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Abstract

Individuals who invest more in the development of their dispersal-related traits often2

reduce their investment in reproduction. Thus, there are two possible eco-evolutionary

strategies: grow faster or disperse faster (R − D arbitrage). Here we explore, through4

a reaction-diffusion model, how spatial heterogeneity can shape the R− D trade-off by

studying the spreading dynamics of a consumer species exploiting a resource in a spa-6

tially fragmented environment. Based on numerical simulations and analytical solutions

derived from simpler models, we show that the classical mathematical symmetry be-8

tween the effects of growth and dispersal on the spatial spreading speed is broken in the

presence of competition between phenotypes. At the back of the forefront, the dynamics10

is almost always driven by the R specialists. On the forefront, R-strategies are favored

in spatially homogeneous environments, but the introduction of heterogeneity leads to a12

shift towards D-strategies. This effect is even stronger when spatial heterogeneity affects

the diffusion term and when spatial fragmentation is lower. Introducing mutations be-14

tween phenotypes produces an advantage towards the R-strategy and homogenizes the

distribution of phenotypes, also leading to more polymorphism on the forefront.16
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1 Introduction

Rapid evolution in species traits can affect their ecological dynamics which in turn feed-18

back on the evolutionary potential (Bonte and Bafort, 2019; Burton et al., 2010). Such

interaction between ecological and evolutionary dynamics is crucial to understand the20

demography when species shift their range as in the case of evolutionary rescue (Anci-

aux et al., 2019), migrational meltdown (Ronce and Kirkpatrick, 2001), biological invasion22

(Szűcs et al., 2019). Population expansion is an ecological process mainly driven by traits

related to reproduction and dispersal (Deforet et al., 2019; Turchin, 1998). Dispersal af-24

fects capabilities to exchange individuals and genes among different habitats (Legrand

et al., 2017). Dispersal traits have been proven to be related to body dimension and26

condition (Duthie et al., 2015; Helms and Kaspari, 2015; Steenman et al., 2015), affecting

competitive abilities, food web interactions (Bonte and de la Pena, 2009) or metabolic28

processes (Hirt et al., 2017). As a consequence, there are many examples where individ-

uals who invest more in the development of their traits related to the dispersal strategy30

reduce the effort in foraging and reproduction (e.g., reducing their mating period or with

lower egg mass) (Baguette and Schtickzelle, 2006; Bonte and Bafort, 2019; Hanski et al.,32

2006). In such cases, two possible evolutionary strategies exist: dispersing faster or grow-

ing stronger (Deforet et al., 2019). This results in a species’ trait trade-off that shapes the34

ecological and evolutionary dynamics of populations.

During invasion process, there is evidence that trait evolution can be very rapid alter-36

ing demographic processes (Griette et al., 2015; Perkins et al., 2013). At the forefront, i.e.,

in the frontmost part of the population range, studies highlight that spread rate jointly38

depends on population growth and dispersal, and that the evolution of these traits can
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results in an accelerating spread (Fisher, 1937; Perkins et al., 2013). For example, Perkins40

et al. (2013) focused on how life-history or dispersal traits impact spread rates of the cane

toad, Rhinella marina, in Australia by combining a stage-structured population dynamics42

model and an evolutionary quantitative genetic model. They pointed out that rapid evo-

lution of life-history and dispersal traits at the forefront could have led to a more than44

twofold increase in the distance spread by cane toads across northern Australia. Indeed,

spatial sorting of high-dispersal individuals drove dispersal evolution at the forefront46

and may have resulted in the accumulation of individuals with extreme dispersal abili-

ties at its edge, accelerating invasion (Bouin et al., 2012; Perkins et al., 2013; Shine et al.,48

2011). However, the individuals leading the forefront should also face novel evolutionary

pressures on reproduction, due to low population densities (Kelehear and Shine, 2020).50

An example of the interactions between dispersal and other key life history traits, such

as reproduction, is wing polymorphism of various species of insects (Zera and Denno,52

1997). The flight capability (defined by developed wings and flight muscles) is negatively

correlated with age at first reproduction and fecundity (Denno, 1994). Thus, the energy54

efforts for flight and reproduction lead to a trade-off for internal resources (Zera and

Denno, 1997).56

Reaction-diffusion models are particularly well suited to the study of biological in-

vasions and range expansions in general (Shigesada and Kawasaki, 1997; Turchin, 1998),58

and to mathematically formalize the relationship between species life-history traits and

expansion speed. The first spatio-temporal models of this type considered a homoge-60

neous environment and neglected adaptation (Skellam, 1951). In this case, if the popu-

lation is initially concentrated in a bounded region, the organisms spread with a speed62

equal to 2
√

R D (Fisher, 1937; Kolmogorov et al., 1937), where R is the intrinsic growth
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rate of the population and D is the diffusion coefficient which measures the dispersal64

capacities of the individuals. The population density tends to keep a constant profile: it

converges to a traveling wave. The reaction-diffusion framework can be easily adapted66

to take into account spatial and/or temporal heterogeneities (Shigesada and Kawasaki,

1997). Several theoretical studies considered such models, and proposed a generaliza-68

tion of the notion of traveling wave to spatially-fragmented environments (Berestycki and

Hamel, 2002, 2005; Berestycki et al., 2005; Weinberger, 2002). These studies, and other70

references that we mention in the following sections, have provided a detailed under-

standing of the dependence of the spreading speed on spatial fragmentation, according72

to the particular traits they affect (R, D or both), in the absence of adaptation. In partic-

ular, very different effects of fragmentation have been observed, depending on whether74

they affect R or D (Hamel et al., 2011).

Some recent works have proposed to take into account genetic adaptation in these76

spatio-temporal models, thanks to an additional variable, say y (interpreted as a pheno-

typic trait), a mutation term modeled with a Laplace diffusion operator, and a nonlocal78

selection term (Alfaro et al., 2017, 2013; Alfaro and Peltier, 2021; Peltier, 2020). These

models describe adaptation along an environmental gradient, that is, a gradual change80

in various factors in space that determine the phenotypic traits that are favored by their

growth rate R(x, y). Here, each spatial position x is associated with a different optimal82

trait, i.e., a trait which leads to a maximal growth rate. The value of this optimal trait

may be proportional to the position (Alfaro et al., 2013; Peltier, 2020), may depend pe-84

riodically on x (Alfaro and Peltier, 2021), or may change with time (Alfaro et al., 2017).

Another important part of this literature has been interested in the case where the trait is86

the diffusion coefficient D (Benichou et al., 2012; Berestycki et al., 2015; Bouin and Calvez,
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2014; Bouin et al., 2012), and mostly focused on the acceleration of the range expansion88

in this case, due to the selection of the individuals with enhanced dispersal abilities. The

objective of these works was mainly to explain the acceleration of the range expansion of90

can toads since their introduction in Australia, and the corresponding model is often re-

ferred to as the “cane toad equation". Recently, this framework has been applied to other92

traits such as the Allee threshold (Alfaro et al., 2021). In all of these reaction-diffusion

based models, the additional phenotypic variable only affects a single biological param-94

eter, either directly when this variable is the trait itself such as the diffusion term D or

the Allee threshold, or indirectly when the growth rate R(x, y) depends on an abstract96

trait y. This means that trade-off between traits are not considered. Recently, Bouin et al.

(2018) considered such a trade-off between dispersal and growth in the cane toad equa-98

tion. They mainly focused on theoretical mathematical results and on the occurrence of

acceleration, in a homogeneous environment, depending on the rate of increase of the100

mortality term when the diffusion term is increased.

In this work, we develop a reaction-diffusion model to describe the phenotype-space-102

time dynamics of a consumer species in a fragmented space during a range expansion.

We focus on the trade-off between the growth rate R(x, y) and dispersal rate D(x, y),104

which are both defined as functions of the space variable x and the phenotype variable

y. In a spatially homogeneous environment and in the absence of mutations and Allee106

effects, the standard formula V = 2
√

R D clearly shows that growth and dispersal play a

similar role on the spreading speed (Kolmogorov et al., 1937). We analyze here how this108

symmetry in the effects of R and D may be broken when facing spatial fragmentation, in

the presence of competition between phenotypic traits or in the presence of mutations.110
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2 Model and methods

2.1 Eco-evolutionary dynamics112

{model}
At time t and location x, the density of the consumer phenotype y is defined by c(t, x, y).

We describe the spatial dispersion in a one-dimensional environment with a Laplace dif-114

fusion operator, corresponding to random walk movements of the individuals, with a

mobility parameter (also called diffusion coefficient) D(x, y) (Shigesada and Kawasaki,116

1997; Turchin, 1998). We assume a one-dimensional phenotype y ∈ (ymin, ymax). The mu-

tations between phenotypes are also described with a Laplace diffusion approximation118

(Hamel et al., 2020; Tsimring et al., 1996) with constant mutation coefficient µ ≥ 0. The

mutation coefficient µ is proportional to the mutation rate (per individual per genera-120

tion) and to the average mutation effect on phenotype (Hamel et al., 2020). Finally, the

population grows logistically with a spatially variable growth rate R(x, y). Competition122

occurs locally on the geographical space but globally over phenotypes though a nonlocal

term, and is modulated by a parameter γ. This leads to the following reaction-diffusion124

model for the phenotype-space-time dynamics of the consumer population:
126

∂tc(t, x, y) = ∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y)

+ c(t, x, y)
(

R(x, y)− γ
∫ ymax

ymin

c(t, x, s)ds
)

, (1)128

with t > 0, x ∈ R and y ∈ (ymin, ymax) ⊂ R. In all cases, we assume an initial con-130

dition c(0, x, y) = 1x<0, the characteristic function of the domain (x, y) ∈ (−∞, 0) ×

(ymin, ymax), and we focus on the spreading of the solution to the right, that is in the di-132

rection of positive x. In addition, we assume no-flux boundary conditions at the bound-
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aries y = ymin and y = ymax:134

∂yc(t, x, ymin) = ∂yc(t, x, ymax) = 0,

so that in the absence of demography (i.e., if R = γ = 0), and with an integrable initial136

condition c(0, x, y), the global population size C(t) =
∫

R×(ymin,ymax)
c(t, x, y)dxdy would

remain constant.138

2.2 Modeling genetic and spatial fragmentation in dispersal and growth

Spatial fragmentation in environmental conditions are assumed to impact the consumer140

growth rate R and its mobility D. Genetic and environmental effects on R and D are

assumed to be additive. The parameters142

R0 > 0 and D0 > 0 are the basal values for growth and diffusion. These basal values

are modified according to a genetic effect, Rg, respectively Dg, and a environmental144

effect, Rs, respectively Ds. The parameter L controls the spatial fragmentation: Rs(x/L)

and Ds(x/L) are L-periodic. A small value of L corresponds to a highly fragmented146

(or rapidly varying) environment, and a large value corresponds to a low fragmented

(or slowly varying) environment. Moreover, we also test the effect of introducing an148

amplitude effect to scale the fragmentation with respect to the scenario presented (see

Appendix A).150
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Figure 1: Genetic and environmental effects on growth (R) and dispersal (D). The

panel A displays the curves representing the genetic effect for the dispersal rate Dg(y)

(red) and growth rate Rg(y) (blue) expressed as a function of phenotypic traits y ∈

(ymin, ymax). The coefficient d is the distance between the optima for dispersal and growth

rate. The panel B shows the environmental effect for the dispersal (Ds(x/L))(dotted line)

and (Rs(x/L)) (solid line). The panel C shows an example of resulting total population

density C(Tsim, x) (see Equation (5)) obtained from the solution of the Equation (1) at

time Tsim = 60 along with the position x, with the parameter values: µ = 0, d = 2,

R0 = 1, D0 = 1, σ = 1 for in the Scenario Rhet. {fig:OdOr}
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Genetic effect. Given its trait value y the genetic effect on the growth rate R and the

diffusion coefficient D is assumed to be Gaussian (Figure 1):152

Rg(y) = exp(−(y + d/2)2/(2σ2)), (2)

Dg(y) = exp(−(y− d/2)2/(2σ2)) (3)154

where d > 0 corresponds to the distance between the two optima. The optimum trait for156

diffusion represents the consumer optimal dispersal strategy, and the optimum trait for

the growth rate represents the consumer optimal resource exploitation strategy. Here,158

we assume that the optimum traits are symmetric with respect to 0, OR = −d/2 and

OD = +d/2 for the growth rate and dispersal, respectively. The coefficient σ, fixed to160

1 in the following, is the standard deviation of the Gaussian function and indicates the

intensity of selection around the optimal trait value (smaller σ means higher intensity of162

selection).

Environmental effect. The terms Rs(x/L) and Ds(x/L) describe the periodic variations164

over the space x (Figure 1B). Here, Rs is a 1-periodic piecewise constant function of mean

0, with Rs(x) = R0 on [0, 1/2) and Rs(x) = −R0 on [1/2, 1). Equivalently, Ds is a smooth166

1-periodic function, with mean value 0, and bounded from below by −D0 (so that D

is always positive). More precisely, we define the 1-periodic function δ1(x) such that168

δ1(x) = D0 in [0, 1/2) and δ1(x) = −D0 in [1/2, 1).

Then, Ds is obtained by regularizing δ1 with a convolution by a smooth function:170

Ds(x) =
∫

R
δ1(x− z) φ(z) dz,172

with φ a Gaussian function with small variance.
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2.3 Simulation scenario174

We define three scenarios, depending on the presence of spatial fragmentation, and on

its effects on growth or dispersal:176

- Scenario H: spatially homogeneous coefficients. In this case,

R(x, y) = Rh(y) := R0 + Rg(y) and D(x, y) = Dh(y) := D0 + Dg(y).

- Scenario Rhet: fragmented growth and homogeneous dispersal. In this case,

R(x, y) = R0 + Rg(y) + Rs(x/L) and D(x, y) = Dh(y) = D0 + Dg(y).

- Scenario Dhet: homogeneous growth and fragmented dispersal. In this case,

R(x, y) = Rh(y) = R0 + Rg(y) and D(x, y) = D0 + Dg(y) + Ds(x/L).

Under these scenarios, we numerically simulated the model of Equation (1), to ex-

plore the phenotypic trait composition in the population with different parameter value178

combinations. Specifically, we focused on: i) the period of fragmentation L, considering

rapidly (small period L = 2) and slowly (large period L = 10) varying environments; ii)180

the distance d between the two optima, where we considered a short distance for weak

trade-off (d = 2) and a large distance for strong trade-off (d = 4); iii) and, the mutation182

parameter µ = 0 (no mutations) or µ = 0.1. The equations are solved numerically by

transforming them into lattice dynamical systems (continuous time, discrete space with184

small space step), and using a Runge-Kutta method over a fixed spatial domain (defined

as x ∈ [0; 250] by step 0.5). The phenotype space is defined between ymin = −5 and186

ymax = 5 by step δx = 0.1. The implementation is performed by using the software

Matlabr (code repository: DOI 10.17605/OSF.IO/V6N4M ).188
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2.4 The spreading speed
{Speed}

The consumer species R−D trade-off is investigated by focusing on the spreading prop-190

erties and analyzing the population forefront under the defined scenarios. The spreading

speed (to the right) V is the asymptotic rate at which a population, initially concentrated192

to the left of some point, expands its spatial range. It can be defined here as the smallest

speed such that, if an observer travels to the right (i.e., towards increasing x values) with194

this speed, he will observe that the population density vanishes. In mathematical terms,

V is the only speed such that:196

sup
x≥z

C(t, x + w t) −→
t→+∞

0 for all w > V and z ∈ R,

inf
x≤z

C(t, x + w t) 6−→
t→+∞

0 for all w < V and z ∈ R,
(4)

with C(t, x) the population density at spatial position x:

C(t, x) =
∫ ymax

ymin

c(t, x, y) dy. (5)

For each phenotype y, the spreading speed v(y) of the phenotype y can be defined as198

well by replacing C(t, x + w t) with c(t, x + w t, y) in the above expressions.

The existence of a spreading speed and analytical characterizations have been ob-200

tained for standard equations with spatially homogeneous coefficients and local compe-

tition terms (Aronson and Weinberger, 1975, 1978; Fife and McLeod, 1977; Kolmogorov202

et al., 1937). Comparable results have been obtained with a periodically varying coeffi-

cient as in Equation (1) and a local competition term (Berestycki and Hamel, 2002, 2005),204

namely for equations of the form:
206

∂tc(t, x, y) = ∂xx(D(x, y) c(t, x, y)) + µ ∂yyc(t, x, y)

+ c(t, x, y) (R(x, y)− γ c(t, x, y)) . (6)208
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Here, the difference with Equation (1) is that the individuals with phenotype y only210

interact with individuals with the same phenotype. As we did not assume an Allee

effect in Equation (1), the solutions should be pulled by the individuals in the leading212

edge of the colonization (Roques et al., 2012; Stokes, 1976). Their speed should therefore

only depend on the growth term through its linearization around 0, here R(x, y)c(t, x, y).214

We therefore conjecture that the spreading speeds V of the solutions of the nonlocal

Equation (1) and the local equation (6) are equal. This conjecture is supported by the216

results of Alfaro et al. (2013), which deal with a nonlocal equation of the form (1), with a

constant diffusion term D and with a growth term of the form R(x, y) = r(y− B x), with218

r(y) = rmax − b y2 (to each position x is attached an optimal phenotype B x). This would

imply that the fastest phenotype,220

y∗ = argmax
y∈(ymin,ymax)

v(y),

has the same speed for the two Equations (1) and (6) with and without nonlocal in-222

teractions. As the fastest phenotype, y∗ does not compete with other phenotypes, its

speed should indeed not be influenced by the competition term, and therefore be the224

same for the two equations. This conjecture is also supported by the results of Girardin

(2017) (Theorems 1.6 and 1.7), who studied an analogue of (1), but with a discrete phe-226

notype space and a spatially homogeneous environment, leading to a system of reaction-

diffusion equations coupled by discrete Laplace mutation term.228

For Equation (6), under our three scenarios (H, Rhet, Dhet), more or less explicit for-

mulas for the spreading speed are available. Thus, we compare these approximations230

of the spreading speeds with numerical results, using approached models and limiting

cases of rapidly and slowly varying environments and we compare these approximations232

with numerical results.
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First, when the environment is spatially homogeneous (scenario H), i.e., when R(x, y) =234

Rh(y) and D(x, y) = Dh(y), and in the absence of mutations (µ = 0), the spreading speed

associated with a phenotype y is v(y) = 2
√

Rh(y) Dh(y) (Kolmogorov et al., 1937). In236

that case, and according to the values of d and σ (see Equations (2) and (3)), the fastest

phenotypes can be the generalist, y∗ = 0 or the two specialists, y∗ = OR = −d/2 and238

y∗ = OD = d/2, see Appendix B. The overall spreading speed defined by Equation (4) is

V = 2
√

Rh(y∗) Dh(y∗). When the environmental fragmentation only impacts the growth240

rate R(x, y) keeping the diffusion coefficient spatially homogeneous D(x, y) = Dh(y)

(scenario Rhet), a general formula for the spreading speed has been obtained by Beresty-242

cki and Hamel (2005). Their results also encompass the case of a fragmented diffusion co-

efficient D(x, y) but spatially homogeneous growth rate R(x, y) = Rh(y) (scenario Dhet).244

However, in this case, their result holds true for equations with "Fickian" spatial diffu-

sion term, i.e., ∂x(D(x, y) ∂xc) instead of the Fokker-Planck diffusion ∂xx(D(x, y) c) in (6)246

(Roques, 2013; Turchin, 1998).

In the spatially fragmented cases (scenarios Rhet and Dhet) the formulas rely on vari-248

ational characterizations which make them hardly tractable, even numerically (see Ap-

pendix B). More tractable formulas for the phenotype spreading speeds can be obtained250

for rapidly varying (i.e., when the period is small, L→ 0) and slowly varying (i.e., when

the period is large, L → ∞) environments in the absence of mutations (i.e., µ = 0)252

(Hamel et al., 2010, 2011; Smaily et al., 2009). These formulas are summarized in Table

1, see also Appendix B for more mathematical details. We check the accuracy of the254

analytical approximations in Table 1 and we compare them with numerical simulations

for the considered scenarios.256
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Table 1: Theoretical phenotype spreading speeds for Equation (6) with µ = 0 (no muta-

tion) for rapidly varying environments L→ 0 and slowly varying environments L→ ∞.

Spatial fragmentation L→ 0 L→ ∞

Scenario H Rh(y), Dh(y) v(y) = 2
√

Rh(y) Dh(y) v(y) = 2
√

Rh(y) Dh(y).

Scenario Rhet R(x, y), Dh(y) vRhet,0(y) = 2
√

Rh(y) Dh(y)
∗

vRhet,∞(y) = 4
√

Dh(y)×
(R+(y))2+(R−(y))2+(R+(y)+R−(y))

√
4(y)

(R+(y)+R−(y)+2
√
4(y))

3
2

∗∗

Scenario Dhet Rh(y), D(x, y) vDhet,0(y) = 2
√

Rh(y) 〈D1〉H(y)
∗∗∗

vDhet,∞(y) = 2
√

Rh(y) 〈
√

D1〉H(y)∗∗∗

(Fickian diffusion)

Where:

* vRh,0(y) = 2
√

Rx(y) Dh(y) with Rx(y) = R0 + Rg(y) +
∫ 1

0 Rs(x) dx = Rh(y).

** R+(y) = Rh(y) + R0, R−(y) = Rh(y)− R0, 4(y) = (R+(y))2 + (R−(y))2 − R+(y) R−(y).

***〈F〉H(y) =
(∫ 1

0
dx

F(x,y)

)−1
the harmonic mean of F, and D1(x, y) = D0 + Dg(y) + Ds(x).

{tab:speed}

3 Results
{Res}

The forefront profiles highlight the role of the R−D trade-off, the environmental hetero-258

geneity and the mutation in influencing the spreading speed of the different phenotypes

(Figures 2-5). In Section 3.1 we analyze these figures, then, in Section 3.2 we use the260

theoretical formulations to better understand the numerical simulations.

Hereafter, we identify the strategies favoring the selection of phenotypes with a be-262

havior that increases dispersal capacities as D-strategy (namely, when y∗ > 0), with a

generalist behavior as G-strategy (namely, when y∗ = 0) and with a behavior that in-264

creases growth rate as R-strategy (namely, when y∗ < 0). As at the back of the front the

R-strategy is always selected, our focus is entirely dedicated to the trade-off among R266

and D on the forefront, see Appendix C.
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3.1 The R− D trade-off selecting the fastest strategy on the forefront268

{sec:num2D}
In the absence of mutation (µ = 0), when d = 2, the forefront is composed mostly by

one phenotype with a low degree of specialization on R and D (Figure 2A, C and E;270

Figure 4A, C and E). For scenarios H and Rhet, when fragmentation is high, numerical

simulations show a small shift towards the R-strategy (Figure 2A and C, Table 2). In-272

stead, when there is a slowly varying environment, the shift occurs towards D-strategy

(Figure 2E, Table 2). Under scenario Dhet, whatever environment fragmentation, there is274

a clear shift towards the D-strategy (Figure 4 C and E, Table 2).

When d = 4, the colonization is mostly driven by the D-strategy (Figures 2 and 4276

B, D and F). A less fragmented habitat (L = 10), under the scenario Rhet, increases the

advantage of the D-specialist on the forefront, shifting the trade-off in favour of the D-278

strategy (see Figure 2 D vs. F). For the scenario Dhet, the difference between weak and

strong trade-off is even more remarkable as the advantage is completely shifted in favor280

of the strategy y∗ = OD (see Figure 4D), defining also a different forefront profile.

These outcomes are completely blurred when introducing a positive value for the282

mutation coefficient. In fact, the presence of mutations leads to a homogenization of

the phenotypic distribution and therefore to a wider phenotype ensemble that leads the284

forefront: all of the phenotypes should theoretically spread with the same asymptotic

speed (see Girardin, 2017, in a homogeneous case with discrete phenotype space). Yet,286

the population densities (Figures 3 and 5) indicate that the R-strategy becomes the pre-

ferred one almost in all cases when d < dcr, except for the scenario Dhet with a slowly288

varying environment (Figure 5 E). The D-specialist is still the fastest phenotype under

the scenario Dhet in case of strong trade-off (d = 4) (Figure 5D and F). However, we notice290
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that the shape of the solution at the leading part of the expansion is quite unusual. In all

cases, we observe a “bump" corresponding to a fraction of the population which adopts292

the D-strategy. Thus, the expansion may take advantage of the larger diffusion coefficient

of the D-specialists and of the larger growth rate of the R-specialist by allowing more294

polymorphism at the leading edge of the propagation.
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Figure 2: Population density contrasting scenario Rhet (Panels C, D, E, F) with scenario

H (Panels A and B) without mutation. The forefront profiles show the population

density with respect to the phenotypes and the space variables. Over lines the trade-

off strength is showed: weak trade-off (d = 2) (Panel A, C, E) and strong trade-off

(d = 4) (Panel B, D, F). Over columns the effect of the period L is showed: rapidly

varying environment (L = 2) (Panel C and D) and slowly varying environment (Panel

E and F). Solutions are obtained by numerically simulating the Equation (1) and results

are reported at time Tsim = 60. White dashed lines highlight the optimum values (i.e,

OD = d/2 and OR = −d/2).
{fig:FrontRh}
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Figure 3: Population density contrasting scenario Rhet with scenario H with mutation.

Caption description is the same of Figure 2, but considering a positive value for mutation

(µ > 0).
{fig:FrontRhmu}

Figure 4: Population density contrasting scenario Dhet with scenario H without muta-

tion. Caption description is the same of Figure 2, but for scenario Dhet. {fig:FrontDh}
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Figure 5: Population density contrasting scenario Dhet with scenario H with mutation.

Caption description is the same of Figure 2, but for scenario Dhet with a positive value

for mutation µ > 0.
{fig:FrontDhmu}

3.2 Insight from the theoretical speeds
{sec:theor_speed}296

In this section, we compare the numerical simulations of Equation (1) presented in Fig-

ures 2-5 with the analytical formulations presented in Figure 6 and Table 1. We first298

check if the outcomes that can be obtained from the theoretical speeds match with the

numerical results. These outcomes are summarised in Table 2. Second, when there is a300

good match, we use the explicit formulas to explain the observed trends. We recall that

the theoretical speeds of Table 1 were derived with the simpler local model (6) with µ = 0302

and therefore do not take the nonlocal competition and mutation effects into account.
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Figure 6: Theoretical phenotype spreading speeds. The theoretical phenotype spread-

ing speeds presented in Table 1 are showed in function of phenotypes y ∈ [−5, 5] con-

sidering a weak trade-off (d = 2) (Panel A) and a strong trade-off (d = 4) (Panel B).

Different colors refers to the formulations of the spreading speed highlighted in Table 1,

the dots represent the fastest phenotype leading the forefront. Dashed lines highlight

the positions of the optimum traits OR and OD.
{fig:v_th}

In absence of mutation (µ = 0), there is a critical threshold dcr on the distance d304

between the optima (dcr ≈ 2.4 with our parameter values, see Appendix B), such that the

function v(y) = 2
√

Rh(y) Dh(y), corresponding to the spreading speed, either admits306

one (d < dcr) or two (d > dcr) maxima. When d < dcr (i.e, d = 2) and with a rapidly

varying environment, the generalist behavior is expected to be selected as the fastest trait308

following the theoretical formulations under scenarios H and Rhet. However, numerical

simulations show a small shift towards the R-strategy (Table 2). Instead, when there is a310
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slowly varying environment, or when heterogeneity impacts D, theoretical formulations

consistently predict a shift towards the D-strategy (Table 2, Figure 6).312

In the scenario Dhet, the theoretical speed vDhet,0(y) = 2
√

Rh(y) 〈D1〉H(y) in rapidly

varying environments (small period L = 2 in the numerical results, L → 0 in Table 1)314

involves the harmonic mean of the diffusion term. Contrarily to the arithmetic mean, the

harmonic mean gives a higher weight to small values. Thus, small values of D(x, y), even316

on a very small spatial interval, should lead to small speeds vDhet,0(y), based on the results

of Table 1. This leads to an imbalance in favor of the D-strategies (compare vDhet,0(y) and318

v(y) in Figure 6; Figure 4A and B vs. Figure 4C and D), which avoid very small values of

D(x, y). In the case of slowly varying environments (large period L = 10 in the numerical320

results, L → +∞ in Table 1), the theoretical speed vDhet,∞(y) = 2
√

Rh(y) 〈
√

D1〉H(y)

again involves an harmonic mean of the diffusion term (here, its square root) which322

explains the advantage of the D-strategy, as in the case of rapidly varying environments.

When heterogeneity is introduced on R (scenario Rhet), in rapidly varying environ-324

ments, the theoretical formulas predict that the strategy remains unchanged (G when

d < dcr or R+D when d > dcr) compared to the homogeneous scenario (H). The theoreti-326

cal spreading speed of each phenotype in the scenario Rhet, vRhet,0(y) = 2
√

Rh(y) Dh(y),

is indeed the same as the speed v(y) obtained in the homogeneous scenario H (both328

curves are superimposed in Figure 6): as the spatial arithmetic mean of the growth rate

(noted Rx(y) in the legend of Table 1) is precisely equal to Rh, the homogenization results330

of Smaily et al. (2009) imply that the two speeds are equal. In the numerical simulations

(see Table 2, lines A for numerical and C for theoretical), there are some discrepancies,332

as with a rapidly varying environment (L = 2), the homogenization limit is not reached.

Hence, we observe a slight shift of the G-strategy towards the R-strategy when d < dcr.334
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When d > dcr, the two strategies are present on the forefront, with a slight advantage for

the D-strategy (Figure 2A and B vs. Figure 2C and D). In slowly varying environments,336

the theoretical formulas and the numerical simulations consistently predict a shift to-

wards the D-strategy. In this last case, the formula for vRhet,∞(y) can be written in the338

form 2
√

F(y) Dh(y), for some function F which satisfies F(OD) ≈ (32/27) R0 (to be

compared with Rh(OD) ≈ R0) and F(OR) ∼ R0 + 1 for small R0 (to be compared with340

Rh(OR) = R0 + 1). Thus, compared to the homogeneous case (v(y) = 2
√

Rh(y)Dh(y)),

the heterogeneity on R creates an asymmetry in favor of the D-strategy which manages342

to keep a growth rate larger than R0.

When µ > 0 (see Table 2 line B), as expected, there are some discrepancies between344

the numerical results and the theoretical predictions. However, the arguments above may

explain some of the observations. First, in the scenario Dhet in most cases (except when346

d < dcr in rapidly varying environments) we again observe a shift towards D-strategies

which is most probably due to the “harmonic mean" effect described above. We note348

that this shift is stronger in slowly varying environments. In the scenario Rhet, although

the R-strategy is always selected when µ > 0, the positive effect of the heterogeneity on350

the maintenance of the D-strategy which we noted above in the theoretical formulas is

still visible on Figure 3F, which shows more polymorphism compared to the scenario H.352

We note the positive effect of increasing the period L (equivalently, reducing the

environmental fragmentation) on the spreading speeds: this effect, which is obvious354

in Figure 6 can also be observed in Figures 2-5.
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H Rhet Dhet

Rapidly varying Slowly varying Rapidly varying Slowly varying

d < dcr

A -0.1 -0.1 0.1 0.5 0.3

B -0.7 -0.7 -0.7 -0.7 0.1

C 0 0 0.2 0.6 0.5

d > dcr

A R+D 0.95 1 0.95 0.95

B -1.2 -1.3 -1.35 0.5 0.8

C R+D R+D 1 1 1

Table 2: Fastest phenotypes leading the forefront. The table reports the values

of the fastest phenotype leading the forefront with respect to the optimum value

(2y∗/d). Results of numerical simulations of the Equation 1 are compared over the

lines considering the presence and absence of mutation and the theoretical formu-

las: A) y∗ = argmax(vsim(y)), with µ = 0; B) y∗ = argmax(vsim(y)), with µ > 0;

C) y∗ = argmax(vth(y)), corresponding to the spreading speed vth reported in Table

1. The corresponding strategy is highlighted: Blue cells correspond to R-strategies

(2y∗/d < 0) and red cells to D-strategies (2y∗/d > 0). White cells correspond to gener-

alists (2y∗/d = 0) or when both strategies lead to the same speed (noted R+D). d < dcr

correspond to a weak trade-off (d = 2), d > dcr correspond to a strong trade-off (d = 4).

Rapidly varying correspond to a period of heterogeneity L = 2 and slowly varying cor-

respond to a period of heterogeneity L = 10.
{table:strategies}
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4 Discussion356

Dispersing faster or growing stronger? In this work, we studied which of these strategies

is selected in populations invading a heterogeneous environment. We gathered analyt-358

ical solutions from the literature and performed numerical simulations of a reaction-

diffusion model describing the demo-genetic dynamics of a population invading a one-360

dimensional environment. Results show that the symmetrical effects of growth and dis-

persal on the spreading speed is broken in the presence of competition between phe-362

notypes, shrinking the population density around the optimum values. From here we

observe that, at the back of the forefront, the dynamics is almost always carried out364

by the R-specialists, while, on the forefront, the selection of the fastest strategy is less

obvious.366

In this study, we identify the main following results: i) R-strategies are favored in spa-

tially homogeneous environments, but the introduction of heterogeneity leads to a shift368

towards D-strategies, with at least more polymorphism at the forefront; ii) due to a “har-

monic mean effect" that we have highlighted through analytical expressions obtained370

with a simpler model, this phenomenon is even stronger when spatial heterogeneity af-

fects the diffusion term. In this case, the introduction of spatial heterogeneity can lead to372

a complete switch from an R-strategy to a D-strategy; iii) the spatial fragmentation does

not affect a lot the R− D trade-off, but tends to modulate the polymorphism: in situa-374

tions where only R-strategists are present at the forefront when the level of fragmentation

is high (small L), both R-strategists and D-strategists tend to be present at the forefront376

in low fragmented environments made of large patches (large L); iv) mutations produce

an advantage towards the R-strategy, and homogenize the phenotype distribution, also378
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leading to more polymorphism on the forefront; v) these effects can be observed with a

weak trade-off (such that the generalist y∗ = 0 leads the population in a homogeneous380

model without interactions), but become even stronger with a strong trade-off (such that

R−strategists and D−strategists have the same speed in a homogeneous model with-382

out interactions) and vi) the comparison among theoretical and numerical simulations

allows checking when formulas obtained with a simpler model lead to results which are384

consistent with of a more complex one.

Some of these results (points i,ii,iii) are in accordance with the ones of Burton et al.386

(2010), who used an individual-based spatial model to study the evolution of three traits

in a population undergoing range expansion. When resources are highly fragmented, the388

trade-off favors to the selection of an R-strategy on the forefront as high resource avail-

ability and fecundity facilitate expansion by increasing population growth. By contrast,390

in a low fragmented environment, the faster dispersers take advantage of their mobility

to reach the most favorable habitats and lead the forefront. Evolution thus leads to the392

selection of a greater capacity for dispersion. Conversely, when heterogeneity impacts

dispersal, only the D-specialists confer the maximal speed and persist on the forefront,394

whatever the level of spatial fragmentation. Recently, given two species having growth

and dispersal coefficients R1, D1 and R2, D2 (for species 1 and 2 respectively), Deforet396

et al. (2019) found that the evolutionary outcome mainly depends on the simple condi-

tion v1 = 2
√

R1 D1 > v2 = 2
√

R2 D2, with success of the fastest (here, species 1). In our398

work, the use of the theoretical formulas of Table 1 mainly relies on the same assumption,

that the fastest trait drives the expansion. In most cases, our results show that the obser-400

vations of Deforet et al. (2019) remain true in a more general context with a continuum of

traits and possibly mutations between traits. However, we also observed some discrepan-402
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cies in the presence of mutations, which tend to advantage the R-strategy. Additionally,

as recently observed by Keenan and Cornell (2021) in a homogeneous environment, in404

the presence of mutations, the furthest forward phenotypes are not necessarily those

associated with the largest value of the product R D (see below).406

Duputié and Massol (2013) argues that natural selection tends to favor dispersal to

face spatio-temporal variation in local conditions. Consequently, more dispersive pheno-408

types are expected to predominate in unstable habitats, while less dispersive phenotypes

are common in stable habitats and populations. Here, we found that in the bulk of the410

population, which corresponds to a saturated population, the R-strategy is always pre-

ferred, which is not always the case at the forefront. By definition, the expanding part412

of the population encounters a more variable environment, especially when the envi-

ronment is itself highly heterogeneous. In such cases, we observed a shift towards the414

D-strategy. These findings are also consistent with the “Spatial sorting theory” which

predicts that, at the forefront, dispersal may be strongly favored because of the accumu-416

lation of the best dispersers (Phillips et al., 2008; Shine et al., 2011; Travis and Dytham,

2002).418

The presence of mutations homogenizes the spreading speed between morphs, even

in presence of nonlocal competition. We also establish that polymorphism, caused by420

mutation, is maintained in the presence of spatial fragmentation impacting the R and D

coefficients. Another possible effect of mutation is an increased spreading speed. Taking422

again a system with only two morphs (as in Deforet et al. (2019), but with a mutation

term), typically an R-specialist and a D-specialist, Elliott and Cornell (2012) and Morris424

et al. (2019) investigated the effect of varying R and D on the spreading speed. They

found that the system would spread faster in the presence of both phenotypes than426
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just one phenotype would spread in the absence of mutation for certain combination

of R and D values. In a similar way, using the results of Girardin (2017), Keenan and428

Cornell (2021) considered the R− D trades-off in the case of N phenotypes in a homo-

geneous environment, and obtained some conditions on the curvature of the trade-off430

curve (D, R(D)) such that this “anomalous" faster speed emerges. Here, although the

trade-off curve (D, R(D)) has positive curvature, we did not observe this phenomenon:432

in all of our simulations of Figures 3-5, the speed is reduced when µ > 0, compared to

the speed of the fastest trait when µ = 0. The theoretical results of Keenan and Cornell434

(2021) require a vanishing small mutation rate, and their numerical results use a muta-

tion coefficient 10−6 (to be compared with µ/(δx)2 = (0.1)/(0.1)2 = 10 in our continuous436

framework), which may explain these differences.

Future works could consider a more detailed analysis of the lineages that pull the438

forefront, to determine for instance if the D-specialists in Figures 3 and 5 are produced by

mutation from R-specialists or correspond to a self-sustaining fraction of the population.440

In that respect, one could reconstruct the genealogies of the fractions composing the

population using the methods in (Roques et al., 2012). We recall that our results depend442

on the assumptions about the form of the dispersal and growth rate functions and the

fragmentation definition. For instance, we do not take an Allee effect into account. It is444

demonstrated to have important consequences on the invasions dynamics and especially

on the lineages that compose the forefront (Andrade-Restrepo et al., 2019; Chuang and446

Peterson, 2016; Roques et al., 2012).
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