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Appendix A: Effect of the amplitude on the fragmentation

Here, we investigate the role of the amplitude of fragmentation on influencing the fastest

phenotype leading the forefront. Now, the spatial fragmentation in environmental con-

ditions impacting the consumer growth rate R and its mobility D is slightly modified

introducing the variable a ∈ [0− 1], which scales up the amplitude of the spatial frag-

mentation. Thus, simulation scenarios are redefined as follows:

- Scenario H: spatially homogeneous coefficients. In this case,

R(x, y) = Rh(y) = R0 + Rg(y) and D(x, y) = Dh(y) = D0 + Dg(y).

- Scenario Rhet: fragmented growth and homogeneous dispersal. In this case,

R(x, y) = R0 + Rg(y) + a Rs(x/L) and D(x, y) = Dh(y) = D0 + Dg(y).
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- Scenario Dhet: homogeneous growth and fragmented dispersal. In this case,

R(x, y) = Rh(y) = R0 + Rg(y) and D(x, y) = D0 + Dg(y) + a Ds(x/L).

We numerically simulate the model of Equation (1) with the growth rate R(x, y) and

dispersal D(x, y) functions to assess how the fastest phenotype leading the forefront is

affected by the shape of the environmental fragmentation (period L and amplitude a)

and the trade-off strength (distance among the optimum d). Results are presented in

Figure A1 for the different scenarios.

In the scenario Rhet (Figure A1 panels A and B), for L = 2, the fragmentation ampli-

tude a does not produce any effect on the dynamics: when d < dcr, the R− D trade-off

is always in favor of the generalist strategy y∗ = 0; when d > dcr the fastest phenotype

corresponds to y∗ = OR (Figure A1, panel A). Instead, for L = 10, when d > dcr, the

fastest phenotype could be either y∗ = OR or y∗ = OD (Figure A1, panel B). Then, the

behavior depends on the values of the amplitude of fragmentation (a): low values favor

a strategy where y∗ = OR while high values favor a strategy where y∗ = OD.

In the scenario Dhet (Figure A1, panels C and D), for d < dcr, the fastest phenotype is

always y∗ = 0. For d > dcr, as before, the fastest phenotype could be either y∗ = OR or

y∗ = OD depending on the value of a.
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Figure A1: Effect of the amplitude of heterogeneity a without mutation (µ = 0). Repre-

sentation of the fastest phenotype leading the forefront (y∗ → OR, blue shades; y∗ → OD,

red shades; y∗ → 0 white) as a function of the amplitude of fragmentation (a = [0.1− 1])

and the trade-off strength (distance among the optimum values, d = [0.5− 5]) without

mutation (µ = 0). We report scenario Rhet (panel A and B) and Dhet (panel C and D) for

L = 2 (panel A and C) and L = 10 (panel B and D). These results were obtained through

a numerical simulation of Equation (1).
{fig:a-d}
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Figure A2: Effect of the amplitude of heterogeneity a without mutation (µ > 0). Repre-

sentation of the fastest phenotype leading the forefront (y∗ → OR, blue shades; y∗ → OD,

red shades; y∗ → 0 white) as a function of the amplitude of fragmentation (a = [0.1− 1])

and the trade-off strength (distance among the optimum values, d = [0.5− 5]) with mu-

tation (µ = 0.1). We report scenario Rhet (panel A and B) and Dhet (panel C and D) for

L = 2 (panel A and C) and L = 10 (panel B and D). These results were obtained through

a numerical simulation of Equation (1).
{fig:a-d_mu}
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Appendix B: Spreading speed

Scenario H: Homogeneous case

In the absence of mutation (µ = 0), it is known that the spreading speed of the solution

of (6) in the Homogeneous case (i.e. R = Rh(y) and D = Dh(y)) associated with a

phenotype y is v(y) = 2
√

Rh(y) Dh(y) (Kolmogorov et al., 1937). Depending on d and σ

(see Equations (2)-(3)), there may be only one fastest phenotype y∗ in 0 or two optima at

±d/2.

Note that Dh(y) = Rh(−y), thus:

(Rh(y) Dh(y))′ = R′h(y)Rh(−y)− Rh(y)R′h(−y).

For y = 0, this quantity is equal to 0. Computing the second derivative, i.e.,

(Rh Dh)
′′(y) = R′′h (y)Rh(−y)− 2 R′h(y)R′h(−y) + R′′h (−y)Rh(y),

at y = 0, yields (Rh Dh)
′′(0) = 2(R′′h (0)Rh(0)− R′h(0)

2). Thus, we observe that:


(Rh Dh)

′′(0) > 0, if d > 2σ

√
1 + 2 W

(
1

2 R0
e−1/2

)
,

(Rh Dh)
′′(0) < 0, if d < 2σ

√
1 + 2 W

(
1

2 R0
e−1/2

)
,

(B1)

with W the principal branch of the Lambert function. Thus, there exists a threshold

on the optimum distance given by dcr = 2σ

√
1 + 2 W

(
1

2 R0
e−1/2

)
. When d < dcr, 0 is

a (local) maximum of the speed, while if d > dcr, we conclude that the speed has two

maxima, which are symmetric with respect to 0. As (Rh Dh)
′(d/2) < 0, these maxima

are reached in the region (−d/2, d/2).
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Scenario Rhet: Fragmented R, homogeneous D

In the local Equation (6), when the coefficient R(x, y) is spatially fragmented and L−

periodic, we adopt the formula given for the spreading speed in Berestycki and Hamel

(2005). To state this formula, we first have to define a differential operator Lλ, acting on

functions φ(x, y) which are L−periodic in x and satisfy no-flux boundary conditions at

the boundaries y = ymin, ymax. For any λ > 0, this operator is defined by:

Lλ(φ) := D(y) ∂xxφ + µ ∂yyφ + 2 λ D(y) ∂xφ + [λ2D(y) + R(x, y)]φ. (B2)

The spreading speed can then be computed by the Gärtner-Freidlin formula:

V = min
λ>0

k(λ)
λ

, (B3)

with k(λ) the principal eigenvalue (the unique eigenvalue associated with a positive

eigenfunction) of Lλ.

When µ = 0, more tractable theoretical formulas can be obtained to determine the

spreading speed v(y) associated with a given phenotype y at the limit of rapidly varying

and slowly varying environments (i.e. L→ 0 and L→ ∞, respectively).

1. Rapidly varying environment L→ 0

We refer to Smaily et al. (2009) work, where the spreading speed v0(y) of each

phenotype is derived analytically:

v0(y) = 2
√

Dh(y) Rx(y), (B4)

with Rx(y) the mean value of the growth rate, averaged over space:

Rx(y) = R0 + Rg(y) +
∫ 1

0
Rs(x) dx = Rh(y),
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as Rs(x) has mean value 0. Finally, the speed is the same as in the homogeneous

case (that is, with Rs ≡ 0):

v0(y) = 2
√

Rh(y) Dh(y).

2. Slowly varying environment L→ +∞

An explicit formula for the limit spreading speed v∞(y) of each phenotype as L→

+∞ can be derived analytically using the formulation of Hamel et al. (2010). It is

given by the expression:

v∞(y) = 4
√

Dh(y)×
(R+(y))2 + (R−(y))2 + (R+(y) + R−(y))

√
4(y)

(R+(y) + R−(y) + 2
√
4(y))

3
2

with R+(y) = Rh(y)+ R0, R−(y) = Rh(y)− R0 and4(y) = (R+(y))2 + (R−(y))2−

R+(y) R−(y).

Scenario Dhet: Homogeneous R, fragmented D

The Fokker-Planck diffusion term in the local Equation (6), can be rewritten as:

∂xx(D(x, y) c(t, x, y)) = ∂x(D(x, y) ∂xc(t, x, y)) + ∂x(c(t, x, y) ∂xD(x, y)). (B5)

The term ∂x(D(x, y) ∂xc(t, x, y)) corresponds to Fickian diffusion operator. Though both

types of diffusion terms are found in the ecological literature, Fokker-Planck diffusion

∂xx(D(x, y) c(t, x, y)) naturally emerges from Brownian motion with space-dependent

mobility, and seems better adapted to describe individual movements (see Roques, 2013;

Turchin, 1998), whereas Fickian diffusion emerges from flux considerations and seems

more adapted to describe heat conduction in fragmented media. The main difference

between these two operators is that Fickian diffusion tends to homogenize the density
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c(t, x, y) (with respect to the diffusion variable x). The additional term

∂x(c(t, x, y) ∂xD(x, y))

in (B5) corresponds to a spatially-periodic transport term which is oriented towards the

lower values of D. As the standard formula for the spreading speed with fragmented

diffusion in (Berestycki and Hamel, 2005) and the formulas in the limiting cases (Hamel

et al., 2011; Smaily et al., 2009) are only available for Fickian diffusion operators, we used

these formulas in Table 1 (scenario Dhet), thereby neglecting effect of the transport term

∂x(c(t, x, y) ∂xD(x, y)) on the spreading speeds v(y). The corresponding equation, with

mutation rate µ = 0 is:

∂tc(t, x, y) = ∂x(D(x, y) ∂xc(t, x, y)) + c(t, x, y) (R(x, y)− γ c(t, x, y)) . (B6)

1. Rapidly varying environment L→ 0

The spreading speed v0(y) of each phenotype can be derived from Smaily et al.

(2009):

v0(y) = 2
√

Rh(y) 〈D1〉H(y),

with 〈D1〉H(y) =
(∫ 1

0
1

D1(x,y) dx
)−1

the harmonic mean of x 7→ D1(x, y) = D0 +

Dg(y) + Ds(x).

2. Slowly varying environment L→ +∞

In this case, we use the results in Hamel et al. (2011), which show that:

v∞(y) = 2
√

Rh(y) 〈
√

D1〉H(y),

with 〈
√

D1〉H(y) =

(∫ 1

0

dx√
D1(x, y)

)−1

the harmonic mean of x 7→
√

D1(x, y) =√
D0 + Dg(y) + Ds(x).
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Appendix C: Long simulation for checking phenotype

composition behind the front

Here, we check the phenotype selection strategy behind the front to confirm the selection

of R-strategy under the scenario Dhet for a slowly varying environment. We simulated

the scenario Dhet without mutation (µ = 0) for a longer time (we took twice as long as

the time used in the simulations in the main text, T = 120) in a bigger domain (we used

double the space compared to the spatial domain used in the simulations in the main

text, x ∈ [0, 500]). The results presented in figure C1 is close to the ones presented in the

main text: on the forefront, the selected strategy is the dispersal one, but at the very back

of the front phenotypes select R-strategies as y∗ < 0.
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Figure C1: Population density under the scenario Dhet in a rapidly varying environ-

ment in a bigger spatial space and for longer time without mutation. We report

scenario Dhet for L = 2 considering d = 2 in panel A and d = 4 in panel B at time

Tsim = 60 in a spatial domain equal to x ∈ [0, 500] for µ = 0. White dashed lines high-

light the corresponding optimum trait values (i.e, OD = d/2 and OR = −d/2). These

results were obtained through a numerical simulation of Equation (1).
{fig:long}
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