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Abstract
Classical Response Time Analysis (RTA) and Network Calculus (NC) are two major formalisms
used for the verification of real-time properties. We offer mathematical links between these two
different theories. Based on these links, we then prove the equivalence of various key notions in both
frameworks. This enables specialists of both formalisms to get increase confidence on their models, or
even, like the authors, to discover errors in theorems by investigating apparent discrepancies between
some notions expected to be equivalent. The presented mathematical results are all mechanically
checked with the interactive theorem prover Coq, building on existing formalizations of RTA and
NC. Establishing such a link between NC and RTA paves the way for improved real-time analyses
obtained by combining both theories to enjoy their respective strengths (e.g., multicore analyses for
RTA or clock drifts for NC).
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1 Introduction

Classical Response Time Analysis (RTA) and Network Calculus (NC, together with its
variant Real-Time Calculus) are two major formalisms used for the verification of real-time
properties. Some of the differences between RTA and NC are well-known: RTA tends to
be based on discrete time while NC relies on dense time, there is no notion of task in NC,
etc. Still, fully understanding the implications of such differences – enough, for example, to
be able to compare the state of the art in both approaches – requires a solid expertise in
both formalisms, which very few people have. To the best of our knowledge, no formal link
has ever been proposed to relate models and verification techniques from both worlds. This
is now made easier by recent work on formalizing each technique separately using the Coq
interactive theorem prover: RTA in Prosa [9] and NC in NCCoq [22].
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5:2 A Formal Link Between Response Time Analysis and Network Calculus

In this paper, we provide the foundations for a formal connection between RTA and NC.
Specifically, we show how to translate the behavior of a real-time system as formalized in
Prosa into a trace as specified in NCCoq, and conversely. This requires in particular a clean
formalization of time and how to switch back and forth between discrete and dense time.
We also relate core modeling concepts of NC, namely arrival curves and FIFO scheduling, to
their Prosa counterparts. All definitions and proofs are formalized in Coq and available as
additional material submitted together with this paper.

Our work is significant in many ways. First, it makes it easier for experts of one of the
two approaches to understand the other by formally relating definitions. Second, given that
a formal specification in Coq may be incorrect (meaning that it does not correspond to its
informal definition), linking RTA and NC definitions is a way to increase confidence in these
definitions. This has in fact led us to discover a bug in the definition of static priority in NC,
as discussed at the end of the paper. Third, our formal connection provides the necessary
foundations to compare existing analyses: proving that they are equivalent, that one is
strictly more precise than another, or that they are incomparable. In addition, we hope that
this connection can be used to build improved analyses based on a combined use of RTA
and NC. Last, but not least, another strong contribution of this paper is its formalization of
clocks. Discrete time is not a well suited setting for addressing issues related to clock drifts.
The formal connection provided here between discrete and dense time represents a first step
towards handling clock drifts in Coq.

This paper is organized as follows. Section 2 discusses related work. Section 3 provides
an informal overview of the contribution. Sections 4 and 5 then present in a formal way the
relevant state of the art regarding modeling in Coq of RTA and NC, respectively. Section 6
presents our first contribution, which formally links physical time (as in NC) and discrete
clock-based time (as in Prosa). Sections 7, 8 and 9 then provide formal links between arrival
sequences and cumulative curves, response times and horizontal deviations, request bound
functions and arrival curves, respectively. Finally, Section 10 addresses properties at the
scheduling level regarding FIFO and fixed-priority scheduling and Section 11 concludes.

All along the paper, definitions and lemmas are tagged with their (name) in the companion
Coq development. No pen-and-paper proof of any result is provided in the paper: we focus
instead on intuitions and explanations. Of course, we can only do that because the provided
Coq proofs provide a much higher level of confidence.

2 Related Work

Building an analysis to guarantee that a system satisfies some real-time requirement is often
a complex process, requiring long and error-prone proofs. One way to increase confidence in
the correctness of such analyses is to use model checking, as e.g., in [5] to verify schedulers.
Model checkers are automatic but less versatile than proof assistants such as Coq [10] or
Isabelle/HOL [26]. In this paper, we follow a recent trend in the real-time community towards
computer-assisted formal specifications and proofs using Coq1.

Coq [10] is a proof assistant, i.e., a tool offering (1) a language to state theorems and
describe their proofs, and (2) software – think of it as a compiler – for verifying these proofs.
It can also be used to develop software whose execution is proved to be conform to their
(formal) specification such as the CompCert C compiler [19] or the CertiKOS operating

1 See for example the Call to Action at ECRTS 2016, Real Proofs for Real Time: Let’s do better than
“almost right” [1]. Note that a similar momentum was given a decade ago in the programming language
community. A number of mechanized formalizations (using either Coq or other tools) now appear each
year at POPL, their main conference.
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system [13]. When checking a proof, Coq will complain if a lemma is used without providing
a proof for one of its hypotheses or if the proved hypotheses do not match the expected ones.
Of course, Coq cannot guarantee that the formalization indeed corresponds to what was
intended, so readability of the specification is key in Coq.

The main mathematical concepts of RTA have been formally defined and proved, with
Coq, in the Prosa library [9]. This work has since seen many extensions. For example, [8]
uses Coq as much for formalization purposes as for verification, while [7, 12] both use Coq as
a powerful tool for providing abstract proofs which can then be instantiated into a variety
of more concrete analyses. CertiCAN [11] represents a third type of application of Coq in
relation to Prosa, in that it not only produces Coq proofs of various real-time analyses of the
CAN protocol (from which efficient analysis tools can be extracted) but it can also be used
to certify the results of non-certified industrial tools such as RTaW-Pegase. In yet another
related line of work, [14, 15] have shown that it is possible to use Prosa for the schedulability
analysis of a real-time OS kernel, namely CertiKOS.

On the NC side, first results on the formal verification of NC computation were presented
in [20]. The aim was to verify that an existing tool was correctly using the NC theory.
An Isabelle/HOL library was developed, specifying the main concepts of NC (flows and
servers, arrival and service curves) and stating the main theorems but without proving them2.
The NC tool was then instrumented to provide not only a result, but also a proof on how
NC had been used to produce that result. Isabelle/HOL was in charge of checking the
correctness of this proof. Much more recently, actual proofs, this time using Coq, of the core
mathematical concepts of NC have been provided in [22]. Actual computations of such non
trivial manipulations of functions in the min-plus dioids can also be verified using Coq [23].

Regarding the specific contribution of this paper, namely the link between RTA and
NC, note that comparing theories that coexist in the real-time community is not a new
challenge [21], yet little research has been done on building bridges between them. Recent
work has focused on connecting Compositional Performance Analysis (CPA, [24]) and NC
into a common formal framework [6, 17], however not using proof assistants.

3 Overview of the Contribution

Before going into detail, let us provide here an informal description of the contributions of
this paper, based on simple examples of RTA and NC execution traces.

Figure 1 shows a usual representation of a RTA trace, which contains here a single
job characterized by its arrival time arr(j) and its cost, both of which are integers. The
scheduling of j determines the service it receives, and thus its completion time end(j). Note
that cost and instants are all integers but instants denote some points in time whereas a
cost is a workload. The response time of j is defined as end(j) − arr(j). A more detailed
description of RTA will be presented in Section 4.

Figure 2 shows a comparable trace in NC. NC models workload using the notion of
cumulative curve. A cumulative curve A is a non-decreasing function from R+ to R+, whose
semantics is that A(t) represents a cumulative amount of work (in bits or CPU cycles). Like
in RTA, the domain and image of A are the same sets, but the domain represents a (dense)
time set whereas the image represents an amount of work. A curve can represent an amount
of work demand, or an amount of work received. For instance, the crossing of a server by
a packet is represented by two functions, the arrival cumulative curve A, whose value is
null up to the packet arrival and is increased by the packet size at its arrival time, and a

2 They were assumed to be correct, since they have been established in the literature for long.

ECRTS 2022
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Figure 1 RTA: Scheduling of a job j with arr(j) = 1, cost(j) = 4 and the service received by job
equal to 1 at instants 2 and 5, and equal to 2 at instant 3, leading to end(j) = 6.

departure cumulative curve D which is also null up to the packet departure and is increased
by the packet size at its departure time. The delay is then defined as the horizontal deviation
between A and D (the formal definition of which will be given in Section 5).
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Figure 2 NC: Arrival and departure cumulative curves representing a packet of size 4 entering a
server at time 1 and leaving at time 6.

The relation between RTA and NC appears quite simple when comparing Figures 1 and 2,
but the similarity between the graphical horizontal lines hides a major difference. Time in
NC is the physical time, common to all calculators or switches (neglecting relativity effects)
whereas time in RTA is the clock time, given by a hardware element, subject to imprecision
and drifts.

Let us now discuss a slightly more complex example. In RTA, a task is a (possibly infinite)
sequence of jobs, and the response time of the task in a schedule is the maximum of all
individual response times. In NC, a flow is commonly represented by a single cumulative
sequence. Note that the information is not exactly the same in both models. First, the
NC model does not precisely represent the instants at which a task is scheduled, and only
represents completion times. Since it does not represent the scheduling itself, it cannot
support properties on scheduling. Second, the NC model of flow has no notion of individual
packets or jobs. For example, when looking at Figure 3, representing the arrival and departure
of two packets of size 4, one cannot guess if the packet leaving at time 6 is the first or the
second one. In fact, even the number of packets is unknown: the jump of size 4 at time
1 could be created by a single packet of size 4, but also by 2 packets of size 2, and so on.
Nevertheless, under the assumption that all jobs of the same task are scheduled with FIFO
order, we can prove that the horizontal deviation is equivalent to the response time. Third,
the RTA model does not capture clock drifts, making it more difficult to plug systems with
different clocks, whereas NC uses the real universal time and can easily handle clock drift
between systems.

We can now detail the core contributions reported in this paper, as follows:
a clock model linking RTA and NC time, that can handle clock drifts;
a mapping of each job j in a Prosa trace to a pair (Aj , Dj) in NC;
a proof that the horizontal deviation hDev(Aj , Dj) is equal to the response time of job j

in case of perfect clocks, and a valid upper bound in presence of clock drifts;
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Figure 3 Graphical representation of two different schedulings of two jobs j, j′ and the associated
arrival and departure curves (A, D). Note that NC curves cannot distinguish the two schedulings.

similar results for entire tasks and not just single jobs;
a translation of a request bound function from RTA into an arrival curve from NC and
vice versa;
an equivalence between RTA and NC definitions of FIFO;
an error found in a NC theorem during some preliminary works toward an equivalence on
static priority.

All these items have been formalized in Coq based on the Prosa and NCCoq frameworks.

As already mentioned, this equivalence is only based on job release time, completion time
and cost, ignoring the scheduling itself. Then, the property on FIFO relies on the observable
part related to input/output, not on its internal implementation. And the result on static
priority than will be presented in Section 10.2 is only a preliminary work. The modeling of
the schedule will be discussed in the conclusion.

4 Response Time Analysis

Let us provide a more formal description of how the general concepts used by RTA are
specified in Prosa. The Prosa library is structured around three main parts:

behavior/ provides a trace-based semantics of real-time systems and is meant to be as
generic as possible. This part represents the common ground for all other parts of Prosa.
model/ contains a variety of modeling concepts which can be used to specify real-
time systems, e.g., regarding task arrivals, preemptions, scheduling policies, platform
abstractions etc. This part is meant to be used as a library, where one can pick definitions
suitable for a specific system model.
analysis/ is where response time or schedulability analysis proofs are located.

In the rest of this section, we present the definitions from the Prosa library that are
needed to relate RTA and NC. For readability, we omit trivial well-formedness conditions
and a few basic definitions.

ECRTS 2022



5:6 A Formal Link Between Response Time Analysis and Network Calculus

4.1 Behavior
The behavior part of Prosa is the core of the library, so most of its concepts are used in our
work. First, let us recall that Prosa is based on a discrete model of time, so time is defined
using natural numbers. This is formalized in Coq in the file time.v of Prosa as

Definition duration := nat.
Definition instant := nat.

To insist on this and avoid confusion with the dense time used by NC, we use in this paper
the term tick for what is called instant in Prosa, and number of ticks for durations.

A job in Prosa is an abstract type with decidable equality: given two jobs, one can at least
determine whether they are the same job or not. One can specify additional job parameters
such as cost or arrival. Note that the cost of a job, which denotes the amount of service it
requires to complete, is of type work (also represented using natural numbers), which would
correspond in a real system to a number of processor cycles.

▶ Definition 1. (job_cost, job_arrival) The cost of a job j, of type work, is denoted
cost(j). The arrival of a job j, of type tick, is denoted arr(j).

This is formalized in Coq in the file job.v of Prosa as

Definition JobType := eqType.
Definition work := nat.
Class JobCost (Job : JobType) := job_cost : Job -> work.
Class JobArrival (Job : JobType) := job_arrival : Job -> instant.

An arrival sequence is then defined as a function mapping any tick to the (finite) sequence
of jobs that arrive at that tick.

▶ Definition 2. (arrival_sequence) Given a type of jobs Job, an arrival sequence is a
function arrseq : N → 2Job.

This is formalized in Coq in the file arrival_sequence.v of Prosa as

Definition arrival_sequence (Job : JobType) := instant -> seq Job.

A schedule essentially specifies which jobs are scheduled at every tick, and how much
service they receive. In practice, depending on the specific execution platform, a lot more
information may be relevant. This is why Prosa provides an abstract notion of processor
state, which provides at least the above information about jobs scheduled and service. A
schedule is then defined as a function that maps a tick to a processor state.

▶ Definition 3. (schedule) A schedule is a function sched : N → PState. Given an instance
of the abstract processor state class, the service received by a job j in a processor state
p ∈ PState is denoted service_in(j, p).

This is formalized in Coq in the file schedule.v of Prosa as

Definition schedule (PState : Type) := instant -> PState.

with

Class ProcessorState (Job : JobType) (PState : Type) :=
{ service_in : Job -> PState -> work; (* ... *) }.
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Given a schedule and an instance of the abstract notion of processor state, one can derive
the service received by a job at a given tick, between two given ticks, or up to a given tick.

▶ Definition 4. (service) Given a schedule sched, the service received by a job j before a
tick t ∈ N, denoted service(j, t), is defined as

∑
0≤t′<t service_in(j, sched(t′)).

This is formalized in Coq in the file service.v as

Context {Job : JobType} {PState : Type} ‘{ProcessorState Job PState}.
Variable sched : schedule PState.

Definition service_at (j : Job) (t : instant) := service_in j (sched t).
Definition service_during (j : Job) (t1 t2 : instant) :=

\sum_(t1 <= t < t2) service_at j t.
Definition service (j : Job) (t : instant) := service_during j 0 t.

Finally, a job completes its execution when it has received at least as much service as its
cost3. The definition of a response time bound follows.

▶ Definition 5. (job_response_time_bound) A number of ticks r+ is a response time bound
for a job j if service(j, arr(j) + r+) ≥ cost(j).

This is formalized in Coq as

Definition completed_by (j : Job) (t : instant) :=
service j t >= job_cost j.

Definition job_response_time_bound (j : Job) (R : duration) :=
completed_by j (job_arrival j + R).

We will in addition use a related definition from the analysis part, which introduces
the notion of completion sequence.

▶ Definition 6. (completion_sequence) Given an arrival sequence arrseq and a schedule
sched, the corresponding completion sequence, denoted endseq(arrseq, sched), is the function
N → 2Job that maps each tick t to the jobs that complete at t.

This is formalized in Coq using the following definition from service.v

Definition completes_at (j : Job) (t : instant) :=
~~ completed_by j t.-1 && completed_by j t.

and then in the file completion_sequence.v as

Definition completion_sequence : arrival_sequence Job :=
fun t => [seq j <- arrivals_up_to arr_seq t | completes_at sched j t].

We have now all the basic concepts required to describe the behavior of a real-time system
for RTA, except the notion of readiness, which is not needed in this paper. In the following,
we will sometimes use the term trace to refer to a pair (arrseq, sched).

3 Note that we do not impose that a job receives exactly the amount of service corresponding to its cost.
It could indeed receive more than needed to complete from the processor in the last tick of its execution.

ECRTS 2022



5:8 A Formal Link Between Response Time Analysis and Network Calculus

4.2 Model
Unlike behavior, which is intended to be as universal as possible and to which all analyses
using Prosa must relate, the model part is really meant as a library to be extended and
picked from depending on the target system model and analysis. In this paper we will only
use basic constructs from this part of Prosa to specify tasks and request bound functions.

Similar to jobs, a task in Prosa is nothing more than an abtract type with decidable
equality. One usually specifies a task cost, and a function to relate jobs and tasks.

▶ Definition 7. (job_task, task_cost) The task of a job j is denoted task(j). The cost of
a task tsk, of type work, is denoted cost(tsk).

This is formalized in Coq in the file concept.v of Prosa as

Definition TaskType := eqType.
Class JobTask (Job : JobType) (Task : TaskType) := job_task : Job -> Task.
Class TaskCost (Task : TaskType) := task_cost : Task -> duration.

Defining the arrival of a task is less trivial than for a job and there exists a variety of
models in Prosa for doing so, including periodic and sporadic arrival models. Prosa also
defines arrival curves, which however constrain the number of arrivals rather that the amount
of requested workload as in NC. We use here request bound functions, which are closer to
the NC arrival curves.

▶ Definition 8. (request_bound) A request bound is a monotonic function rbf : N → N
such that rbf (0) = 0. An arrival sequence arrseq satisfies an upper request bound rbf for a
given task tsk if for any ticks t1, t2 ∈ N such that t1 ≤ t2, the cumulative cost of all jobs of
tsk that arrive in arrseq between t1 and t2 is bounded by rbf (t2 − t1).

This is formalized in Coq in the file request_bound_functions.v of Prosa as

Definition valid_request_bound_function (request_bound : duration -> work)
:= request_bound 0 = 0 ∧ monotone leq request_bound.

Definition respects_max_request_bound (tsk : Task) (max_request_bound :
duration -> work) := ∀ (t1 t2 : instant), t1 <= t2 ->

cost_of_task_arrivals arr_seq tsk t1 t2 <= max_request_bound (t2 - t1).

Let us now introduce the first definition that is not already part of Prosa. We specify the
FIFO property, which guarantees that jobs complete in the order in which they arrive.

▶ Definition 9. (FIFO_property) A trace (arrseq, sched) is said to respect the FIFO property
when for any two jobs j1, j2, if j1 arrives before j2 then it also completes before it, that is:

∀j1, j2, ∀t1, t2, t′
2,

(j1 ∈ arrseq(t1) ∧ j2 ∈ arrseq(t2) ∧ t1 < t2 ∧ j2 ∈ endseq(arrseq, sched)(t′
2)) =⇒

∃t′
1, t′

1 ≤ t′
2 ∧ j1 ∈ endseq(arrseq, sched)(t′

1).

For flexibility, we use a version of the FIFO property that applies to jobs of a specific pair of
tasks. If it holds for all pairs of a task set then we end up with the above property. The
advantage of this version is that it can be used to express the general FIFO property as
well as the specific FIFO order between jobs of the same task (which is related to task
sequentiality in Prosa).
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▶ Definition 10. (FIFO_per_task_property) A trace (arrseq, sched) is said to respect the
FIFO property with respect to two tasks tsk1 and tsk2 when any job j2 in tsk2 completes after
all jobs j1 arrived before it in tsk1, that is:

∀j1, j2, ∀t1, t2, t′
2, (task(j1) = tsk1 ∧ task(j2) = tsk2 ∧

j1 ∈ arrseq(t1) ∧ j2 ∈ arrseq(t2) ∧ t1 < t2 ∧ j2 ∈ endseq(arrseq, sched)(t′
2)) =⇒

∃t′
1, t′

1 ≤ t′
2 ∧ j1 ∈ endseq(arrseq, sched)(t′

1).

Note that there is a definition of FIFO in the model part of the Prosa library, which
we do not use. First because it is quite complex, in the sense that it is derived from a
more general notion of job level fixed priority. It is therefore more convenient to use a more
straightforward definition for connecting RTA to NC. Formally relating our direct definition
of FIFO to the Prosa definition is left for future work. Second, and more importantly, the
Prosa FIFO definition is in fact different from ours, as it constrains the scheduling of jobs in
a first-come-first-serve manner while the above definition constrains the order in which jobs
complete. In particular, the Prosa FIFO scheduling does not necessarily guarantee the FIFO
property in multicore systems. The notion of server in NC is very different from the notion
of scheduler in RTA, and as a result a formal link between the two can only succeed at the
interface, expressed in terms of arrivals and completions.

5 Network Calculus

Similarly to how the Prosa library is formalizing RTA analyses in Coq, the NC theory
is formalized in the NCCoq library, which is available at https://gitlab.mpi-sws.org/
proux/nc-coq. A short overview can be found in [22]. This section introduces the notions
from NCCoq that we have used in our work.

5.1 Behavior
NC models dense time using the set of real numbers R, and more specifically its subset of
nonnegative values R+ := {x ∈ R | x ≥ 0}. Positive real numbers R∗

+ := {x ∈ R | x > 0} as
well as extended reals R := R ∪ { −∞, +∞ } also play an important role. In the NCCoq
formalization, these fundamental definitions are taken from the MathComp Analysis library [2]
and respectively noted R : realType, {nonneg R}, {posnum R} and \bar R. NC relies on
a few classes of functions, defined as follows.

▶ Definition 11. (F) F := R+ → R is the set of functions from R+ to R.

This is formalized in Coq in the file RminStruct.v of NCCoq as

Definition F := {nonneg R} -> \bar R.

▶ Definition 12. (Fplus) F+ := {f ∈ F | 0 ≤ f} is the subset of functions from F that are
nonnegative.

This is formalized in Coq as

Definition F_0 : F := fun=> 0%E.
Definition nonNegativeF := [qualify a f | F_0 <= f ]%O.
Record Fplus := { Fplus_val :> F; _ : Fplus_val \is a nonNegativeF }.

ECRTS 2022
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5:10 A Formal Link Between Response Time Analysis and Network Calculus

where the first line defines f0 : F the constant4 function equal to 0 ∈ R; the second line
defines the nonnegative functions as functions that are larger than f0. The third line uses a
common Coq construction, where the subset of a set X satisfying a property P is defined as
records with an element x ∈ X of this set (here, Fplus_val of type5 F) and an unnamed _
proof of P (x) (here, a proof that Fplus_val is a nonnegative function).

▶ Definition 13. (Fup) F↑ := {f ∈ F+ | ∀xy, x ≤ y ⇒ f(x) ≤ f(y)} is the subset of nonde-
creasing functions from F+.

The Coq formalization Fup proceeds similarly to Fplus.
Now equipped with these basic definitions, we can define the main object of NC: data

flow cumulative curves. They play a similar role to arrival sequences in RTA.

▶ Definition 14. (flow_cc) A cumulative curve is a function f ∈ F↑ satisfying
f(0) = 0
f is left continuous
f only takes finite values: ∀t, f(t) ∈ R+

We denote C the set of cumulative curves.

This is formalized in Coq in the file cumulative_curves.v of NCCoq.
NC defines delays using the notion of horizontal deviation between two cumulative curves.

▶ Definition 15. (hDev_at, hDev) For f, g ∈ F and t ∈ R+, the horizontal deviation
hDev(f, g, t) ∈ R+ between f and g at t is defined as

hDev(f, g, t) := inf {d ∈ R+ | f(t) ≤ g(t + d)}

and the horizontal deviation hDev(f, g) ∈ R+ between f and g is defined as

hDev(f, g) := sup {hDev(f, g, t) | t ∈ R+}.

This is formalized in Coq in the file deviations.v of NCCoq.
Finally, servers constitute the last main notion of NC to model concrete behaviors.

NCCoq includes a few different flavors of servers. This notion would relate to the notion
of scheduler in the RTA world. There is however is no such thing formalized in the core
of Prosa, which is based on schedules in the behavior and on scheduling policies (that are
predicates on traces) in the model part. We thus simply omit servers from the current paper,
in which we will directly deal with input and output cumulative curves.

5.2 Model
Just like request bound functions are a tool to express contracts on arrivals in RTA, arrival
curves are the NC tool to specify inputs of servers.

4 0 ∈ R is denoted 0%E in Coq, %E being the scope annotation for extended real notations in the MathComp
Analysis library [2].

5 The :> syntax makes Fplus_val a Coq coercion, meaning Fplus_val will be inserted automatically by
Coq to cast a Fplus as a F wherever needed. In practice, this means that a value of type Fplus can be
used just like a function of type F.



P. Roux, S. Quinton, and M. Boyer 5:11

▶ Definition 16. (is_maximal_arrival) A function α ∈ F is an arrival curve for any
cumulative curve A when

∀t, d ∈ R+, A(t + d) − A(t) ≤ α(d)

This is formalized in Coq in the file arrival_curves.v of NCCoq.
This concludes our overview of the already existing definitions that are needed to present

our contribution in the remainder of the paper.

6 Dense versus Discrete Time

Hardware clocks are devices whose aim is to provide a measure of time, generally based on a
physical oscillator, characterized by its frequency f . Based on [16], we may distinguish ideal
clocks, when the difference between two signal occurrences is exactly 1/f , from constant
drifted clocks, when the difference between two signal occurrences is exactly ρ/f , where ρ − 1
represents the drift (commonly related to the temperature), or more general constraints [25].
In computers, the time value is computed as a function based on a counter incremented at
each signal occurrence.

Thus, Section 6.1 will introduce a universal notion of clock, to make a link between time
and its discrete measurement, and Section 6.2 will introduce elements on the clock quality.
The Coq definitions and lemmas referenced in this section can be found in the file clock.v.

6.1 Clocks
Since RTA relies on a discrete notion of time (ticks are in N) whereas NC uses real times
in R+, we need a link between discrete and dense times in order to relate both theories.
A simple solution would be to use the canonical injection of N in R+, that is, to consider
each tick n ∈ N as happening at real time n ∈ R+. However, doing this would preclude any
modeling of behaviors such as clock drifts. We thus need a more generic modeling. To that
end, we first introduce the notion of universal clock.

▶ Definition 17. (uclock) A universal clock is a function c : N → R+ satisfying
c(0) = 0
there exists a min_intertickc ∈ R∗

+ such that for all n ∈ N, we have

c(n + 1) ≥ c(n) + min_intertickc.

Thus given a clock c, the real value c(n) is the physical time of the n-th clock tick. The
condition c(0) = 0 means that the clock starts right away while the min_intertickc is mostly
there to exclude functions such as n 7→ 1 − 1

n which could cause all kinds of Zeno phenomena.
While we now have a link from discrete to dense time, it would be useful to get some

kind of inverse from dense to discrete time. One can notice that, thanks to the condition on
min_intertickc above, for any clock c and real time r, there is a tick n that happens exactly
at time r or is the next one after r.

▶ Lemma 18. (next_tick_ex) For any clock c and r ∈ R+, there exist n ∈ N such that
r ≤ c(n) and for all n′ < n, we have c(n′) < r.

This gives us a function nextc : R+ → N.

▶ Definition 19. (next_tick) For any clock c, we denote nextc : R+ → N the function
mapping each r to the n given by Lemma 18.
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Figure 4 Graphical representation of an arbitrary clock c and its inverse function nextc.

This is illustrated in Figure 4 and formalized as follows in Coq: we first prove Lemma 18

Lemma next_tick_ex (c : uclock) (r : {posnum R}) :
{ n | r%:nngnum <= (c n)%:nngnum

∧ ∀ n’, (n’ < n)%N -> (c n’)%:nngnum < r%:nngnum }.

where {n|P(n)} is a Coq notation for “there exists a n such that P (n)”. Since such a proof
is a simply dependent pair (n, proofof P (n)), one can use the first projection proj1_sig to
extract n out of it.

Definition next_tick (c : uclock) (r : {posnum R}) : instant :=
proj1_sig (next_tick_ex c r).

▶ Remark 20. We could as well have chosen n such that r < c(n) rather than r ≤ c(n). The
current choice appeared more convenient to match the left continuity conditions of NC.

Once clocks are defined, one can use Coq to formally verify a few lemmas about them.
In practice, we have proved about a dozen lemmas that came useful in the remaining of our
formal development, among which

▶ Lemma 21. (next_tick_0) For any clock c, then nextc(0) = 0.

▶ Lemma 22. (uclockK) For any clock c, any tick n ∈ N, then nextc(c(n)) = n.

6.2 Pseudo Periodic Clocks
Although the condition on min_intertickc in the definition of clocks was primarily introduced
to rule out Zeno phenomena, it can also be used to model clocks whose time between two
subsequent ticks is lower bounded. In addition, we will need to model clocks whose intertick
time is also upper bounded. Such clocks can be seen as periodic clocks with an inexact
period that can vary between some minimal and maximal value. They are thus called pseudo
periodic clocks.

▶ Definition 23. (ppuclock) A pseudo periodic clock is a clock c such that there exist
max_intertick satisfying min_intertickc ≤ max_intertick and for all n, we have c(n+1) ≤
c(n) + max_intertick.

▶ Example 24. (periodic_uclock) Periodic clocks are a special case of pseudo periodic
clocks for which min_intertickc = max_intertick and the n-th tick happens exactly at
time n × period.
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Program Definition periodic_uclock (period : {posnum R}) : ppuclock :=
Build_ppuclock

(Build_uclock (fun n => (n%:R * period%:num)%:nng) _ period _)
period _ _.

Thus, a clock c such that: ∀n, c(n + 1) − c(n) = 10−9s is a periodic clock representing
an ideal 1MHz clock, whereas a clock such that: ∀n, c(n + 1) − c(n) = (10−9 + 10−12)s is
also a periodic clock, but representing a 1MHz clock with a constant drift of 0.1%. Finally,
any clock such that: ∀n, c(n + 1) − c(n) ∈ [10−9 − 10−12, 10−9 + 10−12] is a pseudo periodic
clock with a non constant drift not greater than 0.1%.

As a tool to link physical time and clock ticks, these definitions of clocks will be pervasive
to link RTA and NC in the rest of this paper. Using different clocks for different parts of a
system then enables to model drift between different physical clocks.

7 Linking Arrival Sequences and Cumulative Curves

Equipped with this notion of clock, we can now relate arrival sequences from RTA to
cumulative curves from NC. We first do so for a single job then for an entire task.

The Coq definitions and lemmas referenced in this section can be found in the file
flow_cc_of_arrival_sequence.v.

7.1 For a Single Job
▶ Definition 25. (flow_cc_of_job) Given a job j and a clock c, one can build a cumulative
curve Aj ∈ C, as seen in Section 5, defined by

Aj : R+ → R+ (1)

t 7→

{
0 if t ≤ c (arr(j))
cost(j) otherwise.

(2)

We can thus establish a relation between jobs and cumulative curves.

▶ Definition 26. (related_job_flow_cc) A job j, with its cost and arrival time, and a
cumulative curve A are related when A is exactly the function Aj of Definition 25.

7.2 For an Entire Task
We can proceed similarly for a task with multiple jobs.

▶ Definition 27. (flow_cc_of_arrival_sequence) Given an arrival sequence arrseq, a
clock c and a task tsk, the cumulative curve Atsk ∈ C is defined by

Atsk : R+ → R+ (3)

t 7→
∑

j ∈
⋃

{arrseq(i) | i<nextc(t)},

task(j)=tsk

cost(j). (4)

In Coq, we first define the arrival for a given task between two instants t1 and t2.
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Let arrivals_of_tsk (arr_seq : arrival_sequence Job) tsk t1 t2 :=
[seq j <- arrivals_between arr_seq t1 t2 | job_task j == tsk].

Then, given a clock c, we define the cumulative curve

Program Definition flow_cc_of_arrival_sequence
(s : arrival_sequence Job) (c : uclock) (tsk : Task) :=

Build_flow_cc (Build_Fup (Build_Fplus
(fun t => (\sum_(j <- arrivals_of_tsk s tsk O (next_tick c t))

job_cost j)%:R%:E)
_) _) _.

It is worth noting here that, although it may not be immediately apparent in the pen-and-
paper Definition 27, this definition involves some proofs6 to prove that Atsk is actually a
cumulative curve, i.e., is in C.

We can thus establish a relation between arrival sequences and cumulative curves.

▶ Definition 28. (related_arrival_flow_cc) Given a clock c and a task tsk, an arrival
sequence arrseq and a cumulative curve A are related when A is exactly the function Atsk of
Definition 27.

Finally, we can prove that the cumulative curve for a task is nothing else than the sum of
the cumulative curves for each individual job in the task.

▶ Lemma 29. (flow_cc_of_arrival_sequence_of_job) Given a clock c, a task tsk and
an arrival sequence arrseq, we have for all t ∈ R+:

Atsk(t) =
∑

j ∈
⋃

{arrseq(i) | i<nextc(t)},

task(j)=tsk

Aj(t).

Note that we may want to write Atsk(t) =
∑

j∈
⋃

{ arrseq(i) },task(j)=tsk Aj(t) since Aj(t) = 0
for jobs arriving after t, but it would lead to infinite sums whose convergence has to be
proved to Coq. The given statement is equivalent and more convenient.

We now have a link between the main concrete behavior notions in RTA and NC, namely
arrival sequences and cumulative curves. This link constitutes the basis enabling to relate
other notions in the rest of the paper: notions of response time and delay, contracts with
request bound functions and arrivals curves or various scheduling policies.

8 Linking Response Time and Horizontal Deviation

Equipped with a formal link between RTA’s arrival sequences and NC’s cumulative curves,
we can now relate response times and horizontal deviations. Again, we first do so for a single
job then for an entire task with multiple jobs.

The Coq definitions and lemmas referenced in this section can be found in the file delay.v.

6 By filling the holes _ of Program Definition, the proofs themselves are present in the source file but
omitted here for the sake of clarity.
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8.1 For a Single Job
▶ Definition 30. (arrival_sequence_of_job) Given a set of jobs Job and a job j ∈ Job,
we define the arrival sequence arrseqj of this job as

arrseqj : N → 2Job (5)

t 7→

{
{ j } if t = arr(j)
∅ otherwise.

(6)

We then prove that this arrival sequence is consistent with the considered job_arrival
function, meaning that j ∈ arrseqj(arr(j)).

▶ Lemma 31. (arrival_sequence_of_job_consistent) The arrival sequence arrseqj of a
job j, as defined in Definition 30, is consistent with the arrival time of j.

Thus, from a response time bound on an arrival sequence, one can deduce a horizontal
deviation on related arrival curves.

▶ Lemma 32. (hDev_of_job_response_time) Given a pseudo periodic clock c, for a given
job j, a related cumulative curve A and a cumulative curve D related to the completion
sequence of j, if some r+ ∈ N is a response time bound for j, then

hDev(A, D) ≤ r+ × max_intertickc.

Note that here, a pseudo periodic clock, and not just a clock, is required because the result
involves the upper bound max_intertick between two consecutive clock ticks. A similar
result holds in the reverse direction.

▶ Lemma 33. (job_response_time_of_hDev) Given a clock c, for a given job j, a related
cumulative curve A and a cumulative curve D related to the completion sequence of j, given
a bound on the horizontal deviation between A and D, if the horizontal deviation between A

and D is bounded by r+ × min_intertickc for some r+ ∈ N

hDev(A, D) ≤ r+ × min_intertickc

then r+ is a response time bound for j.

Note that this involves the bound min_intertickc between two consecutive clock ticks.

8.2 For an Entire Task
We can proceed similarly for entire tasks. Thus, from a task response time bound on an
arrival sequence, one can deduce an horizontal deviation on related arrival curves.

▶ Lemma 34. (hDev_of_task_response_time) Given a pseudo periodic clock c, a task tsk,
an arrival sequence arrseq, a related arrival curve A, a schedule sched and a cumulative curve
D related to its completion sequence endseq(arrseq, sched), if some r+ ∈ N is a response
time bound for all jobs of task tsk, then

hDev(A, D) ≤ r+ × max_intertickc.
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There is a big caveat for the reverse direction: since NC is unable to distinguish individual
jobs, as cumulative curves only register the sum of their costs7, one needs to add an
additional FIFO hypothesis that the jobs are ordered the same way in the arrival and
completion sequences. We end up with the following result to derive a RTA response time
bound from a NC horizontal deviation.

▶ Lemma 35. (task_response_time_of_hDev) Given a clock c, a task tsk, an arrival
sequence arrseq, a related cumulative curve A, a schedule sched, and a cumulative curve D

related to its completion sequence endseq(arrseq, sched), if the FIFO property of Definition 10
is satisfied with tsk1 := tsk and tsk2 := tsk and if the horizontal deviation between A and D

is bounded by r+ × min_intertickc for some r+ ∈ N:

hDev(A, D) ≤ r+ × min_intertickc

then r+ is a response time bound for all jobs of task tsk.

We now have a way to interpret RTA analyses results in a NC setting and vice versa.

9 Linking Request Bound Functions and Arrival Curves

The links established between RTA and NC in the previous sections were only pertaining
to the behavior subsections of Sections 4 and 5, defining respectively RTA and NC. That
is, those notions are purely mathematical, no actual computation is made on them. On
the contrary, the notions of request bound functions (RBF) and arrival curves, defined in
the model subsections of Sections 4 and 5, are actually manipulated by analyses. They
are “computational” objects and not mere mathematical definitions. Thus, given a RBF,
a “constructive” definition of a related arrival curve could enable to actually communicate
results from a RTA analysis to a NC one, and vice versa. The current section precisely aims
at building such “constructive” links.

The Coq definitions and lemmas referenced in this section can be found in the files
arrival_curve_of_request_bound_function.v and
request_bound_function_of_arrival_curve.v.

9.1 From Request Bound Functions to Arrival Curves
Given a RBF and a clock, one can define an arrival curve in F+.

▶ Definition 36. (arrival_curve_of_request_bound_function) Given rbf : N → N and
a clock c, we can define αrbf : F+ as

αrbf : R+ → R+ (7)

d 7→ rbf
(⌈

d

min_intertickc

⌉)
. (8)

Moreover, if the RBF is valid, then the arrival curve can be proved to be in F↑, i.e., it is
nondecreasing.

▶ Lemma 37. (arrival_curve_of_valid_request_bound_function) For any rbf and
clock c, if rbf is a valid RBF (according to Definition 8), then αrbf : F↑.

7 See the example in Section 3 with Figure 3.
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One can then prove that our definition indeed translates RBFs into arrival curves.

▶ Lemma 38. (arrival_curve_of_request_bound_function_is_maximal_arrival)
Given a clock c, a task tsk, an arrival sequence arrseq, a cumulative curve A and a RBF rbf ,
then if arrseq and A are related for task tsk, if rbf is a valid RBF for tsk in arrseq, then
αrbf is an arrival curve for A.

It is worth noting that this correspondence is tight for periodic clocks (i.e., one can prove8

the converse of Lemma 38) but can be conservative otherwise.

9.2 From Arrival Curves to Request Bound Functions
Conversely, from an arrival curve in F , one can define a RBF.

▶ Definition 39. (request_bound_function_of_arrival_curve) Given α : F and a
pseudo periodic clock c, we can define rbf α : N → N as

rbf α : N → N (9)

d 7→

{
0 if d ≤ 0
⌈α (d × max_intertickc)⌉ otherwise.

(10)

Note that this requires a pseudo periodic clock as it involves max_intertick. Also note that
rbf α(0) is explicitly set to 0 because RTA defines valid RBFs as starting at 0 whereas NC
has no such requirement9 on α. This definition is encoded as follows in Coq.

Definition request_bound_function_of_arrival_curve
(alpha : F) (c : ppuclock) : duration -> nat :=

fun d =>
if (d <= 0)%N then 0%N else

‘|ceil (fine (alpha (d%:R * (ppuclock_max_intertick c)%:num)%:nng%R)
)|%N.

There are two things worth noticing about that Coq statement that were not immediately
apparent in Definition 39. First, there is an additional absolute value ‘|.| around the ceiling
function ceil. This is needed for the definition to typecheck because the ceiling function
returns a (signed) integer whereas we need a natural number. In practice, since its argument
is always nonnegative, it is a no-op. Second, we need to insert fine because α : F returns
values in R whereas ceil expects an input in R. fine acts as the identity function on R and
maps infinites to 0. This will require an extra finiteness hypothesis in the next two lemmas.

When the arrival curve is in F↑, the RBF can be proved valid.

▶ Lemma 40. (valid_request_bound_function_of_arrival_curve) Given α : F↑ and a
pseudo periodic clock c, if α only takes finite values (i.e., for all d, α(d) ∈ R), then rbf α is a
valid RBF.

One can then prove that our definition indeed translates arrival curves to RBFs.

8 C.f., lemma arrival_curve_of_request_bound_function_respects_max_request_bound.
9 Even if, in practice, arrival curves with α(0) ̸= 0 are of no interest hence never used, the set F enjoys a

nice algebraic structure of dioid which {α : F | α(0) = 0} doesn’t and NC makes extensive use of this
algebraic structure.
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▶ Lemma 41. (request_bound_function_of_arrival_curve_respects_max_request_bound)
Given a pseudo periodic clock c, a task tsk, an arrival sequence arrseq, a cumulative curve A

and α : F↑ such that for all d, α(d) ∈ R, then if arrseq and A are related for task tsk, if α is
an arrival curve for A, then rbf α is a RBF for task tsk in s.

Again this is tight only for periodic clocks.
The definitions of αrbf and rbf α do not appear directly computable as they act on an

infinite domain but practical implementations of RTA or NC analyses usually handle some
kind of periodic functions10, in which case αrbf and rbf α can be actually computed. We
believe this is a powerful result, offering an effective way to translate RTA results into NC
hypotheses and vice versa. This enables us to combine the two theories and take advantage
of their respective strengths to derive real-time analysis results that none of the techniques
alone could provide.

10 Linking Scheduling Properties

We have already mentioned in Section 3 that the contribution does not address the scheduling
itself. Nevertheless, the First In First Out (FIFO) property as given in Definition 10 is not
a scheduling policy, but a property on schedulings. We are thus able to show equivalence
of the FIFO property in both formalisms, as presented in Section 10.1. Moreover, while
doing preliminary works toward an equivalence of static priority schedulings, an issue was
uncovered, as presented in Section 10.2.

10.1 FIFO
While the definition of FIFO in the RTA setting, as provided in Definition 10, appears
relatively straightforward, the NC definition may be much more enigmatic to anyone but
NC experts. We prove that this NC definition matches the RTA one, thus giving it a higher
confidence. The NC definition of the FIFO service policy is as follows.

▶ Definition 42. For n ∈ N, the cumulative curves Ai and Di for i < n are said to respect
the FIFO service policy when

∀i, j ∈ { 0, . . . , n − 1 } , ∀t, u ∈ R+, Ai(u) < Di(t) =⇒ Aj(u) ≤ Dj(t).

The Coq definitions and lemmas referenced in this section can be found in the file fifo.v.
We prove in particular the equivalence between the RTA and NC definitions of FIFO.

▶ Lemma 43. (FIFO_arrival_sequences_to_flow_cc) Given a clock c, an arrival sequence
arrseq, a schedule sched, two cumulative curves A and D respectively related to arrseq and
the completion sequence endseq(arrseq, sched), if arrseq and sched respect the (RTA) FIFO
property (for any pair of tasks, according to Definition 10), then A and D respect the (NC)
FIFO policy (according to Definition 42).

Note that for the converse to hold, we require the extra hypothesis that each task satisfies
the FIFO policy with itself, because NC is blind on the order of jobs within a single task, as
illustrated on Figure 3 in Section 3.

10 For the very precise reason that it is possible to perform actual computations on this subclass of
functions and that actual real-time behaviors are commonly periodic.
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▶ Lemma 44. (FIFO_flow_cc_to_arrival_sequences) Given a clock c, an arrival sequence
arrseq, a schedule sched, two cumulative curves A and D respectively related to arrseq and
the completion sequence endseq(arrseq, sched), if A and D respect the (NC) FIFO policy
(according to Definition 42) and if for any task tsk, the arrival sequence arrseq and schedule
sched satisfy the FIFO policy between task tsk and itself, then arrseq and sched respect the
(RTA) FIFO policy (for any pair of tasks, according to Definition 10).

Thus, we have seen that the definitions of FIFO in RTA and NC do match. This is a
worthwhile result as its strengthens our confidence in both definitions. In particular, being
more abstract, the NC definition easily looks rather mysterious for a non NC expert.

10.2 Fixed/Static Priority
Although the NC definition of static priority looks more natural than its definition of FIFO,
we were eager to prove the same kind of equivalence for it. Here is the definition of fully
preemptive static priority as given in [3, Def. 7.8]

▶ Definition 45. Given n ∈ N, the cumulative curves Ai and Di for i < n satisfy the static
priority service policy when, for all i < n:

∀s, t ∈ R+,

∀u ∈ [s, t] ,
∑
j≺i

Aj(u) >
∑
j≺i

Dj(u)

 =⇒ Di(t) = Di(s)

where ≺ is a total order on { 0, . . . , n − 1 }.

In this definition, a flow j has a higher priority than i when j ≺ i.
Equipped with this definition, the following lemma is proved.

▶ Lemma 46. (FP_arrival_sequence_to_flow_cc) Given a clock c, an arrival sequence
arrseq satisfying sequential readiness and a schedule sched on a fully preemptive ideal unipro-
cessor, a priority ≺, two cumulative curves A and D respectively related to arrseq and
the completion sequence endseq(arrseq, sched), if arrseq and sched respect the (RTA) fixed
priority policy relative to ≺, then A and D respect the (NC) static priority policy (according
to Definition 45).

The reverse doesn’t hold since, as already explained, the departure curve D doesn’t represent
the scheduling sched but only the related completion sequence.

It is worth noting that the main theorem using Definition 45, given in [3, Thm. 7.6]
is wrong11 and was proved in NCCoq by strengthening the above definition, replacing
the left-closed interval [s, t] by the left-open one (s, t]. This small change was deemed
innocuous at the time and did not raise further attention12. While attempting to prove the
equivalence of the strengthened hypothesis with the RTA definition of the fully preemptive
fixed priority policy, it became obvious that the hypothesis strengthening was not that
innocuous as it broke the equivalence with RTA. Following this discovery, the theorem in
NCCoq (SP_residual_service_curve in file static_priority.v of NCCoq) was rather
fixed by strengthening another hypothesis, namely demanding the service curve of the
aggregate server to be a cumulative curve13 in C.

11 Counter example: consider two flows 1 and 2 with 1 ≺ 2, respective arrivals A1 := s2 and A2 := s1 and
departures D1 := s4 and D2 := s2 (with sd defined as t 7→ 0 when t ≤ d and t 7→ 1 otherwise) and an
aggregated strict service β defined as d 7→ 0 when d < 2 and d 7→ 1 otherwise.

12 Maybe because it was the most obvious hypothesis strengthening to make the proof given in [3] work.
13 This hypothesis strengthening is reasonably innocuous as most service curves already live in C and could

otherwise be easily under-approximated by a service curve in C.

ECRTS 2022



5:20 A Formal Link Between Response Time Analysis and Network Calculus

This experience report is particularly interesting as it shows how formal proofs of
equivalence between two theories can unveil errors that where overlooked for a few years.

11 Conclusion

In this paper, we have built bridges between Response Time Analysis (RTA) and Network
Calculus (NC) and formalized them with the Coq proof assistant. This shows how the
notions of job, task, trace, response time, in RTA are related to the notions of arrival curve,
departure curve and delay in NC. To do so, we have formalized a notion of (possibly drifty)
clock and proved that what is called FIFO in both formalisms represents the same constraints.
We also prove that bounds computed in one framework are valid in the other one, even when
considering clock drifts.

The related work presented in Section 2 was already providing increased confidence
into RTA and NC by achieving formal proofs in Coq of already known results, sometimes
discovering bugs in proofs or in the results themselves. The new formal bridges between
these two theories that coexist in the real-time community bring more than just confidence.

First, the most obvious contribution is a better mutual understanding between both
communities. Such a comparison between different points of view may help each community
in its reflection on its own models (e.g., NC has a notion of per-flow server, capturing several
behaviors and not bound to a scheduling policy, whereas RTA has a notion of global trace,
and sets of traces, but no scheduler).

Second, being able to go back and forth between theories allows us to analyze a complete
system by using each theory where it is the most convenient and to combine the results to
get the best of both theories in each component, like in [18] or more recently, in [17].

Finally, a third result, unexpected when we started this work, concerns the strength of
modeling. Formal work makes it possible to check that some theory is correct, in the sense
that the model fulfills some properties. But there is no way to check that the model reflects
the reality. Building formal bridges between models is thus an effective way to increase
our confidence in these models. For example, as reported in Section 10.2, this unveiled a
weakness in the definition of static priority in the NC formal model.

These results open opportunities for future research. They provide a strong background
for schedulability analyses in presence of clock drifts. They could also be pursued per-se to
provide more links between RTA and NC, and also provide links with CPA.

Future work will consists in modeling the schedule itself. It may be possible for example
to represent in NC the cumulative curves of release, schedule and completion of the job of
Figure 1 as illustrated in Figure 5, inspired from [4, §2.3].

time1 2 3 4 5 6 7 8 9
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Figure 5 NC: Cumulative curves representing the job of Figure 1 and its schedule.
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