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Abstract

Let L be a linear differential operator acting on functions defined over an open set
D Ă Rd. In this article, we characterize the measurable second order random fields
U “ pUpxqqxPD whose sample paths Uω all verify the partial differential equation (PDE)
Lpuq “ 0, solely in terms of their first two moments. When compared to previous similar
results, the novelty lies in that the equality Lpuq “ 0 is understood in the sense of distri-
butions, which is a powerful functional analysis framework mostly designed to study linear
PDEs. This framework enables to reduce to the minimum the required differentiability
assumptions over the first two moments of U as well as over its sample paths in order to
make sense of the PDE LpUωq “ 0. In view of Gaussian process regression (GPR) applica-
tions, we show that when U is a Gaussian process (GP), the sample paths of U conditioned
on pointwise observations still verify the constraint Lpuq “ 0 in the distributional sense.
We finish by deriving a simple but instructive example, a GP model for the 3D linear
wave equation, for which our theorem is applicable and where the previous results from
the literature do not apply in general.

1 Introduction

When a function of interest u : D Ñ R is unknown, it is common (as e.g. in Bayesian inverse
problems) to assume that it is a sample path of a random field U “ pUpxqqxPD. Incorporat-
ing prior knowledge over u, such as smoothness, etc, is then achieved by constraining the law
of U accordingly. Sometimes, this prior knowledge comes from physical considerations. If u
describes a positive quantity such as mass or energy, then the random variables Upxq should
all be positive almost surely (a.s.). In many cases, this physical constraint can be more pre-
cisely translated as a partial differential equation (PDE). Such equations are a pivotal tool for
modelling, understanding and predicting real-life phenomena such as those arising from fluid
mechanics, electromagnetics or biology to name a few. The most simple (yet central) PDEs are
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those that are linear. In this article, we will only consider homogeneous linear PDEs, which
take the form

Lpuq :“
ÿ

|α|ďn

aαpxqBαu “ 0 (1)

Above, u is the unknown function of interest, defined over an open set D Ă Rd, and L is a
linear partial differential operator. In (1), for a multi-index α “ pα1, ..., αdqT P Nd, we used the
notations |α| “ α1 ` ... ` αd and Bα “ pBx1

qα1 ...pBxd
qαd . Homogeneous PDEs, i.e. PDEs with

a null term on the right-hand side of (1), are often encountered to describe conservation laws,
such as conservation of mass, energy or momentum in closed systems [46].

In order to incorporate the knowledge that Lpuq “ 0 in the prior U , a natural question is
whether one can characterize, in terms of their law, the random fields U whose sample paths
are all solutions to the PDE (1). Let U be a centered second order random field with covariance
kernel k : under the assumption that U is a Gaussian process (GP) whose sample paths are
n times differentiable, [23] proved for some classes of differential operators L of order n that
([23], Sections 3.3 and 4.1)

PpLpUq “ 0q “ 1 ðñ @x P D, Lpkpx, ¨qq “ 0 (2)

This property provides a simple characterization of the GPs that incorporate the PDE con-
straint (1) sample path-wise. Such GPs would fall in the category of ”physics-informed” GPs
in the machine learning community. In the proof of this property, the fact that the sample
paths are n times differentiable, i.e. that the PDE (1) can be understood pointwise, is central.
These functions are then strong solutions of the PDE (1) (see definition 3.1).

In the standard PDE approach though, equation (1) is reinterpreted by weakening the
definition of the derivatives of u, thereby weakening the required regularity assumptions over
u. It can indeed happen in practice that the sought solutions of the PDE Lpuq “ 0 are not
n times differentiable; they are only solutions of some weakened formulation of equation (1).
This is typically the case for hyperbolic PDEs such as the wave equation presented in Section
4. We introduce here on the distributional formulation of the PDE (1), where the regularity
assumptions over u are relaxed to the maximum : this formulation will be our main object of
interest in this article. Consider equation (1), and ”test it locally” : that is, multiply it by a
compactly supported, smooth test function φ P C8

c pDq and integrate over D :

@φ P C8
c pDq,

ÿ

|α|ďn

ż

D

φpxqaαpxqBαupxqdx “ 0 (3)

For each integral term above, perform |α| successive integrations by parts to transfer the deriva-
tives from u to φ. Since φ is identically null on a neighbourhood of the boundary of D, the
boundary terms of each integration by parts vanish and we obtain that

@φ P C8
c pDq,

ż

D

upxq
ÿ

|α|ďn

p´1q|α|Bαpaαφqpxqdx “ 0 (4)

To make sense of (4), one only requires u to be locally integrable, i.e.
ş

K
|upxq|dx ă `8 for all

compact set K Ă D. We then say that a locally integrable function u is a solution to Lpuq “ 0
in the sense of distributions, or distributional sense, if u verifies (4). In this case, u is a solution
to equation (1) in the sense of ”all smooth local averages” (i.e. for all φ P C8

c pDq), though not
pointwise in general (taking φpxq “ δpx ´ x0q is not allowed).

The distributional formulation of the PDE Lu “ 0 is ”compliant with physics” too, as
pointed out by W. Rudin ([41], p. 150) : most of the sensors we use in practice are only

2



capable of computing local averages of the physical quantity they are measuring. Suppose one
wishes to check experimentally that a temperature field obeys the heat equation, by using a set
of thermometers : then one will actually only deal with the distributional formulation of the
heat equation.

The natural question that follows from this new definition is whether one can characterize,
in terms of their law, the random fields whose sample paths are solutions to the PDE Lpuq “ 0
in the distributional sense. The answer is yes, and is the main content of this article. Under the
assumptions that U is a measurable centered second order random field and that its standard
deviation function σ : x ÞÝÑ

a

kpx, xq is locally integrable, we show in Proposition 3.4 that

PpLpUq “ 0 in the distrib. senseq “ 1 ðñ @x P D,Lpkpx, ¨qq “ 0 in the distrib. sense (5)

Related literature

[49] classifies the stationary generalized random fields that are solutions of a wide class of linear
stochastic partial derivative equations (SPDEs), i.e. PDEs where the source term is a random
function. In particular, [49] provides a description of all the second order stationary generalized
random fields that are solutions to some homogeneous PDEs, and the 3D wave equation in
particular (which we also study in Section 4), in terms of their covariance operator. Loosely
speaking, generalized random fields are function-indexed random fields where the covariance
function is replaced by a covariance operator. From a functional analysis point of view, this is
actually very close to the tools we use here, although in this article we constrain ourselves to
work with (standard) random fields with well-defined sample paths, as these are the objects that
arise the most in the random function models met in practice. The two other key differences
between this work and [49] are that piq we do not focus on stationary random field models for
u and piiq we focus on the homogeneous case for PDE Lpuq “ 0.

The literature concerning random fields that are PDE-constrained at the level of the sample
paths is rather sparse. In [23], general theorems are exposed for many different classes of linear
operators acting on suitable spaces of functions. These theorems take the form of equation
(2), and can in turn be applied to certain differential operators (see [23], Sections 3.3 and 4.1).
In a previous paper, [45] builds covariance structures that ensure that the sample path of a
given two or three dimensional random vector field are either divergence or curl free. This
result is notable because ”any” three dimensional vector field can be decomposed as a sum
of divergence and curl free vector fields through the Helmholtz-Hodge decomposition theorem.
Moreover, divergence or curl free vector fields are commonly encountered in fluid mechanics.
[17] extends the results of [45] to random fields on the sphere of R3, which has been rediscovered
later in [15]. A simple algorithm for building linearly constrained GPs is proposed in [29], based
on formal GPR derivations upon (1); however, partly because the assumed regularity of u is
not fully addressed, the claim that the sample paths of the underlying GP are indeed linearly
constrained is left unproved. This is clarified in [30], where the requirement that u P C8pRdq

is made explicit and the enforcement of the PDE on the sample paths is proved for GPs
whose sample paths are smooth. The algorithm from [29] is then supplemented in [30], where
parametrizations of the solution spaces of (1) thanks to Gröbner bases are proposed. In [31],
the same author completes the approach from [30] by incorporating boundary conditions on
hypersurfaces in the Gröbner basis parametrization. With the idea to apply GPR to rigid body
dynamics, [20] enforces Gauss’ principle of least constraint on the sample paths of a GP.

One can understand our main result (Proposition 3.4) as a characterization of the ”physics-
informed” random fields that incorporate the distributional PDE constraint Lpuq “ 0 at the
level of the sample paths. It turns out that the design of similar ”physics-informed priors” has
received a lot a attention from the machine learning community since the early 2000’ ([24]),
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in the context of Gaussian process regression (GPR); see Section 3.3.1 for a description of this
technique. GPR is a Bayesian framework for function regression and interpolation, that is well
suited for handling linear constraints (this is because GPs are ”stable under linear combina-
tions”, see Section 2.1.3). The recurring idea is to suppose that the function u in equation (1)
is a sample path of a (centered) GP U and to draw the consequences of equation (1) on the
covariance structure of U . The covariance function of U is then expected to incorporate the
constraint Lpuq “ 0 in some sense. The majority of these works (except those mentioned above)
do not aim at analysing whether the obtained covariance structure indeed yields sample path
PDE constraints over U : this is justified by the fact that they are only concerned with imposing
the constraints on the function provided by GPR to approximate u. This approximation of u,
which we denote by m̃, is called the Kriging mean in the GPR context; see equation (33) for a
definition.

While they do not primarily focus on investigating sample path PDE constraints (contrarily
to this article), the works coming from the GPR community are still very connected to this
article. Indeed, they are concerned with designing explicit covariance kernels that verify con-
straints of the form Lpkp¨, xqq “ 0 for all x P D (the PDE is understood in the strong sense
in these works). Indeed, this constraint ensures that all the possible regression functions m̃
provided by the corresponding GPR model verify the constraint Lm̃ “ 0 (as seen in equation
(33)). Note that ”Lpkp¨, xqq “ 0 @x P D” is the right-hand side of equation (2) : actually know-
ing kernels that verify this constraint is a necessary complement to the condition we prove in
this article (Proposition 3.4 is otherwise useless in practice). Explicit PDE constrained kernels
were designed for a number of classical PDEs, namely : divergence-free vector fields [35][45],
curl-free vector fields [18][45], the Laplace equation [42][34][2], Maxwell’s equations [51][29] [30]
(although [51] and [29] only exploit curl/divergence free constraints), the 1D heat equation [2],
Helmholtz’ 2D equations [2], and linear solid mechanics [28]. [31] and [25] enforce homogeneous
boundary conditions on the covariance kernel.

We finish by providing a brief overview of the alternative ”physics-informed” GPR models.
Contrarily to the equation (1) considered here, one may put a random source term f in the
PDE and study instead the SPDE Lu “ f : see [38], [3] and [37] for entry points on the
related literature. A recent article [7] extended the use of GPR to nonlinear PDEs by imposing
the nonlinear interpolation constraints on the collocation points, setting the way forward for
many possible applications of GPR to nonlinear realistic PDE models, as found e.g. in fluid
mechanics. In [36], the variational formulation (see [13], Section 6.1.2 for a definition) of certain
linear PDEs has been incorporated into a GPR framework. This approach requires the use of
Gaussian generalized random fields (see [5], Section 2.2.1.1), or “functional Gaussian processes”
following [36]. The variational formulation of the PDE Lu “ 0 differs from the distributional
formulation (4) in the choice of the space of test functions.

Contribution and organisation of the paper. Given an open set D Ă Rd, consider a
differential operator as in equation (1) whose variable coefficients, defined on D, have possi-
bly limited smoothness. Consider also a centered second order measurable stochastic process
U “ pUpxqqxPD with covariance function kpx, x1q (see Sections 2.1.2 and 2.1.3). Under the as-
sumption that its standard deviation function σ : x ÞÝÑ

a

kpx, xq is locally integrable, we show
in Proposition 3.4 that

PpLpUq “ 0 in the distrib. senseq “ 1 ðñ @x P D,Lpkpx, ¨qq “ 0 in the distrib. sense

The result is then compared to a previous result from [23], which ensures pointwise linear
differential degeneracy of the sample paths of U under stronger assumptions. We then provide
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a simple corollary which states that linear distributional differential constraints are inherited
to pointwise conditioned versions of U when U is a GP, in view of GPR applications.

As an application example, we derive a general Gaussian process model for the homogeneous
3D free space wave equation, for which the solutions are not smooth in general. This equation
is central for describing finite speed propagation phenomena as found e.g. in acoustics. In our
specific case, the need for its study naturally arose from acoustical oceanography considerations
(see e.g. [33] for an introduction on that topic) in the context of a project funded by the Service
Hydrographique et Océanographique de la Marine (SHOM).

This model is derived by putting GP priors over the initial conditions of the wave equation
and in Proposition 4.1, we obtain ”explicit” formulas for the covariance kernel of the solution
process, in the form of convolutions. From Propositions 3.4 and 4.1, we obtain that the sample
paths of the corresponding (non stationary) GP all verify the wave equation in the distributional
sense. When the covariance kernels of the initial conditions are not smooth enough, the result
from [23] cannot be applied. Explicitly, for this PDE, choosing the commonly used 3/2-Matérn
kernel for the initial position is enough to land outside the scope of the result from [23] (Section
4.2.1).

We emphasize that the covariance expressions exposed in Proposition 4.1 are original and in-
teresting in themselves, as they can be used for efficient GPR for the wave equation. Specifically,
the key difference with the wave equation kernels presented in [49] is that here, no stationarity
assumptions are made on the solution stochastic process U . In particular the spectral measure
provided by Bochner’s theorem [39], which is the key tool used in [49], is not available anymore.
We thus resort to more standard integration techniques to prove Proposition 4.1.

The paper is organized as follow. For self-containment, Section 2 is dedicated to reminders
on random fields and generalized functions. This Section and all the proofs are detailed enough
so that this article is accessible to the analyst, the probability theorist and the statistician. In
Section 3, we state and prove our new necessary and sufficient condition on random fields that
are subject to linear distributional differential constraints. Section 4 is dedicated to the study
of a GP model for the wave equation. We conclude in Section 5.

2 Background

2.1 Random fields

Let pΩ,F ,Pq be a probability space. For convenience, we will suppose that it is complete, i.e.
that F contains the subsets of sets A P F such that PpAq “ 0.

2.1.1 Basic definitions. Let D Ă Rd an open set. In this article, a random field U “

pUpxqqxPD is a collection of real random variables defined on Ω. We define its sample path (or
sample path) at point ω P Ω to be the deterministic function x ÞÝÑ Upxqpωq, and we denote it
by Uω. Given an operator acting on the sample paths of U , an event of the form tT pUq P Au

will always be understood sample path wise : that is, by definition, tT pUq P Au :“ tω P Ω :
T pUωq P Au. Such sets are not automatically P´measurable; still, they are measurable as
soon as they contain an event of probability 1 (as the ones in Propositions 3.2 and 3.4), since
pΩ,F ,Pq is a complete probability space.

2.1.2 Measurable random fields. In view of our main theorem, a necessary notion is that of
the measurability of the random field U . U is said to be measurable ([11], p. 60 or [32], p. 34) if
it is measurable seen as a bivariate map U : pΩˆD,FbBpDqq ÝÑ pR,BpRqq, pω, xq ÞÑ Upxqpωq.
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Here, BpSq denotes the Borel σ-algebra of S and F b BpDq denotes the product σ-algebra of
F and BpDq.

To work with measurable random fields, one will often consider random fields U which are
continuous in probability, i.e. for all x P D and ε ą 0,Pp|Upxq ´ Upx ` hq| ą εq Ñ 0 when
h Ñ 0. Indeed, continuity in probability implies the existence of a measurable modification of
U , i.e. a measurable random field Ũ such that PpŨpxq “ Upxqq “ 1 for all x P D ([11], Theorem
2.6, p. 61). One then implicitly works with Ũ . In this article, we will directly suppose that we
deal with measurable random fields instead of assuming any continuity regularity on the sample
paths of the said stochastic process. This is because pointwise continuity is not really relevant
when working with PDEs in a weak sense; actually, one of the main points of working with
weak formulations is to avoid strong (i.e. pointwise) formulations. Note however that ensuring
measurability outside of the above mentioned theorem, though possible, rapidly becomes tedious
(see e.g. [10], Theorem 2.3). A famous theorem from Kolmogorov ([8], Theorem 3.3 p. 73 and
Theorem 3.4 p. 74) provides sufficient conditions for almost sure continuity of the sample paths,
which in turn implies continuity in probability of the random field. This condition is phrased
in terms of a sufficient Hölder control of the expectation of the increments of the process.
Refinements in the case of Gaussian processes exist : see e.g. [4], chapter 1, corollary 1.7.

2.1.3 Second order random fields, Gaussian processes.. Note L2pPq the Hilbert space
of real valued random variables X such that ErX2s ă `8. A stochastic process pUpxqqxPD
is said to be second order if for all x P D, Upxq P L2pPq. One can then define its mean
and covariance functions by mpxq “ ErUpxqs and kpx, x1q “ ErpUpxq ´ mpxqqpUpx1q ´ mpx1qqs

respectively. One can then also define its standard deviation function

σ : x ÞÑ
a

kpx, xq (6)

A Gaussian process U over D is a random field over D such that for any px1, ..., xnq P Dn

and any pa1, ..., anq P Rn,
ř

i aiUpxiq is a Gaussian random variable; that is, the law of
pUpx1q, ..., UpxnqqT is a multivariate normal distribution. The law of a GP is characterized
by its mean and covariance functions ([27], Section 8). We write pUpxqqxPD „ GP pm, kq.
Given a GP U , we will sometimes use the space LpUq “ SpanpUpxq, x P Dq, i.e. the Hilbert
subspace of L2pPq induced by U . Since L2pPq-limits of Gaussian random variables drawn from
the same GP remain Gaussian ([27], Section 1.3), LpUq only encompasses Gaussian random
variables.

Whereas m can be any function, the covariance function k has to be symmetric and positive
definite: kpx, x1q “ kpx1, xq and

n
ÿ

i,j“1

aiajkpxi, xjq ě 0 @ px1, ..., xnq P Dn, @ pa1, ..., anq P Rn (7)

Symmetric positive definite functions verify the Cauchy-Schwarz inequality [39] :

@x, x1 P D, |kpx, x1q| ď
a

kpx, xq
a

kpx1, x1q (8)

Note that there is a one-to-one correspondence between positive definite kernels and the laws of
centered GPs ([11], Theorem 3.1). We provide below two examples of radial Matérn covariance
kernels ([39], pp. 84-85), which will be useful in Section 4. Set r “ ||x ´ x1|| the Euclidean
distance between x and x1, the following two functions are valid covariance kernels :

k1{2px, x1q “ exp

ˆ

´
r

l

˙

k3{2px, x1q “

ˆ

1 `
r

l

˙

exp

ˆ

´
r

l

˙

(9)
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These covariance kernels are widely used in machine learning, especially the kernel k3{2. The
sample paths of a GP with covariance kernel km{2 lie in CmpDq and not Cm`1pDq. They
are thus commonly encountered to model functions with finite smoothness. Notice that the
mean and covariance functions are functions in the classical sense : that is, they are defined
everywhere and not up to a set of Lebesgue measure 0. This will be important when discussing
admissible covariance kernels in Section 4.

2.2 Tools from functional analysis

We refer to [41] and [48] for further details on generalized functions and Radon measures. In
this whole subsection, D is an open set of Rd.

2.2.1 Locally integrable functions, test functions. The space C8
c pDq, which we will

rather denote DpDq, designates the space of compactly supported infinitely differentiable func-
tions supported on D, a.k.a. test functions. L1

locpDq denotes the space of measurable scalar
functions f defined on D that are locally integrable, i.e. such that

ş

K
|f | ă `8 for all compact

sets K Ă D. Two elements of L1
locpDq are identified when they are equal almost everywhere

(a.e.) in the sense of the Lebesgue measure over Rd. L1
locpDq is a very large space of functions

which contains the space of piecewise continuous functions, but also all the local Lebesgue
spaces Lp

locpDq, p ě 1. It is in fact the largest space of functions that can be alternatively
viewed as continuous linear forms over DpDq (see Section 2.2.4 below).

2.2.2 Generalized functions. Endow DpDq with its usual LF-space topology, defined for
example in [48], Chapter 13. We call generalized function any continuous linear form on DpDq,
i.e. any element of DpDq1, the topological dual of DpDq. We will rather denote it by D 1pDq

as in [48], Notation 21.1. The topology of DpDq is such that T P D 1pDq if and only if for all
compact set K Ă D, there exists CK ą 0 and a non negative integer nK such that

@φ P DpDq such that Supppφq Ă K, |T pφq| ď Cα

ÿ

|α|ďnK

||Bαφ||8 (10)

Above, we used the following notations. For a multi-index α “ pα1, ..., αdq P Nd, we use the
usual notations |α| “ α1 ` ...`αd and Bα :“ Bα1

x1
...Bαd

xd
where Bαi

xi
is the αth

i derivative w.r.t the

ith coordinate xi. Generalized functions are also called “distributions”, a terminology we will
only use when there is no risk of confusion with probability distributions. The duality bracket
will be denoted x, y : for all φ P DpDq and T P D 1pDq, we have xT, φy “ T pφq.

2.2.3 Generalized functions and differentiation. Any generalized function L can be in-
definitely differentiated ([41], Section 6.12, p. 158 or [48], pp. 248-250) with the following
definition

BαT : φ ÞÝÑ xT, p´1q|α|Bαφy (11)

The derivative BαT is then also a continuous linear form over DpDq, i.e. BαT P D 1pDq.

2.2.4 Regular generalized functions. Any function f P L1
locpDq can be injectively identi-

fied to a generalized function Tf ([48], p. 224 or [41], Section 6.11, p. 157) defined as follow

@φ P DpDq, xTf , φy :“

ż

D
fpxqφpxqdx (12)
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The map L1
locpDq Q f ÞÝÑ Tf is linear and injective; any generalized function L that is of the

form Tf for some f P1
loc pDq is said to be regular. Throughout this article, we will use the

abusive notation xTf , φy “ xf, φy, as if x, y were the L2 inner product. Note that equations (11)
and (12) combined provide a flexible definition of the derivatives of any function f P L1

locpDq

up to any order.

2.2.5 Radon measures. This subsection and the ones that follow are only necessary for
dealing with the wave equation in Section 4. In this paper, we call positive Radon measure
any positive measure over D that is Borel regular ([14], Definition 1.9) and that has finite
mass over any compact subset of D. A Radon measure is a linear combination of positive
Radon measures. In [47], Chapter 9, it is proved that the space of Radon measures over D is
isomorphic to the space of continuous linear forms over CcpDq, the space of compactly supported
continuous functions on D endowed with its usual LF-space topology described e.g. in [48].
The corresponding isomorphism is given by

µ ÞÝÑ Tµ :

#

CcpDq ÝÑ R
f ÞÝÑ

ş

D fpxqµpdxq
(13)

We have the following facts. piq Any signed measure that admits a density f w.r.t. the Lebesgue
measure such that f P L1

locpDq is a Radon measure ([48],p. 217). piiq Any Radon measure can
be injectively identified to a generalized function Tµ by replacing CcpDq by DpDq in equation
(13). In particular, Radon measures can be differentiated up to any order through equation
(11). piiiq Any Radon measure µ, can be uniquely written as µ “ µ` ´µ´ where µ` and µ´ are
positive Radon measures ([47], Chapter 9). We then define its total variation by |µ| :“ µ` `µ´.

Remark 2.1 (Literature guide on Radon measures). What is meant behind the terminology of
Radon measures varies between authors. [14] calls Radon measure what we call positive Radon
measure in this article. [47] proves that continuous linear forms over CcpDq are differences of
Radon measures in the sense of the Radon measures defined in [14], but [47] never uses the term
of Radon measures, positive of not. Likewise, [48] calls positive Radon measure any positive
linear form over CcpDq which, thanks to the proof from [47], reduces to Radon measures in the
sense of [14].

2.2.6 Finite order generalized functions. A generalized function L is said to be of finite
order if there exists a non negative integer k such that one can take nK “ k, independently of
K, in the definition of the continuity of L, i.e. equation (10). The order of L is then the smallest
of those integers k. The space of generalized functions of order k is isomorphic to Ck

c pDq1, the
space of continuous linear forms over Ck

c pDq, when Ck
c pDq is endowed with its usual LF-space

topology. The key property for us is that such generalized functions can be represented thanks
to Radon measures. If L is of order k, there exists a family of Radon measures tµpu|p|ďk over
D such that

T “
ÿ

|p|ďk

Bpµp (14)

where the equality in (14) holds in D 1pDq and Ck
c pDq

1
([48], p 259). Among the finite order

generalized functions are those that are compactly supported, i.e. those for which the measures
µp such that T “

ř

|p|ďk Bpµp all have compact support.
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2.2.7 Convolution with generalized functions. As above, we consider Ck
c pRdq endowed

with its usual LF-space topology. Let f P Ck
c pRdq and T P Ck

c pRdq1. Note τxf the function
y ÞÝÑ fpy ´xq and f̌ the function y ÞÝÑ fp´yq. Then ([48], p. 287, Section 27) one may define
the convolution between L and f by

T ˚ f : x ÞÝÑ xT, τ´xf̌y (15)

and T ˚ f is a function in the classical sense, i.e. defined pointwise. When L lies in L1
locpDq,

equation (15) reduces to the usual convolution of functions through the identification defined
in equation (12). Similarly if L is in fact a Radon measure µ :

pT ˚ fqpxq “

ż

Rd

fpx ´ yqµpdyq (16)

More general definitions of generalized function convolution are available ([48], Chapter 27) but
this one is sufficient for our use.

2.2.8 Tensor product of generalized functions. For two generalized functions T1 P D 1pD1q

and T2 P D 1pD2q, T1 bT2 P D 1pD1 ˆD2q denotes their tensor product([48], pp. 416-417), which
is uniquely determined by the following tensor property :

@φ1 P DpD1q,@φ2 P DpD2q, xT1 b T2, φ1 b φ2y “ xT1, φ1y ˆ xT2, φ2y (17)

T1 b T2 reduces to the tensor product of functions (resp. measures) when T1 and T2 are
functions (resp. measures) through the identification of equation (12) (resp. (13)).

3 Random fields under linear differential constraints

The results in this Section state that under suitable assumptions on the first two moments of
a given second order random field U “ pUpxqqxPD, sample path degeneracy properties w.r.t.
differential constraints can be read on the these two first moments, namely the mean func-
tion and the functions kx : y ÞÝÑ kpx, yq, where k is the covariance function of U . This is
remarkable because the space induced by the sample paths of U is a priori much larger than
the space spanned by the functions kx, x P D. Moreover, the functions kx are ”accessible”, i.e.
checking that these functions indeed verify the linear constraint can usually be done with direct
computations.

We begin by recalling a result from [23] in the case of pointwise defined derivatives. We
next state and prove a result similar to that of [23], where we interpret the derivatives in the
distributional sense.

3.1 The case of classical derivatives

We start by properly defining the notion of strong solutions of a PDE.

Definition 3.1 (Strong/classical solutions). Let L be a differential operator defined as in (1),
with continuous coefficients. We say that a function u is a classical or strong solution to the
PDE Lu “ 0 if u is n times differentiable and u verifies the PDE pointwise :

@x P D, T puqpxq “
ÿ

|α|ďn

aαpxqBαupxq “ 0 (18)
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Note that the space of n times differentiable functions does not have the nice topological
properties of CnpDq and in most cases met in practice, one rather requires that strong solutions
lie in CnpDq. It is however in the sense of the definition 3.1 that the theorem from [23] is best
understood. This theorem, which we remind in Proposition 3.2, is the one proved and used
in [23] to build a Gaussian process whose sample paths are all strong solutions to the Laplace
equation on a 2D circular domain.

We first introduce some notations. Let pUpxqqxPD be a centered Gaussian process with
covariance kernel k. Note FpD,Rq the space of real-valued pointwise-defined functions on D.
Denote Hk the reproducing kernel Hilbert space (RKHS) associated to k (see [5], Definition 1
p. 7 and Theorem 3, p. 19). Hk is a Hilbert space of pointwise-defined functions, such that
the pointwise evaluation maps lx : f ÞÑ fpxq are continuous functionals. Although belonging
to FpD,Rq does not seem very restrictive at first glance, this often clashes with the usual Lp

and Sobolev spaces encountered in PDE theory, which are sets of functions defined up to a set
of Lebesgue measure 0.

Proposition 3.2 (sample paths of GPs under linear constraints [23]). Let
`

Upxq
˘

xPD „

GP p0, kq be a centered GP. Note for all x P D the function kx : y ÞÝÑ kpx, yq. Let E be a
real vector space of functions defined on D that contains the sample paths of U almost surely
and T : E ÝÑ FpD,Rq be a linear operator. Suppose that for all x P D, T pUqpxq P LpUq.
Then there exists a unique linear operator T : Hk ÝÑ FpD,Rq such that for all x, x1 P D,

ErT pUqpxqUpx1qs “ T pkx1 qpxq

and @x P D,@hn
Hk

ÝÝÑ h, T phnqpxq ÝÑ T phqpxq. Moreover, the following statements are
equivalent :

(i) PpT pUq “ 0q “ 1

(ii) @x P D, T pkxq “ 0

(iii) T pHkq “ t0u

The proof of Proposition 3.2 relies heavily on the Loève isometry ([5], Theorem 35, p. 65)
between the two Hilbert spaces Hk and LpUq (see Section 2.1.3 for LpUq). This theorem can be
applied when L is a differential operator as discussed in [23]. However, in Proposition 3.2, the
differential operator L of order n has to be valued in the space of pointwise defined functions
FpD,Rq; in particular for u P E, the function Lpuq has to be defined pointwise in order to use
the Loève isometry. To summarize, in all generality the derivatives in L have to be understood
in a classical sense and E has to be contained in DnpDq, the space of n times differentiable
functions on D. Requiring that E Ă DnpDq is a very strong assumption w.r.t. the sample paths
of U ; furthermore, this is not compliant with the usual way of studying PDEs where derivatives
are understood in a weaker sense. We present in Proposition 3.4 an adaptation of Proposition
3.2 where we make use of weaker definitions of derivatives. We also relax the assumptions made
on U and its sample paths. In these propositions,

`

Upxq
˘

xPD is not supposed Gaussian and is
only required to be second order.

3.2 The case of distributional derivatives

3.2.1 Distributional solutions of PDEs. In this Section, we elaborate a bit more on the
notion of distributional solutions to a given PDE. Let L “

ř

|α|ďn aαpxqBα be a linear differential
operator, and suppose for the moment that its coefficients are smooth. We briefly recall the steps
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described in the introduction that lead to the definition of distributional solutions presented
in equation (4). Start from a strong solution u of class Cn of Lu “ 0, multiply this PDE by
a test function φ P DpDq, integrate over D and perform |α| integration by parts to transfer
all derivatives from u to φ. Since the support of φ is a compact subset of the open set D, the
boundary terms of each integration by parts vanish and we have that

@φ P DpDq,

ż

D
upxq

ÿ

|α|ďn

p´1q|α|Bαpaαφqpxqdx “ 0 (19)

Following equation (19) we introduce L˚, the formal adjoint of L, acting on DpDq, defined by
the following formula ([48], pp. 247-249)

T˚ : φ ÞÝÑ
ÿ

|α|ďn

p´1q|α|Bαpaαφq (20)

Note that for equation (19) to be well defined, the assumptions that u P L1
locpDq and aα P

C |α|pDq are sufficient. More precisely, these assumptions are enough to show that the map
Lpuq defined by duality

Lpuq :

#

DpDq ÝÑ R
φ ÞÝÑ

ş

D upxqL˚pφqpxqdx
(21)

defines a continuous linear form over DpDq, i.e. Lpuq P D 1pDq (see equations (10) and (27)
for a rigorous proof of this statement). By construction, L and L˚ verify the following duality
identity

@φ P DpDq, xT puq, φy “ xu, T˚pφqy (22)

As in Section 2.2.4, the assumption that u P L1
locpDq is in fact a continuity assumption over

the associated linear form Lpuq (a more general and theoretical analysis of such observations
can be found in [48], pp. 247-251). This finally leads to the following definition, following e.g.
[26] :

Definition 3.3 (Distributional solutions). A function u P L1
locpDq is said to be a solution to the

PDE Lpuq “ 0 in the sense of distributions if Lpuq “ 0 in D 1pDq, i.e. when Lpuq, is seen as en
element of D 1pDq through equation (21), is the null linear form over DpDq.

3.2.2 Random fields under distributional differential constraints. We can now state
the following proposition, based on the definition 3.3.

Proposition 3.4 (sample paths of random fields under linear differential constraints, distri-
butional derivatives). Let D Ă Rd be an open set and let T “

ř

aαpxqBα, |α| ď n, be a linear
differential operator of order n with coefficients aαpxq P C |α|pDq. Let U “

`

Upxq
˘

xPD be a mea-
surable second order stochastic process with mean function mpxq and covariance kernel kpx, x1q.
For all x P D, note kx : y ÞÝÑ kpx, yq. Suppose that its mean function m lies in L1

locpDq as well
as its standard deviation function σ (see equation (6)).
1) Then on a set of probability 1, the sample paths of U lie in L1

locpDq as well as the functions
kx for all x P D.
2) Suppose that T pmq “ 0 in the sense of distributions. Then the following statements are
equivalent :

(i) PpT pUq “ 0 in the sense of distributionsq “ 1

(ii) @x P D, T pkxq “ 0 in the sense of distributions.
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Explicitly, by piq we mean that there exists a set A P F with PpAq “ 1 such that for all
ω P A,

@φ P DpDq, xUω, T
˚φy “

ż

D
UωpxqT˚φpxqdx “ 0 (23)

The fact that the functions x ÞÝÑ Uωpxq and y ÞÝÑ kxpyq lie in L1
locpDq ensure the existence

of the integrals in equations (23) (see point 2 of the proof of Proposition 3.4) as well as the
continuity of the associated linear forms over DpDq, following the definition of equation (21).
The assumption that aα P C |α|pDq is not very strong, in the sense that it is the minimal
assumption to ensure that the adjoint L˚ is well-defined (equation (20)), and thus that the
definition 3.3 even makes sense. Likewise, requiring that σ P L1

locpDq is not very restrictive
(see Section 2.2.1). On the other hand, ensuring the measurability of the random process U
is more demanding in practice, because it is difficult to ensure this property outside of having
continuity in probability (see Section 2.1.2).

The following lemma will be crucial for the proof of Proposition 3.4 :

Lemma 3.5. DpDq is a separable topological space, i.e. there exists a countable subset F Ă

DpDq that is dense in DpDq for its LF-topology.

This result is difficult to track down in the literature, although it seems to be known in
parts of the functional analysis community : see [19], Corollaire (1).2, p. 78 for a reference in
French. It can also be found in the technical reference [21], p. 73, (3); but the proof presented
in this reference (more precisely, the last theorem on page 58, Section 6.5 in [22] on which
it depends) relies on the inconvenient axiom of choice. For self-containment, we thus provide
below a proof of this lemma based on the notions of Fréchet, LF and Montel spaces. For more
details on these spaces, we refer to [48], Chapters 10, 13 and 34.

Proof. DpDq is an LF-space as the inductive limit of the Fréchet spaces DKi
pDq :“ tφ P

C8pDq : Supppφq Ă Kiu, i P N, where K1 Ă K2 Ă ... are compact subsets of D such that
Ť

i Ki “ D ([48], pp. 131-133). As such, DpDq is separable iff DKipDq is separable for all i P N
[50], which we now show. The Fréchet topology of DKipDq is the one induced by the usual
Fréchet topology of C8pDq when DKi

pDq is seen as a subspace of C8pDq ([48], pp. 131-132).
As a Fréchet space, C8pDq is metrizable ([48], p. 85). But C8pDq is also a Montel space ([48],
Proposition 34.4, p. 357) : as a metrizable Montel space, it is automatically separable ([43], p.
195 or [9]). Thus DKi

pDq is also separable as a subset of the separable metric space C8pDq

([6], Proposition 3.25, p. 73).

We are now able to prove Proposition 3.4.

Proof. Suppose first that U is centered, i.e. m ” 0.
1) We begin by showing that the sample paths of U almost surely lie in L1

locpDq. Note first that
thanks to the Cauchy-Schwarz inequality, Er|Upxq|s ď σpxq. Now, let pKnqnPN be an increasing
sequence of compact subsets of D such that

Ť

nPN Kn “ D. Using Tonelli’s theorem, we have
that for any n P N,

E
“

ż

Kn

|Upxq|dx
‰

“

ż

Kn

Er|Upxq|sdx ď

ż

Kn

σpxqdx ă `8 (24)

since σ P L1
locpDq. Note that in order for the integrals above to be well defined, imposing

that U is a measurable stochastic process cannot be circumvented. Using the property that
“Er|X|s ă `8 ùñ |X| ă `8 almost surely”, this yields a set Bn Ă Ω of probability 1
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such that the random variable ω ÞÝÑ
ş

Kn
|Uωpxq|dx takes finite values over Bn (from Fubini’s

theorem again, the map ω ÞÝÑ
ş

Kn
|Uωpxq|dx is indeed measurable). Consider now the set

B “
Ş

nPN Bn which remains of probability 1. For all compact subset K Ă D, there exists an
integer nK such that K Ă KnK

and thus for all ω P B,

ż

K

|Uωpxq|dx ď

ż

KnK

|Uωpxq|dx ă `8 (25)

which shows that the sample paths of U lie in L1
locpDq almost surely.

Now, we check that for all x P D, kx P L1
locpDq : for any compact set K, since σ P L1

locpDq

and because of (8),

ż

K

|kxpyq|dy “

ż

K

|kpx, yq|dy ď σpxq

ż

K

σpyqdy ă 8

2) Let us check in advance that whatever f P L1
locpDq, the map T pfq : φ ÞÝÑ xf, T˚φy

is a continuous linear form over DpDq. Since aα P C |α|pDq, we can apply Leibniz’ rule on
T˚φ “

ř

|α|ďnp´1q|α|Bαpaαφq. This yields a family tfαu|α|ďn of continuous functions over D
such that

@φ P DpDq, @x P D, T˚φpxq “
ÿ

|α|ďn

fαpxqBαφpxq (26)

For all f P L1
locpDq, for all compact set K Ă D and for all φ P DpDq such that Supppφq Ă K,

(26) yields

|xf, T˚φy| ď

ż

D
|fpxq||T˚φpxq|dx

ď

ˆ
ż

K

|fpxq|dx ˆ max
|α|ďn

sup
xPK

|fαpxq|

˙

ÿ

|α|ďn

||Bαφ||8 ă `8 (27)

This proves that T pfq : φ ÞÝÑ xf, T˚φy is a continuous linear form over DpDq (see equation
(10)).

piq ùñ piiq : Suppose piq. Let φ P DpDq. There exists a set A Ă Ω such that PpAq “ 1
and such that for all ω P A,

ż

D
UωpxqT˚ϕpxqdx “ 0

Multiplying equation above with the random variable Upx1q, taking the expectancy and formally
permuting (for now) the integral and the expectancy, we obtain

0 “ E

«

Upx1q

ż

D
UpxqT˚φpxqdx

ff

“

ż

D
T˚φpxqErUpxqUpx1qsdx

“

ż

D
T˚φpxqkpx, x1qdx “ xkx1 , T˚φy

The integral-expectancy permutation is justified by writing down the expectancy as an integral
and using Fubini’s theorem, checking that the below quantity is finite. We use Tonelli’s theorem
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and the Cauchy-Schwarz inequality :

E

«

ż

D
|Upx1qUpxqT˚φpxq|dx

ff

“

ż

D
|T˚φpxq|Er|UpxqUpx1q|sdx

ď

ż

D
|T˚φpxq|ErUpxq2s1{2ErUpx1q2s1{2dx

ď σpx1q

ż

D
|T˚φpxq|σpxqdx ă `8

Indeed, since σ P L1
locpDq, setting f “ σ in (27) shows that the last integral is finite. Thus,

@x P D,@φ P DpDq, xkx, T
˚φy “ 0 which proves that piq ùñ piiq.

piiq ùñ piq : Suppose piiq. Let φ P DpDq, we have xkx1 , T˚φy “ 0. Multiplying this with

T˚φpx1q and integrating w.r.t. x1 yields

0 “

ż

D
T˚φpx1q

ż

D
T˚φpxqkpx, x1qdxdx1 “

ż

D

ż

D
T˚φpxqT˚φpx1qErUpxqUpx1qsdxdx1

Permuting formally the expectancy and the integrals (justified in equation (28)) yields

0 “

ż

D

ż

D
T˚φpxqT˚φpx1qErUpxqUpx1qsdxdx1

“ E

«˜

ż

D
T˚φpxqUpxqdx

¯2
ff

“ ErxU, T˚φy2s

and thus xU, T˚φy “ 0 a.s. : there existsAφ P F with PpAφq “ 1 such that @ω P Aφ, xUω, T
˚φy “

0. We justify the expectancy-integral permutation with the computation below
ż

D

ż

D
|T˚φpxqT˚φpx1q|Er|UpxqUpx1q|sdxdx1 (28)

ď

ż

D

ż

D
|T˚φpxqT˚φpx1q|σpxqσpx1qdxdx1

ď

˜

ż

D
|T˚φpxq|σpxqdx

¸2

ă `8

As previously, setting f “ σ in (27) shows that the integral above is finite.
This does not finish the proof as we need to find a set A with PpAq “ 1, independently

from φ, such that @ω P A, xUω, T
˚φy “ 0. For this we use the fact that DpDq is a separable

topological space, see Lemma 3.5. Let F Ă DpDq be a countable dense subset of DpDq, and let

A :“ B X
`

č

φPF

Aφ

˘

(29)

Then PpAq “ 1 since F is countable. Let ω P A. Since Uω P L1
locpDq, (27) shows that the map

Lω : φ ÞÝÑ xUω, T
˚φy is a continuous linear form on DpDq. In particular, Theorem 2.1.4 from

[26] states that Lω is in fact sequentially continuous. Let φ P DpDq and a sequence pφnq Ă F
such that φn Ñ φ in the sense of the LF topology of DpDq. Then Lωpφq “ limnLωpφnq “ 0
since @n,Lωpφnq “ 0. That is, we have proved that

@ω P A, @φ P DpDq, xUω, T˚φy “ Lωpφq “ 0
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Since PpAq “ 1, this shows that piiq ùñ piq.
When U is not centered, consider the centered stochastic process V defined by V pxq “

Upxq ´ mpxq for which the above proof can be applied. Since L is linear and m is sup-
posed to verify T pmq “ 0 in the sense of distributions, the probabilistic sets AU “ tT pUq “

0 in the sense of distributionsu and AV “ tT pV q “ 0 in the sense of distributionsu coincide
and thus, A Ă AU .Finally, U and V have the same covariance kernel kpx, x1q. Thus,

PpT pUq “ 0 in the sense of distributionsq “ 1

ðñ PpT pV q “ 0 in the sense of distributionsq “ 1 ðñ @x P D, T pkxq “ 0

which finishes the proof in the general case.

Remark 3.6. Distributional solutions are the weakest types of solutions for PDEs. In general,
additional regularity conditions have to be imposed to obtain physically realistic solutions, such
as Sobolev regularity or entropy conditions as for non linear hyperbolic PDEs [46]. However,
every step in the above proof remains valid when replacing φ P DpDq with φ P Cn

c pDq. Although
we have not clarified the usual topology of Cn

c pDq in this article, we state that this is enough
to show that the equalities stated in Proposition 3.4 also hold in Cn

c pDq1, the space of finite
order generalized functions of order n, rather than just in D 1pDq. Cn

c pDq1 is a smaller space
than D 1pDq, though less used in functional analysis than D 1pDq.

We partially recover Proposition 3.2 when the sample paths of U are n times differentiable
with locally integrable nth derivative and k P Cn,npD ˆ Dq. Indeed, in that case one can show
that if T “

ř

|α|ďn aαpxqBα, then we simply have T “ T in Proposition 3.2. Additionally,

T pUωq and T pkxq both lie in FpD,Rq XL1
locpDq. In that framework, Proposition 3.2 states that

@x P D, T pkxq “ 0 ðñ PpT pUq “ 0q “ 1 (30)

where the function equalities of the form T pfq “ 0 in (30) are valid everywhere on D. In
contrast, for any function g that lies in L1

locpDq, we have

g “ 0 in the sense of distributions ðñ g “ 0 a.e. (31)

Equation (31) is just another way of saying that the linear map f ÞÝÑ Tf given in (12) is
injective. Following equation (31), Proposition 3.4 states a slightly weaker result than (30),
namely that

@x P D, T pkxq “ 0 a.e. ðñ PpT pUq “ 0 a.e.q “ 1 (32)

If we actually have that the sample paths of U lie in CnpDq, nullity almost everywhere implies
nullity everywhere and we recover equation (30) from equation (32).

3.3 A heredity property for Gaussian process regression

3.3.1 Gaussian process regression in a nutshell. GPs can be used for function inter-
polation. Let u be a function defined on D for which we know a dataset of values B “

tupx1q, ..., upxnqu. Conditioning the law of a GP pUpxqqxPD „ GP pm, kq on the database B
yields a second GP Ũ with Ũpxq :“ pUpxq|Upxiq “ upxiq, i “ 1, ..., nq. The law of Ũ is known
: pŨpxqqxPD „ GP pm̃, k̃q. m̃ and k̃ are given by the so-called Kriging equations (33) and (34).
Let X “ px1, ..., xnqT , denote mpXq the column vector such that mpXqi “ mpxiq, kpX,Xq the
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square matrix such that kpX,Xqij “ kpxi, xjq and given x P D, kpX,xq the column vector such
that kpX,xqi “ kpxi, xq. Suppose that KpX,Xq is invertible, then [39]

"

m̃pxq = mpxq ` kpX,xqT kpX,Xq´1pupXq ´ mpXqq (33)

k̃px, x1q = kpx, x1q ´ kpX,xqT kpX,Xq´1kpX,x1q (34)

The Kriging standard deviation function is then given by

σ̃pxq “

b

k̃px, xq (35)

The so-called Kriging mean m̃ is then an approximation of u; in particular, it interpolates u
at the observation points : m̃pxiq “ upxiq for all i. Moreover, the Kriging covariance k̃ can be
used to further control the distance between u and m̃.

3.3.2 Conditioned Gaussian processes under linear differential constraints. We can
now state the following corollary, which draws the consequences of Proposition 3.4 when applied
to GPR.

Proposition 3.7 (Heredity of Proposition 3.4 to conditioned GPs). Let D and L be as defined
in Proposition 3.4. Let pUpxqqxPD „ GP pm, kq be a Gaussian process that verifies the hypotheses
of Proposition 3.4. Suppose also that

T pmq “ 0 and @x P D, T pkxq “ 0 both in the sense of distributions (36)

piq Then whatever the integer p, the vector u “ pu1, ..., upqT P Rp and the vector X “

px1, ..., xpqT P Dp such that kpX,Xq is invertible, the Kriging mean m̃pxq and the Kriging
standard deviation function σ̃ both lie in L1

locpDq, and we have

T pm̃q “ 0 and @x P D, T pk̃xq “ 0 both in the sense of distributions

where m̃ and k̃ are defined in equations (33) and (34).
piiq As such, the sample paths of the conditioned Gaussian process

`

Ũpxq
˘

xPD defined by Ũpxq “

pUpxq|Upxiq “ ui @i “ 1, ..., pq are almost surely solutions of the equation T pfq “ 0 in the sense
of distributions :

PpT pŨq “ 0 in the sense of distributionsq “ 1

Proof. Note first that for all x P D, k̃px, xq ď kpx, xq ([16], p. 117). Thus the function σ̃ :

x ÞÝÑ

b

k̃px, xq also lies in L1
locpDq. Point piq is then a direct consequence of the definition of

m̃ and k̃ in equations (33) and (34), and the linearity of L. Proposition 3.4 can then be applied
conjointly with piq, which yields point piiq since the mean and covariance functions of the GP
Ũ are m̃ and k̃ (see Section 3.3.1, equations (33) and (34)).

Proposition 3.7 shows that when U is a GP, the results of Proposition 3.4 are inherited on
the conditioned posterior process Ũ . One weak consequence of Proposition 3.7 is that if GPR
is performed with a kernel k that verifies point piiq of Proposition 3.4, then the predictions
provided by GPR are all solutions of the PDE T pm̃q “ 0.
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4 Gaussian Processes and the 3 Dimensional Wave Equa-
tion

The formalism we used in the previous section is necessary to tackle hyperbolic PDEs as in
some cases, their solutions only verify the PDE in a weaker sense, e.g. the distributional
sense ([13], Section 7.2). Hyperbolic PDEs are typically encountered when describing finite
speed propagation phenomena and their prototype is the wave equation (see equation (37));
this equation is central in a number of fields such as acoustics, electromagnetics and quantum
mechanics. In this section, we derive a GP model for the solutions of the homogeneous 3D
wave equation, with explicit covariance formulas in the form of convolutions.

We show on one example that the model we obtain below is capable of dealing with an initial
speed v0 that is piecewise continuous and an initial position u0 that has piecewise continuous
derivatives, when the discontinuity surfaces are ”nice enough”. This is an advantage w.r.t. the
previous models, where the sample paths actually had to be sufficiently differentiable to obtain
sample path degeneracy w.r.t. the PDE.

4.1 General Solution to the 3 Dimensional Wave Equation

Denote the 3D Laplace operator ∆ “ B2
xx ` B2

yy ` B2
zz and the d’Alembert operator l “

1{c2B2
tt ´ ∆ with constant wave speed c ą 0. We focus on the general initial value problem in

the free space R3

$

’

&

’

%

lw “ 0 @px, tq P R3 ˆ R˚
`

wpx, 0q “ u0pxq @x P R3

pBtwqpx, 0q “ v0pxq @x P R3

(37)

Throughout this article, we will refer to u0 as the initial position and v0 as the initial speed.
The problem (37) is a Cauchy problem with initial conditions (IC) u0 and v0. It admits a
unique solution which can be extended to all times t P R, and is represented as follow ([13],
Section 4.3.1.b, example 4)

wpx, tq “ pFt ˚ v0qpxq ` p 9Ft ˚ u0qpxq @px, tq P R3 ˆ R (38)

where Ft and 9Ft are known generalized functions. Notably, Ft corresponds to the Green’s func-
tion of the wave equation [12]. In dimension 3, Ft and 9Ft are compactly supported generalized
functions of order 0 and 1 respectively. They are given by the formulas

Ft “
σc|t|

4πc2t
and 9Ft “ BtFt (39)

where σR is the surface measure of the sphere of center 0 and radius R; 9Ft “ BtFt means that
for all f P C1

c pR3q, x 9Ft, fy “ BtxFt, fy. We make these expressions more explicit in equation
(40), using spherical coordinates.

Suppose that u0 P C1pR3q and v0 P C0pR3q, then w as defined in (38) is a pointwise defined
function (Section 2.2.7) and in that case an explicit formula for such convolutions is reminded
in equation (15) (yet one may actually make sense out of (38) when u0 and v0 are only required
to be any generalized functions, see [48], Chapter 27).

Equation (38) can be written down using means over spheres. Denote pr, θ, ϕq the spherical
coordinates, Sp0, 1q the unit sphere of R3 and γ “ psin θ cosϕ, sin θ sinϕ, cos θqT P Sp0, 1q the
corresponding parametrization of Sp0, 1q (||γ|| “ 1). We write dΩ “ sin θdθdϕ the surface
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differential element of Sp0, 1q. Combining formulas (38) and (39) leads to the Kirschoff formula
([13], p. 72)

wpx, tq “

ż

Sp0,1q

tv0px ´ c|t|γq ` u0px ´ c|t|γq ´ c|t|γ ¨ ∇u0px ´ c|t|γq
dΩ

4π
(40)

4.2 Gaussian Process Modelling of the Solution

Suppose now that u0 and v0 are unknown, and only pointwise values of w are observed. Thus,
we model u0 and v0 as random functions and put Gaussian process priors over u0 and v0. More
precisely, we make the following assumptions.

(A1) Suppose that the initial conditions u0 and v0 of Problem (37) are sample paths drawn
from two independent Gaussian processes U0 „ GP p0, kuq and V 0 „ GP p0, kvq : Dω P

Ω,@x P R3, u0pxq “ U0
ωpxq and v0pxq “ V 0

ω pxq.

(A2) Suppose that all sample paths of U0 lie in C1pR3q and that those of V 0 lie in C0pR3q

almost surely. A sufficient condition for this is given in [1], Theorem 1.4.2. This theorem
states that under mild technical assumptions, the paths of pUpxqqxPD „ GP p0, kq lie in
Cl a.s. as soon as k P C2lpD ˆ Dq, which we assume from now on. This is e.g. fulfilled
by the Matérn kernels from equation (9).

We now analyse the consequence of these two assumptions. First, they imply that by solving
(37), one obtains a time-space stochastic process W px, tq defined by

W px, tq : Ω Q ω ÞÝÑ pFt ˚ V 0
ω qpxq ` p 9Ft ˚ U0

ωqpxq (41)

Here again, V 0
ω denotes the sample path of V 0 at ω P Ω and likewise for U0

ω. In particular,
thanks to assumption pA2q, (41) defines a random variable for all px, tq. Note the space-time
variable z “ px, tq and note the random variables

V pzq : ω ÞÝÑ pFt ˚ V 0
ω qpxq and Upzq : ω ÞÝÑ p 9Ft ˚ U0

ωqpxq (42)

that is, W pzq “ Upzq `V pzq. We show in the next proposition that the random fields U, V and
W are GPs as well. In particular we describe their covariance kernels.

Proposition 4.1. Define the two functions

kwave
v pz, z1q “ rpFt b Ft1 q ˚ kvspx, x1q (43)

kwave
u pz, z1q “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q (44)

(i) Then U “ pUpzqqzPR3ˆR and V “ pV pzqqzPR3ˆR as defined in (42) are two independent
centered GPs with covariance kernels kwave

u and kwave
v respectively. Consequently, pW pzqqzPR3ˆR

is a centered GP whose covariance kernel is given by

kW pz, z1q “ kwave
v pz, z1q ` kwave

u pz, z1q (45)

(ii) Conversely, any centered second order random field with covariance kernel kW has its
sample paths solution of the 3 dimensional wave equation (37), in the sense of distributions,
almost surely.
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The formulas (43) and (44) can easily be derived formally, by running computations as
if Ft and 9Ft were regular generalized functions (Section 2.2.4). This is somewhat justified
because any generalized function can be approximated with a sequence of smooth compactly
supported functions, by a ”cutting and regularizing” argument ([48], Theorem 28.2, Chapter
28). However, checking that this procedure passes to the limit everywhere is tedious. Here, we
rather make use of representations of Ft and 9Ft thanks to Radon measures (Sections 2.2.5 and
2.2.6) and use Fubini’s theorem. Also, see section 2.2.8 for the definition of 9Ft b 9Ft1 .

Proof. piq : first we prove that U and V are GPs. Since U0 and V 0 are GPs, LpU0q and
LpV 0q are only comprised of Gaussian random variables (see Section 2.1.3). We then rely on
the Kirschoff formula (40), writing the integrals as limits of Riemann sums. We start with V ,
that is, we focus on the first term in Kirschoff’s formula (40). To show that V is a Gaussian
process, we only need to show that for any z, V pzq P LpV 0q as this will ensure the Gaussian
process property. Since the sample paths of V 0 are continuous almost surely, there exists a
sequence of numbers anα and points ynk such that for almost any ω P Ω,

V pzqpωq “ pFt ˚ V 0
ω qpxq “ t

ż

Sp0,1q

V 0px ´ c|t|γqpωq
dΩ

4π

“
t

4π

ż 2π

0

ż π

0

V 0px ´ c|t|γpθ, ϕqqpωq sinpθqdθdϕ “ lim
nÑ8

n
ÿ

α“1

anαV
0px ´ ynk qpωq

This shows that V pzq is an a.s. limit of a sequence of centered Gaussian random variables
pYnq Ă LpV 0q; a.s. convergence implies convergence in law. From [32], Proposition 1.1, V pzq is
normally distributed and the convergence also takes place in L2pPq. Therefore, V pzq P LpV 0q

and V is a Gaussian process. From the same proposition, V pzq is centered because the variables
Yn are centered. Note that since Ft is supported on the compact set Sp0, c|t|q, we only required
the sample paths of V 0 to be continuous rather than continuous and compactly supported.

We apply the same reasoning to U , by applying the above steps to the second part of
Kirschoff’s formula (40). One’s ability to write out the integrals as a limit of Riemann sums is
ensured when the sample paths of U0 lie in C1pR3q.

Finally, since U0 and V 0 are independent, LpU0q and LpV 0q are orthogonal in L2pPq.
Since LpUq Ă LpU0q and likewise for V , U and V are independent Gaussian processes (for
Gaussian random variables, independence is equivalent to null covariance). Finally, the sum
of independent Gaussian random variables is a Gaussian random variable. Therefore LpW q Ă

LpUq ` LpV q is only comprised of Gaussian random variables and W is a Gaussian process.
Now, we prove that

ErUpzqUpz1qs “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q (46)

The main argument is Fubini’s theorem for Radon measures. For this we use the fact that 9Ft

is a distribution of order 1 and can be identified to the a sum of derivatives of measures (see
equation (14)) : for all t P R, there exists tµt

αuαPN3,|α|ď1 a family of Radon measures such that

9Ft “
ÿ

|α|ď1

Bαµt
α in the sense of distributions (47)

Moreover, 9Ft is compactly supported, therefore all the measures µt
α are also compactly sup-
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ported. First, we write Uωpzq in integral form :

Uωpzq “
`

9Ft ˚ U0
ω

˘

pxq “ x 9Ft, τ´x
qU0
ωy “

A

ÿ

|α|ď1

Bαµt
α, τ´x

qU0
ω

E

(48)

“
ÿ

|α|ď1

xµt
α, p´1q|α|Bατ´x

qU0
ωy “

ÿ

|α|ď1

ż

R3

p´1q|α|BαU0
ωpx ´ yqµt

αpdyq (49)

Before applying Fubini’s theorem, we need to check an integrability condition. Let α P N3

such that |α| ď 1. Recall that |µα
t | is defined in Section 2.2.5; denote also σBαU0pxq “

a

VarpBαU0pxqq. Since the sample paths of U0 lie in C1pDq a.s, those of BαU0 lie in C0pDq and
thus the function x ÞÝÑ VarpBαU0pxqq also lies in C0pDq ([4], chapter 1, Section 4.3). Therefore
the function x ÞÝÑ σBαU0pxq also lies in C0pDq. We now check that the integral I below is
finite. We use Tonelli’s theorem and the Cauchy-Schwarz inequality:

I :“

ż

Ω

ÿ

|α|ď1

ż

R3

ˇ

ˇ

ˇ
BαU0

ωpx ´ yq

ˇ

ˇ

ˇ
|µt

α|pdyq
ÿ

|α1|ď1

ż

R3

ˇ

ˇ

ˇ
Bα1

U0
ωpx1 ´ y1q

ˇ

ˇ

ˇ
|µt1

α1 |pdy1qPpdωq

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

ż

Ω

ˇ

ˇ

ˇ
BαU0

ωpx ´ yqBα1

U0
ωpx1 ´ y1q

ˇ

ˇ

ˇ
Ppdωq|µt

α|pdyq|µt1

α1 |pdy1q

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

E
“

|BαU0px ´ yqBα1

U0px1 ´ y1q|
‰

|µt
α|pdyq|µt1

α1 |pdy1q

ď
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

ˆ

E
“

BαU0px ´ yq2
‰

E
“

Bα1

U0px1 ´ y1q2
‰

˙1{2

|µt
α|pdyq|µt1

α1 |pdy1q

ď

˜

ÿ

|α|ď1

ż

R3

ˆ

E
“

BαU0px ´ yq2
‰

˙1{2

|µt
α|pdyq

¸

ˆ

˜

ÿ

|α|ď1

ż

R3

ˆ

E
“

BαU0px ´ yq2
‰

˙1{2

|µt1

α|pdyq

¸

ď

´

ÿ

|α|ď1

p|µt
α| ˚ σBαU0qpxq

¯

ˆ

´

ÿ

|α|ď1

p|µt1

α| ˚ σBαU0qpx1q

¯

ă `8

For all multi-index α, the scalar p|µt
α| ˚σBαU0qpxq is finite because x ÞÝÑ σBαU0pxq is continuous

and |µt
α| is compactly supported. Note also that from hypothesis pA2q, the GP U0 is mean

square differentiable up to order 1, which implies ([40], Section III.1.4) that we have, for all
multi-indexes α, α1 such that |α|, |α1| ď 1, x and x1 :

E
“

BαU0pxqBα1

U0px1q
‰

“ Bα
1 Bα1

2 kupx, x1q (50)

where B1 (resp. B2) denotes derivatives w.r.t. the first (resp. second) argument of ku. We may
thus permute integrals and differential operators in E

“

UpzqUpz1q
‰

:

E
“

UpzqUpz1q
‰

“ E

«

ÿ

|α|ď1

ż

R3

p´1q|α|BαU0px ´ yqµt
αpdyqq

ÿ

|α1|ď1

ż

R3

p´1q|α1
|Bα1

U0px ´ yqµt1

α1 pdy1q

ff

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

p´1q|α|p´1q|α1
|Bα

1 Bα1

2 E
“

U0px ´ yqU0px1 ´ y1q
‰

µt
αpdyqµt1

α1 pdy1q

“
ÿ

|α|,|α1|ď1

ż

R3

ż

R3

p´1q|α|p´1q|α1
|Bα

1 Bα1

2 kupx ´ y, x1 ´ y1qµt
αpdyqµt1

α1 pdy1q

“

„

´

ÿ

|α|ď1

Bαµt
α b

ÿ

|α1|ď1

Bα1

µt1

α1

¯

˚ ku

ȷ

px, x1q “ rp 9Ft b 9Ft1 q ˚ kuspx, x1q
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which proves (46).
One proves that E

“

V pzqV pz1q
‰

“ rpFtbFt1 q˚kvspx, x1q the exact same way, which is actually
simpler as Ft is directly a measure. To conclude,

kW pz, z1q “ CovpW pzq,W pz1qq

“ ErpW pzqW pz1qs “ E
”

`

Upzq ` V pzq
˘`

Upz1q ` V pz1q
˘

ı

“ E
”

UpzqUpz1q

ı

` E
”

UpzqV pz1q

ı

` E
”

V pzqUpz1q

ı

` E
”

V pzqV pz1q

ı

“ rp 9Ft b 9Ft1 q ˚ kuspx, x1q ` rpFt b Ft1 q ˚ kvspx, x1q (51)

The cross terms are null because Upzq and V pz1q are independent as well as Upz1q and V pzq.
piiq : with expression (45), one checks that for any fixed z1, the function z ÞÝÑ kW pz, z1q is

of the form (38) and thus verifies lkx1 “ 0 in the sense of distributions. piiq is then a direct
consequence of Proposition 3.4.

Remark 4.2. If U and V are not independent, then the two terms rp 9Ft b Ft1 q ˚ kuvspx, x1q and
rpFtb 9Ft1 q˚kvuspx, x1q must be added to equation (45), where kuvpx, x1q denotes the cross covari-
ance between U and V : kuvpx, x1q “ CovpUpxq, V px1qq and kvupx, x1q “ CovpV pxq, Upx1qq “

kuvpx1, xq.

More explicitly, we have the following Kirschoff-like integral formulas for kwave
v and kwave

u :

rpFt b Ft1 q ˚ kvspx, x1q “ tt1

ż

Sp0,1qˆSp0,1q

kvpx ´ c|t|γ, x1 ´ c|t1|γ1q
dΩdΩ1

p4πq2
(52)

rp 9Ft b 9Ft1 q ˚ kuspx, x1q “

ż

Sp0,1qˆSp0,1q

´

kupx ´ c|t|γ, x1 ´ c|t1|γ1q

´ c|t|∇1kupx ´ c|t|γ, x1 ´ c|t1|γ1q ¨ γ

´ c|t1|∇2kupx ´ c|t|γ, x1 ´ c|t1|γ1q ¨ γ1

` c2tt1γT∇1∇2kupx ´ c|t|γ, x1 ´ c|t1|γ1qγ1
¯dΩdΩ1

p4πq2
(53)

Above, ∇1kupx, x1q is the gradient vector of ku w.r.t. x, ∇2kupx, x1q is the gradient vector of
ku w.r.t. x1 and ∇1∇2kupx, x1q is the matrix whose entry pi, jq is given by

∇1∇2kupx, x1qij “ Bx1
i
Bx2

j
kupx, x1q (54)

(Bx1
i
is the derivative w.r.t. the ith coordinate of x, Bx2

j
is the derivative w.r.t. the jth coordinate

of x1).

4.2.1 Extending the kernels kwave
u and kwave

v to initial conditions u0 and v0 with
piecewise regularity. The formulas (52) and (53) are valid in a more general context than
that of assumptions (A1) and (A2). We provide below examples where these formulas yield
valid covariance kernels (in particular, functions defined for all values of px, tq and px1, t1q;
see the end of Section 2.1.3) corresponding to initial conditions with some forms of piecewise
discontinuities. Assume, for example, that the initial speed v0 is compactly supported on a ball
Bpx0, Rq centered on some point x0 with radius R. This is a natural model when v0 is assumed
to be a localized source. For the process V 0, this translates as V 0pxq “ 0 a.s. if x is outside the
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ball Bpx0, Rq. One can thus truncate the kernel of V 0 accordingly, e.g. choosing the following
function for kv (see Section 2.1.3 for k1{2)

kvpx, x1q “ k1{2px, x1q1r0,Rsp||x ´ x0||q1r0,Rsp||x1 ´ x0||q (55)

Above, ||x|| denotes the Euclidean norm of x. Such a kernel indeed verifies kvpx, xq “ VarpV 0qpxqq “

0 if ||x ´ x0|| ą R and the GP corresponding to kv is V 0pxq “ V1{2pxq1r0,Rsp||x ´ x0||q, where
V1{2 is a continuous modification of a GP with covariance function k1{2. Note that the sample
paths of V 0 are piecewise continuous and that V as defined in (42) is well-defined and mea-
surable. The integrals in (52) still make sense and point piiq from Proposition is still valid :
the sample paths of the process V whose covariance function is kwave

v (or any other measurable
centered second order random field with this covariance kernel) remains a solution of the wave
equation in the distributional sense. One can perform the same kind of discussions on kwave

u :
for example, equation (53) shows that when ku P C1,1pR3 ˆ R3qzC2,2pR3 ˆ R3q, kwave

u is only
expected to lie in C1,1pR3 ˆ R3q; the sample paths of the GP with covariance kernel kwave

u will
be at most of class C1 and thus cannot be strong solutions of equation (37). This is the case
when ku is the commonly used k3{2 Matérn covariance kernel.

More generally, one can incorporate a finite number of discontinuities on kv and on the
derivatives of ku so that they remain piecewise continuous : the integrals above will remain well
defined and the sample paths of the corresponding GPs will remain distributional solutions to
the wave equation, even though they will not be sufficiently differentiable to be strong solutions.

5 Conclusion and perspectives

In Section 3, we have presented a new result that provides a simple characterization of the
measurable second order random fields U whose sample paths verify homogeneous linear differ-
ential constraints within the framework of generalized functions. This characterization is valid
for any linear differential operator L, provided that its coefficients fulfil minimal smoothness
requirements, and no stationarity assumptions over U are required. Motivated by acoustical
oceanography considerations, we described in Section 4 a Gaussian process model of the wave
equation. This PDE served as an application case for Proposition 3.4, and the GP model was
derived by putting a GP prior on the wave equation’s initial conditions. In Proposition 4.1,
we presented covariance formulas that are tailored to the wave equation and take the form
of convolutions; these expressions are interesting in themselves and call for physics-informed
GPR applications for this equation. In particular, we showed that these formulas can model
piecewise continuously differentiable solutions for the wave equation.

Proposition 3.4 constitutes a first step towards understanding PDE constrained random
fields in an weakened sense; different functional analysis frameworks can now be considered,
obvious extensions being the weak and/or variational formulations of equation (1). These
formulations are obtained by transferring only a part of the derivatives of the PDE to the
test function and are for instance the canonical way of studying elliptic PDEs ([13], Section
6.1.2). The natural spaces arising from these formulations are Sobolev spaces rather than
D 1pDq. An attached question, as first studied in [44], is that of the Sobolev regularity of a
given second order random field; a current research topic is whether or not one may relax the
continuity hypotheses required in [44]. Finally, the matter of using random fields for modelling
and approximating solutions of nonlinear PDEs is a natural direction for future research.
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