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Abstract
We aim at improving spoken language modeling (LM) using very
large amount of automatically transcribed speech. We leverage
the INA (French National Audiovisual Institute1) collection and
obtain 19GB of text after applying ASR on 350,000 hours of di-
verse TV shows. From this, spoken language models are trained
either by fine-tuning an existing LM (FlauBERT2) or through
training a LM from scratch. New models (FlauBERT-Oral) are
shared with the community and evaluated for 3 downstream tasks:
spoken language understanding, classification of TV shows and
speech syntactic parsing. Results show that FlauBERT-Oral can
be beneficial compared to its initial FlauBERT version demon-
strating that, despite its inherent noisy nature, ASR-generated
text can be used to build spoken language models.

1. Introduction
Large pretrained language models (LMs) have been widely
adopted as backbone for performing natural language processing
tasks, whether on text [1] or on speech transcripts [2]. Those
models are typically trained with massive quantities of text, and
do not reflect well the specifics of spoken language. In this study,
we investigate whether there is some benefit in better covering
spoken-language phenomena in pretrained LMs when applying
them to speech use cases.

Pretrained LMs, such as BERT [3], have been applied with
success to a range of tasks that involve speech: ASR hypothe-
sis rescoring [4], Spoken Language Understanding [5], Dialog
State Tracking [6], Conversation Summarization [7], Emotion
Recognition [8], Speaker and Language recognition [9]. Yet,
LM training data is dominated by textual web content, which
diverges from actual spoken language. Even though the web is
filled with conversation-like interactions, such as forums and
social media in which agrammaticality or colloquiallity are fre-
quent, it does not include some fundamental properties that are
inherent to spontaneous speech: floor holding and grabbing,
conversational discourse markers, disfluencies such as repairs,
adverse effects of noise and speaker overlap, among others. One
may wonder if addressing such phenomena without having seen
them in training is a capability of current techniques associated
with LMs, and whether they matter in the context of everyday
spoken language processing tasks.

Building LMs aware of speech phenomena is a difficult task.
Recent work addresses the problem through direct learning of

1https://www.ina.fr
2https://github.com/getalp/Flaubert

acoustic representations [10, 11], but have yet to show competi-
tive performance compared to word-based models for high-level
linguistic tasks. Instead, we aim at retraining LMs from speech
using word transcripts, and are faced with the inherent challenge
of gathering enough training material to be on par with text-only
models. Therefore, we investigate the use of massive amounts of
automatic speech recognition (ASR) generated text for spoken
language modeling. This could bring diversity (oral/spontaneous
style, different topics) to the LM training data and might also be
useful for languages with fewer text resources but high availabil-
ity of speech recordings. More precisely, we build and share oral
LMs trained from a large amount (350,000 hours) of French TV
shows, and evaluate them on three spoken language tasks: spo-
ken language understanding, topic classification of TV shows,
and spoken language syntactic parsing. Results suggest that
ASR-generated text is a viable alternative to text not originating
from speech when training spoken language models.

To our knowledge, this is the first time a LM is trained on
such a massive amount of ASR transcripts. Indeed, [12] evalu-
ated BERT based language models (BERT, RoBERTa) trained on
spoken transcripts to investigate their ability to encode properties
of spoken language, but most of their experiments are on small
quantities of manual transcripts, except one which is trained on
2000h of ASR output (1k Librispeech + 1k proprietary dataset).
We train LMs on larger quantities of ASR output, analyse their
benefits on speech-specific tasks, and make them available for
further research.

2. From FlauBERT to FlauBERT-Oral
2.1. Large speech corpus with ASR transcripts

The FlauBERT-Oral model is trained on 350,000 hours of speech
collected from various French TV and radio channels collected
at Institut National Audiovisuel (INA) from 2013 to 2020. TV
news channels were continuously captured between 6am and
midnight each day (BFMTV, LCI, CNews, France 24, France
Info). For radio, the morning news were used (Europe1, RMC,
RTL, France Inter) and for generalist TV channels we collected
evening news (TF1, France 2, France 3, M6).

Collected speech is automatically transcribed with an ASR
system built from Kaldi [13]. In that system, acoustic models
are trained from French TV and RADIO corpora (ESTER 1&2
[14], REPERE [15] VERA [16]). A regular backoff n-gram
model is estimated using manual transcripts augmented with
several French newspapers [17], resulting in a vocabulary of
160k most frequent words. Automatic speech diarization of the
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collection was performed using LIUMSpkDiarization [18]. The
whole pipeline obtains the following ASR performance on dif-
ferent reference test corpora: REPERE (12.1%WER), ESTER1
(8.8%WER) and ESTER2 (10.7%WER).

As the ASR system outputs raw text without punctuation
nor capitalization, speech turns from diarization serve as pseudo
sentences for later processing. This results in 51M unique speech
segments for a total of 3.5G words (19GB of data). It is important
to note that this ’oral’ data is highly biased towards radio and
TV news type.

2.2. Fine-tuning or re-training FlauBERT

All the models generated in this study are built on the FlauBERT
family of models, one of the first pre-trained LMs for French [19].
FlauBERT is trained with a masked language modeling (MLM)
objective, and implements the RoBERTa architecture [20]. It is
trained on 71GB of natural texts collected from various sources,
among which a majority of crawled web pages. The baseline for
our experiments is flaubert-base-uncased (FBU)3 since we only
have lowercase transcripts. We compare it to several learning
configurations based on the same architecture in order to observe
the impact of different parameters on the quality of the obtained
models.

The first configuration, FlauBERT-O-base uncased (FT),
consists in fine-tuning flaubert-base-uncased for several epochs
using the large corpus of ASR transcripts.

The second configuration FlauBERT-O-mixed (MIX) is a
full model re-trained using a balanced mix of ASR transcripts
and written text. Written texts come from two main sources:
a French Wikipedia dump and press articles captured by the
OTMedia research platform [21] (online press and AFP agency
for the same time period). Overall, this learning dataset is also
strongly news-biased. The written part of this training dataset
is 94M randomly selected sentences representing 13G of data
stripped from punctuation and capitalization to make it consistent
with ASR data. For this mixed model, we also retrain the BPE
tokenizer (50K sub-word units).

The third configuration, FlauBERT-O-asr, consists in re-
training two LMs from scratch using ASR data only. For the first
model (ORAL), we use the tokenizer provided with flaubert-
base-uncased and for the second one (ORAL NB) we retrain a
BPE tokenizer (50K sub-word units). Both tokenizers share 52%
of their tokens only.

The four models were trained on a single server with two 12-
core Xeon CPUs, 256 GB of RAM and 8 Nvidia GeForce RTX
2080 Ti GPUs with 11 GB of memory. It lasted 15 days for 50
epochs of each model in the flaubert-base configuration (137M
parameters) using the original FlauBERT code. The models
are made available online.4 The following sections describe
experiments on various downstream tasks.

3. Spoken Language Understanding
Spoken Language Understanding (SLU) systems extract seman-
tic information from speech utterances [22], which can be repre-
sented with slots or concepts tags on the token sequence. Pipeline
SLU systems typically generate transcripts from spoken dia-
logues with an ASR system, and recognize slots with a Natural
Language Understanding (NLU) module that only uses the word
sequence [23, 24]. For example, in the recent approach by [25],

3https://huggingface.co/flaubert/flaubert_
base_uncased

4https://huggingface.co/nherve

Table 1: Sample instance from MEDIA. (a) corresponds to the
transcribed sentence; (b) with associated concepts; (c) with
concepts and normalized values; (d) concepts in BIO format;
utterances were translated to English.

(a) i would like to book one double room in paris

(b) <cmd-task i would like to book > <nb-room one >
<room-type double room > in <loc-city paris >

(c) <cmd-task booking > <nb-room 1 > <room-
type double > in <loc-city paris >

(d) B-cmd-task I-cmd-task I-cmd-task I-cmd-task I-
cmd-task B-nb-room B-room-type I-room-type O
B-loc-city

a first ASR model finetuned on the domain obtains transcriptions,
which is fed to a finetuned BERT-like model for classification.
In order to reduce the impact of error propagation in the pipeline,
alternative approaches have been proposed, such as end-to-end
models that directly predict concepts from speech [26, 27, 28].
Our assumption with FlauBERT-Oral models is that the use of
ASR-robust pretrained language models for NLU can decrease
the impact of ASR errors without resorting to end-to-end train-
ing.

3.1. The MEDIA SLU benchmark

The French MEDIA dataset [29] contains 1, 250 telephone di-
alogues captured in Wizard-of-Oz settings for hotel booking
and information requests in French. Transcribed segments are
annotated with 76 concept tags that denote both domain-specific
information (such as hotel-services or room-type) and generic
concepts (like logical connectors as connectprop). Normalized
concept values also have to be predicted. An example can be
found in Table 1.

We use the official train/dev/test split of the MEDIA corpus,
containing respectively 12.9k, 1.3k and 3.5k user utterances.
SLU performance is evaluated with Concept Error Rate (CER),
the rate of errors between force-aligned reference and hypothesis
concepts, and Concept-Value Error Rate (CVER), the same for
(concept, value) pairs. Values are extracted with the same rule-
based system as in other studies on MEDIA [25, 27, 30].

3.2. Experiments

We use the different pre-trained models presented in section 2.2
as pre-trained Natural Language Understanding (NLU) compo-
nents. We add a decision layer at the representations generated
by the models, in order to tag each input token to its correspond-
ing BIO concept. Each model is trained for 300 epochs, and the
best checkpoint is selected according to CER on the development
corpus. We release models and make them available online.5

Table 2 presents the test results for the different FlauBERT
configurations. The baseline State-Of-The-Art (SOTA) results
[25] are obtained with a cascade composed of wav2vec 2.0 [31]
(finetuned on CommonVoice [32] and MEDIA), followed by
a finetuned CamemBERT [33], similar to our approach. For
transcription, we use a Kaldi system that reaches 9.1% WER on
MEDIA (test)—ASR for the SOTA system has a WER of 8.5%.

We can see that all the FlauBERT-O uncased models (FT,

5https://huggingface.co/vpelloin/MEDIA_
NLU_flaubert_uncased, https://huggingface.co/
vpelloin/MEDIA_NLU_flaubert_finetuned
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Table 2: SLU Task: MEDIA test results according to Concept
Error Rate and Concept-Value Error Rate (lower is better), using
ASR transcriptions as input of NLU FlauBERT models. Confi-
dence intervals are computed using the Student’s t-distribution
at 95%.

Model %CER %CVER

w2v 2.0+CamemBERT [25] 11.2 17.2

FlauBERT cased 13.20 ± 0.71 18.25 ± 0.81
FlauBERT uncased (FBU) 12.40 ± 0.69 17.49 ± 0.79

FT 11.98 ± 0.68 17.00 ± 0.79
MIX 12.47 ± 0.69 17.66 ± 0.80
ORAL 12.43 ± 0.69 17.84 ± 0.80
ORAL NB 12.24 ± 0.68 17.67 ± 0.80

MIX, ORAL and ORAL NB) achieve comparable results with
the baseline FlauBERT models (cased and uncased). It can be
noticed that the FT model obtains an absolute improvement of
0.42% CER compared to FlauBERT uncased. This suggests
that pretraining LMs on ASR transcripts can benefit downstream
tasks even though the domain is quite different (TV shows vs
telephone conversations). Although we use ASR transcripts with
lower quality compared to [25] we obtain almost similar CER
using the FT model.

One limitation of our experiments is that, even though SLU
is applied to (noisy) ASR transcripts, during fine-tuning SLU
models are updated using the (error free) reference transcripts of
MEDIA. We believe that fine-tuning them on (noisy) ASR output
could lead to even better results as it would match pre-training
and test conditions. This improvement is left for future work but
the next section will propose a classification task where ASR
outputs are used during both fine-tuning and evaluation.

4. Automatic Classification of TV Shows
This section describes the evaluation of the different LMs on
news classification. As part of the collection process, INA’s
documentalists finely segment newscasts of the main generalist
TV/radio channels, and annotate them with content descriptions.
This very rich metadata is used in particular to establish quan-
titative studies on the news in France. The InaStat barometer6

has set up a stable methodology over time to classify news items
into 14 categories (such as society, French politics, sport or envi-
ronment). For classification experiments, we use the news items
of 4 channels (TF1, France 2, France 3 and M6) for the years
2017, 2018 and 2019, which gives a total of 47,867 short TV
shows, running on average 92 seconds.

The objective is to assess classification accuracy into the 14
categories solely on the basis of ASR transcripts. We compare
results to a simple SVM classifier (with a non-parametric trian-
gular kernel) on TF-IDF vectors baseline, with two vocabulary
sizes of 5K and 20K words. A FlauBERT classifier is created
for each model by appending a classification layer after mean
pooling. Models are not selected and rather we report results
for different number of training epochs. Since the categories are
not well-balanced, we use weighted F1 to evaluate performance.
The experiments are systematically performed on 10 different

6http://www.inatheque.fr/
publications-evenements/ina-stat/
ina-stat-sommaire.html

random splits of the dataset, taking into account the cardinality
of the 14 categories, so as to have 38K examples for the train-
ing set and 5K for the test set. Mean performance results and
standard deviation are shown in Table 3.

Table 3: TV news classification task: train 38K, test 5K, F1
weighted metric. Higher is better.

Model Epoch 1 Epoch 3 Epoch 10

SVM-20K 0.777 ± 0.005

FBU 0.780 ± 0.012 0.807 ± 0.010 0.809 ± 0.006

FT 0.784 ± 0.006 0.807 ± 0.006 0.817 ± 0.004
MIX 0.791 ± 0.005 0.812 ± 0.003 0.820 ± 0.004
ORAL 0.811 ± 0.004 0.829 ± 0.005 0.824 ± 0.004
ORAL NB 0.798 ± 0.004 0.814 ± 0.005 0.824 ± 0.004

If we look at the performance at the first epoch, the FBU
(flaubert base uncased) model has almost equivalent perfor-
mance to the SVM baseline (0.777). It is only after a few it-
erations of fine-tuning that the model fits the ASR data and
reaches 0.809. On the other hand, the models that have already
seen ASR data during training have better performance from
the first epoch. The model trained only on ASR data is the best
(ORAL). The ORAL NB model is slightly worse: in this model,
only the tokenizer is different, so it seems better to not adapt
BPE to ASR transcripts, probably because it suffers from the
closed vocabulary of the underlying system. After 10 epochs, all
FlauBERT-Oral models converge to the same performance and
are better than FBU for this task.

5. Syntactic Parsing of Spoken Dialogs
In this section, the downstream task consists in jointly predicting
part of speech tags (POS) and building a labelled dependency tree
from speech transcripts. We use our different LMs to generate
contextual word representations and use them for predicting
syntactic parses of speech transcripts. We contrast the obtained
results to a baseline model trained using FastText non-contextual
representations,7 and a model learning its own representations
without any pretraining.

5.1. The ORFEO dataset

Our study relies on the annotated subset of the speech corpus of
the ORFEO project [34, 35], gathered with the goal of reflect-
ing the contemporary usage of the French language. The audio
recordings include work meetings, family dinners, narrations,
political meetings, interviews, and goal-oriented telephone con-
versations. Their duration varies from 4mn to 1h. The corpus
is annotated with part-of-speech (POS) tags, lemmas, labeled
dependency trees and sentences boundaries. Annotations in-
clude 20 possible POS tags and 12 syntactic functions. We ran-
domly split the corpus into train/dev/test sets of respective sizes
134,716/27,937/29,529 words; we sampled from each source so
that the various genres of speech are equally represented in each
split.

5.2. Parsing Model

The syntax-predicting model is a transition based parser using
the arc-eager transition system, which has been extended for

7https://fasttext.cc
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the joint prediction of POS tags and parsing transitions [36]. A
single classifier is trained to predict transitions from features ex-
tracted from the current state of the analysis (word embebdings,
predicted tags, history of transitions), for stack elements and a
sliding window of size [-3;2] centered on the current word. The
POS sequence and dependency trees are greedily built from the
sequence of transitions predicted by the classifier. A dropout of
50% is applied to the input vector, which passes through two
hidden layers of size 3200 and 1600, both with 40% of dropout
and ReLU activations. The two decision layers are linear with a
softmax. Training runs for 40 epochs, using a dynamical oracle
[37], with scoring against the development set to select the best
checkpoint.

5.3. Experiments

The first set of experiments compares input representations
from the FlauBERT variants (FBU, FT, MIX, ORAL) to non-
contextual baselines. As with other experiments, LMs are ap-
plied on uncased transcripts without punctuation, which is not
fair to the FBU model as it expects punctuation. Therefore we
add a contrastive system with periods added at the end of each ut-
terance prior to applying the LM (called FBU repunc), but added
tokens are not passed to the parser, they just inform other em-
beddings. Note that except for random initialized embeddings,
token representations are not fine-tuned during training.

As pre-processing, we deanonymize the transcripts by re-
placing masked proper name tokens with non-ambiguous names
randomly chosen for each recording. In the fasttext setting,
representations are computed for unknown words from their
character n-gram factors. Token representations are computed
at the whole recording level in chunks of 512 tokens without
overlap. The parser is applied on the reference transcript and
reference segmentation. We use mean pooling for words that are
split in multiple tokens by BPE.

Parsing performance is evaluated with Labeled Attachment
Score (LAS), the accuracy of predicting the governor of each
word and its dependency label, Unlabeled Attachment Score
(UAS), which ignores dependency labels, and Part-of-speech tag-
ging accuracy (UPOS) (scoring script from CoNLL campaigns).

Results presented in Table 4 show that pre-training is valu-
able for syntactic parsing in that setting and that pretraining on
ASR-generated text (FT, MIX and ORAL) leads to a substantial
improvement in LAS over the text-only FlauBERT model (FBU)
even though there is no domain overlap between the TV shows
on which the LMs are trained and the data of the ORFEO corpus.
As in the previous task, we see no benefit in retraining BPEs
(ORAL NB). Performance in the FBU repunc settings is on par
with the best model, showing that absence of punctuation is an
important factor affecting performance when applying text-only
models, at least for predicting syntax.

Finally, in Table 5 we compare the drop in parsing per-
formance between three models, when they are evaluated only
against OOV words (according to the ASR system). Reveal-
ing that the ORAL model variants are more affected than the
off-the-shelf FlauBERT baseline (FBU), despite their overall
better performance (as seen in Table 4). This suggests future
improvements of LMs trained on ASR-generated text if ASR
output tokens were more consistent with LM tokens, and also
suggests applying open vocabulary ASR.

Table 4: Syntax prediction task: metrics are Labeled Attachment
Score (LAS), Unlabeled Attachment Score (UAS) and Part-of-
speech tagging accuracy (UPOS). Higher is better.

Model LAS UAS UPOS

No pretrain 84.92 ± 0.44 88.48 ± 0.37 94.51 ± 0.29
Fasttext 85.36 ± 0.10 88.76 ± 0.05 95.12 ± 0.03

FBU 85.55 ± 0.05 89.02 ± 0.16 93.36 ± 0.06
FBU repunc 87.48 ± 0.28 90.69 ± 0.19 95.03 ± 0.03

FT 86.81 ± 0.09 90.22 ± 0.06 94.99 ± 0.10
MIX 86.33 ± 0.15 89.79 ± 0.05 94.43 ± 0.29
ORAL 87.65 ± 0.11 90.92 ± 0.10 95.55 ± 0.04
ORAL NB 87.54 ± 0.11 90.73 ± 0.08 95.63 ± 0.05

Table 5: Differences in morphosyntactic performances, when
parsing models of Table 4 are evaluated only on OOV words
(OOV according to the automatic transcription system used to
generate the text our LMs were trained on).

Model ∆LAS ∆UAS ∆UPOS

FBU -11.45 -6.82 -14.36
MIX -11.93 -7.33 -14.07
ORAL -13.97 -8.11 -16.55

6. Conclusion and future work
We investigated spoken language modeling using a massive
amount of ASR-generated text (350,000 hours of diverse TV
shows). Experiments suggest that, for the tasks we experimented
with, systems relying on speech-informed LMs have similar and
better performance than systems relying on text-only LMs. The
models resulting from this work for processing French speech
are made available to the community. Deeper analysis of these
improvements, on when and why models are better for spoken
language are items that are still to be addressed in the near future.

In this study, all texts are uncased as our ASR only generates
lowercased, unpunctuated transcripts. We believe that applying
massively re-capitalisation and restoring punctuation might be
beneficial to train stronger LMs for spoken language. We also
believe that leveraging open vocabulary ASR and more diverse
speech sources might yield more versatile LMs. A more fine-
grain analysis on speech-only phenomena such as disfluencies
is also needed. Finally, some of the results obtained lead us to
believe that it is important to further evaluate the impact of BPE
units for spoken language modeling, as well as the consistency
between ASR and LM tokens’ vocabulary.
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