (msAB,g1) are input to KDFr.
By using the computed ck1,1, A can perform its first symmetric
ratchet, obtaining the message keymk1,1 and channel key ck2,1

as the output of KDFm(msAB,ck
1,1, tag1,1) for the freshly-

generated tag1,1. Finally, A authenticates and encrypts the
message M1,1 with associated data AD= (meta1,h,(1,1),σ),
sending the resulting ciphertext c to Bob.

Upon receiving this ciphertext, Bob first verifies the
identity-based signature σ, then retraces Alice’s steps to obtain
the message key that will allow it to authenticate and decrypt
the message it has received.

Messaging. Following the way Signal works, in SAID the
key material also evolves through symmetric and asymmetric
ratcheting.

Symmetric Ratcheting. A user performs a symmetric ratchet
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when she wishes to obtain a chain- and a message-key, to
either encrypt one more message, without having received
a reply; or to decrypt one more message before responding.
In particular, recall that a symmetric ratchet increases the x
counter of the stage, so if the starting stage is (x,y), after the
symmetric ratchet we land at stage (x+1,y).

The process of a symmetric ratchet, also show in the
transition from stage (1,1) to (ℓ,1) in Fig. 13 also shows
user Alice using the shared master secret and the chain key
of stage (x,y) to output the message key for stage (x,y) and
the chain-key for stage (x+1,y).

Note that, as it is in Signal, KDFm is split into two parts, as
shown below: one which generates the next chain-key, and
one which generates the encryption key. Only the latter of
these two uses the random tag as input, in order to handle
out-of-order messages, i.e., the chain-keys could be computed
simply from the previous ones, but not the encryption keys.

(msAB,ck
x,y)

HMAC−−−−→ ckx+1,y

(msAB,ck
x,y, tagx,y)

HMAC−−−−→ t HKDF−−−→mkx,y

The random tag will be included in the associated data to
enable the responder to generate the same key mkx,y.

Asymmetric Ratcheting. Whenever a message is sent by the
party who is not the sender of the last message in the chat, an
asymmetric ratchet happens. Asymmetric ratcheting increases
the y counter and resets the x counter of the chat state, so if
the starting stage is (x,y), after the asymmetric ratchet we land
at stage (1,y+1).

As depicted in Fig. 13, assuming A was the sender at
stage (x,y), then, to send his response B selects a random
ratchet secret key rchky and computes the shared secret
∆y = (Rchpky−1)rchk

y
. He then inputs the shared master secret,

the newly computed secret value ∆y, and the current root key (of
level y−1) toKDFr and obtains the root key for message-chain
y, together with the new chain-key for stage (1,y). Finally, B
performs a symmetric ratchet to generate the message-key for
stage (1,y) (and the next base-key for stage (2,y)).

Note that, furthermore, as depicted in Fig. 13, the associated
data sent along with the message at stage (x,y) contains Alice
and Bob’s identity, the ratchet public key of the current sender
for message-chain y, the horizontal-index counter (x = 1),
and the number Ny−1 of messages sent by the same party at
level y− 2 (this value is not used for message-chains y = 1
and y = 2), and, finally, the tag tagx,y.

C Security proofs for Signal and SAID

We consider the different cases corresponding to the behaviour
of the adversary. We give an overview of our proofs in
Figure 14.

Conventions. We assume that all KDFs are modelled as
random oracles. Each key k has |k| values. Note that the key

space might be of same size for all keys (e.g., |k|, the order of
the group for all k). The security statements are parametrized
by the maximal number of stages nS, the maximal number
of message nx−max in a given chain, the maximal number of
chain ny−max, run by any given instance, the number of parties
generated by the adversary nP and the number of sessions nπ

created by any given party. Finally, we consider all calls to
KDF as queries to random oracles.

The proofs are organized through game hops where the first
game is the original security game (see Figure 3 of Sec. 2.4).

C.1 Games for Signal
G0 : This game corresponds to the original security game
(Fig. 3 of Sec. 2.4). The advantage of A against this game is
Adv0.

G1 : In this game C guesses P, Q, the session index of the
target session, and the target stage s⋆ = (x⋆,y⋆) for which A
has queried oTest.

If A queries another parties, session or tested stage then C
aborts the game and returns a random bit. Therefore we have
the following:

Adv0 ≤ nP
2 ·nπ ·nx−max ·ny−max ·Adv1

The next games are dedicated to ensure that no DH values
collide. Moreover, we assume the uniqueness of the identity
key for each party.

G2 : This game is the same as G1 except that the challenger

aborts if two values ephk collide. We have:

Adv1 ≤
(
nπ

2

)
·2−|ephk|+Adv2

At this point, the uniqueness of the master secret ms is
guaranteed. Indeed, ms is computed using ik and also ephk
thus by uniqueness of the former and the latter, we have
uniqueness of the shared secret ms. Moreover, the sessions
are also unique by uniqueness of the ephemeral keys.

G3 : We modify the previous game to avoid collisions of
honestly-generated ratchet keys rchk. We have:

Adv2 ≤
(
nπ ·ny−max

2

)
·2−|rchk|+Adv3

G4 : In this game, we ensure that there is no collision
for honestly-generated prek. We can upper-bound the total
number of pre-keys by the number of sessions nπ:

Adv3 ≤
(
nπ

2

)
·2−|prek|+Adv4

Notice that we can generalize games from G2 to G4 to a sin-

gle game G2′ , by considering that C can maintain a list LDH of
DH values (ik,ephk,rchk,prek) which are honestly-generated
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Figure 14: Overview of game hops through our taxonomy of adversary.

during the protocol. If two values appear in that list, the chal-
lenger aborts and the adversary looses the game. By consider-
ing uniqueness of identity key for each party, there are |P | num-
ber of identity keys, nπ ·ny−max number of ratchet keys, at most
nπ number of medium-term keys and nπ number of ephemeral
keys. Thus we have |LDH|= |P |+nπ ·ny−max+nπ. Moreover,
if we consider that each DH key in LDH lies in the same group of
order q then a collision occurs with probability 1/q so we have:

Adv1 ≤
(|LDH|

2

)
q

+Adv2′

G5 : The challenger needs to guess the index i of the pre-key
of Q used in the tested session. Since there are nπ possible
values, we have:

Adv4 ≤ nπ ·Adv5

For clarity, we keep the notation prekQ instead of preki
Q

(signed pre-key of index i).
At this point, we will use the uniqueness and secrecy of

prepk
rchk

0,1
P

Q in order to prove indistinguishability from random
of rk1. Note that the value ms (the second input of the KDF)
can be learned by any reach’s adversary. 11

G6 : In this game the challenger accepts collision of ikP and
prekP. We need to add this condition since the next game will
use a GDH challenge where the DH pair might collide with
probability 1/q, thus:

11ms is a single stage key so any local, medium or global adversary can
reveal it.

Adv5 ≤
1
q
+Adv6

Those previous games are shared between all possible
adversaries of our model. We now partition our analysis given
types of adversary.

Local Passive Outsider. In this case, the adversary can only
reveal single stage keys (via the oReveal.1Stage oracle) in a
passive way, and it has no information on the server-stored keys.
Recall that (cf Fig. 4), the Signal protocol is (∞,1)-PCS secure.
G7 : We modify G6 such that the challenger aborts as

soon as A queries the random oracle (representing the KDF)
on ( • ∥(prepkQ)

rchk
0,1
P ) where the first part of the input is

analogous to ms. Since our analysis is done in the random
oracle model, the only way for A to compute the output is to
give the exact input. If so, we show that when this event occur,
we can construct an adversary B winning a GDH challenge.
Recall that the GDH experiment has input (ga,gb) to return
gab with a DDH oracle access with input (gx,gy,gz) and output
1 if gxy = gz.

B simulates G6 for A and plays against its GDH challenger.

Instead of sending ga and gb to A , it sends rchk0,1
P and prekQ

respectively. Notice that A cannot query the oReveal.1Stage
oracle on prekQ nor rchk0,1

P since those keys are cross-stage
keys (so B does not have to know the private parts of
those keys). However, since B has replaced long-term and
medium-term keys of two parties (where those keys could be

21



used in other sessions), it must ensure a valid simulation for
those (non-tested) stages. In either cases, B randomly chooses
the value rk1 but answers consistently with calls to the random
oracle by maintaining a list. This list maps the session key
with the public keys associated. Whenever A calls the random
oracle, B checks if the public parts are in the list and returns the
corresponding value if they are in the list, and draws a random
element and adds it to the list otherwise. The special case is
when A sends CDH(prepkQ,Rchpk

0,1
P ) to the random oracle.

In that case, the DDH oracle returns 1 when B queried it thus
finding a solution to the GDH experiment. Finally, by noting
εGDH the advantage of B solving the GDH problem, we have:

Adv6 ≤ Adv7 + εGDH

G8 : This game ensures the indistinguishability of the
rk/tmp outputs by the random oracle, up to and including y⋆.
For this, we apply the modifications ofG6 andG7 for a number

of times equal to the maximum number of chains ny−max:

Adv7 ≤ ny−max ·
[(

nπ

2

)
·2−|prek|+ εGDH

]
+Adv8

Note that the same argument cannot be applied to other
outputs of the random oracle (such as the chain key ck.,y

⋆
)

since those values could be revealed by the adversary (which
is handled in the next game).

G9 : In this game, we ensure that the value ck0,y⋆ is unique.
If there are two equal values in a session, or in two different
(honest) sessions, then the challenger aborts and returns a
random bit.

Recall that the random oracle model implies that a call to
the KDF duplicates the output if the same inputs are used, or
if true randomness repeats (with negligible probability), thus
we have:

Adv8 ≤ nx−max ·
(
nx−max ·ny−max

2

)
·2−|ck|+Adv9

At this point, the chain key ck0,y⋆ is indistinguishable from
random to A (which is due to the indistinguishability of
rk/tmp values from random of G8 ).

Depending on the adversary’s reach, here local, some
reveal can be queried such as the chain key ck or mk. Here,
the argument we used is related to the winning conditions
(i.e., freshness of the tested stage). Indeed, for a local passive
outsider adversary, the winning conditions are parametrized
by a (∞,1) bound meaning that no oReveal.1Stage can be
queried for a stage of index x > 0 and y = y⋆−ϒ+ 1 = y⋆.
Informally, we exclude reveal queries for stages of the same
chain of the tested stage; this is a direct consequence of the
symmetric ratcheting of Signal where the knowledge of one
chain key implies knowledge of all the chain. Notice that our
metric is also a lower bound since any strictly lower (χ,ϒ)

value implies ϒ = 0 meaning that A could reveal the chain
key on a stage with y = y⋆. This yields a trivial attack on the
session keys because of the symmetric ratcheting property.

We conclude this proof by stating that:

G9 ≤ 2−|ck|+2−|mk|

Indeed, there are two possibilities for the adversary to
recover mkx⋆,y⋆ , either guessing directly this value (with
negligible probability 2−|mk|) or give as input to the random
oracle the value ckx⋆−1,y⋆ (with negligible probability 2−|ck|).

We have shown an upper bound of our metric in the sense
that we ensure the security for at least a given number of stages.
However, the security could be faster, i.e., find a smaller metric
with unchanged security. We need to show that our metric is
tight meaning that we need an extra argument to show that no
security can be guaranteed with smaller metric.

In this case, a local passive outsider adversary, Signal is
(∞,1)-PCS secure if we exhibit an attack which compromises
at least (∞,1) stages within the adversary’s type. The attack in
this case is simple, A can reveal ck1,y, for a given y on any peer,
via the oReveal.1Stage oracle. This leads to compromising
the full chain y because of the symmetric ratchet deriving the
keys (both ck and mk). The adversary has then compromised
(∞,1) stages but no more because the next chain is initialised
with cross-stage keys (i.e., rchk).

Medium Passive Outsider. In this case, the adversary can
reveal single and cross stages keys (via the oReveal.XStage
oracle) in a passive way, and it has no information on the
server-stored keys. Recall that (cf Fig. 4), the Signal protocol
is (∞,2)-PCS secure.
G7 : The challenger aborts if A gives as second input

CDH(prepkQ,Rchpk
0,1
P ) to the random oracle (the first input is

a value corresponding to ms). The keys prepkQ and Rchpk0,1
P

are now in the adversary’s reach possibility, via query to
oReveal.XStage oracle. Yet, the winning conditions of this
type of adversary exclude such query for a stage of chain
(minimum) index y = y⋆−1 for y > 0. So if A tests a stage of
index y = 1 or y = 2 then the winning conditions ruled out any
call to oReveal.XStage for such chain. As in the local case, we
show that under the GDH assumption, it holds that:

Adv6 ≤ Adv7 + εGDH

The reduction is the same as in the local case (where the
reveal calls in the latter were excluded by the adversary’s reach
and by the winning conditions for the medium case). Notice
that in this game, the advantage of A is the same as the local
case, however the argument is different. For the local case, the
adversary has no access to cross-stage keys while in this case,
the adversary can query the oReveal.XStage. Yet, the winning
conditions for the medium case exclude such queries.

The rest of the proof is done the same way as for the
local case, where in G8 the indistinguishability of rk/tmp
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is ensured by the winning conditions (same reason as in the
previous game).

We conclude the proof by showing an attack that com-
promised two chains since Signal is (∞,2)-PCS secure for a
medium passive outsider adversary. The adversary can reveal
rchk0,2 and rk1 to get all the needed information to derive
the keys of chain 2. It can also derive the tmp value used to
initialise the next chain. So A has all the inputs to completely
derive chain 3 (the other input to initialise the chain is
CDH(rchk0,3, rchk0,2) which is computable by the adversary).

Global Passive Outsider. This case is actually the same
as for medium case. Indeed, the argument for game hops
of medium adversary implies the winning conditions for
indistinguishability of keys in G6 and G7 . The attack

exhibiting our metric can also be the same, while the global
case could compromised the first two chains (while the
medium adversary can only compromised chains starting
from the second one). We can conclude that, for global passive
outsider adversary, Signal is (∞,2)-PCS secure.

Local Active Outsider. For an active adversary, we need
to ensure that the keys stored on the server are generated,
and signed, by the corresponding party (and not A). Indeed,
during the registration step, a party P sends its identity key and
pre-keys signed with the identity key. For an active adversary,
some keys might be maliciously generated and sent to the
server. In the case of LAO, the adversary cannot request
long-term keys from its set of oracles (only ephemeral keys).
Thus, we prove that the adversary needs to forge a signature.

G7 : Recall that in G5 , the challenger aborts if the chosen

pre-key is different from the one used in the tested session. So
the reduction to the EUF-CMA game of the signature scheme
is straightforward since the challenger already knows the
index of the forged signature.

For the reduction, the adversary has access to a signing
oracle which updates a list of keys and signatures at each
call (for avoiding trivial forgery where the signature has been
already queried). We denote by qs the number of queries to
this oracle. We assume here that there is an adversary A able to
produce a valid signature on prepk (for a given index i) and we
construct B , which uses A , to break the EUF-CMA signature
scheme. B uses its own oracle to forward query to A , thus:

Adv6 ≤ Adv7 + εEUF−CMA

From now, the following games are the same as in the local
passive outsider.

Medium/Global Active Outsider. For those two adversaries,
Signal is (∞,∞)-PCS secure meaning that no healing is pos-
sible. So we just exhibit an attack resulting in the impossibility
of PCS property. The attack is simple, the adversary injects its
own initial ratchet key rchk0,1

⋆ and reveal ms (which is in the
reach’s capability of medium and global adversaries) during

the initialisation phase. Thus A hijack the communication,
where Bob is convinced to communicate with Alice, but Alice
has no access to the communication (since the chain keys are
different). In this case, Bob will continue the communication
as long as A is following the protocol (it does not need to
deviate from the protocol anymore).

Passive Insider. Each of those three types of adversaries (local,
medium and global) corresponds to passive outsider adver-
saries. Indeed, the difference between outsider and insider is
that the latter poses as the super user Ŝ. In the case of Signal, this
corresponds to the semi-trusted server which receives the pub-
lic bundle keys upon registration. Because of the passive access
type, the adversary cannot interfere with those keys so there is
no difference with outsider adversary (the public keys stored
by the server are also accessible by outsider adversary). For
Signal, there is no difference between passive insider and pas-
sive outsider given the reach capability (local, medium, global).
For this reason, the metric is the same for local, medium or
global between outsider and insider, in the passive access type.

Active Insider. The case of active insider is the strongest type
of adversary. Indeed, A can interfere with the protocol (e.g.,
stop, modify messages) while compromising the server. This
critical case (either local, medium or global) cannot include
healing as the adversary can manipulate the keys from the
start of the communication. An active insider adversary can
simply remove honestly-generated keys sent to the server
and replace them by its own malicious key material. In this
case, the adversary plays a PiTM (Personn in The Middle)
forwarding messages through Alice to Bob (and vice-versa) by
its own. The communication between Alice and Bob cannot
heal thus leading to a (∞,∞)-PCS secure protocol for active
insider adversary.

C.2 Games for SAID
G0 : This game corresponds to the original security game
(Fig. 3 of Sec. 2.4). The advantage of A against this game is
Adv0.

G1 : In this game C guesses P, Q, the session index of the
target session, and the target stage s⋆ = (x⋆,y⋆) for which A
has queried oTest.

If A queries another parties, session or tested stage then C
aborts the game and returns a random bit. Therefore we have
the following:

Adv0 ≤ nP
2 ·nπ ·nx−max ·ny−max ·Adv1

Moreover, we assume the uniqueness of the identity key, and
identity-based related keys (identification and signature ones)
for each party. The latter condition is ensured by the KDC
maintaining a list of keys and removing possible duplicates.

Local Passive Outsider. We prove that SAID has the best
healing, i.e., (1,0)-PCS security meaning that only the
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compromised stage is accessible to the adversary. Recall that a
local adversary can query the oReveal.1Stage oracle to reveal
single-stage keys, which for SAID correspond to ck and mk.
First we show that the master secret ms is indistinguishable
from random, then we show that a tested stage is fresh (with
an indistinguishable session key from a random value) even
after an immediate compromised stage.

G2 : This game aborts if the adversary calls the random
oracle with input msPQ. The adversary has only one value
to guess, the random r while the other values are already
determined (the identity of Q, and the master public key of
Ŝ). Guessing r corresponds to a large failure event so:

Adv1 ≤
1
q
+Adv2

From this game, we assume that the master secret is unique
between each pair of communicating partners.

G3 : We show that ck1,y is indistinguishable from random. In
this game, the challenger aborts if the adversary query the ran-
dom oracle with input (•∥∆⋆∥rk⋆) where • corresponds to ms.
We show by reduction to GDH that if A can query the random
oracle with ∆⋆ = DH(Rchpk0,y⋆ ,Rchpk0,y⋆+1) with non-
negligible probability then we can construct B breaking the
GDH problem. We apply the same technique as in Signal (cf.
G7 ), that is B sendsRchpk0,y⋆ := ga andRchpk0,y⋆+1 := gb to
A . If A does not send the query corresponding to ∆ = ∆⋆ then
B simulates completely the game for A while the special case
is when A sends CDH(Rchpk0,y⋆ ,Rchpk0,y⋆+1) to the random
oracle. In this case, when B queries its DDH oracle (returning
1) it finds a solution to the GDH experiment. Finally, we have:

Adv2 ≤ Adv3 + εGDH

G4 : This game is the same as the previous except that the
challenger aborts if A queries the random oracle with rk for
up to and including y⋆. We use hybrid argument where the first
game isG4 and each iteration are the next rk until rk⋆. Between
each game, the root keys are indistinguishable since the new
root key is the output of the random oracle and A can only query
oReveal.1Stage. Since the adversary’s probability to guess the
root key is 2−|rk| for ny−max number of chains, we have:

Adv3 ≤ Adv4 +
1

2−|rk|−1

G5 : This game aborts if the adversary queries the random
oracle with (ck⋆,msPQ, tag

⋆). This game proceeds as the
previous one with a subcase to handle. Indeed, key ck is in the
adversary’s reach (single-stage for a local adversary). Thus
A could reveal this keys by querying oracle oReveal.1Stage.
However, as defined in 2.4, the adversary wins with non-
negligible probability for a query on stage s⋆ which is the tested
stage. Yet, the adversary has negligible probability to win if

the tested stage is after the reveal query. Indeed, SAID is (1,0)-
PCS secure meaning that A could reveal a key on stage x⋆−1
but distinguishes the session key with negligible probability.

Suppose that A does not query oReveal.1Stage on the
tested stage (which is part of our metric definition). We show
by reduction that A can distinguish the session key if it can
break the BCDH assumption meaning that it can compute
msPQ. We construct B simulating the game for A . Adversary
B receives A = ga

1,B = gb
2,C = gc

2 as input. It sets H(R) := A
(with H simulated as random oracle and R the responder role
the tested session) and ID.mpk := B. For each other party
X ̸= R, B generates a random value α and sets H(X) := gα

1 .
When A starts the session between P and Q then B runs the
actual protocol except that it sets h :=C. In this case, we have
msPQ = e(A,B)c which is the solution of the BCDH problem
instance. Observe that B simulates perfectly the game, except
when A sends msPQ to the random oracle. Thus we have:

Adv4 ≤ Adv5 + εBCDH

Finally, if A never sends msPQ to the random oracle then
the session key is indistinguishable from random. In this case,
A wins the game with probability 1/2:

Adv5 =
1
2

Local Active Outsider. This case is the same as the passive
adversary except that we need to ensure that the adversary
cannot replace ms with its own key material. Here, the
adversary has two possible ways to inject its own key material.
First, A could interfere during the registration phase between
P and Ŝ. However, we assume that those two parties establish a
secure channel thus the security relies on the AKE assumption.
Second, A could forge its own value h to compute the master
secret but in this case, we rely on the EUF-CMA security of
the IB-signature scheme IBSig. Note that the active adversary
case cannot interfere later on because the other keys are not
single-stage (thus having the same security as the local case).

Medium/Global Passive Outsider. This case gathers both
medium and global adversaries. Indeed, a global adversary has
additional access to the keys used during registration (ik) and
identity-based key used for instance initialisation. However,
in the passive this yields to no other consequence than the
medium case.

SAID is (∞,2)-PCS secure meaning that the adversary can
compromised two full chains of communication. We apply
the same game hops as the local case, but the index of stages
are different. Indeed, our security definition ensures that the
call to oReveal cannot happen with stage y = y⋆−1 or y = y⋆.
Thus from y = y⋆, the adversary has the same advantage of
the local case.

Local Passive Insider. In this case, A can reveal msPQ but
not inject its own value during the protocol. We show that
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such adversary can compromise at most the first chain which
corresponds to (∞,1)-PCS security. This is due to the fact that
a new chain is initialised with ratchet keys which are out of
reach’s adversary.

G2 This game aborts if the adversary queries the random
oracle with input (•∥∆⋆∥◦) where • corresponds to ms and
◦ corresponds to rk⋆. We apply the same argument as the local
passive outsider adversary in G3 . Thus we also use GDH
reduction to show that A . The rest of the proof correpsonds
to the local passive outsider since at this point the adversary
has the same advantage in both cases.

Medium/Global Passive Insider. In this case, SAID is
(∞,2)-PCS secure. This comes directly from the fact that now
the adversary has access to the secret keys used during session
initialisation but cannot interfere in other way with the pro-
tocol. Our security definition implies that the adversary cannot
compromise a stage of index y = y⋆−1 or y = y⋆. We apply
then the same proof as the previous case (local passive insider).

D 5G Composed Authenticate Key-Exchanges
(5G-SCEKE)

We present an overview outline of 5G handovers mentioned
in the main document12.

The Handover Procedures: XN, our XN+ and N2. The
handover procedures are described mainly in [2, 3]. In this
subsection, we focus only on aspects of key-establishment
done within.

Two Types of Handovers. To communicate securely, new
AS keys need to be established between the UE and the target
node t-gNB. For this, as explained for the Reg procedure,
a new security-key K1

gNB needs to arrive on the target node
t-gNB. Two cases, and thus types of handovers, are possible.

1. The core generates and sends a new security-key K1
gNB to

the target node t-gNB, similarly to the the Reg procedure;
in this case, the source node is a passive proxy. This
procedure is the N2 protocol.

2. The source node s-gNB, which already has a current
security-key K0

gNB shared with the UE, is an active proxy
in the procedure: it generates and sends to the target node
t-gNB a new security-key K1

gNB. This procedure is the
XN protocol.

“Horizontal vs. Vertical” XN Protocol. Due to the key-
derivation used to yield the application-level, so-called AS
(access-stratum) keys out of the KgNB keys, in the XN protocol,
the source node can simply use the new K1

gNB actually find
compute the new AS keys to be used between the UE and

12We assume no roaming, i.e., the mobile users are served directly and
entirely by the network managed of the operator they have a contract with.
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Figure 15: The 5G-SCEKE and 5G-SCEKE+ Short-term Keys’
Update and Distribution at the End of XN and XN+(XN+ details
are in blue; red strikes denote deletion of old session keys; . . .
denote existence of other shared keys, and messages)

t-gNB; this is a well-known fact, and we say that XN does not
have backward security. This can be worsened if the derivation
of new KgNB is based on the previous KgNB, which is called
horizontal key derivation (XNhkd).

However, there is an alternative. At the end of each handover,
the core sends to the target node a fresh key called next-hop
key (NH). This is derived by the core from KAMF , which –as
we explained– is refreshed (at least) at the end of each Reg ex-
ecution. When a gNB is source node in an XN procedure, this
gNB should not use it current K0

gNB to calculate a new K1
gNB but

rather use said NH, received when/if the gNB was target in a
previous execution of a handover procedure. The condition for
this execution is the NH in question was not unused in this way
before13. This type of key-derivation inside XN, whereby the
new KgNB is not based on the previous KgNB but rather on a re-
cent, core-issued NH is called vertical key derivation (XNvkd).

Clearly, in a sequence of XN executions, as soon as a
vertical key derivation takes place, the chain of serial loss of

13The NH could have been used by the current s-gNB, if this gNB received
it at the end of N2, or if the served UE had temporarily been in IDLE state.
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backward security is broken. Yet, if someone knows the NH
on then this lack of security of the future KgNB continues.

In this work, we consider XN with either type of key
derivation for kgNB (corresponding to ck in SCEKE).

The XN+ Protocol. To improve the backwards security in
XN, in the main body, we proposed XN+. Simply put, we
added a randomness “rchk” that the t-gNB adds to each kgNB
calculation. And this randomness is securely sent to the core
which sends it to the UE, in turn, encrypted with kSEAF ; all
these are piggybacked on existing messages. See the yellow
markers in Figure 15.

The N2 Protocol. The N2 protocol requires less trust in the
gNBs, since the source node is not actively calculating the
security-key for the target node. In N2, the derivation of K∗gNB
is in fact a vertical key derivation based on a new NH locally
computed by the core and sent to t-gNB.

What is more, the core can be configured to re-fresh the keys
further up the key hierarchy, all the way to recomputing KAMF ,
which we aforementioned as the bottom of the AKA-refreshed
key chain; this is referred to as “ N2 with KAMF rekeying”.
It is this latter type of N2 that we use in this work inside
5G-SCEKE and 5G-SCEKE+.

The choice between the one type of handover or another, i.e.,
XN vs N2, is down to the interfaces between s-gNB and t-gNB:
if there is an XN interface between them, then XN is executed;
otherwise, N2 will be executed, intermediated by the core.

E Security of 5G-SCEKE and 5G-SCEKE+

E.1 Security of 5G-SCEKE as SCEKE
We now explain the results given in Figure 4 for 5G-SCEKE.
In the analysis below, we consider all relevant attackers in our
framework
GLOBAL AND MEDIUM ADVERSARIES 5G-SCEKE’s PCS-
security of a medium and global adversary (outsider or insider
and active or passive) is (∞,∞). For this attacker, the reveal
of one root key KAMF leads to having access to the rest of the
communication, after the reveal. In the key hierarchy, each
message key from stage (x,y) can be computed from rky, or
a fortiori from the long-term key K.
OTHER INSIDER ADVERSARIES The protocol in this case is
(∞,∞)-PCS-secure. For this attacker, no healing is possible
since the attacker has access to keys “above” KAMF in the 5G
hierarchy, i.e., above rk.

The above statements on 5G-SCEKE are rather attacks, so
no formal proof is needed.
LOCAL OUTSIDER In this case, the 5G-SCEKE protocol is
(∞,1)-PCS-secure. To this end, see that the chain and message
keys are derived symmetrically, and that rk is not revealed
from a call to oReveal.1Stage. So, A has no access to stage
(1,y+1). Viewed differently, (∞,1)-PCS-security in this case
can be explained via the fact the horizontal evolution is the
same as in Signal.

The security statement accompanying the healing related
tqo the latter attack above is given below.

Theorem 4 : Consider the 5G-SCEKE protocol modelled as
a SCEKE scheme in our model. The following results hold in
the random oracle model (by replacing the KDFs with random
oracles):

• 5G-SCEKE is (∞,1)-PCS secure against local outsiders
(active or passive).

• 5G-SCEKE is (∞,∞)-PCS secure against insiders,
medium and global outsiders.

We elude the proof here as this is very similar to the proofs
for 5G-SCEKE+, which follow.

Indeed, we continue with 5G-SCEKE+, for which we first
show security informal, and also accompany this by formal
proofs.

E.2 Security Proofs for 5G-SCEKE+ as SCEKE
In the main body of the document, we gave Theorem 3 for
the security of 5G-SCEKE+. We note that, in order to prove
those statements, we must provide two elements for each type
of attacker: a proof of security for the stages for which the
security does heal, and an attack that breaks the security of
the remaining stages. We first describe the attacks, informally.
PASSIVE OUTSIDER This case captures the gain from our
modification. Indeed, A can have access to a specific stage
through any combination of keys, but it cannot attain anything
from a next stage since a fresh value rchkx,y is used for the
next stage. This entails to (1,0)-PCS-security, in this case.
LOCAL ACTIVE OUTSIDER In this case, A can recover the
material of a stage, but cannot send its own value rchkx,y, since
KAMF (i.e.,rk) is needed first. Thus it equates to the previous
case, leading to (1,0)-PCS-security.
OTHER ACTIVE OUTSIDER ADVERSARIES Now A has
access to the key KAMF leading to the hijack of the com-
munication. A can generate its own value rchkx,y and sends
it to the intended partner. Thus A take full control of the
communication over the compromise party. This corresponds
to (∞,∞)-PCS-security.
INSIDER ADVERSARIES Here no healing is possible, the
protocol is (∞,∞)-PCS-secure. The adversary has access to the
top key in the hierarchy considered in 5G-SCEKE+, meaning
that it can compute all the keys and uses its own key material.

Proofs.
Theorem 3: “Consider the 5G-SCEKE+ protocol modelled

as a SCEKE scheme, in our model. The following results hold
in the random oracle model (by replacing the KDFs with
random oracles)

• 5G-SCEKE+ is (1,0)-PCS secure against local active
outsiders.

• 5G-SCEKE+ is (1,0)-PCS secure against passive
outsiders (local or global);”
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• For all other adversary types, 5G-SCEKE+ is (∞,∞)-
PCS secure (i.e., the security of the channel never heals
upon compromise).

Proof.
G0 : This game corresponds to the original security game

(Fig. 3 of Sec. 2.4). The advantage of A against this game is
Adv0.

G1 : In this game, the challenger C guesses P, Q, the session
index of the target session, and the target stage s⋆ = (x⋆,y⋆)
for which A has queried oTest.

If A queries another parties, session or tested stage then C
aborts the game and returns a random bit. Therefore, we have
the following:

Adv0 ≤ nP
2 ·nπ ·nx−max ·ny−max ·Adv1.

The next game deals with the fact that the locally generated
secrets rchkx,y in XN+ do not collide.

G2 : This game is the same as G1 except that the challenger

aborts if two keys rchk (i.e., two nonces rchkx,y used in XN+),
used inside the derivation of cks (i.e., kgNBs), have a collision.
We have that the advantage in G2 is:

Adv1 ≤
(
nπ

2

)
·2−|rchk|+Adv2.

G3 : This game is the same as G4 except the possibility of

distinguishing a RO in place where the KDF computing the
keys rk s (i.e., KAMF is used) is used.

Adv2 ≤ AdvRO(KDFKAMF )+Adv3.

At this point, all the keys rk (i.e., the kam f s) are indistin-
guishable from random based on the hypothesis of KDFs
being replaced by ROs.

In fact, we apply the modifications ofG1 andG3 a number of

times equal to the maximum number of chains ny−max, and we
call the result game G4 . We have that the advantage in G4 is:

Adv3 ≤ny−max ·
[(

nπ

2

)
·2−|rchk|+AdvRO(KDFKAMF )+Adv2

]
+Adv4

G5 : This game is the same as G4 except the challenger

aborts if the keys ck(x,y/y′) are the same, for two distinct chains
of stages y and y/y′ of the same session or of two different
honest sessions.

Note that, since at this stage the rchkx,ys are non-colliding,
all the keys ck (i.e., the kgNBs) as the above are unique until
the randomness repeats itself (as the KDF producing ck is
considered a random oracle). So, we have:

Also, the chain keys ck0,y⋆ are indistinguishable from
random to A , which resides on the fact that the KDF yielding
ckis considered an RO (as well as from the uniqueness of rchk
values in G2 , and from the randomness of rk values in G3 ).

So, we have:

Adv4 ≤Adv
RO(KDFKgNB) +nx−max ·

(
nx−max ·ny−max

2

)
·2−|ck|

+Adv5

Adversary-types’ Dependencies & Winning Conditions.
1. In the case where our adversary is local, reveal queries could
get the adversary to know chain-keys such ck or mk.

Next, the argument is based, in part, on the fact that in
our framework any proven bound strictly lower (χ,ϒ), also
implies the bound (χ,0), i.e., A could reveal the chain-key on
a stage with y = y⋆. Let us assume therefore that the reveal
is made on a stage with y = y⋆.

In this case, the local attacker gets ck (i.e., kgNB) on a
stage with y = y⋆, but to compute a new ck and mk needs the
following:

• the next rchk (i.e., the rchkx,y) value – the gNB-driven
randomness that we added to XN+, which the attacker
cannot introduce.

2. In the case where our adversary is global, reveal queries
could get the adversary to know keys such as rk.

In this case, the global passive attacker even get rk (i.e.,
kAMF ), but we fall back to the case above: that is, to compute
a next mk (i.e., kAS), the global passive attacker still needs the
following:

• The next rchk (i.e., the rchkx,y) value – the gNB-driven
randomness that we added to XN+, which the attacker
cannot introduce.

We conclude this proof: for the case global passive and local
active attacker, 5G-SCEKE+ is (1,0)-PCS secure, with the
final advantage of such adversaries beingG5 ≤ 2−|ck|+2−|mk|,
i.e., these adversaries can just guess the ck and/or mks, after
the crucial “reveal”s have been called, and the probability of
such guessing is negligible.
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