Description of a new species of Hypaeus (Araneae: Salticidae: Salticinae: Amycini) based on integrative taxonomy

Cyril Courtial, Kaina Privet, Xavier Aubriot, Lionel Picard, Julien Pétillon

- To cite this version:

Cyril Courtial, Kaina Privet, Xavier Aubriot, Lionel Picard, Julien Pétillon. Description of a new species of Hypaeus (Araneae: Salticidae: Salticinae: Amycini) based on integrative taxonomy. Studies on Neotropical Fauna and Environment, 2023, 58 (2), pp.439-447. 10.1080/01650521.2022.2068223 . hal-03770394

HAL Id: hal-03770394

https://hal.science/hal-03770394
Submitted on 24 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
(c) $\$$

Description of a new species of Hypaeus (Araneae: Salticidae: Salticinae: Amycini) based on integrative taxonomy
Cyril COURTIAL ${ }^{1}$, Kaïna PRIVET 2, Xavier AUBRIOT ${ }^{3}$, Lionel PICARD 4 \& Julien PETILLON ${ }^{2}$

${ }^{2}$ Université Rennes, CNRS, Ecobio (Écosystèmes, biodiversité, évolution) - UMR 6553, F35000 Rennes, France. Email kaina.privet@univ-rennes1.fr; julien.petillon@univ-rennes1.fr
${ }^{3}$ Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Écologie, Systématique et Évolution, 91405 Orsay, France. Email: xavier.aubriot@universite-paris-saclay.fr
${ }^{4} 5$ impasse Bruno Peyron, 56250 Saint-Nolff, France. Email: lionel.picard@outlook.fr
${ }^{1}$ Corresponding author: 18 rue des Sagnes, Ternant, 63870 Orcines, France. Email: cyril.courtial@laposte.net

Abstract

A new species of Hypaeus Simon 1900 is described from French Guiana based on both sexes, Hypaeus olympeae sp. nov. We employed morphological evidence, field observation, as well the mitochondrial COI rapidly evolving loci to confirm that both males and females belongs to the same species. Finally, nine species are newly recorded for the salticid fauna of French Guiana, Cyllodania fasciata (Caporicaco, 1954) syn. nov. is considered junior synonym of

Gypogyna forceps Simon, 1900 and 12 COI sequences corresponding to four previously unsequenced Hypaeus species are added to GenBank.

Key words: jumping spiders, barcoding, cytochrome c oxydase 1 subunit 1, taxonomy, French Guiana.

Introduction

Neotropical spider faunas are still largely understudied (e.g. Dupérré, 2022), owing to their high diversity (Cardoso et al. 2011; Privet \& Pétillon 2018) and the high human and material costs to study them. Additionally, large proportions of rare species and juveniles make up tropical spider assemblages (Coddington et al. 2009), being difficult or impossible to identify and describe. Spiders are a model group for ecological studies (Birkhofer \& Wolters 2012; Cardoso et al. 2011; Malumbres-Olarte et al. 2018; Moya-Laraño et al. 2013) and the only group to be exclusively predatory among the dominant terrestrial arthropods (Birkhofer \& Wolters 2012; Pekár \& Toft 2015). Improving knowledge on their taxonomy is thus crucial to understand neotropical diversity and ecology.

Within the forests of the Amazon, the most abundant and speciose spiders are the jumpingspiders (Salticidae Blackwall,1841; Bodner \& Maddison 2012) and the richest subfamily is Amycinae (Araújo \& Ruiz 2015; Maddison 2015). Among them, Hypaeus Simon 1900 is one of the richest genera with 28 described species distributed from south to central America (World Spider Catalog 2021).

Species of Hypaeus are distinguished by: high carapaces, plumose setae over front eyes, pluridentate chelicerae with 4-5 teeth on promargin and 3-6 on retromargin, mastidia on male
chelicerae and third legs longer than fourth (Galiano, 1968; Ruiz \& Madisson 2015). However, Hypaeus is still poorly described with inadequate sampling across the genus' range. Thus, the boundaries of Hypaeus are not completely understood (Araújo \& Ruiz 2015).

Galiano (1963, 1968) redescribed and revised 18 Hypaeus species described by Crane (1943), Mello-Leitão (1948), Peckham \& Peckham (1885), Simon (1900) and Taczanowski (1871, 1878). She also transferred two species to this genus, Amycus mystacalis (Taczanowski, 1878) and Triptolemus benignus (Peckham \& Peckham, 1885); and synonymized one, Mago budoninus (Caporiacco, 1954). Two others were described by Crane, H. duodentatus Crane, 1943, and by Caporiacco, H. barromachadoi Caporiacco, 1947. Recently, the male and the female of the type species of the genus Hypaeus, H. taczanowskyii (Mello-Leitao, 1948), were redescribed by Araújo \& Ruiz (2015). The same authors added four new species to the genus, H. tridactylus, H. famoratus, H. poseidon and H. terramediae Araújo \& Ruiz 2015, and transferred Hasarius pauciaculeis (Caporiacco, 1947) to Hypaeus. The last issue from Martinez \& Galvis (2017) added three new species, H. arhuaco, H. proszynskii and H. varzea Martinez \& Galvis, 2017. Of the resulting 28 Hypaeus species, 17 have been described only from males (Araújo \& Ruiz 2015; Martinez \& Galvis 2017; World Spider Catalog 2021).

Combining multiple lines of evidence such as morphology and DNA barcoding in species delimitation, could help alleviate the limitations on tropical spider diversity knowledge linked to juveniles and rare species. Phylogenetic analyses are also needed to resolve the relationships within Hypaeus (Ruiz et al. 2019). However, only sequences for two Hypaeus species, H. mystacalis (Taczanowski, 1878) and H. miles (Simon, 1900), are available to date.

One hundred and two species of Salticidae are currently listed for French Guiana (Courtial et al. 2014; Vedel et al. 2013) and among them three Hypaeus species: H. flavipes (Simon, 1900), H. porcatus (Taczanowski, 1871) and H. taczanowskii (Mello-Leitao, 1948). During our last
expeditions to French Guiana (see Privet et al. 2018; Privet \& Petillon 2018), in the National Nature Reserves of La Trinité and Les Nouragues, numerous Salticidae were collected, among them several specimens of an undescribed Hypaeus species. In this study, we used a combination of morphology and DNA barcoding targeting COI to match and describe the male and female from the new species, Hypaeus olympeae sp. nov., produce sequences for four other Hypaeus species never sequenced so far, and add nine species to the list of salticids from French Guiana.

Material and Methods

Taxon sampling

Taxa sequenced in this study are 12 individuals of salticids belonging to the genus Hypaeus. They were collected in La Trinité $\left(4^{\circ} 35^{\prime} 20^{\prime \prime} \mathrm{N} ; 53^{\circ} 18^{\prime} 1^{\prime \prime} \mathrm{W}\right)$ and Les Nouragues $\left(4^{\circ} 04^{\prime} 18^{\prime \prime} \mathrm{N}\right.$; $52^{\circ} 43^{\prime} 57^{\prime \prime} \mathrm{W}$) Nature Reserves (French Guiana) during two surveys conducted in 2010 and 2013 (see Privet et al. 2018; Privet \& Pétillon 2018). In these reserves, seasonally flooded (Aya and Pararé) and summit inselberg (La Roche Bénitier and Nouragues) forests were sampled. Inselbergs are rocky outcrops rising abruptly from the surrounding landscape where little research has been devoted to invertebrates, especially spiders (Privet et al. 2018). These specimens were separated based on morphology and sequenced. Six specimens were identified as H. taczanowskii and four to H. porcatus. Two specimens, impossible to assign to any of the currently recognized Hypaeus species, correspond to the new species described here, Hypaeus olympeae sp. nov. Total DNA of the 12 Hypaeus specimens was then extracted using nondestructive method (see below).

Specimens

The type material examined is deposited at the Museum national d'Histoire naturelle (MNHN, Paris). Preserved specimens were studied using an OlympusSZX9 stereomicroscope with a Moticam5 (5.0MP) camera. Live specimens (holotype male and partype female) were photographed with a Canon EOS 450 D digital reflex camera with a 60 mm macro lens. The epigyne was macerated in $10 \% \mathrm{KOH}$. The specimens were preserved in 70% ethanol. Measurements were taken according to Edwards (2004) in millimeters (mm), for direct comparison with Hypaeus spp. described by Araújo \& Ruiz (2015). The following abbreviations are used:

AERW: anterior eye row width; AMEW: anterior median eyes width; CH: carapace height; CL: carapace length; CLH: clypeus height; co: copulatory opening; CW: carapace wide; dg: digital gland; eb: embolus base; et: embolus tip; OQL: ocular quadrangle length; MNHN: Muséum national d'Histoire naturelle, Paris; PERW: posterior eye row width; po: pocket; RNN: Réserve Naturelle Nationale (National Nature Reserve); sp: spermathecae; ta: tibial apophysis, TL: total length.

The drawings of male individuals of Galiano (1963, 1968), Crane (1943), Ruiz \& Brescovit (2008), Araujo \& Ruiz (2015) and Martinez \& Galvis (2017), as well as the reviewing of type specimens stored at the MNHN (Paris, France), allowed us to identify the new species Hypaeus olympeae sp. nov. collected in French Guiana.

DNA was extracted using DNeasy 96 Blood and Tissue Kit (Qiagen) following manufacturer's recommendations. The entire specimens were directly placed in lysis buffer with proteinase K overnight to extract DNA without compromising morphological requirements for further examination (Paquin \& Vink 2009). The standard animal DNA barcode fragment of the mitochondrial cytochrome-c-oxidase subunit 1 (COI) was targeted by PCR using the primers C1-J-1718 "SPID" (Simon et al. 1994) and C1-N-2776 (Hedin \& Maddison 2001). PCR reactions were performed in $25 \mu \mathrm{~L}$ and contained 0.5 X PCR Buffer, $0.2 \mathrm{mM} \mathrm{dNTPs}, 1 \mathrm{mM}$ $\mathrm{MgCl} 2,0.15 \mu \mathrm{M}$ of each primer, $0.02 \mathrm{U} / \mu \mathrm{L}$ of Taq polymerase (GoTaq, Promega) and $2 \mu \mathrm{~L}$ of DNA. PCR amplification started with an initial $94^{\circ} \mathrm{C}$ denaturation step for 2 min , followed by 35 cycles of (i) denaturation at $94^{\circ} \mathrm{C}$ for 45 s , (ii) annealing at $50^{\circ} \mathrm{C}$ for 45 s , and (iii) extension at $72^{\circ} \mathrm{C}$ for 60 s ; a final $72^{\circ} \mathrm{C}$ extension step lasted 10 min . Sequencing of PCR products was performed by Genoscreen (Lille, France) using the same primers than for amplification. Sequence fragments were imported, assembled, and edited in Geneious 6.1.8 (Biomatters Ltd., Auckland, New Zealand). All sequences, with voucher information, are archived in GenBank (Table 1).

Phylogenetic analysis

The taxonomic sampling used for the phylogenetic analyses included the 12 sequences newly generated for the study as well as one GenBank accession of Sarinda cutleri (Richman, 1965) (JX145669), a closely related species (see Maddison et al. 2014) that served as the outgroup. All sequences were aligned in Geneious using MAFFT v.7.017 (Katoh \& Standley 2013).

The resulting COI matrix was subjected both to Bayesian inference (BI) and maximum likelihood (ML) analyses. We first searched for the best-fitting nucleotide substitution model using the Akaike information criterion (AIC) estimated by MrModeltest v.2.3 (Nylander 2004);
the GTR + G model was selected and assigned to all following phylogenetic analyses. The software MrBayes 3.2.6 (Huelsenbeck \& Ronquist 2001) and RaxML-HPC v.8.1.24 (Stamatakis 2014) implemented on the CIPRES Science Gateway (Miller et al. 2010) platform were used to perform BI and ML analyses, respectively. MrBayes analyses constituted two independent parallel runs of four Markov chains each, implemented for one million generations and sampled every 100 generations. Adequate mixing of the Markov chains and convergence of the two runs were confirmed with Tracer v1.6 (Rambaut et al. 2014). After removing a 10% burnin, the remaining trees were used to generate a 50% Bayesian majority-rule consensus tree. For the RaxML analyses, node support was assessed using a rapid bootstrapping algorithm with 1000 bootstrap iterations.

Results

Taxonomy

Class Arachnida Cuvier, 1812

Order Araneae Clerck, 1757

Family Salticidae Blackwall, 1841

Subfamily Salticinae Blackwall, 1841

Tribe Amycini F.O Pickard-Cambridge, 1900

Genus Hypaeus Simon, 1900

Hypaeus Simon, 1900: type species Acragas taczanowskii Mello-Leitão, 1948.

Hypaeus olympeae Courtial \& Picard sp. nov.

Figs 1-18

Diagnosis

Males of Hypaeus olympeae sp. nov. are similar to those of H. miles Simon, H. femoratus Araújo \& Ruiz and H. terraemediae Araújo \& Ruiz for having dilated femora (Fig 4). However, H. olympeae sp. nov. has wider rounded TA, which is small and pointed in aforementioned species. Females of H. olympaeae sp. nov. are similar to those of H. femoratus and H. terraemediae (the female of H. miles is unknown). Digitiform glands curve from the center of the epigyne to the antero-lateral portion. Females of H. olympeae sp. nov. are slightly similar in shape to those of H. femoratus and H. terremaediae but the COs openings are less curved and space further apart them is bigger.

Etymology

The species is named "olympeae" to pay tribute to Olympe Delavalle, daughter of Marguerite Delavalle, the Curator of the NNR Nouragues during our survey.

Material examined

Holotype

$1 \delta^{\top}$ from RNN des Nouragues ($4^{\circ} 02^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}$), Camp Pararé, French Guiana (AR 16169), 11.XII.2013, Cyril Courtial coll.

Paratypes

1 ใ from RNN des Nouragues ($4^{\circ} 02^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}$), Camp Pararé, French Guiana (AR 16170), 11.XII.2013, Cyril Courtial coll.; $1 \delta^{\lambda}, 2$ q from RNN de la Trinité $\left(04^{\circ} 36^{\prime} \mathrm{N}, 53^{\circ} 24^{\prime} \mathrm{W}\right.$), Camp Aya, French Guiana, 08.XII.2010, Alain Canard coll.

Additional material examined

French Guiana. RNN de la Trinité, Camp Aya $\left(04^{\circ} 36^{\prime} \mathrm{N}, 53^{\circ} 24^{\prime} \mathrm{W}\right): 1 \widehat{ }^{\top}, 01 . X I .2008$, Frédéric Ysnel coll.; RNN des Nouragues, Camp Inselberg ($\left.4^{\circ} 05^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right): 1$ ㅇ, 09.XII.2013, Cyril Courtial coll.; RNN des Nouragues, Camp Pararé ($4^{\circ} 02^{\prime} \mathrm{N}$, $52^{\circ} 41^{\prime} \mathrm{W}$): $1 q, 26 . \mathrm{VI} .2010$, Vincent Vedel coll.; Montagne des Chevaux ($44^{\prime} \mathrm{N}, 522^{\prime} \mathrm{W}$): 1 q, 09.XI.2010, Vincent Vedel coll.; Roche Bénitier ($04^{\circ} 36^{\prime} \mathrm{N}, 53^{\circ} 24^{\prime} \mathrm{W}$) : 1 1 , 06.IV.2010, Vincent Vedel coll.

Description

Male (Holotype, AR 16169)

TL:6.00. CL:3.10. CW: 2.30. CH:1.80. OQL: 2.00. AERW:2.20. PERW:2.00. AMEW:0.70. CLH: 0.45. Carapace dark brown with light spot behind the fovea bearing white setae (Fig 1). Chelicera dark brown (Fig 3) with short mastidions pointed forward; 3 posterior cheliceral teeth, 2 anterior cheliceral teeth. Palp: femur curved with dorsal bump (Fig 4); tibia with quiet short rounded RTA (Figs 5, 7, 11-12); embolus emerging from proximal tegulum with median portion slightly narrowed (Figs 6, 13). Abdomen pale with median longitudinal light stripe (Figs $1,17)$ and ventrally with median longitudinal dark brown stripe. Spinnerets light brown. Legs 1342 (10.00/6.90/7.80/7.50). Length of femur I2.80, II 2.20, III 2.60, IV 2.40. Patella + tibia I 4.30, II 2.70, III 2.70, IV 2.40. Metatarsus + tarsus I 2.90, II 2.00, III 2.50, IV 2.70.

Variation Male ($\mathrm{n}=3$)

Total length: 6.00-7.10. Carapace length: 3.05-3.20. Length of leg I 9.05-10.00.

Female (AR 16170)

TL:9.00. CL:3.90. CW: 2.70. CH:2.00. OQL: 1.90. AERW:2.40. PERW:2.10. AMEW:0.80. CLH: 0.30. Carapace light brown with darker cephalic area, base of the cephalothorax bearing
dark spots (Fig 2). Chelicera dark brown with no mastidion; 3 posterior cheliceral teeth, 4 anterior cheliceral teeth. Epigyne with a pair of oblique COs (Figs 8-9, 14), long digitiform gland ducts and long and thin COs (Figs 10, 15-16). Legs 1-432 (8.60/8.60/8.40/6.90). Length of femur I 2.60, II 2.30, III 2.90, IV 2.90. Patella + tibia I 3.70, II 2.80, III 3.00, IV 3.00. Metatarsus + tarsus I 2.30, II 1.80, III 2.50, IV 2.80.

Variation Female ($\mathrm{n}=6$)

Total length: 6.20-9.00. Carapace length: 2.70-3.90. Length of leg I 7.30-8.60.

Distribution

Only known from French Guiana.

Comments

The holotype male and female were caught together during mating behaviour in a building at the Nouragues field station.

DNA sequences and phylogenetic analysis

The COI alignment was 442 base pairs (bp) long and included 92 variable sites of which 72 were informative in parsimony. The BI and ML topologies are congruent; there was no topological conflict detected between the 50% Bayesian majority-rule consensus tree (Fig. 19) and the ML bootstrap 50\% majority-rule consensus tree (not shown). The topology we obtained showed (1) that the two individuals of H. olympeae sp. nov. included in the study form a strongly supported monophyletic grouping ($\mathrm{PP}=1 ; \mathrm{BS}=100$), highly divergent from the two other clades in the tree, (2) that the four accessions sampled for H. porcatus are part of a strongly supported clade $(\mathrm{PP}=1 ; \mathrm{BS}=99)$ resolved as sister to H. olympeae sp. nov. but with poor
support $(\mathrm{PP}=0.81 ; \mathrm{BS}=67)$ and (3) that the 6 accessions identified as H. taczanowskii (3 male and 3 female individuals) were all included in a monophyletic grouping strongly supported in BI $(\mathrm{PP}=0.99 ; \mathrm{BS}=74)$. The analysis of COI sequences then confirms the current morphological circumscriptions for the three Hypaeus species sampled here. Also, the branch lengths observed between the three clades recognized here are relatively high when compared with the magnitude of the divergence between the ingroup (viz. genus Hypaeus) and the outgroup (viz. Sarinda cutleri); this further supports the recognition of H. olympeae sp. nov. as a distinct species.

New records of Salticidae from French Guiana

According to Vedel et al. (2013), Courtial et al. (2014) and Logunov (2015) we add nine new species for French Guiana.

Eustiromastix moraballi Mello-Leitao, 1940

RNN Nouragues, camp Pararé ($\left.4^{\circ} 02^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right), 1 \delta^{\lambda}, 06 . X I I .2013$, Canard Alain, Courtial Cyril, Leroy Boris, Pétillon Julien \& Vedel Vincent, at sight in low vegetation.

Lyssomanes tenuis Peckham \& Wheeler, 1889

RNN Nouragues, camp Inselberg ($4^{\circ} 05^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}$), $1 \delta^{\lambda}, 08 . X I I .2013$, Courtial Cyril, by beating by beating the lower branches of trees.

Scopocira abaporu Costa \& Ruiz, 2014

Nouragues, Camp Pararé ($\left.4^{\circ} 02^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right), 1 \widehat{\wedge}^{\wedge}, 13 . \mathrm{XII} .2013$, Courtial Cyril, by beating the lower branches of trees.

Scopocira histrio Simon, 1900

Nouragues, camp Inselberg ($\left.4^{\circ} 05^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right), 1$,, $10 . \mathrm{XII} .2013$, Courtial Cyril, by beating the lower branches of trees. Nouragues, camp Pararé $\left(4^{\circ} 02^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right), 1^{\wedge}, 06 . X I I .2013$, Canard Alain, Courtial Cyril, Leroy Boris, Pétillon Julien \& Vedel Vincent, by beating the lower branches of trees.

Colonus germaini Simon, 1900

Nouragues, camp Pararé ($\left.4^{\circ} 02^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right), 1$,, 12.XII.2013, Courtial Cyril, by beating the lower branches of trees.

Corcovetella aemulatrix Galiano, 1975

Kourou, degrad saramak ($\left.5^{\circ} 01^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}\right)$, 1 , , collection date unknown, Vedel Vincent, by beating vegetation in garden near primary forest.

Pachomius nigrus Caporiacco, 1947

RNN Trinité, camp Aya ($04^{\circ} 36^{\prime} \mathrm{N}, 53^{\circ} 24^{\prime} \mathrm{W}$), $1 \delta^{\top}$, X.2010, Canard Alain, Courtial Cyril, Leroy Boris \& Ysnel Frédéric, by beating the lower branches of trees.

Gypogyna forceps Simon, 1900

Cyllodania fasciata (Caporicaco, 1954) syn. nov: 150, f.48, French Guiana, Saint-Jean du Maroni, 1914, Benoist leg, $1 q$ examined.

After examination of species described by Caporiacco (1954) deposited in the MNHN, the type species of Cyllodania fasciata (Caporicaco, 1954), considered as a subadult by Caporiaco (1954) and Galiano (1977) is in fact an adult female of Gypogyna forceps Simon, 1900. Cyllodania fasciata (Caporicaco, 1954) is here presented as a new synonym of Gypogyna forceps Simon, 1900.

Kourou, degrad saramak ($5^{\circ} 01^{\prime} \mathrm{N}, 52^{\circ} 41^{\prime} \mathrm{W}$), 1 , , collection date unknown, Vedel Vincent, by beating vegetation in garden near primary forest.

Marma nigritarsis (Simon, 1900)

Saül ($3^{\circ} 37^{\prime} \mathrm{N}, 53^{\circ} 12^{\prime} \mathrm{W}$), $1 \delta^{\wedge}, 08 . X .2013,1 \delta^{\lambda}, 18 . X .2013$, Bellanger Yannick (Asper Society).

Acknowledgements

The authors thank Marguerite Delaval (Office National des Forêts, ONF) and ONF for funding the expedition to the Trinité National Nature Reserve; Christine Rollard and Christophe Hervé (Museum National d'Histoire Naturelle - Paris) for allowing access to the bibliography of the Arthropod laboratory and permitting the consultation of Caporiacco and Simon's collection; and Alain Canard, Boris Leroy, Frédéric Ysnel and Vincent Vedel for field support; Manuel Plantegenest, Yoann Navasse and El Aziz Djoudi (Agrocampus Ouest - Rennes) for laboratory access and technical support.

Funding

This work was supported by the Office National des Forêts (ONF).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Araújo MHS, Ruiz GRS. 2015. Description of four new species of Hypaeus Simon and redescription of H. taczanowskii Mello-Leitão (Araneae: Salticidae: Amycinae). Zootaxa, 3963(1), 27-44. https://dx.doi.org/10.11646/zootaxa.3963.1.2

Birkhofer K, Wolters V. 2012. The global relationship between climate, net primary production and the diet of spiders. Global Ecology and Biogeography 21, 100-108. https://doi.org/10.1111/j.1466-8238.2011.00654.x

Bodner MR, Maddison WP. 2012. The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution 65, 213-240. https://doi.org/10.1016/j.ympev.2012.06.005

Caporiacco L. di 1954. Araignées de la Guyane Française du Muséum d'Histoire Naturelle de Paris. Commentationes Pontificia Academia Scientiarum. 16, 45-193.

Cardoso P, Pekár S, Jocqué R, Coddington JA. 2011. Global Patterns of Guild Composition and Functional Diversity of Spiders. PLoS ONE 6, e21710. https://doi.org/10.1371/journal.pone. 0021710

Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G. 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology 78, 573-584. https://doi.org/10.1111/j.1365-2656.2009.01525.x

Courtial C, Picard L, Ysnel F, Pétillon J. 2014. Validation of Eustiromastix guianae (Caporiacco, 1954) (Araneae, Salticidae) with a first description of the female, and additions to
the salticid fauna of French Guiana. ZooKeys, 420, 11-18. https://dx.doi.org/10.3897/zookeys. 420.6977

Crane J. 1943. Spiders of the families Lyssomanidae and Salticidae from British Guiana and Venezuela. Zoologica (New York), 28, 125-138.

Edwards GB. 2004. Revision of the jumping spiders of the genus Phidippus (Araneae: Salticidae). Occasional Papers of the Florida State Collection of Arthropods, 11, 1-156.

Galiano ME. 1963. Las especies americanas de arañas de la familia Salticidae descriptas por Eugène Simon: Redescripciones basadas en los ejemplares típicos. Physis, Revista de la Sociedad Argentina de Ciencias Naturales (C), 23, 273-470.

Galiano ME. 1968. Revision de los géneros Acragas, Amycus, Encolpius, Hypaeus, Mago y Noegus (Salticidae, Araneae). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia (Ent.), 2, 267-360.

Galiano ME. 1977. Nota sobre los géneros Cyllodania y Arachnomura (Araneae, Salticidae). Journal of Arachnology, 3, 137-150.

Hedin MC, Maddison WP. 2001. A Combined Molecular Approach to Phylogeny of the Jumping Spider Subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 18, 386-403. https://doi.org/10.1006/mpev.2000.0883

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780. https://doi.org/10.1093/bioinformatics/bts199

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054

Logunov DV. 2015. Taxonomic notes on the genus Lyssomanes Hentz 1845 (Araneae: Salticidae) from French Guiana. Acta Arachnologica, 64(1), 39-44. https://dx.doi.org/10.2476/asjaa.64.39

Maddison WP, Li D, Bodner M, Zhang J, Xin X, Liu Q, Liu F. 2014. The deep phylogeny of jumping spiders (Araneae, Salticidae). ZooKeys, 440, 57-87. https://doi.org/10.3897/zookeys. 440.7891

Maddison WP. 2015. A phylogenetic classification of jumping spiders (Araneae: Salticidae). Journal of Arachnology, 43(3), 231-292. https://doi.org/10.1636/arac-43-03-231-292

Malumbres-Olarte J. Crespo L, Cardoso P, Szűts T, Fannes W, Pape T, Scharff N. 2018. The same but different: equally megadiverse but taxonomically variant spider communities along an elevational gradient. Acta Oecologica 88, 19-28. https://doi.org/10.1016/j.actao.2018.02.012

Martínez L, Galvis W. 2017. Three new species of jumping spiders of the genus Hypaeus Simon, 1900 from Colombia (Salticidae: Salticinae: Amycini). Zootaxa, 4282(1), 192-200. http://dx.doi.org/10.11646/zootaxa.4282.1.12

Mello-Leitão C.F. de 1948. Contribuição ao conhecimento da fauna araneológica das Guianas. Anais da Academia Brasileira de Ciências, 20, 151-196.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environment Workshop, 14 November 2010, New Orleans, 1-8.

Moya-Laraño J, Foellmer MW, Pekár S, Arnedo MA., Bilde T, Lubin Y. 2013. Linking traits, selective pressures and ecological functions. In: D. Penney (Ed), Spider Research in the 21st Century: trends and perspectives. Manchester, UK, pp. 10.

Nyffeler M, Birkhofer K. 2017. An estimated 400-800 million tons of prey are annually killed by the global spider community. The Science of Nature 104, 1-12. https://doi.org/10.1007/s00114-017-1440-1

Nylander JAA. 2004. MrModeltest v2. Computer program and documentation distributed by the author, website: https://github.com/nylander/MrModeltest2 . [accessed 30 Octobre 2020].

Paquin P, Vink CJ. 2009. Testing compatibility between molecular and morphological techniques for arthropod systematics: a minimally destructive DNA extraction method that preserves morphological integrity, and the effect of lactic acid on DNA quality. Journal of Insect Conservation 13, 453-457. https://doi.org/10.1007/s10841-008-9183-0

Peckham GW, Peckham EG. 1885. On some new genera and species of Attidae from the eastern part of Guatamala. Proceedings of the Natural History Society of Wisconsin, 1885, 62-86.

Pekár S, Toft S. 2015. Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae): Prey-specialised spiders (Araneae). Biological Reviews 90, 744-761. https://doi.org/10.1111/brv. 12133

Privet K, Courtial C, Decaens T, Djoudi EA, Vedel V, Ysnel F, Pétillon J. 2018. Spider assemblage structure in a neotropical rainforest-inselberg complex: ecological and methodological insights from a small-scale intensive survey. Tropical Ecology 59, 21-34.

Privet K, Pétillon J. 2020. Comparative patterns in taxonomic and functional spider diversities between tropical vs. temperate forests. Ecology and Evolution 10: 13165-13172. DOI: 10.1002/ece3.6907

Ruiz GRS, Brescovit AD. 2008. Redescription and resolution of some Neotropical species of jumping spiders described by Caporiacco and description of a new species (Araneae: Salticidae). Revista Brasileira de Zoologia, 25, 487-494. http://dx.doi.org/10.1590/S010181752008000300013

Ruiz GRS, Maddison WP. 2015. The new Andean jumping spider genus Urupuyu and its placement within a revised classification of the Amycoida (Araneae: Salticidae). Zootaxa, 4040(3), 251-279. https://doi.org/10.11646/zootaxa.4040.3.1

Scharff N, Coddington JA, Griswold CE, Hormiga G, Bjørn P. de P. 2003. When to quit? Estimating spider species richness in a northern European deciduous forest. Journal of Arachnology 31, 246-273. https://doi.org/10.1636/01618202(2003)031[0246:WTQESS]2.0.CO;2

Schuldt A, Both S, Bruelheide H, Härdtle W, Schmid B, Zhou H, Assmann T. 2011. Predator Diversity and Abundance Provide Little Support for the Enemies Hypothesis in Forests of High Tree Diversity M. S. Boyce (Ed). PLoS ONE 6, e22905. https://doi.org/10.1371/journal.pone. 0022905

Simon E. 1900. Etudes arachnologiques. 30e Mémoire. XLVII. Descriptions d'espèces nouvelles de la famille des Attidae. Annales de la Société Entomologique de France, 69, 27-61.

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America 87, 651701. https://doi.org/10.1093/aesa/87.6.651

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.

Taczanowski L. 1871. Les aranéides de la Guyane française. Horae Societatis Entomologicae Rossicae, 8, 32-132.

Taczanowski L. 1878. Les Aranéides du Pérou. Famille des Attides. Bulletin de la Société Impériale des Naturalistes de Moscou, 53, 278-374.

Vedel V, Rheims C, Murienne J, Brescovit AD. 2013. Biodiversity baseline of the French Guiana spider fauna. SpringerPlus, 2(1), 1-19.
https://dx.doi.org/10.1186/2193-1801-2-361

World Spider Catalog 2021. World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 20.0 [accessed 01 Feb. 2021]
study.

GenBank accessions	Name in topology	Voucher	Collection location	Sex
OK501209	Hypaeus olympeae 1	ACAV07 3	La Trinité, French Guyana	${ }^{\top}$
OK501210	Hypaeus olympeae 2	ACAV07 2	La Trinité, French Guyana Les	¢
OK501211	Hypaeus porcatus 1	NPTN11	Nourages, French Guyana	¢
OK501212	Hypaeus porcatus 2	AQJ5	La Trinité, French Guyana	ㅇ
OK501213	Hypaeus porcatus 3	AQN1	La Trinité, French Guyana	σ^{1}
OK501214	Hypaeus porcatus 4	AQJ5	La Trinité, French Guyana	σ^{1}
OK501215	Hypaeus taczanowskii 1	NITJ3	Les Nouragues, French Guyana	σ^{\top}
OK501216	$\begin{aligned} & \text { Hypaeus } \\ & \text { taczanowskii } \\ & 2 \end{aligned}$	NIQN9	Les Nouragues, French Guyana	σ^{\top}
OK501217	$\begin{aligned} & \text { Hypaeus } \\ & \text { taczanowskii } \\ & 3 \end{aligned}$	IQN10	Les Nouragues, French Guyana	${ }^{\top}$
OK501218	$\begin{aligned} & \text { Hypaeus } \\ & \text { taczanowskii } \\ & 4 \end{aligned}$	NPQJ7	Les Nouragues, French Guyana	¢
OK501219	$\begin{aligned} & \text { Hypaeus } \\ & \text { taczanowskii } \\ & 5 \end{aligned}$	PQJ4	Les Nouragues, French Guyana	¢
OK501220	$\begin{gathered} \text { Hypaeus } \\ \text { taczanowskii } \\ 6 \end{gathered}$	NPQJ5	Les Nouragues, French Guyana	ㅇ

Table 1

Summary of GenBank accession numbers, species name and voucher information (site coordinates are given in the Material and Methods) for the sequences newly generated for the

Figures 1 - 2
Hypaeus olympeae sp. nov. 1 male, dorsal view, scale $0,5 \mathrm{~mm}$; 2. Female, dorsal view, scale 1 mm .

Figures 3-4
Hypaeus olypeae sp. nov. male. 3. Chelicerae detail (ma: mastidion), scale 0.5mm; 4. Left male palp with bump on femur (arrow), scale 1 mm .

Figures 5-7
Hypaeus olympeae sp. nov. left male palp; 5. retrolateral view; 6. Same ventral view; 7. Same dorsal view showing tibial apophysis, scale 0.5 mm .

Figures 8 - 10
Hypaeus olympeae sp. nov. female; 8. epigyne, ventral view; 9. same, cleared; 9. ventral view, cleared, scale 0.5 mm .

Figures 11-13
Hypaeus olympeae sp. nov. left male palp drawnings; 11. retrolateral view; 12. same, dorsal view showing tibial apophysis; 13 same, ventral view, scale 0.5 mm .

Figures 14-16
Hypaeus olympeae sp. nov. female; 13. Epigyne drawing; 14. same ventral view; 15. path within epigyne, scale 0.5 mm .

Figures 17-18
Hypaeus olympeae sp. nov. pictures of living specimens; 16. male holotype; 17. female paratype.

Figure 19

50% majority-rule tree from the Bayesian analysis of the COI matrix. Numbers above each branch are bootstrap values $>50 \%$ followed by posterior probabilities from the Bayesian
analysis. Branch lengths are proportional to the number of substitutions per nucleotide position (scale bar $=0.01$ substitutions). See Table 1 for complete voucher information.

Figures 1 - 2
Hypaeus olympeae sp. nov. 1 male, dorsal view, scale $0,5 \mathrm{~mm}$; 2. Female, dorsale view, scale 1 mm .

Figures 3-4
Hypaeus olypeae sp. nov. male. 3. Chelicerae detail (ma: mastidion), scale 0.5 mm ; 4. Left male palp with bump on femur (arrow), scale 1 mm .

Figures 5-7
Hypaeus olympeae sp. nov. left male palp; 5. retrolateral view; 6. Same ventral view; 7. Same dorsal view showing tibial apophysis, scale 0.5 mm .

Figures 8 - 10
Hypaeus olympeae sp. nov. female; 8. epigyne, ventral view; 9. same, cleared; 9. ventral view, cleared, scale 0.5 mm .

Figures 11 - 13
Hypaeus olympeae sp. nov. left male palp drawnings; 11. retrolateral view; 12. same, dorsal view showing tibial apophysis; 13 same, ventral view, scale 0.5 mm .

Figures 14 - 16

Hypaeus olympeae sp. nov. female; 14. Epigyne drawing; 15. same ventral view; 16. path within epigyne, scale 0.5 mm .

Figures 17-18
Hypaeus olympeae sp. nov. pictures of living specimens; 17. male holotype; 18. female paratype.

Figure 19
50% majority-rule tree from the Bayesian analysis of the COI matrix. Numbers above each branch are bootstrap values $>50 \%$ followed by posterior probabilities from the Bayesian analysis. Branch lengths are proportional to the number of substitutions per nucleotide position (scale bar=0.01 substitutions). See Table 1 for complete voucher information.

Sarinda cutleri

