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A B S T R A C T

Centrifugal pendulum vibration absorbers (CPVA) are used in the automobile industry to reduce
the vibrations of the transmission system. These passive devices are made of several masses
oscillating along a given trajectory relative to the rotor. In this paper, the dynamic stability of a
new class of CPVA is investigated. The particularity of this new class is that masses now admit a
significant rotation motion relative to the rotor, in addition to the traditional translation motion.
The efficiency of such devices is optimal for a perfect synchronous motion of the oscillating
masses. However, masses unison can be broken for the benefit of energy localisation on a given
absorber, leading to a loss of mitigation performances. To assess the stability of such devices,
a dynamical model based on an analytic perturbation method is established. The aim of this
model is to predict analytically localisation and jumps of the response. The validity of the model
is confirmed through a comparison with both a numerical resolution of the system’s dynamics
and an experimental study.

1. Introduction

In the frame of reduction of polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufac-
turers try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation
irregularities called ‘‘acyclisms", mainly due to higher combustion pressure. One of the main characteristics of these reciprocating
engines is the linear dependence of the acyclism frequency to the mean engine speed of rotation. The coefficient of proportionality
is called the engine (or firing) order and only depends on the architecture of the engine. For four strokes engines, the engine order
is half the number of cylinders. During acceleration phase, the engine sweeps a wide frequency range containing some driveline
torsional modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature
wear of the driveline components. Centrifugal pendulum vibration absorbers (CPVA) have been used for many years to minimise
acyclisms of automotive powertrains at the engine order. These passive devices consist of oscillating masses (pendulums) moving
along particular paths relative to a primary inertia (rotor) as shown in Fig. 1. The operation principle of the CPVA is that of a tuned
mass damper whose stiffness is proportional to the mean engine speed. This enables it to remain tuned on the engine order to reduce
torsional vibrations of the rotor.

CPVA exhibit strong non-linearities: geometric non-linearities due to the large amplitude of motion, and inertial non-linearities,
for instance due to Coriolis effect. The non-linear response of a CPVA is strongly affected by the choice of the pendulums’ trajectory.
D. E. Newland observed early on that circular trajectories may exhibit unstable periodic responses, leading to jumps of the
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Fig. 1. Representation of the system studied for 𝑁 = 2 pendulums.

response [1]. Since the works of H. H. Denman, the preferred trajectories are epicycloids because they are almost tautochronic [2].
Due to their cyclic symmetry, CPVA are subject to non-linear energy localisation phenomena. Such situations, which might decrease
the efficiency of the absorbers, have been studied by S. Shaw et al. [3–7], A. Grolet et al. [8] and K. Nishimura et al. [9] in the case
of translated pendulums, i.e. pendulums that do not rotate relatively to the rotor. Until recent times, such pendulums were the only
ones used in the industry. However, A. Renault and M. A. Acar showed that adding a rotational mobility of the pendulums may
lead to a significant increase of mitigation performances [10–13]. This increase in performance was also observed by J. Mayet and
H. Ulbrich [14]. Recent works by M. Cirelli, M. Cera et al. [15–19] confirmed the interest for pendulums with a rotational mobility
and introduced a new way a representing the trajectory, using curvature ratios instead of the polynomial coefficients used in most
studies (see [4] for instance). M. Cirelli et al. also used a Cartesian representation of the trajectory to derive tuning recommendations
consistent with known results of the literature [20]. J. Mayet and H. Ulbrich [21] used Hamilton’s formalism to compute the stability
of a CPVA with rotating pendulums and gave guidelines regarding the tuning of the system. X. Tan et al. considered a CPVA made
of a single pendulum obeying a non-linear rotation law and gave guidelines for the choice of this law [22]. E. R. Gomez et al.
investigated theoretically and experimentally the friction losses in a CPVA with rotating pendulums [23]. A new type of CPVA,
made of a double pendulum, was studied by V. Manchi and C. Sujatha [24]. The use of CPVA to damp multidegrees-of-freedom
systems was considered by K. Kadoi et al. [25]. B. Geist et al. [26] studied the precision requirements and sources of errors associated
with the manufacturing process of a bifilar CPVA.

The motivation of this paper is to investigate the stability of CPVA whose pendulums rotate relatively to the rotor. Unlike
previous studies [16,18,21], the authors chose to describe the trajectory and rotation functions of a pendulum using polynomials
(in [16,18], curvature ratios and a rolling radius are used to describe the trajectory and rotation law, respectively, whilst in [21] the
trajectory and rotation are not defined explicitly). This way, the non-linear parts of the trajectory and rotation will appear clearly
in the results, allowing for an easier understanding of their impact on the dynamics. To facilitate further this understanding, a tool
representing the stability as a function of the trajectory and rotation functions is introduced. New design guidelines are derived
from these analysis. Finally, experimental observations of the localised response are used to validate the analytical model. To our
knowledge, it is the first time that the analytical prediction of the localisation is compared to experimental results (localisation was
observed unexpectedly in [27] and not compared to analytical predictions in [28]).

This paper is organised as follows: Section 2 describes the modelling of the CPVA. Section 3 presents a linear study of the
CPVA, setting the basis of the non-linear analysis. This non-linear analysis starts in Section 4 where the simplified pendulums’
equation is established. This equation is solved in Section 5 and its stability is assessed. Section 6 presents a case study of the
former developments. A numerical validation of the model is shown and an original visualisation of the stability in the design space
is introduced. Design rules are proposed in Section 7 and an experimental validation is lead in Section 8. Finally, this paper ends
with a conclusion in Section 9.

2. Modelling

The system studied is shown in Fig. 1. It is made of a rotor of inertia 𝐽𝑟 rotating about its centre 𝑂. Its total angular position
is 𝜗(𝑡) = 𝛺𝑡 + 𝜃(𝑡) where 𝑡 is the time, 𝛺 is the mean rotation velocity and 𝜃 corresponds to the fluctuating part of the rotation.



A torque 𝑇 (𝜗) is applied to this rotor. It can be decomposed into a constant torque 𝑇0 and a periodic one 𝑇𝜃(𝜗). The constant
torque balances the torque arising from the rotor’s damping, thus setting the mean rotation speed 𝛺. In the model, an equivalent
linear viscous damping 𝑏𝑟 is used for the rotor. 𝑁 pendulums of mass 𝑚𝑖 and inertia 𝐼𝑖 (about their centre of gravity) oscillate
on their trajectory 𝒞𝑖. The position of their centre of gravity on these trajectories is given by the curvilinear abscissa 𝑆𝑖(𝑡) and
their distance from the centre of rotation of the rotor is 𝑅𝑖(𝑆𝑖). The characteristic dimension 𝑅0𝑖 = 𝑅𝑖(𝑆𝑖 = 0) represents the
position of the pendulums at rest (when 𝑇𝜃 = 0 such that they are perfectly centrifugated). In addition to the traditional translation
motion, the present study considers that the pendulums rotate relatively to the rotor according to the rotation function 𝛼𝑖(𝑆𝑖). As
for the rotor, an equivalent linear viscous damping 𝑏𝑖 is used to model the damping between the rotor and the ith pendulum. In
the later, pendulums and their associated trajectory and rotation functions will be considered identical so that subscript ‘‘𝑖" will be
dropped when addressing pendulums’ parameters. Using the relation between the mean torque, the rotor’s damping and the mean
rotation speed, 𝑇0 = 𝑏𝑟𝛺, and introducing the non-dimensional parameters and variables 𝑠𝑖 = 𝑆𝑖∕𝑅0, 𝜂 = 𝐼∕𝑚𝑅2

0, 𝑏̄ = 𝑏∕𝑚𝛺,
𝑥(𝑠𝑖) = 𝑅(𝑅0𝑠𝑖)2∕𝑅2

0, 𝑧(𝑠𝑖) =
√

𝑥(𝑠𝑖) − (𝑑𝑥(𝑠𝑖)∕𝑑𝑠𝑖)2∕4, 𝛾(𝑠𝑖) = 𝑅0𝑑𝛼(𝑅0𝑠𝑖)∕𝑑(𝑅0𝑠𝑖), 𝜇 = 𝑁𝑚𝑅2
0∕(𝐽𝑟 + 𝑁𝐼), 𝑏̄𝑟 = 𝑏𝑟∕(𝐽𝑟 + 𝑁𝐼)𝛺,

𝑇̄0 = 𝑇0∕(𝐽𝑟 +𝑁𝐼)𝛺2, 𝑇̄𝜃 = 𝑇𝜃∕(𝐽𝑟 +𝑁𝐼)𝛺2, 𝜏 = 𝛺𝑡, the equations of motion can be written as

1
𝑁

[ 𝑁
∑

𝑖=1
(𝑁 + 𝜇𝑥(𝑠𝑖))𝜃′′ + 𝜇

(

𝑧(𝑠𝑖) + 𝜂𝛾(𝑠𝑖)
)

𝑠𝑖
′′ + 𝜇𝑠′𝑖

(

𝑑𝑥(𝑠𝑖)
𝑑𝑠𝑖

(1 + 𝜃′) +
𝑑𝑧(𝑠𝑖)
𝑑𝑠𝑖

𝑠′𝑖 + 𝜂
𝑑𝛾(𝑠𝑖)
𝑑𝑠𝑖

𝑠′𝑖

)

]

+𝑏̄𝑟𝜃′ = 𝑇̄𝜃(𝜏 + 𝜃), (1a)

(

𝑧(𝑠𝑖) + 𝜂𝛾(𝑠𝑖)
)

𝜃′′ +
(

1 + 𝜂𝛾(𝑠𝑖)
2) 𝑠′′𝑖 + 𝜂𝛾(𝑠𝑖)

𝑑𝛾(𝑠𝑖)
𝑑𝑠𝑖

𝑠′𝑖
2 − 1

2
𝑑𝑥(𝑠𝑖)
𝑑𝑠𝑖

(

1 + 𝜃′
)2 + 𝑏̄𝑠′𝑖 = 0, 𝑖 = 1,… , 𝑁 (1b)

where (∙)′ denotes derivation with respect to 𝜏. Eq. (1a) is related to the motion of the rotor and the 𝑁 Eqs. (1b) represent the
motion of the pendulums. It is chosen to express the trajectory and rotation functions as polynomials such that

𝑥(𝑠𝑖) = 1 − 𝑛2𝑡 𝑠
2
𝑖 +

∞
∑

𝑘=3
𝑥[𝑘]𝑠

𝑘
𝑖 , 𝛼(𝑠𝑖) =

∞
∑

𝑘=0
𝛼[𝑘]𝑠

𝑘
𝑖 (2)

where 𝑛𝑡 is called the trajectory order of the pendulums and 𝑥[𝑘], 𝛼[𝑘] are trajectory and rotation coefficients. Note that in the case
𝑥[𝑘] = 0 ∀𝑘, the pendulums’ trajectories are epicycloids, which corresponds to the tautochronic trajectory for 𝜃 = 0 [2].

From now on, it is assumed that the fluctuating torque applied to the rotor contains only one harmonic. This is justified by the
fact that in reciprocating engines, the fundamental harmonic typically dominates the fluctuating torque. The non-dimensional form
of the fundamental torque harmonic is 𝑇̄1 cos[𝑛(𝜏 + 𝜃)] where 𝑛 is the engine order. For a car thermal engine, 𝑛 corresponds to the
number of strikes per revolution of the crankshaft. At this stage, 𝑇̄1 cos[𝑛(𝜏 + 𝜃)] is not a periodic forcing term but a non-linear term
as it depends on 𝜃. In the following, two methods are proposed to transform it into a periodic forcing term.

Method 1. One can use the change of independent variable 𝜏 → 𝜏 + 𝜃 proposed by S. Shaw et al. [29] to directly transform
𝑇̄1 cos[𝑛(𝜏 + 𝜃)] into a periodic forcing term. This choice is motivated by the fact that the explosions of a car engine do not depend
on time but on the angular position of the crankshaft (which is the same as that of the rotor). Though it adds non-linearities to the
system, this method is interesting as it does not require any hypothesis, thus keeping the equations exact.

Method 2. Another method is to express the fluctuating torque as a function of 𝜏 to write 𝑇̄1 cos((𝜔∕𝛺)𝜏) where 𝜔 is the angular
frequency of the acyclism. For a car engine, the excitation frequency must correspond to the number of strikes per second, leading
to 𝜔 = 𝑛(𝛺 + 𝜃̇) where ̇(∙) refers to a derivation with respect to time. It can be assumed that the fluctuating rotation velocity of the
crankshaft is much smaller than the mean rotation speed, i.e. 𝜃̇ ≪ 𝛺. It follows that 𝜔∕𝛺 ≈ 𝑛, leading to a trivial transformation of
the torque into a periodic forcing term.

3. Linear vibrations of the system

In this section, a linear analysis of the system is led. After transforming the external torque into a periodic forcing term using
Method 2 (cf. Section 2), one can linearise Eqs. (1a) and (1b) and then use a property of arrowhead matrices [30] to find that the
eigenorders and eigenvectors of the system are

𝑛00 = 0, 𝑛10 = 𝑛𝑝, 𝑛20 = 𝑛𝑝

√

√

√

√

√

1 + 𝜇

1 + 𝜇
(

1 − 𝛬2
𝑐

𝛬𝑚

)
, 𝝓𝟎𝟎 = [1, 0,… , 0]𝑇 , 𝝓𝟐𝟎 =

[

−
𝜇𝛬𝑐
1 + 𝜇

, 1,… , 1
]𝑇

,

𝝓𝟏𝟎𝒊 [𝑖 + 1] = −𝝓𝟏𝟎𝒊 [𝑖 + 2] = 1, 𝝓𝟏𝟎𝒊 [𝑗 ≠ {𝑖 + 1, 𝑖 + 2}] = 0, 𝑖 = 1,… , 𝑁 − 1.

(3)

Superscript 𝑇 denotes the transpose. 𝛬𝑚 and 𝛬𝑐 are constants representing the equivalent mass of a pendulum and the linear coupling
term between a pendulum and the rotor, respectively. They are given by

𝛬𝑚 = 1 + 𝜂𝛼2[1], 𝛬𝑐 = 1 + 𝜂𝛼[1] (4)

where 𝛼[1] is the linear rotation coefficient. 𝑛𝑝 is the eigenorder of the pendulums when the rotor is spinning at constant speed.
Considering the case 𝜃 = 0 and linearising Eqs. (1b), one finds that 𝑛𝑝 is related to 𝑛𝑡 such that

𝑛𝑝 = 𝑛𝑡𝛬
−1∕2
𝑚 . (5)



When a fluctuating torque is applied on the rotor, pendulums generate an antiresonance at order 𝑛𝑝 (in the conservative case).
Thus, for a fluctuating torque of order 𝑛, one must choose 𝑛𝑝 = 𝑛 to minimise the vibrations of the rotor (this can be extended to
the non-conservative case as damping is small). For this reason, 𝑛𝑝 is called the tuning order of the pendulums. It is interesting to
note that if 𝛼[1] ≠ 0, then 𝛬𝑚 > 1, leading to 𝑛𝑡 > 𝑛𝑝 (cf. Eqs. (4) and (5)). This means that the relative rotation of the pendulums
imposes an over-tuning of the trajectory order compared to the case of purely translated pendulums (for which 𝑛𝑡 = 𝑛𝑝).

𝝓𝟎𝟎 is a rigid body mode for which only the rotor is excited. 𝝓𝟏𝟎𝒊 are 𝑁 − 1 degenerated modes for which pendulums 𝑖 and
𝑖 + 1 are out of phase while other pendulums are immobile (𝑖 = 1,… , 𝑁 − 1). They are associated to the eigenvalue 𝑛10, which
has a multiplicity 𝑁 − 1 and the rotor is a node of these modes. Note that in the case 𝑁 = 2, 𝝓𝟏𝟎 is not degenerated and simply
corresponds to an out-of-phase motion of the pendulums. 𝝓𝟐𝟎 is a mode for which pendulums move in unison but in phase-opposition
with respect to the rotor (provided that 𝛬𝑐 > 0, which is the case in practice).

This section offers a linear analysis of the CPVA. However, it can be seen from Eqs. (1a) and (1b) that the dynamics of the
system is subject to several sources of non-linearity. In the following, an analytical model allowing the visualisation and prediction
of non-linear phenomena will be derived.

4. Simplification of the equations

Following S. Shaw et al. [4,7,31], the construction of the model starts with a scaling of the parameters, allowing a simplification of
the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. Since the displacement
of the pendulums will be considered small, the trajectory and rotation functions (2) are truncated so that

𝑥(𝑠𝑖) = 1 − 𝑛2𝑡 𝑠
2
𝑖 + 𝑥[4]𝑠

4
𝑖 + (𝑠6𝑖 ), 𝛼(𝑠𝑖) = 𝛼[1]𝑠𝑖 + 𝛼[3]𝑠

3
𝑖 + (𝑠5𝑖 ) (6)

will be used in the following computations. There are no odd powers of 𝑠𝑖 in 𝑥(𝑠𝑖) and no even powers in 𝛼(𝑠𝑖) so that these
two functions are symmetric (anti-symmetric, respectively) about 𝑠𝑖 = 0. It is the case in practice due to design constraints. The
fluctuating rotor’s rotation is a priori made of several harmonics such that it can be expanded as

𝜃 = 𝜃(1) + 𝜃(2) +𝐻𝑂𝑇 (7)

where 𝜃(1) and 𝜃(2) are the first and second harmonics, respectively, and 𝐻𝑂𝑇 refers to Higher Order Terms.

4.1. Scaling

In this subsection, the aim is to scale the weight of some parameters and variables so as to capture the desired physical
phenomena. The following hypothesis and remarks will govern the scaling:

• The optimum system configuration is that with small damping (both rotor’s and pendulums’ dampings). This way, the vibration
amplitude of the rotor at its antiresonance is very small.

• The fluctuating torque 𝑇𝜃 is small compared to the rotor’s kinetic energy (which is 𝐽𝑟𝛺2∕2 at equilibrium). This implies that
𝑇̄1 is small.

• The total pendulums’ geometric inertia about point 𝑂, 𝑁𝑚𝑅2
0, is considered small compared to the inertia of the total rotating

system, 𝐽𝑟 +𝑁𝐼 , such that 𝜇 is small.
• The rotor’s inertia being significant, the fluctuating rotation speed 𝜃̇ is small compared to the mean rotation speed. Note that

this hypothesis was already done in Section 3 to transform the external torque into a periodic excitation.
• The pendulums’ amplitude of motion is small compared to their distance from the centre of rotation 𝑂 such that 𝑠𝑖 are small.
• The trajectory function chosen (cf. Eq. (6)) is an epicycloid perturbed by 𝑥[4]𝑠4𝑖 . Considering the perturbation is small, 𝑥[4] is

a priori small.
• The rotation function chosen (cf. Eq. (6)) differs from a linear rotation by the term 𝛼[3]𝑠3𝑖 . Considering rotation is mainly linear,
𝛼[3] is a priori small.

Accordingly to the above and introducing the small parameter 𝜖, the following scaled parameters are introduced

𝑏̄ = 𝜖𝓁 𝑏̃, 𝑏̄𝑟 = 𝜖ℎ𝑏̃𝑟, 𝑇̄1 = 𝜖𝑟𝑇̃1, 𝜇 = 𝜖𝜙𝜇̃, 𝜃(1) = 𝜖𝑤1𝜃(1), 𝜃(2) = 𝜖𝑤2𝜃(2), 𝑠𝑖 = 𝜖𝜈 𝑠̃𝑖, 𝑥[4] = 𝜖𝑝𝑥̃[4], 𝛼[3] = 𝜖𝑞 𝛼̃[3] (8)

where 𝓁, ℎ, 𝑟, 𝜙, 𝑤1, 𝑤2, 𝜈, 𝑝 and 𝑞 are scaling coefficients to be determined. In order to give a physical meaning to 𝜖, one can
choose to set 𝜖 = 𝜇 [4].

4.2. Rotor’s dynamics

The aim here is to obtain an equation governing the rotor’s dynamics as a function of the pendulums’ and the external torque.
Introducing the trajectory and rotation functions (6), the expanded form of 𝜃 (7) and the scaled parameters (8) in the rotor’s Eq. (1a)
and setting 𝑟 = 𝜙 + 𝜈, one can write

𝜖𝑤1𝜃(1)′′ + 𝜖𝑤2𝜃(2)′′ = 𝜖𝑟
[

𝑇̃1 cos(𝑛𝜏) +
𝑛2𝑝𝜇̃𝛬𝑐

𝑁

𝑁
∑

𝑖=1
𝑠̃𝑖

]

+ 𝜖𝑟+𝜈
2𝜇̃𝑛2𝑡
𝑁

𝑁
∑

𝑖=1
𝑠̃𝑖𝑠̃

′
𝑖 + (𝜖𝜙+𝑤1 , 𝜖ℎ+𝑤1 , 𝜖𝜙+3𝜈). (9)



Note that the external torque was transformed into a periodic forcing term using Method 2 (cf. Section 2). Eq. (9) uses the pendulums’
equation at first order 𝑠̃′′𝑖 = −𝑛2𝑝 𝑠̃𝑖 (assuming 𝜈 < 𝑤1).

Eq. (9) is similar to that obtained if the change of independent variable 𝑡 → 𝜏 + 𝛺 had been used. The two differences would
be that (∙)′ would denote derivation with respect to 𝜏 + 𝜃 and the torque term which would be 𝑇̃1 cos[𝑛(𝜏 + 𝜃)]. However, using the
chain rule, one can observe

𝜕
𝜕𝜏

= 𝜕
𝜕(𝜏 + 𝜃)

+ (𝜖𝑤1 ), 𝜕2

𝜕𝜏2
= 𝜕2

𝜕(𝜏 + 𝜃)2
+ (𝜖𝑤1 ) (10)

so that at the order retained in Eq. (9), derivatives with respect to 𝜏 and 𝜏 +𝜃 are equivalent. Moreover, expanding the torque term,
one can notice

𝑇̃1 cos[𝑛(𝜏 + 𝜃)] = 𝑇̃1 cos(𝑛𝜏) + (𝜖𝑟+𝑤1 ). (11)

This means that at the order retained in Eq. (9) and assuming 𝑤2 < 𝑟 +𝑤1, it is equivalent to transform the torque into a periodic
forcing term using the change of independent variables 𝑡 → 𝜏 + 𝜃 (cf. Method 1 in Section 2) or assuming 𝜔∕𝛺 ≈ 𝑛 (cf. Method 2 in
Section 2).

4.3. Pendulums’ dynamics

The aim here is to uncouple the pendulums’ dynamics from the rotor’s. To do so, the rotor’s simplified Eq. (9) is introduced in
the pendulums’ Eq. (1b). Then, using the trajectory and rotation functions (6) and choosing the set of scaling coefficients

𝜙 = 𝓁 = 1, 𝜈 = 1∕2, 𝑝 = 𝑞 = 0, 𝑟 = 3∕2, (12)

the pendulums’ equation reduces to

𝑠̃′′𝑖 + 𝑛2𝑝 𝑠̃𝑖 = −𝜖𝛬−1
𝑚

[

−2𝑥̃[4]𝑠̃3𝑖 + 6𝜂𝛼[1]𝛼̃[3](𝑠̃2𝑖 𝑠̃
′′
𝑖 + 𝑠̃𝑖𝑠̃

′2
𝑖 ) + 𝑏̃𝑠̃′𝑖 + 𝛬𝑐

(

𝑇̃1 cos(𝑛𝜏) +
𝑛2𝑝𝜇̃𝛬𝑐

𝑁

𝑁
∑

𝑗=1
𝑠̃𝑗

)]

+𝐻𝑂𝑇 . (13)

The set of scaling parameters was chosen to uncouple the pendulums’ equation from the rotor’s dynamics while keeping the effect of
the non-linearities coming from both the trajectory and rotation functions. Eq. (13) contains the influence of the external torque, the
coupling between pendulums through the sum over 𝑁 , and non-linearities coming from both the trajectory and the rotation. It is also
interesting to note that because pendulums are identical and coupled, the system exhibits 1:1 internal resonances [32–34]. Eqs. (13)
are weakly coupled because pendulums are coupled indirectly through the rotor and their effect on the rotor is small as their relative
inertia is small [31]. Moreover, these equations are weakly non-linear because 𝑠𝑖 were assumed small and the trajectory and rotation
functions chosen (cf. Eq. (6)) are close to an epicycloid and a linear rotation, which render a linear behaviour for small fluctuations
of the rotational speed. Note that the hypothesis and choice of scaling parameters of this study allows to investigate exclusively
the effect of non-linearities due to the trajectory and rotation functions. Other sources of non-linearities, such as those arising from
the coupling between the rotor and the pendulums, are missed in the present study. To account for those, other hypothesis can be
made, as it is done in [3,5].

5. Solving the simplified equations and stability analysis

5.1. Application of the method of multiple scales

In the present study, the choice is made to solve the pendulums’ simplified equations using the method of multiple scales [35].
Two time scales are introduced, 𝜏0 = 𝜏 and 𝜏1 = 𝜖𝜏. As it was done previously for the rotor, the pendulums’ displacement is expanded
such that

𝑠̃𝑖(𝜏) = 𝑠̃(1)𝑖 (𝜏0, 𝜏1) + 𝜖𝑠̃(3)𝑖 (𝜏0, 𝜏1) +𝐻𝑂𝑇 (14)

where 𝑠̃(1)𝑖 and 𝑠̃(3)𝑖 represent the first and third harmonics, respectively. Inserting Eq. (14) in Eq. (13) yields a solution for 𝑠̃(1)𝑖 of the
form

𝑠̃(1)𝑖 = 𝑎𝑖(𝜏1) cos
(

𝑛𝜏0 − 𝜉𝑖(𝜏1)
)

(15)

where amplitudes 𝑎𝑖 and relative phases 𝜉𝑖 are governed by the 2𝑁 equations system
{

𝐷1𝑎𝑖 = 𝑓𝑎𝑖 (𝒂, 𝝃), (a)
𝑎𝑖𝐷1𝜉𝑖 = 𝑓𝜉𝑖 (𝒂, 𝝃). (b) (16)

𝒂 and 𝝃 are vectors containing the 𝑎𝑖 and 𝜉𝑖, respectively, and 𝐷1 denotes derivation with respect to 𝜏1. Functions 𝑓𝑎𝑖 and 𝑓𝜉𝑖 are
given by

𝑓𝑎𝑖 (𝒂, 𝝃) = − 1
2𝛬𝑚𝑛𝑝

⎡

⎢

⎢

⎢

⎣

𝛬𝑐 𝑇̃1 sin(𝜉𝑖) + 𝑛𝑝𝑏̃𝑎𝑖 +
𝛬2
𝑐𝑛

2
𝑝𝜇̃

𝑁

𝑁
∑

𝑗=1
𝑗≠𝑖

𝑎𝑗 sin(𝜉𝑖 − 𝜉𝑗 )

⎤

⎥

⎥

⎥

⎦

, (17a)



𝑓𝜉𝑖 (𝒂, 𝝃) = 𝜎𝑎𝑖 −
1

2𝛬𝑚𝑛𝑝

⎡

⎢

⎢

⎢

⎣

𝛬𝑐 𝑇̃1 cos(𝜉𝑖) +
𝛬2
𝑐𝑛

2
𝑝𝜇̃

𝑁

⎛

⎜

⎜

⎜

⎝

𝑎𝑖 +
𝑁
∑

𝑗=1
𝑗≠𝑖

𝑎𝑗 cos(𝜉𝑖 − 𝜉𝑗 )

⎞

⎟

⎟

⎟

⎠

−
𝑐𝑝
2
𝑎3𝑖

⎤

⎥

⎥

⎥

⎦

, (17b)

where 𝜎 is a detuning term such that 𝑛 = 𝑛𝑝 + 𝜖𝜎 and 𝑐𝑝 is a non-linear coefficient related to the perturbation of the trajectory and
rotation functions. It is defined as

𝑐𝑝 = 3(𝑥̃[4] + 2𝑛2𝑝𝜂𝛼[1]𝛼̃[3]). (18)

In the frame of the study led in this paper, only the steady-state regime is considered. This implies that the pendulums’ amplitude
and their phase relative to the excitation is time-invariant, such that

𝐷1𝑎𝑖 = 0, 𝐷1𝜉𝑖 = 0. (19)

Introducing Eq. (19) in Eq. (16) leads to the system
{

0 = 𝑓𝑎𝑖 (𝒂, 𝝃), (a)
0 = 𝑓𝜉𝑖 (𝒂, 𝝃), (b) (20)

which is to be solved to determine the pendulums’ response.

5.2. Reduction to a single mode

It was observed in Section 3 that, in a linear regime, a single mode participates to the pendulums’ response. This linear mode, 𝝓𝟐𝟎,
can be called ‘‘unison mode’’ as it describes a motion for which all pendulums have the same amplitude and phase. As the behaviour
considered in this section is weakly non-linear, it can be expected that pendulums will move at unison. Thus, it is assumed that

𝑎𝑖 = 𝑎, 𝜉𝑖 = 𝜉. (21)

Introducing Eq. (21) in Eq. (20), one can find the following order response of pendulums at unison

𝜎 = 1
2𝛬𝑚𝑛𝑝

⎡

⎢

⎢

⎣

𝛬2
𝑐𝑛

2
𝑝𝜇̃ −

𝑐𝑝
2
𝑎2 ±

√

𝛬2
𝑐

𝑇̃ 2
1

𝑎2
− 𝑛2𝑝 𝑏̃2

⎤

⎥

⎥

⎦

. (22)

The backbone of the non-linear unison mode can be deduced from Eq. (22) as 𝑛2 = 𝑛𝑝 + 𝜖 𝜎|𝑇̃1=𝑏̃=0. It is interesting to note that the
hardening or softening behaviour of the pendulums is governed by the sign of 𝑐𝑝. This property will later be used to specify design
rules (cf. Section 7). Introducing Eq. (21) in Eq. (20), one can also find the following torque response

𝑇̃1 =
𝑎
𝛬𝑐

[

𝑐2𝑝
4
𝑎4 + 2𝑐𝑝𝑛𝑝

(

𝛬𝑚𝜎 −
𝛬2
𝑐
2
𝜇̃𝑛𝑝

)

𝑎2 + 4𝛬2
𝑚𝑛

2
𝑝𝜎

2 + 𝑛2𝑝 𝑏̃
2 − 𝑛3𝑝𝜇̃𝛬

2
𝑐
(

4𝛬𝑚𝜎 − 𝛬2
𝑐𝑛𝑝𝜇̃

)

]1∕2

. (23)

Computing the amplitude response allows accessing the phase response, given by

tan(𝜉) = −2𝑛𝑝𝑏̃
[

4𝛬𝑚𝑛𝑝𝜎 − 2𝛬2
𝑐𝑛

2
𝑝𝜇̃ + 𝑐𝑝𝑎

2
]−1

. (24)

Then, using the results for 𝑎 and 𝜉 and the rotor’s simplified Eq. (9), one can compute the amplitude of the two first harmonics of
the rotor, given by

|

|

|

𝜃(1)′′||
|

=
√

𝑇̃ 2
1 + 𝑛4𝑝𝜇̃2𝛬2

𝑐𝑎2 + 2𝑇̃1𝑛2𝑝𝜇̃𝛬𝑐𝑎 cos(𝜉), (25)

|

|

|

𝜃(2)′′||
|

= 𝜇̃𝑛𝑛2𝑡 𝑎
2. (26)

Eq. (26) highlights that non-linear effects induced by the pendulums generate higher order harmonics of the rotor (at the order
retained, only the 2nd harmonic, related to Coriolis effects, is present).

5.3. Stability analysis

The stability of the response is now assessed. First, system (16) can be rewritten as
{

𝐷1𝑎𝑖 = 𝑓𝑎𝑖 (𝒂, 𝝃), (a)
𝐷1𝜉𝑖 = 𝑓 ∗

𝜉𝑖
(𝒂, 𝝃), (b) (27)

with 𝑓 ∗
𝜉𝑖
(𝒂, 𝝃) = 𝑓𝜉𝑖 (𝒂, 𝝃)∕𝑎𝑖. Then, the Jacobian of system (27) is computed and evaluated on the unison solution at steady state,

yielding a 2𝑁 × 2𝑁 block circulant matrix such that

𝑱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑱 𝟏 𝑱 𝟐 ⋯ 𝑱 𝟐
𝑱 𝟐 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝑱 𝟐
𝑱 𝟐 ⋯ 𝑱 𝟐 𝑱 𝟏

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑱 𝟏 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑓𝑎𝑖
𝜕𝑎𝑖

𝜕𝑓𝑎𝑖
𝜕𝜉𝑖

𝜕𝑓 ∗
𝜉𝑖

𝜕𝑎𝑖

𝜕𝑓 ∗
𝜉𝑖

𝜕𝜉𝑖

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑱 𝟐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑓𝑎𝑖
𝜕𝑎𝑗

𝜕𝑓𝑎𝑖
𝜕𝜉𝑗

𝜕𝑓 ∗
𝜉𝑖

𝜕𝑎𝑗

𝜕𝑓 ∗
𝜉𝑖

𝜕𝜉𝑗

⎤

⎥

⎥

⎥

⎥

⎦

. (28)



𝑱 𝟏 represents the effect of a perturbation of the 𝑖th pendulum on itself while 𝑱 𝟐 represents the effect that a perturbation of the 𝑗th
pendulums has on the 𝑖th one (with 𝑗 ≠ 𝑖). The 2𝑁 eigenvalues of 𝑱 are given by the 2 eigenvalues of [𝑱 𝟏 + (𝑁 − 1)𝑱 𝟐] and the 2
eigenvalues of [𝑱 𝟏 − 𝑱 𝟐] with multiplicity 𝑁 − 1 [36]. Instabilities appear when the real part of at least one of the eigenvalues of 𝑱
changes sign. The limits of the instabilities are given by

det[𝑱 𝟏 + (𝑁 − 1)𝑱 𝟐] = 0, (29a)

det[𝑱 𝟏 − 𝑱 𝟐] = 0, (29b)

and because the trace of [𝑱 𝟏+(𝑁−1)𝑱 𝟐] and [𝑱 𝟏−𝑱 𝟐] is always negative, the solution is unstable when at least one of the determinants
in Eq. (29) is negative.

The determinants in Eq. (29) indicate instabilities of different nature. Consider just for a moment that there is only one pendulum,
i.e. 𝑁 = 1. Then, condition (29a) reduces to det[𝑱 𝟏] = 0 and condition (29b) is undefined as 𝑱 𝟐 is undefined (𝑱 𝟐 exists only when
𝑁 > 1). For a given excitation amplitude, det[𝑱 𝟏] = 0 corresponds to a pair of saddle–node bifurcations between which the periodic
solution is unstable. This is analogous to a classic Duffing-like bent resonance with jump phenomena [37]. By continuity, when
𝑁 > 1, condition (29a) still indicates saddle–node bifurcations. Instabilities associated to condition (29b) arise only when several
pendulums are considered, so that they are related to a loss of unison [4]. Thus, for a given excitation amplitude, condition (29b)
corresponds to a pair of pitchfork bifurcations between which the pendulums’ response is localised on one or more pendulums.

The critical pendulums’ amplitudes corresponding to saddle–node bifurcations are the solutions of condition (29a) and are given
by

𝑎𝑠𝑛 =

√

√

√

√

√

−8𝜎𝛬𝑚𝑛𝑝 + 4𝛬2
𝑐𝑛2𝑝𝜇̃ ± 2𝑛𝑝

√

(

2𝜎𝛬𝑚 − 𝑛𝑝𝛬2
𝑐 𝜇̃

)2 − 3𝑏̃2

3𝑐𝑝
. (30)

Similarly, the critical pendulums’ amplitudes corresponding to pitchfork bifurcations are the solutions of condition (29b) and are
given by

𝑎𝑝𝑓 =

√

√

√

√

√

−8𝜎𝛬𝑚𝑛𝑝 ± 2𝑛𝑝
√

4𝜎2𝛬2
𝑚 − 3𝑏̃2

3𝑐𝑝
. (31)

These critical amplitudes are depicted in Fig. 3. It is interesting to note that the critical amplitudes 𝑎𝑠𝑛 and 𝑎𝑝𝑓 tend to infinity as
𝑐𝑝 tends to zero. This observation will come useful in Section 7. Moreover, the critical amplitudes are independent of the forcing
amplitude 𝑇̃1.

5.4. Limits of the model

It is of importance to bear in mind that the previous analytical computations involve assumptions that limit the range of validity
of the model. One of the approximations of the non-linear model is exposed in details below and an order of magnitude of the
non-dimensional parameters that can be used in the model is given. The backbone of the unison mode (cf. Section 5.2) evaluated
for zero pendulums’ displacement is a Taylor expansion of the linear eigenvalue 𝑛20 (cf. Eq. (3)) with respect to 𝜇 such that

𝑛20 = 𝑛𝑝 + 𝜇
𝑛𝑝𝛬2

𝑐

2𝛬𝑚
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

backbone at 𝑎=0

+𝜇2 𝑛𝑝
8

𝛬2
𝑐

𝛬𝑚

(

3
𝛬2
𝑐

𝛬𝑚
− 4

)

+ (𝜇3), (32)

where the backbone contains only the two first terms. For the analytical model to be accurate, one needs the third term to be
negligible. Eq. (32) allows to write an approximated condition on 𝜇 such that the relative error on the backbone at 𝑎 = 0 does not
exceed 100𝜒 %. It is given by

𝜇 <

𝜒 +

√

𝜒2 + 8𝜒
|

|

|

|

|

3
4
−

𝛬𝑚

𝛬2
𝑐

|

|

|

|

|

2
|

|

|

|

|

3𝛬2
𝑐

4𝛬𝑚
− 1

|

|

|

|

|

. (33)

In Section 4.1, 𝜇 was proposed as the small perturbation parameter of the perturbation analysis. Thus, one can chose 𝜇 = 𝜖, yielding
an order of magnitude not to be overpassed for every small parameter.

6. Case study and numerical validation

The former developments are now applied on a system of two pendulums. The aim is to present the main assets of the analytical
model and to compare them with an exact (numerical) resolution of the equations of motion (1a) and (1b) as a first validation. To
perform the numerical resolution, the change of independent variable 𝜏 → 𝜏 + 𝜃 is introduced in Eqs. (1a) and (1b) to transform
the torque into a periodic forcing term while keeping the equations exact (cf. Method 1 in Section 2). Two different numerical
resolutions are used in this paper:



Fig. 2. CPVA studied (only one of the two pendulums is represented, the architecture being symmetric).

Table 1
Parameters of the CPVA studied in this section.
𝑁 𝑛𝑝 𝜂 𝜇 𝑥[4] 𝛼[1] 𝛼[3] 𝑏̄ 𝑏̄𝑟
2 0.5 1.4 0.1 −4.2 1.33 0.06 0.16 0.002

• The equations are integrated numerically using a Runge–Kutta algorithm until the steady state is reached. Then, the signals’
amplitudes are obtained through a decomposition into Fourier series.

• The equations are solved with MANLAB, which is a path-following and bifurcation analysis software [38].

The CPVA studied in this section is represented in Fig. 2 and its parameters are given in Table 1. Its low tuning order (𝑛𝑝 = 0.5)
makes it well suited for filtering out vibrations arising from cylinders deactivation. The CPVA is made of two monofilar pendulums
(only one is represented in Fig. 2). The profile of a pendulum rolls without slipping on a roller of radius 𝑟1 (fixed on the rotor). The
shape of the profile allows to control the trajectory followed by the pendulum’s centre of mass. For such pendulums, the rotation
function 𝛼(𝑠𝑖) is governed by the functional geometry. The two first rotation coefficients are

𝛼[1] =
𝑅0

𝑅0 − 𝑅𝑂1
+ 𝑟1

, (34)

𝛼[3] = 𝛼[1]
𝑅𝑂1

(

1 + 𝑛2𝑡
)2 − 𝑅0𝑛2𝑡

(

1 + 𝑛2𝑡
)

− 𝛼[1]𝑅𝑂1

(

1 + 𝑛2𝑡
)

+ 𝛼[1]𝑅0𝑛2𝑡

6
(

𝑅𝑂1
− 𝑅0 + 𝛼[1]𝑅−1

0

(

(

𝑅0 − 𝑅𝑂1

)2
− 𝑟21

)) . (35)

6.1. Evaluation of the stability as function of mistuning

In practice, the excitation order is fixed such that 𝑛 = 𝑐𝑡𝑒. However, pendulums may not be tuned exactly to the excitation.
This mistuning can be intentional or may arise from material imperfections. Either way, varying the excitation order is similar to
introducing mistuning (provided that pendulums are equally mistuned) and is therefore relevant for studying the effect of mistuning
on the system’s response [8]. The order response of pendulums at unison and their stability is shown in Fig. 3 for several torque
amplitudes. The bending of the response indicates that pendulums exhibit a hardening behaviour. The bifurcation zones (unstable
unison in red and unstable periodic response in blue), delimited by the bifurcation curves (30) and (31), are shown. The zone
corresponding to simultaneous unstable unison and unstable periodic responses is represented in purple while stable responses are
represented in green. The same colour code will be used throughout this paper. For small torque amplitudes, the response is almost
linear so that no stability changes will occur. As the torque amplitude is increased, the unison response crosses the bifurcation
curves, leading to a different stability state.

6.2. Visualisation of the stability in the design space

An original visualisation of the pendulums’ stability in the design space is now presented. This space allows to assess the stability
of pendulums of the same type but with different sets of parameters (𝑥[4], 𝛼[1], 𝛼[3]). In the general case, it is thus a 3D space. However,



Fig. 3. Order response of the pendulums at unison and their stability. Portions of the response curves corresponding to stable unison, unstable unison and unstable
periodic responses are represented in green, red and blue, respectively. Portions where both the unison and the periodic response are unstable are represented in
purple. Additionally, all unstable portions are shown as dashed-lines. The black and grey curves represent the pitchfork and saddle–node bifurcations, respectively.
𝑇̄1 = {0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.3, 1.6, 2, 2.4} × 10−2.

Fig. 4. Representation of the stability in the design space (𝛼[1] , 𝑥[4]). The colour code is the same as that used in Fig. 3, so that areas corresponding to stable
unison, unstable unison and unstable periodic responses are represented in green, red and blue, respectively. Areas where both the unison and the periodic
response are unstable are represented in purple. The black dot corresponds to the design represented in Fig. 3. The black curve represents designs rendering
a linear behaviour. The hatched regions indicate non-achievable designs. 𝑛 = 0.63, 𝑅𝑂1

∕𝑅0 = 0.422. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

for the CPVA presented in Fig. 2, the rotation is imposed by the functional geometry causing 𝛼[3] to be related to 𝛼[1]. Moreover,
due to space constraints, it is convenient to evaluate designs for a fixed value of the ratio 𝑅𝑂1

∕𝑅0. Thus, using Eqs. (34) and (35),
one can get 𝛼[3] as a function of 𝛼[1], which reduces the design space to a 2D space. This method is used to represent the stability of
pendulums of the same type as that depicted in Fig. 2 under the form of maps, shown in Fig. 4. Each map is represented for a given
amplitude and a given excitation order. Colours represent the stability (the colour code is the same as that used previously). The
black line represents designs for which the values of 𝑥[4], 𝛼[1] and 𝛼[3] render the system linear (cf. Section 7). The meaning of the
hatched regions will be defined later. The black dot corresponds to the design shown in Fig. 3 so that it is fixed in the design space.
This specific design passes through several stability states as the amplitude of motion increases. This could already be observed
looking at Fig. 3 for 𝑛 = 0.63. The purpose of the representation in the design space is to identify designs which are likely or not



Fig. 5. Comparison of the pendulums’ response (a) and rotor’s response (b) obtained analytically and numerically. The colour code of the analytical results is
the same as that used in Fig. 3. Circles represent the numerical results obtained through temporal integrations. In (a), one of the pendulums is represented by
blue circles, the other by orange ones. The MANLAB solution is given as a black line with cross markers. Bifurcation points found with MANLAB are marked as
black stars with an associated code name. Code names ‘‘PF’’ and ‘‘SN’’ refer to ‘‘pitchfork’’ and ‘‘saddle–node’’ bifurcations, respectively. 𝑇̄1 = 0.01.

to exhibit instabilities. For instance, the upper central region delimited by the black curve on the maps remains stable over the
amplitude range represented. This remark will be further discussed in Section 7. Note that there seems to be an artefact on the
maps around 𝛼[1] = 1.7. However, this simply corresponds to a value of 𝛼[1] for which 𝑟1 tends to zero, causing 𝛼[3] to tend to ∞.
Above this threshold value of 𝛼[1], 𝑟1 is negative, which is non-physical (remind that 𝑟1 is a radius so that it should not be negative).
Similarly, 𝑟1 is negative for 𝛼[1] < 0. The hatched regions thus correspond to non-achievable designs.

6.3. Comparison with a numerical model

In this section, the analytical model is compared with an exact resolution of Eqs. (1a) and (1b). The pendulums’ response obtained
through the analytical and numerical models is presented in Fig. 5(a). Like what was observed in the case of absorbers with a pure
translation motion [8], the unison mode looses its stability through a pitchfork bifurcation in favour of a localised response. The
bifurcation point, theoretically located at the intersection of the black curve and the unison response, is accurately predicted by the
model. After this bifurcation, the response divides into two branches so that energy is localised on one of the two pendulums. The
pendulum located on the upper branch has a larger amplitude of motion than that predicted by the unison mode, which can be
an issue as the maximum amplitude is limited by the nature of the trajectory chosen. This being said, one can see in Fig. 5(a) that
the upper branch is close to the (unstable) unison response. Thus, in the case considered here, the risk of reaching the maximum
amplitude is not significantly increased by the localisation. The jump located at 𝑛 ≈ 0.65 is also well predicted by the model. The
amplitude of the stable solution is very well predicted by the analytical model. However, comparing with the MANLAB results,
one can see that the analytical model overestimates the unstable solution. Similarly, the bifurcation points located on the unstable
solution are not well predicted (especially the saddle–node bifurcation, which is theoretically located at the right intersection of
the grey curve and the unison response, around 𝑛 ≈ 0.69). The reason for those discrepancies is that the amplitude on the unstable
solution is rather large, so that some of the non-linear terms that were dropped in the analytical model have a non-negligible effect.
Moreover, the analytical solution is based on a perturbation method around 𝑛 = 𝑛𝑝 (cf. Section 5.1), so that less accuracy can be
expected as 𝑛 departs from 𝑛𝑝. This being said, an accurate prediction of the stable solution and the two bifurcation points at 𝑛 ≈ 0.54
and 𝑛 ≈ 0.65 is the most important point, as only those will be observed in practice. The difference both in phase and amplitude of
the pendulums’ localised responses is visible on the temporal signals given in Fig. 6(a).

Fig. 5(b) shows a comparison of the rotor’s response obtained through the analytical and numerical models. Again, the analytical
model allows an accurate prediction of the rotor’s response on its stable (green) portions. Surprisingly, portions for which pendulums
are not in unison are also well predicted by the model, even though the model uses only the unison mode. This is an interesting
point, as it tends to show that localisation does not necessarily impact the rotor’s dynamics. Looking at the response of 𝜃(1), one
can see that the non-linearity shifted the antiresonance so that it does not correspond to the linear tuning order 𝑛𝑝. This problem is
considered in [39]. The distortion of 𝜃′′ coming from the presence of 𝜃(2) (and in a smaller amount, higher harmonics), can be seen
in Fig. 6(b).



Fig. 6. Temporal signals (truncated) of the pendulums (a) and rotor (b) obtained through a numerical integration of the equations of motion. These signals lead
to the amplitudes shown in Fig. 5 at 𝑛 = 0.65.

Fig. 7. Pendulums’ order response exhibiting non-periodic localised solutions. The colour code of the analytical results is the same as that used in Fig. 3. Circles
represent the numerical results. One of the pendulums is represented by blue circles, the other by orange ones. 𝑏̄ = 0.063, 𝑇̄1 = 0.01. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Temporal signal (truncated) of the pendulums obtained through a numerical integration of the equations of motion. These signals correspond to the
quasi-periodic portion of Fig. 7 at (a) 𝑛 = 0.621 and (b) 𝑛 = 0.631.

Other sets of system parameters can lead to solutions more complicated than the ones presented in Fig. 5. For instance, Fig. 7
shows the pendulums’ response for a smaller damping than previous simulations, but unchanged other parameters. As in Fig. 5,
the response divides into branches through a pitchfork bifurcation. In Fig. 7, those branches are broken into three parts. Localised
responses might be subject to instabilities such as jumps of the response [6,7], which explains the discontinuity observed around
𝑛 = 0.55. Between 𝑛 ≈ 0.59 and 𝑛 ≈ 0.65, no numerical results are shown because the corresponding time signals are not periodic.
Two of those temporal signals are represented in Fig. 8. Fig. 8(a) shows a solution for which energy localisation is visible but
the amplitude of the two pendulums is modulated. Such quasi-periodic solutions appear through Neimark-Sacker bifurcations [8].



Fig. 9. Behaviour of the response according to the value of 𝑥[4]. (a) softening, 𝑥[4] = 4.2, (b) linear, 𝑥[4] = −0.0561, (c) hardening, 𝑥[4] = −4.2. The limits of the
bifurcation zones in the undamped case are represented with dashed lines. 𝑇̄1 = 0.01 and system parameters are given in Table 1. The colour code is the same
as that used in Fig. 3. The black and grey dots indicate the points corresponding to 𝑛(𝑣)𝑑 and 𝑛(𝑣)𝑗 , respectively. The black and grey diamonds indicate the points
corresponding to 𝑛(ℎ)𝑑 and 𝑛(ℎ)𝑗 , respectively.

The quasi-periodic solution represented in Fig. 8(b) seems to highlight energy exchanges between the two pendulums, causing the
response to be localised successively on each pendulum.

7. Design rules

As discussed in the previous sections, the expected unison motion of pendulums can be broken in favour of more complex regimes.
When it arises, desynchronisation leads to an undesired behaviour where one or more pendulums oscillate with an amplitude larger
than if they were at unison. This might decrease the efficiency of the vibration absorption and it can lead to impact noise issues
if the pendulums hit their cusp point. Additionally, impact non-linearities would greatly change the dynamics of the system. This
section proposes several design rules allowing to avoid instabilities of the system.

As seen in Section 5.2, the hardening or softening behaviour of the pendulums is governed by the sign of 𝑐𝑝. Setting this coefficient
to zero renders the pendulums’ response linear (cf. Eqs. (22) and (23)) so that the limits of the instability zones tend towards infinity
(cf. Eqs. (30) and (31)). Thus, the design rule

𝑐𝑝 = 0 ⇔ 𝑥[4] = −2𝜂𝛼[1]𝛼[3]𝑛2𝑝 (36)

is proposed. Physically, this rule means that the non-linearities coming from the trajectory and rotation counterbalance to render
the system almost linear. The only non-linearity remaining is that related to Coriolis effects in the rotor’s Eq. (9) which generates
𝜃(2) [40]. Note that the special case 𝑥[4] = 𝛼[3] = 0 is that studied in Section 3: it corresponds to an epicycloidal trajectory and a
linear rotation function.

Relation (36) is represented by a black line in the maps of Figs. 4 and 10. The inner region delimited by this line corresponds to
softening behaviours whilst the outer region corresponds to hardening ones. For large amplitudes of motion, the instability regions
tend to embrace the black curve. This interesting remark will be discussed later in this section. Eq. (36) is also represented in Fig. 9,
along with other values of 𝑥[4] yielding softening and hardening behaviours.

If Eq. (36) cannot be fulfilled, other recommendations can be proposed. These recommendations use the vertical and horizontal
tangents of the bifurcation curves (30) and (31), whose corresponding orders are given by

𝑛(𝑣)𝑗 = 𝑛2||𝑎=0 ±
𝑏̄
√

3
2𝛬𝑚

, 𝑛(ℎ)𝑗 = 𝑛2||𝑎=0 ±
𝑏̄
𝛬𝑚

, 𝑛(𝑣)𝑑 = 𝑛𝑝 ±
𝑏̄
√

3
2𝛬𝑚

, 𝑛(ℎ)𝑑 = 𝑛𝑝 ±
𝑏̄
𝛬𝑚

. (37)

Subscripts 𝑗 and 𝑑 are related to the jumps and the desynchronisation of the response, respectively. Superscripts 𝑣 and ℎ indicate
a vertical and horizontal tangent, respectively. + and − solutions correspond to hardening and softening behaviours, respectively.
𝑛2||𝑎=0 is the backbone of the unison mode evaluated for zero pendulums’ displacement (cf. Eq. (22)). Points corresponding to Eq. (37)



Fig. 10. Representation of the stability in the design space (𝛼[1] , 𝑥[4]) for three different tuning levels: 𝑛 = 0.4 (over-tuning), 𝑛 = 0.6 (under-tuning) and 𝑛 = 0.5
(perfect tuning). The other system parameters are given in Table 1. The colour code is the same as that used in Fig. 3. The black curve represents designs
rendering a linear behaviour. Each map is represented for |𝑠(1)| = 0.3 and 𝑅𝑂1

∕𝑅0 = 0.422.

are represented with black and grey dots and diamonds in Fig. 9. Vertical tangents indicate the minimum level of mistuning for
the response to become unstable whilst horizontal tangents indicate the minimum amplitude for which the response enters into an
instability zone. Note that the torque level corresponding to these tangents can be obtained using Eqs. (37), (30), (31), and (23).
Looking at the vertical tangents, one can see that in the hardening case, 𝑛𝑝 < 𝑛(𝑣)𝑑 < 𝑛(𝑣)𝑗 , whilst in the softening case, 𝑛(𝑣)𝑑 < 𝑛𝑝 < 𝑛(𝑣)𝑗
or 𝑛(𝑣)𝑑 < 𝑛(𝑣)𝑗 < 𝑛𝑝. This means that hardening pendulums do not exhibit instabilities as long as 𝑛 ≤ 𝑛𝑝 (i.e. they are perfectly
tuned or over-tuned). Similarly, softening pendulums do not exhibit unison instabilities as long as 𝑛 ≥ 𝑛𝑝 (i.e. they are perfectly
tuned or under-tuned). These softening pendulums are however very likely to be subject to jumps even if they are perfectly tuned or
under-tuned. This happens if 𝑛(𝑣)𝑗 > 𝑛𝑝, which is the case in general as damping is small. These remarks are illustrated in Fig. 9 where
one can see that the limit of the non-unison zones (black curves) do not cross the vertical line 𝑛 = 𝑛𝑝, whilst the limit of the unstable
periodic response (grey curves) crosses it in the softening case. These results are consistent with those obtained considering purely
translated undamped pendulums [7]. Moreover, one can see from Eq. (37) that 𝑛(𝑣)𝑑 and 𝑛(ℎ)𝑑 tend to 𝑛𝑝 as damping is reduced.
In other words, the small-damping configuration is the most critical one as a very small level of mistuning can lead to a loss of
unison. Similarly, 𝑛(𝑣)𝑗 and 𝑛(ℎ)𝑗 tend to 𝑛2||𝑎=0 as damping is reduced. This is visible in Fig. 9, where the limit of the instability zones
corresponding to the undamped case are represented with dashed lines.

As remarked previously, the maps presented in Fig. 4 show that the instability regions tend to embrace the black line
corresponding to Eq. (36) without crossing it. The situation depicted in those maps corresponds to 𝑛𝑝 < 𝑛, with 𝑛 sufficiently large
so that only hardening pendulums exhibit instabilities, which explains why the instability regions are contained in the outer zone
delimited by the black line. Moreover, the instability regions tend towards the black line because, for large amplitudes of motion,
the response can be unstable only if the critical amplitudes described by Eqs. (30) and (31) are large. These critical amplitudes
get higher as the non-linearity reduces, thus explaining why the instability regions approach the black line at large amplitudes of
motion. Indeed, one can see that as 𝑐𝑝 → 0, the critical amplitudes 𝑎𝑝𝑓 and 𝑎𝑠𝑛 (cf. Eqs. (30) and (31)) tend to infinity.

Three different tuning levels (over-tuning, under-tuning and perfect tuning of the pendulums) are represented in the design space
in Fig. 10 to illustrate the former developments. For over-tuned pendulums, the instability regions are contained in the inner zone
delimited by the black curve. For largely under-tuned pendulums, these instability zones are limited to the outer region delimited
by the black curve. Finally, for a perfect tuning, only softening pendulums can be subject to jumps.

8. Experimental validation

An experimental study on the CPVA displayed in Fig. 11 was led to assess the accuracy of the analytical and numerical results.
This CPVA is that presented in Fig. 2. It is composed of two identical monofilar pendulums designed especially to exhibit energy
localisation. The expanded shape of the pendulums aims at increasing their inertia, thus increasing the impact of rotation. The
experimental setup is shown in Fig. 12. The rotor is fixed on a bench of inertia 𝐽𝑏 using an adaptation system of inertia 𝐽𝑎. Thus, 𝐽𝑟
has to be replaced by the equivalent inertia 𝐽𝑒𝑞 = 𝐽𝑟 + 𝐽𝑏 + 𝐽𝑎 in the previous developments. The pendulums’ amplitude of motion
was obtained experimentally as follows:

1. Markers are placed at the pendulums’ mass centres.
2. The CPVA is centrifugated and an oscillating torque is applied through the actuator while a fast camera records a movie of

the rotating system.
3. The movie recorded is decomposed into frames and each frame is rotated by the opposite of the rotor’s angular position. As

a consequence, those rotated frames form a movie in which the rotor’s position is fixed.
4. A point-tracking algorithm is used to find the position of the pendulums’ mass centres. Repeating this operation for each

rotated frame yields two time signals corresponding to the two pendulums’ positions.
5. The time signals are decomposed into Fourier series to extract the pendulums’ amplitudes.



Fig. 11. CPVA used for the experiments.

Fig. 12. Experimental setup. (a) zoom on a side view, (b) global view, (c) front view. Note that the CPVA shown in this figure is not the one used for the
experiments.

Table 2
Parameters of the CPVA studied experimentally.
𝑁 𝑛𝑝 𝜂 𝑥[4] 𝛼[1] 𝛼[3] 𝜇 𝑏̄ 𝑏̄𝑟
2 0.5 0.88 −4.2 1.33 −0.02 0.167 0.043 0.002

This procedure was repeated for four torque amplitudes, 𝑇1 = {3, 6, 10, 12} [Nm], and for 𝑛 = 0.568 and 𝛺 = 1500 [rpm]. The
damping coefficients of the CPVA are found experimentally. The parameters of the system are given in Table 2.

A comparison of the experimental results with the analytical and numerical models is shown in Fig. 13. For 𝑇1 = {3, 6} [Nm], the
pendulums’ amplitudes obtained experimentally are significantly different. This indicates energy localisation, in accordance with
the analytical and numerical solutions. The accuracy of the localised branches obtained numerically is not extremely good as the



Fig. 13. Comparison of the analytical, numerical and experimental results. Blue and orange circles represent the numerical results (obtained with increasing
and decreasing torque sweeps). Diamonds represent the experimental results. One of the pendulums is represented by black diamonds, the other by grey
ones. The curve represents the analytical results (stable in green, unstable unison in red). Black crosses indicate the bifurcation points obtained analytically.
𝑛 = 0.568, 𝛺 = 1500 [rpm].

diamonds do not superimpose on the circles. Regarding the upper branch, the difference between the experimental and numerical
points almost falls within the measurement errors. However, the difference between numerical and experimental points on the lower
branch is rather large. This is mainly due to the fact that, for very small amplitudes, the records of the pendulums’ time signals had
a low signal to noise ratio, so that the decomposition into Fourier series was inaccurate. This is the reason why no uncertainties
along |

|

|

𝑆(1)
𝑖

|

|

|

are shown for the two lower points. The discontinuities on the localised branches observed around 𝑇1 = 5.3 [Nm] and
𝑇1 = 6.5 [Nm] is due to a jump of the response, as observed previously in Fig. 7. The measurement points at 𝑇1 = {10, 12} [Nm] agree
well with the numerical results. The slight difference of amplitude on the last measurement point is not attributed to a non-linear
phenomenon but to measurement errors coming from different sources. The main sources of errors of the experimental results are
listed below:

• The torque and speed regulation of the bench do not allow for an exact control of 𝑇1 and 𝛺. Thus, their values are always
slightly different from the prescribed ones.

• Because of manufacturing tolerances and material defects, the geometry of the system cannot perfectly match the prescribed
one. Thus, the effective parameters of the system are not exactly those given in Table 2 and the two pendulums are not
rigorously identical.

• The point-tracking algorithm requires bright images to accurately find the pendulums’ mass centres. Despite the use of
spotlights, the images obtained were rather dark.

• The markers used by the point-tracking algorithm are stickers placed by hand as closely as possible to the pendulums’ mass
centres shown in Fig. 11. The point-tracking algorithm looks for the centre of the markers, which are unlikely to perfectly
overlap the mass centres.

• The expected motion is a rolling without slipping of the pendulum profile on the roller. However, because of the almost-
flat shape of the middle of the pendulums’ profile (see Fig. 2), the odds of slipping when the 𝑆𝑖 pass through zero are not
insignificant.

• The steady-state regime can take some time to be reached, especially when one expects non-linear behaviours such as
localisation. It is possible that some movies were recorded before the steady-state is completely established.

The analytical model, though giving very good qualitative results (localisation is found where expected), slightly overestimates
the amplitude at unison and predicts both bifurcation points too early. This highlights limits of the model, which were discussed
in Sections 5.4 and 6.3 .

9. Conclusion

The study presented in this paper deals with the stability of centrifugal pendulum vibration absorbers (CPVA) allowing a
rotational mobility. Stabilities of two different natures are considered. The instability of the unison response leads to a response
localised on one of the pendulums. The instability of the periodic solution leads to a jump of the response. An analytical model



allowing for the prediction of these instabilities was build using a scaling of the parameters, the method of multiple scales and a
reduction to a single mode. This model was validated with both numerical and experimental results. An original visualisation of
the stability in the design space was presented. This allowed a simultaneous stability assessment of pendulum designs. Moreover, a
design rule rendering the pendulums’ behaviour linear was proposed. In case this rule cannot be applied, other recommendations
were advised. These dealt with the largest mistuning levels leaving the response free of instabilities. Results were interpreted dividing
the pendulums in two categories: those exhibiting hardening behaviours and those exhibiting softening ones. Hardening pendulums
are stable if they are perfectly or over-tuned. Regarding softening pendulums, the stability of the unison response is preserved as
long as they are perfectly or under-tuned. However, jumps can occur whether they are over or under-tuned. Finally, increasing the
damping enlarges the range of mistuning for which instabilities are avoided.
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