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Abstract

Let L be a linear differential operator acting on functions defined over an open set
D Ă R

d. In this article, we characterize the measurable second order random fields U “
pUpxqqxPD whose sample paths all verify the partial differential equation (PDE) Lpuq “ 0,
solely in terms of their first two moments. When compared to previous similar results,
the novelty lies in that the equality Lpuq “ 0 is understood in the sense of distributions,
which is a powerful functional analysis framework mostly designed to study linear PDEs.
This framework enables to reduce to the minimum the required differentiability assumptions
over the first two moments of pUpxqqxPD as well as over its sample paths in order to make
sense of the PDE LpUωq “ 0. In view of Gaussian process regression (GPR) applications,
we show that when pUpxqqxPD is a Gaussian process (GP), the sample paths of pUpxqqxPD

conditioned on pointwise observations still verify the constraint Lpuq “ 0 in the distributional
sense. We finish by deriving a simple but instructive example, a GP model for the 3D linear
wave equation, for which our theorem is applicable and where the previous results from the
literature do not apply in general.

1 Introduction

When dealing with an unknown function of interest u : D Ñ R where say D Ă R
d, it is common

(as e.g. in Bayesian inverse problems) to assume that it is a sample path of a random field
U “ pUpxqqxPD . Incorporating prior knowledge over u, such as smoothness, is then achieved
by constraining the law of U accordingly. Sometimes, this prior knowledge comes from physical
considerations. If u describes a positive quantity such as mass or energy, then the random
variables Upxq should all be positive almost surely (a.s.). In many cases, this physical constraint
can be more precisely translated as a partial differential equation (PDE). Such equations are a
pivotal tool for modelling, understanding and predicting real-life phenomena such as those arising
from fluid mechanics, electromagnetics or biology to name a few. The most simple (yet central)
PDEs are those that are linear. In this article, we will only consider homogeneous linear PDEs,
which take the form

Lpuq :“
ÿ

|α|ďn

aαpxqBαu “ 0. (1)
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Above, u is the unknown function of interest, defined over an open set D Ă R
d, and L is a

linear partial differential operator. In (1), for a multi-index α “ pα1, ..., αdqT P N
d, we used the

notations |α| “ α1 ` ... ` αd and Bα “ pBx1
qα1 ...pBxd

qαd . Homogeneous PDEs, i.e. PDEs with
a null term on the right-hand side of (1), are often encountered to describe conservation laws,
such as conservation of mass, energy or momentum in closed systems [52].

In order to incorporate the knowledge that Lpuq “ 0 in the prior U , a natural question is
whether one can characterize, in terms of their law, the random fields U whose sample paths are
all solutions to the PDE (1). Let U be a centered second order random field with covariance
function k: under the assumption that U is a Gaussian process (GP) whose sample paths are n
times differentiable, [25] proved for some classes of differential operators L of order n that ([25],
Sections 3.3 and 4.1)

PpLpUq “ 0q “ 1 ðñ @x P D, Lpkpx, ¨qq “ 0. (2)

This property provides a simple characterization of the GPs that incorporate the PDE constraint
(1) sample path-wise. Such GPs would fall in the category of “physics-informed” GPs in the
machine learning community. In the proof of this property, the fact that the sample paths are
n times differentiable, i.e. that the PDE (1) can be understood pointwise, is central. These
functions are then strong solutions of the PDE (1) (see Definition 3.1).

In the standard PDE approach though, equation (1) is reinterpreted by weakening the defi-
nition of the derivatives of u, thereby weakening the required regularity assumptions over u. It
can indeed happen in practice that the sought solutions of the PDE Lpuq “ 0 are not n times
differentiable or even continuous (see e.g. [16], Section 2.1), and they are only solutions of some
weakened formulation of equation (1). This is typically the case for hyperbolic PDEs such as the
wave equation presented in Section 4. We introduce here the distributional formulation of the
PDE (1), where the regularity assumptions over u are relaxed to the maximum. As such, this
formulation enables working with potentially singular solutions of equation (1), solutions which
are not allowed to appear in more restrictive functional frameworks (see also the upcoming Re-
mark 3.4). Another advantage of the distributional formulation is that it provides a unifying
framework for dealing with linear PDEs, independently of their nature. In contrast, traditional
weak or variational formulations vary greatly depending on the nature of the PDE. As an illus-
tration, in [16], one can compare the different function spaces for weak solutions associated to
elliptic PDEs (Section 6.1.2), parabolic PDEs (Section 7.1.1(b)) and hyperbolic PDEs (Section
7.2.1(b)). The distributional formulation will be our main object of interest in this article, and
can be seen as a weakened form of weak formulations of PDEs. Consider equation (1), and “test
it locally”: that is, multiply it by a compactly supported, infinitely differentiable test function ϕ
(i.e. ϕ P C8

c pDq) and integrate over D:

@ϕ P C8
c pDq,

ÿ

|α|ďn

ż

D

ϕpxqaαpxqBαupxqdx “ 0. (3)

For each integral term above, perform |α| successive integrations by parts to transfer the deriva-
tives from u to ϕ. Since ϕ is identically null on a neighbourhood of the boundary of D, the
boundary terms of each integration by parts vanish and we obtain that

@ϕ P C8
c pDq,

ż

D

upxq
ÿ

|α|ďn

p´1q|α|Bαpaαϕqpxqdx “ 0. (4)

To make sense of (4), one only requires u to be locally integrable, i.e.
ş

K
|upxq|dx ă `8 for all

compact set K Ă D. We then say that a locally integrable function u is a solution to Lpuq “ 0
in the sense of distributions, or distributional sense, if u verifies (4). In this case, u is a solution
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to equation (1) in the sense of “all smooth local averages” (i.e. for all ϕ P C8
c pDq), though not

pointwise in general: taking ϕpxq “ δ0px ´ x0q is not allowed without additional assumptions
over u.

The distributional formulation of the PDE Lpuq “ 0 is “compliant with physics” too, as
pointed out by W. Rudin ([46], p. 150): most of the sensors we use in practice are only capable
of computing local averages of the physical quantity they are measuring. Suppose one wishes
to check experimentally that a temperature field obeys the heat equation, by using a set of
thermometers: then one will actually only deal with the distributional formulation of the heat
equation.

The natural question that follows from this new definition is whether one can characterize,
in terms of their law, the random fields whose sample paths are solutions to the PDE Lpuq “ 0
in the distributional sense. The answer is yes, and is the main content of this article. Under the
assumptions that U is a measurable centered second order random field and that its standard
deviation function σ : x ÞÝÑ

a

kpx, xq is locally integrable, we show in Proposition 3.5 that

PpLpUq “ 0 in the distrib. senseq “ 1 ðñ @x P D, Lpkpx, ¨qq “ 0 in the distrib. sense. (5)

Related literature

It is known, at least since the fifties, that some covariance functions are naturally linked to certain
stochastic partial derivative equations (SPDEs), i.e. PDEs where the source term is random. For
example, it was already observed in 1954 by [56] that the covariance function of a stationary GP
U verifying the two dimensional SPDE pα2 ´ B2

xx ´ B2
yyq3{4U “ WS , where WS is a spatial white

noise process, is exponential, i.e. of the form CovpUpx ` hq, Upxqq “ C expp´α|h|q. Already for
this SPDE, the differentiation has to be understood in a weakened sense as white noise processes
are not random fields in the usual sense. In [45], SPDEs describing the random motion of
micro-particles are introduced to link certain covariance functions, Matérn in particular, with an
underlying physical model. We also refer to [36] for a large overview of the possible applications
and recent developments pertaining to random fields defined by SPDEs. A general framework
for the study of SPDEs was recently reintroduced in [8], which was then used to classify the
stationary generalized random fields that are solutions of a wide class of linear SPDEs. In
particular, [8] provides a description of all the second order stationary generalized random fields
that are solutions to certain homogeneous PDEs, and the 3D wave equation in particular (which
we also study in Section 4), in terms of their covariance operator. Loosely speaking, generalized
random fields are function-indexed random fields where the covariance function is replaced by
a covariance operator. From a functional analysis point of view, this is actually very close to
the tools we use here, although in this article we constrain ourselves to work with (standard)
random fields with well-defined sample paths, as these are the objects that arise the most in the
random function models met in practice. The two other key differences between this work and
[8] are that piq we do not focus on stationary random field models for u and piiq we focus on the
homogeneous case for PDE Lpuq “ 0.

The literature concerning random fields that are PDE-constrained at the level of the sample
paths is rather sparse. In [25], general theorems are exposed for many different classes of linear
operators acting on suitable spaces of functions. These theorems take the form of equation (2),
and can in turn be applied to certain differential operators (see [25], Sections 3.3 and 4.1). [50]
builds covariance functions that ensure that the sample path of a given two or three dimensional
random vector field are either divergence or curl free. This result is notable because “any” three
dimensional vector field can be decomposed as a sum of divergence and curl free vector fields
through the Helmholtz-Hodge decomposition theorem. Moreover, divergence or curl free vector
fields are commonly encountered in fluid mechanics. [20] extends the results of [50] to random

3



fields on the sphere of R3, which has been rediscovered later in [18]. In [15], stationary GPs are
represented in terms of a random wavevector. [15] then characterizes the stationary GPs whose
sample paths verify a homogeneous linear PDE, in terms of the spectral measure of the GP and
in terms of its random wavevector. [15] additionally requires that the sample paths be infinitely
differentiable, that the PDE’s coefficients be constant and that only even orders of differentiation
appear in the PDE. This is then applied to a few wave models. A simple algorithm for building
linearly constrained GPs is proposed in [30], based on formal GPR derivations upon (1); however,
partly because the assumed regularity of u is not fully addressed, the claim that the sample paths
of the underlying GP are indeed linearly constrained is left unproved. This is clarified in [33],
where the requirement that u P C8pRdq is made explicit and the enforcement of the PDE on the
sample paths is proved for GPs whose sample paths are smooth. The algorithm from [30] is then
supplemented in [33], where parametrizations of the solution spaces of (1) thanks to Gröbner
bases are proposed. In [34], the same author completes the approach from [33] by incorporating
boundary conditions on hypersurfaces in the Gröbner basis parametrization. With the idea to
apply GPR to rigid body dynamics, [23] enforces Gauss’ principle of least constraint on the
sample paths of a GP.

One can understand our main result (Proposition 3.5) as a characterization of the “physics-
informed” random fields that incorporate the distributional PDE constraint Lpuq “ 0 at the
level of the sample paths. It turns out that the design of similar “physics-informed priors” has
received a lot a attention from the machine learning community since the early 2000’ ([26]),
in the context of Gaussian process regression (GPR); see Section 3.3.1 for a description of this
technique. GPR is a Bayesian framework for function regression and interpolation which is well
suited for handling linear constraints, partly because GPs are “stable under linear combinations”,
see Section 2.1.3. The recurring idea is to assume that the function u in equation (1) is a sample
path of a (centered) GP U and to draw the consequences of equation (1) on the covariance
function of U . The covariance function of U is then expected to incorporate the constraint
Lpuq “ 0 in some sense. The majority of these works (except those mentioned above) do not aim
at analysing whether the obtained covariance function indeed yields sample path PDE constraints
over U : this is justified by the fact that they are only concerned with imposing the constraints
on the function provided by GPR to approximate u. This approximation of u, which we denote
by m̃, is called the Kriging mean in the GPR context; see equation (33) for a definition.

While they do not primarily focus on investigating sample path PDE constraints (contrarily to
this article), the works coming from the GPR community are still very connected to this article.
Indeed, they are concerned with designing explicit covariance functions that verify constraints
of the form Lpkp¨, xqq “ 0 for all x P D (the PDE is understood in the strong sense in these
works). Indeed, this constraint ensures that all the possible regression functions m̃ provided
by the corresponding GPR model verify the constraint Lpm̃q “ 0 (as seen in equation (33)).
Note that “Lpkp¨, xqq “ 0 @x P D” is the right-hand side of equation (2): actually knowing
covariance functions that verify this constraint is a necessary complement to the condition we
prove in this article (Proposition 3.5 is otherwise useless in practice). Explicit PDE constrained
covariance functions were designed for a number of classical PDEs, namely: divergence-free
vector fields [38, 50], curl-free vector fields [21, 50], the Laplace equation [47, 37, 3], Maxwell’s
equations [55, 30, 33] (although [55, 30] only exploit curl/divergence free constraints), the 1D
heat equation [3], Helmholtz’ 2D equations [3], and linear solid mechanics [29]. [34] and [27]
enforce homogeneous boundary conditions on the covariance function.

We finish with a brief overview of the alternative “physics-informed” GPR models. Contrarily
to the equation (1) considered here, one may put a random source term f in the PDE and study
instead the SPDE Lpuq “ f : see [42], [4] and [40] for entry points on the related literature.
A recent article [9] extended the use of GPR to nonlinear PDEs by imposing the nonlinear
interpolation constraints on the collocation points, setting the way forward for many possible
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applications of GPR to nonlinear realistic PDE models, as found e.g. in fluid mechanics. In [39],
the variational formulation (see [16], Section 6.1.2 for a definition) of certain linear PDEs has
been incorporated into a GPR framework. This approach requires the use of Gaussian generalized
random fields (see [6], Section 2.2.1.1), or “functional Gaussian processes” following [39]. The
variational formulation of a PDE differs from its distributional formulation in the choice of the
space of test functions.

Contribution and organisation of the paper. Consider the PDE in equation (1), where
the coefficients of the differential operator L have possibly limited smoothness. Consider also
a centered second order measurable stochastic process U “ pUpxqqxPD with covariance function
kpx, x1q (see Sections 2.1.2 and 2.1.3). Under the assumption that its standard deviation func-
tion σ : x ÞÝÑ kpx, xq1{2 is locally integrable, we show in Proposition 3.5 that the announced
equation (5) holds. The result is then compared to a previous result from [25], which ensures
pointwise linear differential degeneracy of the sample paths of U under stronger assumptions. We
then provide a simple corollary which states that linear distributional differential constraints are
preserved when a GP U is conditioned on pointwise observations, in view of GPR applications.

As an application example, we derive a general Gaussian process model for the homogeneous
3D free space wave equation, for which the solutions are not smooth in general. This equation is
central for describing finite speed propagation phenomena as found e.g. in acoustics. Plugging
this model in a GPR framework yields potential applications in different inverse problems related
to this PDE, such as thermoacoustic tomography (i.e. initial condition reconstruction, [31],
Section 19.3.1.1), source localization or propagation speed estimation, following e.g. the GPR
methodology from [42] or [25], Section 4.2.

This model is derived by putting GP priors over the initial conditions of the wave equation
and in Proposition 4.1, we obtain “explicit” formulas for the covariance function of the solution
process, in the form of convolutions. From Propositions 3.5 and 4.1, we obtain that the sample
paths of the corresponding (nonstationary) GP all verify the wave equation in the distributional
sense. When the covariance functions of the initial conditions are not smooth enough, the result
from [25] cannot be applied. Explicitly, for this PDE, choosing the commonly used 3/2-Matérn
covariance functions for the initial position is enough to land outside the scope of the result from
[25] (Section 4.2.1).

We emphasize that the covariance expressions exposed in Proposition 4.1 are original and
interesting in themselves, as they can be used for efficient GPR for the wave equation. Specifically,
the key difference with the wave equation covariance functions presented in [8] is that here, no
stationarity assumptions are made on the solution stochastic process U . In particular the spectral
measure provided by Bochner’s theorem [43], which is the key tool used in [8], is not available
anymore. We thus resort to more standard integration techniques to prove Proposition 4.1.

The paper is organized as follow. For self-containment, Section 2 is dedicated to reminders
on random fields and generalized functions. This Section and all the proofs are detailed enough
so that this article is accessible to the analyst, the probability theorist and the statistician. In
Section 3, we state and prove our new necessary and sufficient condition on random fields that
are subject to linear distributional differential constraints. Section 4 is dedicated to the study of
a GP model for the wave equation. We conclude in Section 5.

2 Background
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2.1 Random fields

Let pΩ,A,Pq be a probability space. For convenience, we will assume that it is complete, i.e.
that A contains the subsets of sets A P A such that PpAq “ 0.

2.1.1 Basic definitions. Let D Ă R
d be an open set. In this article, a random field U “

pUpxqqxPD is a collection of real random variables defined on Ω. We define its sample path at
point ω P Ω to be the deterministic function x ÞÝÑ Upxqpωq, and we denote it by Uω. Given
an operator acting on the sample paths of U , an event of the form tLpUq P Au will always be
understood sample path wise: that is, by definition, tLpUq P Au :“ tω P Ω : LpUωq P Au. Such
sets are not automatically measurable; still, they are measurable as soon as they contain an event
of probability 1 (as the ones in Propositions 3.2 and 3.5), since pΩ,A,Pq is a complete probability
space.

2.1.2 Measurable random fields. In view of our main theorem, a necessary notion is that of
the measurability of the random field U . U is said to be measurable ([13], p. 60 or [35], p. 34) if
it is measurable seen as a bivariate map U : pΩˆD,AbBpDqq ÝÑ pR,BpRqq, pω, xq ÞÑ Upxqpωq.
Here, BpSq denotes the Borel σ-algebra of S and A b BpDq denotes the product σ-algebra of A
and BpDq.

To work with measurable random fields, one will often consider random fields U which are
continuous in probability, i.e. for all x P D and ε ą 0,Pp|Upxq ´ Upx ` hq| ą εq Ñ 0 when
h Ñ 0. Indeed, continuity in probability implies the existence of a measurable modification
of U , i.e. a measurable random field Ũ such that PpŨpxq “ Upxqq “ 1 for all x P D ([13],
Theorem 2.6, p. 61). One then implicitly works with Ũ . In this article, we will directly assume
that we deal with measurable random fields instead of assuming any continuity regularity on the
sample paths of the said stochastic process. This is because pointwise continuity is not really
relevant when working with PDEs in a weak sense; actually, one of the main points of working
with weakened formulations is to avoid strong (i.e. pointwise) formulations. Note however that
ensuring measurability outside of the above mentioned theorem, though possible, rapidly becomes
tedious (see e.g. [12], Theorem 2.3). A famous theorem from Kolmogorov ([10], Theorem 3.3
p. 73 and Theorem 3.4 p. 74) provides sufficient conditions for almost sure continuity of the
sample paths, which in turn implies continuity in probability of the random field. This condition
is phrased in terms of a sufficient Hölder control of the expectation of the increments of the
process. Refinements in the case of Gaussian processes exist: see e.g. [2], Theorem 1.4.1, p.
20. On a final note, the measurability assumption is discussed in [53] (Theorem 3.3), where it
is shown to be a necessary condition for the existence of Karhunen-Loève expansions of second
order random fields.

2.1.3 Second order random fields, Gaussian processes.. Note L2pPq the Hilbert space of
real valued random variables X such that ErX2s ă `8. A stochastic process pUpxqqxPD is said
to be second order if for all x P D, Upxq P L2pPq. One can then define its mean and covariance
functions by mpxq “ ErUpxqs and kpx, x1q “ ErpUpxq ´mpxqqpUpx1q ´mpx1qqs respectively. One
can then also define its standard deviation function

σ : x ÞÑ
a

kpx, xq. (6)

A Gaussian process pUpxqqxPD over D is a random field over D such that for any px1, ..., xnq P
Dn and any pa1, ..., anq P R

n,
ř

i aiUpxiq is a Gaussian random variable; that is, the law of
pUpx1q, ..., UpxnqqT is a multivariate normal distribution. The law of a GP is characterized by its
mean and covariance functions ([28], Section 8). We write pUpxqqxPD „ GP pm, kq. Given a GP
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pUpxqqxPD, we will sometimes use the space LpUq “ SpanpUpxq, x P Dq, i.e. the Hilbert subspace
of L2pPq induced by U . Since L2pPq-limits of Gaussian random variables drawn from the same
GP remain Gaussian ([28], Section 1.3), LpUq only encompasses Gaussian random variables.

Whereas m can be any function, the covariance function k has to be symmetric and positive
definite: for all px1, ..., xnq in Dn, the matrix pkpxi, xjqq1ďi,jďn is symmetric and nonnegative
definite.

Symmetric positive definite functions verify the Cauchy-Schwarz inequality [43] :

@x, x1 P D, |kpx, x1q| ď
a

kpx, xq
a

kpx1, x1q. (7)

Note that there is a one-to-one correspondence between positive definite functions and the laws
of centered GPs ([13], Theorem 3.1). We provide below two examples of radial Matérn covariance
functions ([43], pp. 84-85), which will be useful in Section 4. Set r “ ||x ´ x1||, the Euclidean
distance between x and x1, then the following two functions are valid covariance functions, given
any l ą 0:

k1{2px, x1q “ expp´r{lq, k3{2px, x1q “ p1 ` r{lq expp´r{lq. (8)

These covariance functions are widely used in machine learning, especially k3{2. Almost surely,
the sample paths of a GP with a Matérn covariance function kν with ν “ m` 1{2, m P N, are of
differentiability class Cm and not Cm`1. They are thus commonly used to model functions with
finite smoothness.

2.2 Tools from functional analysis

We refer to [46] and [54] for further details on generalized functions and Radon measures. In this
whole subsection, D is an open set of Rd.

2.2.1 Class Cm functions, test functions, locally integrable functions. Given m P N,
CmpDq denotes the space of real-valued functions defined over D of class Cm, and Cm

c pDq denotes
the subspace of CmpDq of functions ϕ whose support Supppϕq is compact. Recall that Supppϕq
is the closure of the set tx : ϕpxq ‰ 0u. The space C8

c pDq, which we will rather denote DpDq, is
the space of compactly supported infinitely differentiable functions supported on D, also known
as test functions. L1

locpDq denotes the space of measurable scalar functions f defined on D that
are locally integrable, i.e. such that

ş

K
|f | ă `8 for all compact sets K Ă D. Two locally

integrable functions are equal in L1

locpDq when they are equal almost everywhere (a.e.) in the
sense of the Lebesgue measure over Rd. L1

locpDq is a very large space which contains the space
of piecewise continuous functions, but also all the local Lebesgue spaces Lp

locpDq, p ě 1 and thus
all the Sobolev spaces of nonnegative exponent. It is in fact the largest space of functions that
can be alternatively viewed as continuous linear forms over DpDq (see Section 2.2.4 below).

2.2.2 Generalized functions. We endow DpDq with its usual LF-space topology, defined for
example in [54], Chapter 13. LF stands for “strict inductive limit of Fréchet spaces”. As it will
appear in several places later on, we briefly describe the LF topology following [54], although
this is not necessary for understanding the article. Assume that a vector space E can be written
as E “

Ť

nEn where pEnq is an increasing sequence of Fréchet spaces (i.e. metrizable complete
locally convex topological vector spaces), such that the natural injection En Ñ En`1 is a linear
homeomorphism over its range. The LF topology over E is defined as follow: a convex set V Ă E

is a neighborhood of 0 if and only if V X En is a neighborhood of 0 for all n. It is remarkable
that LF topologies are not metrizable except if for some n0, En “ En0

for all n ě n0 ([54],
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Remark 13.1). In return, this allows for some other very nice topological properties to hold, e.g.,
LF spaces are complete ([54], Theorem 13.1).

For DpDq, the LF topology is the one corresponding to the decomposition DpDq “
Ť

i DKi
pDq,

where DKi
pDq :“ tϕ P C8pDq : Supppϕq Ă Kiu, and pKiqiPN is an increasing sequence of compact

subsets of D such that
Ť

iKi “ D ([54], pp. 131-133). This LF topology does not depend on
the choice of pKiqiPN. An example of metric inducing the Fréchet topology of DKi

pDq is the
following:

dipϕ, ψq :“ sup
NPN

2´N pN,ipϕ ´ ψq

1 ` pN,ipϕ ´ ψq
, pN,ipϕq :“ max

|α|ďN
sup
xPKi

|Bαϕpxq|. (9)

It is given in [46], Section 1.46 p. 34 and Remark 1.38pcq p. 29. Explicitly, a sequence pϕnq Ă
DpDq converges to ϕ P DpDq if there exists a compact set K Ă D such that Supppϕnq Ă K for
all n P N and for all α P N

d, ||Bαϕn ´ Bαϕ||8 Ñ 0 ([46], Theorem 6.5pfq and the remark following
p. 154).

We call generalized function any continuous linear form on DpDq, i.e. any element of DpDq1,
the topological dual of DpDq. We will rather denote it by D 1pDq as in [54], Notation 21.1. The
topology of DpDq is such that T P D 1pDq if and only if for all compact set K Ă D, there exists
CK ą 0 and a nonnegative integer nK such that

@ϕ P DpDq such that Supppϕq Ă K, |T pϕq| ď CK

ÿ

|α|ďnK

||Bαϕ||8. (10)

We recall that we use the following notations: for a multi-index α “ pα1, ..., αdq P N
d, we denote

|α| “ α1 ` ... ` αd and Bα :“ pBx1
qα1 ...pBxd

qαd where Bαi
xi

is the αth
i derivative with reference to

the ith coordinate xi. Generalized functions are also called “distributions”, a terminology we will
only use when there is no risk of confusion with probability distributions. The duality bracket
will be denoted x, y: for all ϕ P DpDq and T P D 1pDq, we have xT, ϕy :“ T pϕq.

2.2.3 Generalized functions and differentiation. Any generalized function T can be in-
finitely differentiated ([46], Section 6.12, p. 158 or [54], pp. 248-250) according to the following
definition

BαT : ϕ ÞÝÑ xT, p´1q|α|Bαϕy. (11)

The derivative BαT is then also a continuous linear form over DpDq, i.e. BαT P D 1pDq.

2.2.4 Regular generalized functions. Any function f P L1

locpDq can be injectively identified
to a generalized function Tf ([54], p. 224 or [46], Section 6.11, p. 157) defined as follow

@ϕ P DpDq, xTf , ϕy :“

ż

D

fpxqϕpxqdx. (12)

The map L1

locpDq Q f ÞÝÑ Tf is linear and injective; any generalized function T that is of the
form Tf for some f P1

loc pDq is said to be regular. Throughout this article, we will use the abusive
notation xTf , ϕy “ xf, ϕy, as if x, y were the L2 inner product. Observe that equations (11) and
(12) combined provide a flexible definition of the derivatives of any function f P L1

locpDq up to
any order. One also sees that weak derivatives, as encountered in Sobolev spaces ([7], Section 9.1)
and weak formulations of PDEs, are particular cases of distributional derivatives: given α P N

d

and two locally integrable functions f and fα, f admits fα for its αth weak derivative if and
only if BαTf “ Tfα . One then conveniently writes Bαf “ fα (Bαf is unique in L1

locpDq from the
injectivity of the mapping (12)).
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2.2.5 Radon measures. This subsection and the ones that follow are only necessary for dealing
with the wave equation in Section 4. In this article, we call positive Radon measure any positive
measure over D that is Borel regular ([17], Definition 1.9) and that has finite mass over any
compact subset of D. A Radon measure is a linear combination of positive Radon measures. In
[32], Chapter 9, it is proved that the space of Radon measures over D is isomorphic to the space of
continuous linear forms over CcpDq, the space of compactly supported continuous functions on D

endowed with its usual LF-space topology described e.g. in [54], pp. 131-133. The corresponding
isomorphism is given by

µ ÞÝÑ Tµ :

#

CcpDq ÝÑ R

f ÞÝÑ
ş

D
fpxqµpdxq.

(13)

We have the following facts. piq Any signed measure that admits a density f with reference to
the Lebesgue measure such that f P L1

locpDq is a Radon measure ([54], p. 217). piiq Any Radon
measure can be injectively identified to a generalized function Tµ by replacing CcpDq by DpDq
in equation (13). In particular, Radon measures can be differentiated up to any order through
equation (11). piiiq Any Radon measure µ, can be uniquely written as µ “ µ` ´ µ´ where µ`

and µ´ are positive Radon measures ([32], Chapter 9). We then define its total variation by
|µ| :“ µ` ` µ´.

2.2.6 Finite order generalized functions. A generalized function T is said to be of finite
order if there exists a nonnegative integer m such that one can take nK “ m, independently of
K, in the definition of the continuity of T , i.e. equation (10). The order of T is then the smallest
of those integers m. The space of generalized functions of order m is isomorphic to Cm

c pDq1, the
space of continuous linear forms over Cm

c pDq, when Cm
c pDq is endowed with its usual LF-space

topology ([54], pp. 131-133). The key property for us is that such generalized functions can
be represented thanks to Radon measures. If L is of order m, there exists a family of Radon
measures tµpu|p|ďm over D such that

T “
ÿ

|p|ďm

Bpµp, (14)

where the equality in equation (14) holds in D 1pDq and Cm
c pDq

1
([54], p 259). Among the finite

order generalized functions are those that are compactly supported, i.e. those for which the
measures µp such that T “

ř

|p|ďm Bpµp all have compact support.

2.2.7 Convolution with generalized functions. As above, we consider Cm
c pRdq endowed

with its LF-space topology. Let f P Cm
c pRdq and T P Cm

c pRdq1. Note τxf the function y ÞÝÑ
fpy ´ xq and f̌ the function y ÞÝÑ fp´yq. Then ([54], p. 287, Section 27) one may define the
convolution between T and f by

T ˚ f : x ÞÝÑ xT, τ´xf̌y, (15)

and T ˚ f is a function in the classical sense, i.e. defined pointwise. When T is a regular
generalized function, equation (15) reduces to the usual convolution of functions through the
identification defined in equation (12). Similarly if T is in fact a Radon measure µ:

pT ˚ fqpxq “

ż

Rd

fpx´ yqµpdyq. (16)

More general definitions of generalized function convolution are available ([54], Chapter 27) but
this one is sufficient for our use.
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2.2.8 Tensor product of generalized functions. For two generalized functions T1 P D 1pD1q
and T2 P D 1pD2q, T1 b T2 P D 1pD1 ˆ D2q denotes their tensor product([54], pp. 416-417), which
is uniquely determined by the following tensor property:

@ϕ1 P DpD1q,@ϕ2 P DpD2q, xT1 b T2, ϕ1 b ϕ2y “ xT1, ϕ1y ˆ xT2, ϕ2y. (17)

T1 b T2 reduces to the tensor product of functions (respectively, measures) when T1 and T2
are functions (respectively, measures) through the identification of equation (12) (respectively,
equation (13)).

3 Random fields under linear differential constraints

The results in this section state that under suitable assumptions over the first two moments
of a given second order random field U “ pUpxqqxPD, sample path degeneracy properties with
reference to differential constraints can be read on the first two moments of U , namely the mean
function and the functions kx : y ÞÝÑ kpx, yq, where k is the covariance function of U . This is
remarkable because the space induced by the sample paths of U is a priori much larger than
the space spanned by the functions kx, x P D. Moreover, the functions kx are “accessible”, i.e.
checking that these functions indeed verify the linear constraint can usually be done with direct
computations.

We begin by recalling a result from [25] in the case of pointwise defined derivatives. We
next state and prove a result similar to that of [25], where we interpret the derivatives in the
distributional sense.

3.1 The case of classical derivatives

We start by properly defining the notion of strong solutions of a PDE.

Definition 3.1 (Strong/classical solutions). Let L be a differential operator defined as in equation
(1), with continuous coefficients. We say that a function u is a classical or strong solution to the
PDE Lpuq “ 0 if u is n times differentiable and u verifies the PDE pointwise:

@x P D, Lpuqpxq “
ÿ

|α|ďn

aαpxqBαupxq “ 0. (18)

Note that the space of n times differentiable functions does not have the nice topological
properties of CnpDq and in most cases met in practice, one rather requires that strong solutions
lie in CnpDq. It is however in the sense of the definition 3.1 that the theorem from [25] is best
understood. This theorem, which we remind in Proposition 3.2, is the one proved and used in [25]
to build a Gaussian process whose sample paths are all strong solutions to the Laplace equation
on a 2D circular domain.

We first introduce some notations. Let pUpxqqxPD be a centered Gaussian process with co-
variance function k. Denote FpD,Rq the space of real-valued pointwise-defined functions on D

(often alternatively denoted R
D). We will only use FpD,Rq as a set, therefore we do not consider

any topology over it. We refer to [51], Section 9, for details on FpD,Rq seen as a topological
vector space. Denote Hk the reproducing kernel Hilbert space (RKHS) associated to k (see [6],
Definition 1 p. 7 and Theorem 3, p. 19). Hk is a Hilbert space of pointwise-defined functions
(i.e. Hk Ă FpD,Rq as sets), such that the pointwise evaluation maps lx : f ÞÑ fpxq are contin-
uous functionals. Although belonging to FpD,Rq does not seem very restrictive at first glance,
this clashes with the usual Lp and Sobolev spaces encountered in PDE theory, which are sets of
functions defined up to a set of null Lebesgue measure.
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Proposition 3.2 (sample paths of GPs under linear constraints [25]). Let
`

Upxq
˘

xPD
„ GP p0, kq.

Note for all x P D the function kx : y ÞÝÑ kpx, yq. Let E be a real vector space of functions defined
on D that contains the sample paths of U almost surely and L : E ÝÑ FpD,Rq be a linear opera-
tor. Assume that for all x P D, LpUqpxq P LpUq, where LpUq is the closure of SpantUpxq, x P Du
in L2pPq. Then there exists a unique linear operator L : Hk ÝÑ FpD,Rq such that

@x, y P D, ErLpUqpxqUpyqs “ L pkyqpxq,

and such that for all x P D, h P Hk and sequence phnq Ă Hk such that hn ÝÑ h for the topology
of Hk, we have L phnqpxq ÝÑ L phqpxq. Finally, the following statements are equivalent:

(i) PpLpUq “ 0q “ 1.

(ii) @x P D,L pkxq “ 0.

A sufficient condition ensuring that the sample paths of a GP lie in CnpDq is found in [2],
Theorem 1.4.2. More broadly, both necessary and sufficient conditions over the first two moments
of a GP for its sample path to be (Hölder) continuous are well-known: see e.g. [1], Theorems
3.3.3 and 8.3.2.

The proof of Proposition 3.2 heavily relies on the Loève isometry ([6], Theorem 35, p. 65)
between the two Hilbert spaces Hk and LpUq (see Section 2.1.3 for details on LpUq). This
theorem can be applied when L is a differential operator as discussed in [25]. However, in
Proposition 3.2, the differential operator L of order n has to be valued in FpD,Rq; in particular
for u P E, the function Lpuq has to be defined pointwise in order to use the Loève isometry. To
summarize, in all generality the derivatives in L have to be understood in a classical sense and E
has to be contained in DnpDq, the space of n times differentiable functions on D. Requiring that
E Ă DnpDq is a very strong assumption with reference to the sample paths of U ; furthermore,
this is not compliant with the usual way of studying PDEs where derivatives are understood
in a weaker sense. We present in Proposition 3.5 an adaptation of Proposition 3.2 where the
derivatives are understood in the distributional sense. By transferring all the derivatives on the
test function, we will be liberated from any differentiability assumptions over the sample paths
of U , effectively replacing DnpDq with L1

locpDq. Finally, the random field U will not be assumed
Gaussian and will only be required to be measurable second order.

3.2 The case of distributional derivatives

3.2.1 Distributional solutions of PDEs. In this section, we elaborate a bit more on the
notion of distributional solutions to a given PDE. Let L “

ř

|α|ďn aαpxqBα be a linear differential
operator, and assume for the moment that its coefficients are infinitely differentiable. We briefly
recall the steps described in the introduction that lead to the definition of distributional solutions
presented in equation (4). Start from a strong solution u of class Cn of Lpuq “ 0, multiply this
PDE by a test function ϕ P DpDq, integrate over D and perform |α| integration by parts to
transfer all derivatives from u to ϕ. Since the support of ϕ is a compact subset of the open set
D, the boundary terms of each integration by parts vanish, leading to

@ϕ P DpDq,

ż

D

upxq
ÿ

|α|ďn

p´1q|α|Bαpaαϕqpxqdx “ 0. (19)

Following equation (19) we introduce L˚, the formal adjoint of L, acting on DpDq, defined by
the following formula ([54], pp. 247-249)

L˚ : ϕ ÞÝÑ
ÿ

|α|ďn

p´1q|α|Bαpaαϕq. (20)
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Note that for equation (19) to be well defined, the assumptions that u P L1

locpDq and aα P C |α|pDq
are sufficient. More precisely, these assumptions are enough to show that the map Lpuq defined
by duality

Lpuq :

#

DpDq ÝÑ R

ϕ ÞÝÑ
ş

D
L˚pϕqpxqupxqdx

(21)

defines a continuous linear form over DpDq, i.e. Lpuq P D 1pDq (see equations (10) and (26)
for a rigorous proof of this statement). This definition extends the definition of distributional
derivatives from Section 2.2.3 to differential operators. By construction, L and L˚ verify a duality
identity: given ϕ P DpDq and u P L1

locpDq, xLpuq, ϕy “ xu, L˚pϕqy.
As in Section 2.2.4, the assumption that u P L1

locpDq is in fact a continuity assumption over
the associated linear form Lpuq (a more general and theoretical analysis of such observations can
be found in [54], pp. 247-251). This finally leads to the following definition, following e.g. [14],
p. 10:

Definition 3.3 (Distributional solutions). A function u P L1

locpDq is said to be a solution to the
PDE Lpuq “ 0 in the sense of distributions if Lpuq “ 0 in D 1pDq, i.e. when Lpuq is seen as en
element of D 1pDq through equation (21) and 0 is the null linear form over DpDq.

As weak derivatives are a particular case of distributional derivatives (Section 2.2.4), one
expects that the distributional solutions of a PDE that admit some weak derivatives are in fact
weak solutions, i.e. solutions of some weak formulation of that PDE. Rigorous statements of
this general fact have to be checked on a case-by-case basis, depending on the weak formu-
lation at hand (a more in-depth discussion falls outside of the scope of this article). As an
example, this is the case for the weak formulation of elliptic PDEs in H1

0 pDq (see e.g. [16],
Section 6.2), where H1

0 pDq is the closure of DpDq in the Sobolev space H1pDq :“ tu P L2pDq :
∇u exists as a weak derivative and ∇u P L2pDqdu.

Remark 3.4 (Measure-valued solutions of PDEs). Although it is not the main focus of the paper,
we can even allow u in Definition 3.3 to be a Radon measure by replacing upxqdx with µpdxq in
equation (21). This will be useful in Section 4.1, where we will encounter a measure-valued PDE
solution which is central from a physical viewpoint, with the wave equation’s Green’s function (it
is not actually a function!). Notice that weak formulations in Sobolev spaces, say H1pDq, are not
well-equipped to work with such solutions, and our distributional framework becomes needed.

3.2.2 Random fields under distributional differential constraints. We can now state
the following proposition, based on Definition 3.3.

Proposition 3.5 (sample paths of random fields under linear differential constraints, distribu-
tional derivatives). Let D Ă R

d be an open set and let L “
ř

aαpxqBα, |α| ď n, be a linear
differential operator of order n with coefficients aαpxq P C |α|pDq. Let U “

`

Upxq
˘

xPD
be a mea-

surable second order random field with mean function mpxq and covariance function kpx, x1q.
For all x P D, note kx : y ÞÝÑ kpx, yq. Suppose that m P L1

locpDq and σ P L1

locpDq, where
σ : x ÞÑ kpx, xq1{2.
1) Then PpU P L1

locpDqq “ 1 and for all x P D, kx P L1

locpDq.
2) Suppose that Lpmq “ 0 in the sense of distributions. Then the following statements are
equivalent:

(i) PpLpUq “ 0 in the sense of distributionsq “ 1.

(ii) @x P D, Lpkxq “ 0 in the sense of distributions.
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Explicitly, by piq we mean that there exists a set A P A with PpAq “ 1 such that for all ω P A,

@ϕ P DpDq, xUω, L
˚ϕy “

ż

D

UωpxqL˚ϕpxqdx “ 0. (22)

The fact that the functions x ÞÝÑ Uωpxq and y ÞÝÑ kxpyq lie in L1

locpDq ensure the existence of the
integrals in equations (22) (see Point 2 of the proof of Proposition 3.5) as well as the continuity of
the associated linear forms over DpDq, following the definition of equation (21). The assumption
that aα P C |α|pDq is not very strong, in the sense that it is the minimal assumption to ensure
that the adjoint L˚ is well-defined (equation (20)), and thus that Definition 3.3 even makes sense.
Likewise, requiring that σ P L1

locpDq is not very restrictive (see Section 2.2.1). However, ensuring
the measurability of the random process U is more demanding in practice, because it is difficult
to ensure this property outside of having continuity in probability (see Section 2.1.2).

The following lemma will be crucial for the proof of Proposition 3.5:

Lemma 3.6. DpDq is sequentially separable, i.e. there exists a countable subset F Ă DpDq such
that for all ϕ P DpDq, there exists a sequence pϕnq Ă F such that ϕn Ñ ϕ in DpDq for its LF
topology.

Recall that a topological space E is separable if there exists a countable subset F Ă E such
that its closure in E is equal to E. If the topology of E is metrizable (as e.g. for Fréchet spaces),
sequential separability and separability are equivalent. If this topology is not metrizable (as e.g.
for LF spaces), then sequential separability implies separability but the converse need not hold.
Below, we provide a short proof of Lemma 3.6, as we could not find it in the literature. The
weaker property that DpDq is separable is already difficult to track down, see e.g. [22], Corollaire
(1).2, p. 78 or [24], p. 73, (3).

Proof. We first show that the spaces DKi
pDq introduced in Section 2.2.2 are separable Fréchet

spaces. The Fréchet topology of DKi
pDq is the one induced by the usual Fréchet topology of

C8pDq when DKi
pDq is seen as a subspace of C8pDq ([54], pp. 131-132). As a Fréchet space,

C8pDq is metrizable ([54], p. 85). But C8pDq is also a Montel space ([54], Proposition 34.4,
p. 357): as a metrizable Montel space, it is automatically separable ([48], p. 195 or [11]). Thus
DKi

pDq is also separable as a subset of the separable metrizable space C8pDq ([7], Proposition
3.25, p. 73).

Denote now Fi a countable dense subset of DKi
pDq and consider F :“

Ť

iPN Fi. Let ϕ P DpDq
and i P N such that Supppϕq Ă Ki, where pKiqiPN is the sequence of compact sets from Section
2.2.2. Then ϕ P DKi

pDq and there exists a sequence pϕnq Ă Fi Ă F such that ϕn Ñ ϕ in the
sense of the Fréchet topology of DKi

pDq, i.e. the metric di in equation (9). From equation (9),
||Bαϕn ´ Bαϕ||8 Ñ 0 for all α P N

d. Since Supppϕnq Ă Ki for all n P N, we have that ϕn Ñ ϕ in
DpDq (see Section 2.2.2).

We are now able to prove Proposition 3.5.

Proof. Suppose first that U is centered, i.e. m ” 0.
1) We begin by showing that the sample paths of U almost surely lie in L1

locpDq. Note first that
thanks to the Cauchy-Schwarz inequality, Er|Upxq|s ď σpxq. Now, let pKiqiPN be an increasing
sequence of compact subsets of D such that

Ť

iPNKi “ D. Using Tonelli’s theorem, we have that
for any n P N,

E

„
ż

Ki

|Upxq|dx



“

ż

Ki

Er|Upxq|sdx ď

ż

Ki

σpxqdx ă `8, (23)
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since σ P L1

locpDq. Note that in order for the integrals above to be well defined, imposing that
U is a measurable random field cannot be circumvented. Equation (23) yields a set Bn Ă Ω of
probability 1 over which the random variable ω ÞÝÑ

ş

Ki
|Uωpxq|dx is finite (from Fubini’s theorem

again, the map ω ÞÝÑ
ş

Ki
|Uωpxq|dx is measurable). Consider now the set B “

Ş

nPNBn which
remains of probability 1. For all compact subset K Ă D, there exists an integer nK such that
K Ă KnK

and thus for all ω P B,

ż

K

|Uωpxq|dx ď

ż

KnK

|Uωpxq|dx ă `8, (24)

which shows that the sample paths of U lie in L1

locpDq almost surely. Similarly, we check that for
all x P D, kx lies in L1

locpDq: for any compact set K, since σ P L1

locpDq and because of equation
(7),

ż

K

|kxpyq|dy “

ż

K

|kpx, yq|dy ď σpxq

ż

K

σpyqdy ă 8.

2) Let us check in advance that whatever f P L1

locpDq, the map T pfq : ϕ ÞÝÑ xf, L˚ϕy
is a continuous linear form over DpDq. Since aα P C |α|pDq, we can apply Leibniz’ rule on
L˚ϕ “

ř

|α|ďnp´1q|α|Bαpaαϕq. This yields a family tfαu|α|ďn of continuous functions over D

such that

@ϕ P DpDq, @x P D, L˚ϕpxq “
ÿ

|α|ďn

fαpxqBαϕpxq. (25)

For all f P L1

locpDq, for all compact set K Ă D and for all ϕ P DpDq such that Supppϕq Ă K, we
have SupppL˚ϕq Ă K and equation (25) yields

|xf, L˚ϕy| ď

ż

D

|fpxq||L˚ϕpxq|dx

ď

ˆ
ż

K

|fpxq|dx ˆ max
|α|ďn

sup
xPK

|fαpxq|

˙

ˆ
ÿ

|α|ďn

||Bαϕ||8 ă `8. (26)

This proves that T pfq : ϕ ÞÝÑ xf, L˚ϕy is a continuous linear form over DpDq (see equation (10)).
piq ùñ piiq: Suppose piq. Let ϕ P DpDq. There exists a set A Ă Ω such that PpAq “ 1 and

such that

@ω P A, xUω, L
˚ϕy “

ż

D

UωpxqL˚φpxqdx “ 0.

Multiplying equation above with the random variable Upx1q, taking the expectation and formally
permuting (for now) the integral and the expectation, we obtain

0 “ E

„

Upx1q

ż

D

UpxqL˚ϕpxqdx



“

ż

D

L˚ϕpxqErUpxqUpx1qsdx

“

ż

D

L˚ϕpxqkpx, x1qdx “ xkx1 , L˚ϕy.

The integral-expectation permutation is justified by writing down the expectation as an integral
and using Fubini’s theorem, checking that the below quantity is finite. We use Tonelli’s theorem
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and the Cauchy-Schwarz inequality:

E

„
ż

D

|Upx1qUpxqL˚ϕpxq|dx



“

ż

D

|L˚ϕpxq|Er|UpxqUpx1q|sdx

ď

ż

D

|L˚ϕpxq|ErUpxq2s1{2
ErUpx1q2s1{2dx

ď σpx1q

ż

D

|L˚ϕpxq|σpxqdx ă `8.

Indeed, since σ P L1

locpDq, setting f “ σ in equation (26) shows that the last integral is indeed
finite. Thus, @x P D,@ϕ P DpDq, xkx, L

˚ϕy “ 0 which proves that piq ùñ piiq.
piiq ùñ piq: Suppose piiq. Let ϕ P DpDq, we have xkx1 , L˚ϕy “ 0. Multiplying this with L˚ϕpx1q

and integrating with reference to x1 yields

0 “

ż

D

L˚ϕpx1q

ż

D

L˚ϕpxqkpx, x1qdxdx1 “

ż

D

ż

D

L˚ϕpxqL˚ϕpx1qErUpxqUpx1qsdxdx1.

Permuting formally the expectation and the integrals (justified in equation (27)) yields

0 “

ż

D

ż

D

L˚ϕpxqL˚ϕpx1qErUpxqUpx1qsdxdx1

“ E

«˜

ż

D

L˚ϕpxqUpxqdx
¯2

ff

“ E
“

xU,L˚ϕy2
‰

,

and thus xU,L˚ϕy “ 0 a.s. : there exists Aϕ P A with PpAϕq “ 1 such that @ω P Aϕ, xUω, L
˚ϕy “

0. We justify the expectation-integral permutation with the computation below
ż

D

ż

D

|L˚ϕpxqL˚ϕpx1q|Er|UpxqUpx1q|sdxdx1

ď

ż

D

ż

D

|L˚ϕpxqL˚ϕpx1q|σpxqσpx1qdxdx1

ď

˜

ż

D

|L˚ϕpxq|σpxqdx

¸2

ă `8. (27)

As previously, setting f “ σ in equation (26) shows that the integral above is indeed finite.
This does not finish the proof as we need to find a set A with PpAq “ 1, independently from

ϕ, such that @ω P A, xUω, L
˚ϕy “ 0. For this we shall use Lemma 3.6. Let

A :“ B X
`

č

ϕPF

Aϕ

˘

, (28)

where the set F is introduced in Lemma 3.6. Then PpAq “ 1 since PpBq “ 1,PpAϕq “ 1 and
F is countable. Let ω P A. Since Uω P L1

locpDq, equation (26) shows that the map Tω : ϕ ÞÝÑ
xUω, L

˚ϕy is a continuous linear form on DpDq. In particular, Theorem 6.6pcq p. 155 from [46]
states that Tω is in fact sequentially continuous. Let ϕ P DpDq and pϕnq Ă F be such that ϕn Ñ ϕ

in DpDq, from Lemma 3.6. From the sequential continuity of Tω, Tωpϕq “ limnÑ8Tωpϕnq “ 0
since @n P N, Tωpϕnq “ 0. That is, we have proved that

@ω P A, @ϕ P DpDq, xUω, L
˚ϕy “ Tωpϕq “ 0.

Since PpAq “ 1, this shows that piiq ùñ piq.
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When U is not centered, consider the centered random field V defined by V pxq “ Upxq´mpxq
for which the above proof can be applied. Since L is linear and m is assumed to verify Lpmq “ 0
in the sense of distributions, the probabilistic sets AU “ tLpUq “ 0 in the sense of distributionsu
and AV “ tLpV q “ 0 in the sense of distributionsu coincide and thus, A Ă AU . Finally, U and
V have the same covariance function kpx, x1q. Thus,

PpLpUq “ 0 in the distrib. senseq “ 1 ðñ PpLpV q “ 0 in the distrib. senseq “ 1

ðñ @x P D, Lpkxq “ 0 in the distrib. sense,

which finishes the proof in the general case.

Remark 3.7. Distributional solutions are the weakest types of solutions for PDEs. In general,
additional regularity conditions have to be imposed to obtain physically realistic solutions, such
as Sobolev regularity or entropy conditions as for nonlinear hyperbolic PDEs [52]. However,
every step in the above proof remains valid when replacing ϕ P DpDq with ϕ P Cn

c pDq. Although
we have not explicited the usual topology of Cn

c pDq in this article, we state that this is enough
to show that the equalities stated in Proposition 3.5 also hold in Cn

c pDq1, the space of finite
order generalized functions of order n, rather than just in D 1pDq. Cn

c pDq1 is a smaller space than
D 1pDq, though less used in functional analysis than D 1pDq.

We partially recover Proposition 3.2 when the sample paths of U are n times differentiable
with locally integrable nth derivative and k P Cn,npD ˆ Dq. Indeed, in that case one can show
that if L “

ř

|α|ďn aαpxqBα, then we simply have L “ L in Proposition 3.2. Additionally, LpUωq

and Lpkxq both lie in FpD,Rq X L1

locpDq. In that framework, Proposition 3.2 states that

@x P D, Lpkxq “ 0 ðñ PpLpUq “ 0q “ 1, (29)

where the function equalities of the form Lpfq “ 0 in equation (29) are valid everywhere on D.
In contrast, for any function g that lies in L1

locpDq, we have

g “ 0 in the sense of distributions ðñ g “ 0 a.e. (30)

Equation (30) is just another way of saying that the linear map f ÞÝÑ Tf given in (12) is injective.
Following equation (30), Proposition 3.5 states a slightly weaker result than (29), namely that

@x P D, Lpkxq “ 0 a.e. ðñ PpLpUq “ 0 a.e.q “ 1. (31)

If we actually have that the sample paths of U lie in CnpDq, nullity almost everywhere implies
nullity everywhere and we recover equation (29) from equation (31).

Instead of having the sample paths of U lie in CnpDq though, one may rather encounter
the case where U is mean-square differentiable up to a certain order m. Under some continuity
assumptions over the covariance function of U and up to suitable modifications, [49] showed that
the sample paths of the mean-square differentiated process are actually weak derivatives of the
sample paths of U . As observed after Definition 3.3, we thus expect that the sample paths of the
mean-square differentiable random fields verifying Point 2, piiq of Proposition 3.5 are solutions of
some weak formulation of the PDE, rather than just distributional solutions.

Example (A first order PDE). Consider a continuous, nondifferentiable one dimensional covari-
ance function k0 : R ˆ R Ñ R, for example k0px, x1q “ expp´|x´ x1|q. It is then readily checked
that the function k : R2 ˆ R

2 Ñ R defined by kppx, yq, px1, y1qq “ k0px ´ y, x1 ´ y1q is positive
definite and verifies Point 2, piiq of Proposition 3.5 for the PDE

Bxu` Byu “ 0 in R
2. (32)
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Consider now a centered second order random field pUpx, yqqpx,yqPR2 with covariance function k,
passing to a measurable version of U if necessary (it exists from Section 2.1.2, as the continuity
of k yields the continuity in probability of U). Then almost surely, its sample paths verify the
PDE (32) in the sense of distributions, even though they are not expected to be differentiable.
An example of random field whose covariance function is k as defined above, is the GP pU0px´
yqqpx,yqPR2 where pU0pxqqxPR „ GP p0, k0q. These formulas can be obtained by viewing the PDE
(32) as a transport equation under the condition that Upx, 0q “ U0pxq, following the same
approach as in the upcoming Section 4.2.

3.3 A heredity property for Gaussian process regression

3.3.1 Gaussian process regression in a nutshell. GPs can be used for function inter-
polation. Let u be a function defined on D for which we know a dataset of values B “
tupx1q, ..., upxnqu. Conditioning the law of a GP pUpxqqxPD „ GP pm, kq on the database B
yields a second GP Ũ given by Ũpxq :“ pUpxq|Upxiq “ upxiq, i “ 1, ..., nq. The law of Ũ is
known: pŨpxqqxPD „ GP pm̃, k̃q. m̃ and k̃ are given by the so-called Kriging equations (33) and
(34). Let X “ px1, ..., xnqT , denote mpXq the column vector such that mpXqi “ mpxiq, kpX,Xq
the square matrix such that kpX,Xqij “ kpxi, xjq and given x P D, kpX, xq the column vector
such that kpX, xqi “ kpxi, xq. Suppose that KpX,Xq is invertible, then [43]

"

m̃pxq = mpxq ` kpX, xqT kpX,Xq´1pupXq ´mpXqq, (33)

k̃px, x1q = kpx, x1q ´ kpX, xqT kpX,Xq´1kpX, x1q. (34)

The Kriging standard deviation function is then given by

σ̃pxq “ k̃px, xq1{2. (35)

The so-called Kriging mean m̃ plays the role of an approximation of u; in particular, it interpolates
u at the observation points: m̃pxiq “ upxiq for all i “ 1, ..., n. Moreover, the Kriging covariance
k̃ can be used to further control the distance between u and m̃.

3.3.2 Conditioned Gaussian processes under linear differential constraints. We can
now state the following corollary, which draws the consequences of Proposition 3.5 when applied
to GPR.

Proposition 3.8 (Heredity of Proposition 3.5 to conditioned GPs). Let D and L be as defined in
Proposition 3.5. Let pUpxqqxPD „ GP pm, kq be a Gaussian process that verifies the assumptions
of Proposition 3.5. Suppose also that

Lpmq “ 0 and @x P D, Lpkxq “ 0 both in the sense of distributions. (36)

piq Then whatever the integer p, the vector u “ pu1, ..., upqT P R
p and the vector X “ px1, ..., xpqT P

Dp such that kpX,Xq is invertible, the Kriging mean m̃pxq and the Kriging standard deviation
function σ̃ both lie in L1

locpDq, and we have

Lpm̃q “ 0 and @x P D, Lpk̃xq “ 0 both in the sense of distributions.

where m̃ and k̃ are defined in equations (33) and (34).
piiq As such, the sample paths of the conditioned Gaussian process

`

Ũpxq
˘

xPD
defined by Ũpxq “

pUpxq|Upxiq “ ui @i “ 1, ..., pq are almost surely solutions of the equation Lpfq “ 0 in the sense
of distributions:

PpLpŨq “ 0 in the sense of distributionsq “ 1.

17



Proof. Note first that for all x P D, k̃px, xq ď kpx, xq ([19], p. 117). Thus the function σ̃ : x ÞÝÑ
k̃px, xq1{2 also lies in L1

locpDq. Point piq is then a direct consequence of the definition of m̃ and k̃
in equations (33) and (34), and the linearity of L. Proposition 3.5 can then be applied conjointly
with piq, which yields point piiq since the mean and covariance functions of the GP Ũ are m̃ and
k̃ (see equations (33) and (34)).

Proposition 3.8 shows that when U is a GP, the results of Proposition 3.5 are inherited on
the conditioned posterior process Ũ . One weak consequence of Proposition 3.8 is that if GPR
is performed with a covariance function k that verifies point piiq of Proposition 3.5, then all the
possible Kriging means provided by GPR remain solutions of the PDE Lpm̃q “ 0.

4 Gaussian processes and the 3 dimensional wave equation

The formalism we used in the previous section is necessary to tackle hyperbolic PDEs as in
some cases, their solutions only verify the PDE in a weaker sense, e.g. the distributional sense
([16], Sections 2.1.1 and 7.2). Hyperbolic PDEs are typically encountered when describing finite
speed propagation phenomena and their prototype is the wave equation (see equation (37));
this equation is central in a number of fields such as acoustics, electromagnetics and quantum
mechanics. In this section, we derive a GP model for the solutions of the homogeneous 3D wave
equation, with explicit covariance formulas in the form of convolutions.

We show on one example that the model we obtain below is capable of dealing with an initial
speed v0 that is piecewise continuous and an initial position u0 that has piecewise continuous
derivatives, when the initial discontinuity surfaces are “nice enough”. This is an advantage
with reference to the previous models, where the sample paths actually had to be sufficiently
differentiable to obtain sample path degeneracy with reference to the PDE.

4.1 General solution to the 3 dimensional wave equation

Denote the 3D Laplace operator ∆ “ B2
xx`B2

yy`B2
zz and the d’Alembert operator l “ 1{c2B2

tt´∆
with constant wave speed c ą 0. We focus on the general initial value problem in the free space
R

3

$

’

&

’

%

lw “ 0 @px, tq P R
3 ˆ R

˚
`,

wpx, 0q “ u0pxq @x P R
3,

pBtwqpx, 0q “ v0pxq @x P R
3.

(37)

Throughout this article, we will refer to u0 as the initial position and v0 as the initial speed. The
solution of this problem is unique in the distributional sense ([14], p. 164). It can be extended
to all t P R ([14], p. 295) and is represented as follow ([14], p. 295 again)

wpx, tq “ pFt ˚ v0qpxq ` p 9Ft ˚ u0qpxq @px, tq P R
3 ˆ R, (38)

where Ft and 9Ft are known generalized functions. That is, the function wpx, tq above is a
solution of the system (37), in which t is now allowed to lie in R rather than R

˚
`. The existence

of such an extension is possible because of the time reversibility of the wave equation (in the
language of semigroup theory, its semigroup can be embedded in a group, [41], Theorem 4.5 p.
222). In dimension 3, Ft and 9Ft are compactly supported generalized functions of order 0 and 1
respectively. They are given by

Ft “
σc|t|

4πc2t
and 9Ft “ BtFt @t P R, (39)
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where σR is the surface measure of the sphere of center 0 and radius R; 9Ft “ BtFt means that
for all f P C1

c pR3q, x 9Ft, fy “ BtxFt, fy. We make these expressions more explicit in equation (40),
using spherical coordinates. It is worth noting that pFtqtPR corresponds to the Green’s function
of the wave equation, in the sense that it verifies the system (37) with u0 “ 0 and v0 “ δ0 where
δ0 is the Dirac mass ([14], pp. 294-295). As discussed in Remark 3.4, pFtqtPR is a family of
singular measures and this PDE system has to be understood in the distributional sense. Note
also that equations (39) show that Ft and 9Ft are supported on the sphere of radius c|t|: “the
support of Ft propagates at finite speed c”. This property is known as the Huygens principle for
the three dimensional wave equation, see [16], p. 80.

Suppose that u0 P C1pR3q and v0 P C0pR3q, then w as defined in equation (38) is a pointwise
defined function (Section 2.2.7) and in that case an explicit formula for such convolutions is
reminded in equation (15) (yet one may actually make sense out of (38) when u0 and v0 are only
required to be any generalized functions, see [54], Chapter 27).

Equation (38) can be written using means over spheres. Denote pr, θ, φq, r ě 0, θ P r0, πs, φ P
r0, 2πs the spherical coordinates, Sp0, 1q the unit sphere ofR3 and γ “ psin θ cosφ, sin θ sinφ, cos θqT

the corresponding parametrization of Sp0, 1q (||γ||2 “ 1). We write dΩ “ sin θdθdφ the surface
differential element of Sp0, 1q. The formulas (38) and (39) then lead to the Kirschoff formula
([16], p. 72):

wpx, tq “

ż

Sp0,1q

tv0px´ c|t|γq ` u0px ´ c|t|γq ´ c|t|γ ¨ ∇u0px´ c|t|γq
dΩ

4π
(40)

4.2 Gaussian process modelling of the solution

Suppose now that u0 and v0 are unknown, and only pointwise values of w are observed. We thus
model u0 and v0 as random functions and put Gaussian process priors over u0 and v0. More
precisely, we make the following assumptions.

(A1) Suppose that the initial conditions u0 and v0 of Problem (37) are sample paths drawn from
two independent Gaussian processes U0 „ GP p0, kuq and V 0 „ GP p0, kvq: Dω P Ω,@x P
R

3, u0pxq “ U0
ωpxq and v0pxq “ V 0

ω pxq.

(A2) Suppose that all sample paths of U0 lie in C1pR3q and that those of V 0 lie in C0pR3q,
almost surely. A sufficient condition for this is given in [2], Theorem 1.4.2. This theorem
states that under mild technical assumptions, the paths of pUpxqqxPD „ GP p0, kq lie in Cl

a.s. as soon as k P C2lpD ˆDq, which we assume from now on. This is e.g. fulfilled by the
Matérn covariance functions from equation (8), with l “ 0 for k1{2 and l “ 1 for k3{2.

We now analyse the consequence of these two assumptions. First, they imply that by solving
(37), one obtains a time-space stochastic process W px, tq defined by

W px, tq : Ω Q ω ÞÝÑ pFt ˚ V 0

ω qpxq ` p 9Ft ˚ U0

ωqpxq. (41)

Here again, V 0
ω denotes the sample path of V 0 at ω P Ω and likewise for U0

ω. In particular, thanks
to assumption pA2q, equation (41) defines a random variable for all px, tq. Note the space-time
variable z “ px, tq and note the random variables

V pzq : ω ÞÝÑ pFt ˚ V 0

ω qpxq and Upzq : ω ÞÝÑ p 9Ft ˚ U0

ωqpxq, (42)

that is, W pzq “ Upzq ` V pzq. We show in the next proposition that the random fields U, V and
W are GPs as well. In particular we describe their covariance functions.
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Proposition 4.1. Define the two functions

kwave

v pz, z1q “ rpFt b Ft1 q ˚ kvspx, x1q, (43)

kwave

u pz, z1q “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q. (44)

(i) Then U “ pUpzqqzPR3ˆR and V “ pV pzqqzPR3ˆR as defined in (42) are two independent
centered GPs with covariance functions kwave

u and kwave
v respectively. Consequently, pW pzqqzPR3ˆR

is a centered GP whose covariance function is given by

kW pz, z1q “ kwave

v pz, z1q ` kwave

u pz, z1q. (45)

(ii) Conversely, any measurable centered second order random field with covariance function kW
has its sample paths solution of the wave equation (37), in the sense of distributions, almost
surely.

The formulas (43) and (44) can easily be derived formally, by running computations as if Ft

and 9Ft were regular generalized functions (Section 2.2.4). This is somewhat justified because
any generalized function can be approximated with a sequence of smooth compactly supported
functions, by a “cutting and regularizing” argument ([54], Theorem 28.2, Chapter 28). However,
checking that this procedure passes to the limit everywhere is tedious. Here, we rather make
use of representations of Ft and 9Ft thanks to Radon measures (Sections 2.2.5 and 2.2.6) and use
Fubini’s theorem. We refer to Sections 2.2.6 and 2.2.8 for the definition of 9Ft b 9Ft1 , and Section
2.2.7 for the definition of p 9Ft b 9Ft1 q ˚ ku.

Proof. piq : first we prove that U and V are GPs. Since U0 and V 0 are GPs, LpU0q and LpV 0q are
only comprised of Gaussian random variables (see Section 2.1.3). We then rely on the Kirschoff
formula (40), writing the integrals as limits of Riemann sums. We start with V , that is, we focus
on the first term in Kirschoff’s formula (40). To show that V is a Gaussian process, we only need
to show that for any z, V pzq P LpV 0q as this will ensure the Gaussian process property. Since the
sample paths of V 0 are continuous almost surely, there exists a sequence of numbers pank q Ă R

and points pynk q Ă Sp0, 1q such that for almost any ω P Ω,

V pzqpωq “ pFt ˚ V 0

ω qpxq “ t

ż

Sp0,1q

V 0px´ c|t|γqpωq
dΩ

4π

“
t

4π

ż 2π

0

ż π

0

V 0px´ c|t|γpθ, φqqpωq sinpθqdθdφ “ lim
nÑ8

n
ÿ

k“1

ankV
0px´ c|t|ynk qpωq.

This shows that V pzq is the a.s. limit of the sequence of centered Gaussian random variables
pYnq Ă LpV 0q, where Yn “

řn
k“1

ankV
0px´c|t|ynk q; Yn is Gaussian because V 0 is a GP. Almost sure

convergence implies convergence in law. From [35], Proposition 1.1, V pzq is normally distributed
and the convergence also takes place in L2pPq. Therefore, V pzq P LpV 0q and V is a Gaussian
process. From the same proposition, V pzq is centered because the variables Yn are centered.
Note that since Ft is supported on the compact set Sp0, c|t|q, we only required the sample paths
of V 0 to be continuous rather than continuous and compactly supported.

We apply the same reasoning to U , by applying the above steps to the second part of
Kirschoff’s formula (40). One’s ability to write out the integrals as a limit of Riemann sums
is ensured when the sample paths of U0 lie in C1pR3q.

Finally, since U0 and V 0 are independent, LpU0q and LpV 0q are orthogonal in L2pPq. Since
LpUq Ă LpU0q and likewise for V , U and V are independent Gaussian processes as for Gaussian
random variables, independence is equivalent to null covariance. Finally, the sum of independent
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Gaussian random variables is a Gaussian random variable. Therefore LpW q Ă LpUq ` LpV q is
only comprised of Gaussian random variables and W is a Gaussian process. Now, we prove that

ErUpzqUpz1qs “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q. (46)

The main argument is Fubini’s theorem for Radon measures. For this we use the fact that 9Ft is
a distribution of order 1 and can be identified to a sum of derivatives of measures (see equation
(14)): for all t P R, there exists tµt

αuαPN3,|α|ď1 a family of Radon measures such that

9Ft “
ÿ

|α|ď1

Bαµt
α in the sense of distributions. (47)

Moreover, 9Ft is compactly supported, therefore all the measures µt
α are also compactly supported.

First, we write Uωpzq in integral form:

Uωpzq “
`

9Ft ˚ U0

ω

˘

pxq “ x 9Ft, τ´xǓ
0

ωy “
A

ÿ

|α|ď1

Bαµt
α, τ´xǓ

0

ω

E

(48)

“
ÿ

|α|ď1

xµt
α, p´1q|α|Bατ´xǓ

0

ωy “
ÿ

|α|ď1

ż

R3

p´1q|α|BαU0

ωpx´ yqµt
αpdyq. (49)

Before applying Fubini’s theorem, we need to check an integrability condition. Let α P N
3 be such

that |α| ď 1. Recall that |µα
t | is defined in Section 2.2.5; denote also σBαU0pxq “

a

VarpBαU0pxqq.
Since the sample paths of U0 lie in C1pDq a.s, those of BαU0 lie in C0pDq and thus the function
x ÞÝÑ VarpBαU0pxqq also lies in C0pDq ([5], chapter 1, Section 4.3). Therefore the function
x ÞÝÑ σBαU0pxq also lies in C0pDq. We now check that the integral I below is finite. We use
Tonelli’s theorem and the Cauchy-Schwarz inequality:

I :“

ż

Ω

ÿ

|α|ď1

ż

R3

ˇ

ˇ

ˇ
BαU0

ωpx´ yq
ˇ

ˇ

ˇ
|µt

α|pdyq
ÿ

|α1|ď1

ż

R3

ˇ

ˇ

ˇ
Bα1

U0

ωpx1 ´ y1q
ˇ

ˇ

ˇ
|µt1

α1 |pdy1qPpdωq

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

ż

Ω

ˇ

ˇ

ˇ
BαU0

ωpx´ yqBα1

U0

ωpx1 ´ y1q
ˇ

ˇ

ˇ
Ppdωq|µt

α|pdyq|µt1

α1 |pdy1q

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

E
“

|BαU0px´ yqBα1

U0px1 ´ y1q|
‰

|µt
α|pdyq|µt1

α1 |pdy1q

ď
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

ˆ

E
“

BαU0px´ yq2
‰

E
“

Bα1

U0px1 ´ y1q2
‰

˙1{2

|µt
α|pdyq|µt1

α1 |pdy1q

ď

˜

ÿ

|α|ď1

ż

R3

ˆ

E
“

BαU0px´ yq2
‰

˙1{2

|µt
α|pdyq

¸

ˆ

˜

ÿ

|α|ď1

ż

R3

ˆ

E
“

BαU0px´ yq2
‰

˙1{2

|µt1

α|pdyq

¸

ď
´

ÿ

|α|ď1

p|µt
α| ˚ σBαU0qpxq

¯

ˆ
´

ÿ

|α|ď1

p|µt1

α| ˚ σBαU0qpx1q
¯

ă `8.

For all multi-index α, the scalar p|µt
α| ˚ σBαU0 qpxq is finite because x ÞÝÑ σBαU0pxq is continuous

and |µt
α| is compactly supported. Note also that from Assumption pA2q, the GP U0 is mean

square differentiable up to order 1, which implies ([44], Section III.1.4) that we have, for all
multi-indexes α, α1 such that |α|, |α1| ď 1, x and x1:

E
“

BαU0pxqBα1

U0px1q
‰

“ Bα
1 Bα1

2 kupx, x1q. (50)
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where B1 (respectively B2) denotes derivatives with reference to the first (respectively second)
argument of ku. We may thus permute integrals and differential operators in E

“

UpzqUpz1q
‰

:

E
“

UpzqUpz1q
‰

“ E

«

ÿ

|α|ď1

ż

R3

p´1q|α|BαU0px´ yqµt
αpdyqq

ÿ

|α1|ď1

ż

R3

p´1q|α1|Bα1

U0px ´ yqµt1

α1 pdy1q

ff

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

p´1q|α|p´1q|α1|Bα
1 Bα1

2 E
“

U0px´ yqU0px1 ´ y1q
‰

µt
αpdyqµt1

α1 pdy1q

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

p´1q|α|p´1q|α1|Bα
1 Bα1

2 kupx´ y, x1 ´ y1qµt
αpdyqµt1

α1 pdy1q

“

„

´

ÿ

|α|ď1

Bαµt
α b

ÿ

|α1|ď1

Bα1

µt1

α1

¯

˚ ku



px, x1q “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q,

which proves (46).
One proves that E

“

V pzqV pz1q
‰

“ rpFt bFt1 q ˚ kvspx, x1q the exact same way, which is actually
simpler as Ft is directly a measure. To conclude,

kW pz, z1q “ CovpW pzq,W pz1qq

“ ErpW pzqW pz1qs “ E
“`

Upzq ` V pzq
˘`

Upz1q ` V pz1q
˘‰

“ E
“

UpzqUpz1q
‰

` E
“

UpzqV pz1q
‰

` E
“

V pzqUpz1q
‰

` E
“

V pzqV pz1q
‰

“ rp 9Ft b 9Ft1 q ˚ kuspx, x1q ` rpFt b Ft1 q ˚ kvspx, x1q. (51)

The cross terms are null because Upzq and V pz1q are independent as well as Upz1q and V pzq.
piiq : with expression (45), one checks that for any fixed z1, the function z ÞÝÑ kW pz, z1q is

of the form (38) and thus verifies lkx1 “ 0 in the sense of distributions. piiq is then a direct
consequence of Proposition 3.5.

Remark 4.2. If U and V are not independent, then the two terms rp 9Ft b Ft1 q ˚ kuvspx, x1q and
rpFt b 9Ft1 q ˚ kvuspx, x1q must be added to equation (45), where kuvpx, x1q denotes the cross co-
variance between U and V : kuvpx, x1q “ CovpUpxq, V px1qq and kvupx, x1q “ CovpV pxq, Upx1qq “
kuvpx1, xq.

More explicitly, we have the following Kirschoff-like integral formulas for kwave
v and kwave

u :

rpFt b Ft1 q ˚ kvspx, x1q “ tt1
ż

Sp0,1qˆSp0,1q

kvpx´ c|t|γ, x1 ´ c|t1|γ1q
dΩdΩ1

p4πq2
, (52)

rp 9Ft b 9Ft1 q ˚ kuspx, x1q “

ż

Sp0,1qˆSp0,1q

´

kupx´ c|t|γ, x1 ´ c|t1|γ1q

´ c|t|∇1kupx´ c|t|γ, x1 ´ c|t1|γ1q ¨ γ

´ c|t1|∇2kupx´ c|t|γ, x1 ´ c|t1|γ1q ¨ γ1

` c2tt1γT∇1∇2kupx´ c|t|γ, x1 ´ c|t1|γ1qγ1
¯dΩdΩ1

p4πq2
. (53)

Above, ∇1kupx, x1q is the gradient vector of ku with reference to x, ∇2kupx, x1q is the gradient
vector of ku with reference to x1 and ∇1∇2kupx, x1q is the matrix whose entry pi, jq is given by

∇1∇2kupx, x1qij “ Bx1

i
Bx2

j
kupx, x1q. (54)

(Bx1

i
is the derivative with reference to the ith coordinate of x, Bx2

j
is the derivative with reference

to the jth coordinate of x1).
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4.2.1 Extending the covariance functions kwave
u and kwave

v to initial conditions u0 and

v0 with piecewise regularity. The formulas (52) and (53) are valid in a more general context
than that of assumptions (A1) and (A2). We provide below examples where these formulas yield
valid covariance functions (in particular, functions defined for all values of px, tq and px1, t1q)
corresponding to initial conditions with some forms of piecewise discontinuities. Assume, for
example, that the initial speed v0 is compactly supported on a ball Bpx0, Rq centered on some
point x0 with radius R. This is a natural model when v0 is assumed to be a localized source.
For the process V 0, this translates as V 0pxq “ 0 a.s. if x is outside the ball Bpx0, Rq. One can
thus truncate the covariance function of V 0 accordingly, e.g. choosing the following function for
kv (see Section 2.1.3 for k1{2)

kvpx, x1q “ k1{2px, x1q1r0,Rsp||x´ x0||q1r0,Rsp||x1 ´ x0||q. (55)

Above, ||x|| denotes the Euclidean norm of x. Such a covariance function indeed verifies kvpx, xq “
VarpV 0qpxqq “ 0 if ||x´ x0|| ą R and the GP corresponding to kv is V 0pxq “ V1{2pxq1r0,Rsp||x´
x0||q, where V1{2 is a continuous modification of a GP with covariance function k1{2. Note that
the sample paths of V 0 are piecewise continuous and that V as defined in (42) is well-defined and
measurable. The integrals in (52) still make sense and point piiq from Proposition is still valid:
the sample paths of the process V whose covariance function is kwave

v (or any other measurable
centered second order random field with this covariance function) remains a solution of the wave
equation in the distributional sense. One can perform the same kind of discussions on kwave

u :
for example, equation (53) shows that when ku P C1,1pR3 ˆ R

3qzC2,2pR3 ˆ R
3q, kwave

u is only
expected to lie in C1,1pR3 ˆR

3q; the sample paths of the GP with covariance function kwave
u will

be at most of class C1 and thus cannot be strong solutions of equation (37). This is the case
when ku is the k3{2 Matérn covariance function from equation (8).

More generally, one can incorporate a finite number of discontinuities on kv and on the
derivatives of ku so that they remain piecewise continuous: the integrals above will remain well
defined and the sample paths of the corresponding GPs will remain distributional solutions to
the wave equation, even though they will not be sufficiently differentiable to be strong solutions.

5 Conclusion and perspectives

In Section 3, we have presented a new result that provides a simple characterization of the mea-
surable second order random fields pUpxqqxPD whose sample paths verify homogeneous linear
differential constraints within the framework of generalized functions. This characterization is
valid for any linear differential operator L, provided that its coefficients fulfil minimal smooth-
ness requirements, and no stationarity assumptions over pUpxqqxPD are required. Motivated by
physical applications, we described in Section 4 a Gaussian process model of the wave equation
which is central to describe propagation phenomena. This PDE served as an application case for
Proposition 3.5, and the GP model was derived by putting a GP prior on the wave equation’s
initial conditions. In Proposition 4.1, we presented covariance formulas that are tailored to the
wave equation and take the form of convolutions; these expressions are interesting in themselves
and call for physics-informed GPR applications for this equation. In particular, we showed that
these formulas can model piecewise continuously differentiable solutions for the wave equation.
Moreover, this setting provides a natural way to incorporate any type of information, both nu-
merical or experimental. In a forthcoming paper, we will show how to use GPR conjointly with
the covariance functions from Proposition 4.1 in a numerical setting, in order to construct ap-
proximate solutions of the wave equation based on scattered observations. This in turn provides
a natural method for solving different inverse problems, by using the likelihood of GPR as well
as the reconstructed solution. An other application concerns the design of transparent boundary
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conditions (TBC): this provides artificial boundary conditions on a computational domain so
that the computed solution is exactly an approximation of a solution on the whole space. Those
conditions are usually nonlocal and restricted to simple geometries. A GPR strategy is meshless
therefore suitable to design TBC on any type of computational domains.

Proposition 3.5 constitutes a first step towards understanding PDE constrained random fields
in an weakened sense; different functional analysis frameworks can now be considered, obvious
extensions being the weak or variational formulations of equation (1). These formulations are
obtained by transferring only a part of the derivatives of the PDE to the test function and are
for instance the canonical way of studying elliptic PDEs ([16], Section 6.1.2). The natural spaces
arising from these formulations are Sobolev spaces rather than D 1pDq. An attached question,
as studied in [49], is that of the Sobolev regularity of a given second order random field; a
current research topic is whether or not one may relax the continuity assumptions required in
[49]. Finally, the matter of using random fields for modelling and approximating solutions of
nonlinear PDEs is a natural direction for future research.
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