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Abstract

Using Riemann-Hilbert problem methods, we establish a Tracy-Widom like formula for
generating function of occupancy numbers of the Pearcey process. This formula is linked to
a coupled vector differential equation of order 3. We also obtained a non linear coupled heat
equation. Combining these two equations leads to a PDE for the logarithm of the Fredholm
determinant for the Pearcey process.

1 Introduction

The Pearcey process is a universal determinantal point process associated to the Pearcey kernel
(see (6) for the definition of the kernel). It appeared for the first time in the study of spectrum
of random matrices with external sources [1]. If 2N is the size of matrices, the Pearcey process
describes the behaviour, when N → ∞, of eigenvalues near a point where the density of states
admits a cusp-like gap. Another model linked with Pearcey process is a 2N 1-dimension non
intersecting Brownian motions model [2] starting from 0 at t = 0 and ending at ±a (half
particules at a and the others at −a) at time t = 1. For this model, there exists a time tc such
that, for t < tc the distribution of particles is supported in an interval and for t > tc it splits in
two disjoint intervals. The distribution of particles of the Brownian motion for t close to tc is
described by the Pearcey process. A last example which reveals the universality of the Pearcey
process is the one of random skew plane partition [3]. Studying the limit shape associated to this
model leads to different processes: Beta process, extended Airy process, and extended Pearcey
process.
As for the Airy process, it is possible to express probabilities associated to the Pearcey process
in terms of some partial derivative equations by studying the Fredholm determinant of the
Pearcey kernel operator (6). Studying Brownian motion model at several times and deriving
the kernel associated to the Pearcey process, Tracy and Widom [4], obtained partial derivatives
equations for the distribution associated to the Pearcey process. Using KP-tau functions and
Hirota bilinear equations for the study of random matrix with external sources, Adler and van
Moerbeke [5] introduced a non linear 4th order PDE for the Pearcey process. With Riemann-
Hilbert methods Bertola and Cafasso [6] obtained same PDE’s as Adler and van Moerbeke and
introduced a new one for the gap probability for the Pearcey process.
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The aim of this article is to present a Tracy-Widom formula for the generating function of
the Pearcey process linked with two vector valued functions satisfying a system of coupled non
linear third order differential equations and of non linear heat equation.

Let N > 1 be an integer, −→a := (a1, ..., aN ) with a1 < ... < aN and −→k = (k0, k1, ..., kN−1, kN )
such that k0 = kN = 0, kj ∈ [0, 1], j = 1, ..., N − 1 and kj ̸= kj+1, j = 0, ..., N − 1.
Consider the Pearcey process (which depends on an additional positive parameter τ) and define
its generating function

F (−→a , τ,
−→k ) := E

N−1∏
j=1

(1 − kj)♯(aj ,aj+1)

 (1)

where ♯I is the random variable counting the number of points of the process in the interval I.
This generating function is well defined for (ai)1⩽i⩽N finites.
Computing derivatives with respect to kj ’s of F (−→a , τ,

−→k ) allows us to express joint probability
of occupancy numbers of particles:

P

N−1⋂
j=1

♯(aj , aj+1) = mj

 = (−1)m1+...+mN−1

m1!...mN−1!
∂m1+...+mN−1

∂km1
1 ...∂k

mN−1
N−1

F (−→a , τ,
−→k )
∣∣∣∣∣−→

k =(1,...,1)
(2)

(see for instance [7] for a similar computation).

Remark 1. Since for all B ⊂ R bounded borelian ♯B < ∞, F (−→a , τ,
−→k ) > 0.

Right, with Jensen’s inequality,

F (−→a , τ,
−→k ) ⩾ exp

N−1∑
j=1

log(1 − kj)E (♯(aj , aj+1))


and ∀1 ⩽ j ⩽ N − 1, log(1 − kj)E (♯(aj , aj+1)) > −∞.

Charlier and Moreillon studied generating function of the Pearcey process [8] on intervals
of the form (−xj , xj). They considered a parameter r of dilatation of their intervals and ob-
tained an expression for the generating function of the Pearcey process linked with an hamil-
tonian. Recently, Kimura and Zahabi [9] introduced higher order Pearcey kernels and obtained
an hamiltonian structure for the level spacing distribution by studying a different Lax Pair for
the Pearcey process on intervals of the form [−s, s].

In this article, we follow a different way. We consider generating function not necessarily on
symmetric intervals and we use a parameter s of translation of intervals instead of dilatation.
This work is inspired by works of Claeys and Doeraene [10] and Charlier and Doeraene [11]
where they studied generating function for the Airy process and for the Bessel process. Re-
cently Cafasso and Tarricone [12] obtained a Tracy-Widom type formula for generating function
associated to the higher order Airy process.
The generating function associated to the Pearcey process satisfies the following:

Theorem 2. Let s ∈ R, F (−→a + s, τ,
−→k ) be as (1) where −→a + s = (a1 + s, ..., aN + s), then

∂2

∂s2 log
(
F (−→a + s, τ,

−→k )
)

= pT (s)q(s)
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with (p(s), q(s)) =
(
p(s, τ, −→a ,

−→k ), q(s, τ, −→a ,
−→k )
)

vectors of size N satisfying:
a coupled third order differential equation{

∂ssspT + 3(∂spT )qpT + 3pT q(∂spT ) − τ∂spT + pT Ds,−→a = 0
∂sssq + 3(∂sq)pT q + 3qpT (∂sq) − τ∂sq − Ds,−→a q = 0

(3)

where Ds,−→a := Diag(a1 + s, ...aN + s)
and a coupled non linear heat equation{

−1
2∂sspT − ∂τ pT = pT qpT

−1
2∂ssq + ∂τ q = qpT q

. (4)

Defining u(s, τ) := log
(
F (−→a + s, τ,

−→k )
)
, u satisfies

∂2

∂τ2 u(s, τ) + 1
2

(
∂2

∂s2 u(s, τ)
)2

+ 1
12

∂4

∂s4 u(sτ) − 1
3τ

∂2

∂s2 u(s, τ) = 0 (5)

Remark 3. The equation (5) was already known for the gap probability for the Pearcey process
(see for instance equation (1.10) in [13]).

The paper is organised as follows: in Section 2 we establish a link between F (−→a + s, τ,
−→k )

and a Fredholm determinant of an integrable operator in the sense of IIKS [14] and introduce
the Riemann-Hilbert problem associated to this integrable operator. In Section 3 we present a
Lax pair associated to the Riemann-Hilbert problem for the Pearcey kernel and obtain a coupled
vector differential equation with respect to the variable s and a coupled non linear heat equation
with respect to s and τ for elements of the Riemann-Hilbert problem. Finally, in Section 4 we
compute the logarithmic derivative of F (−→a + s, τ,

−→k ) with respect to s and prove Theorem 2
with results of Sections 2 and 3.

2 From generating function of Pearcey process to a Riemann-
Hilbert Problem

In this section we establish a link between the generating function F (−→a + s, τ,
−→k ) and the

Fredholm determinant of an integrable operator and introduce the Riemann-Hilbert Problem
(RHP) associated to this integrable operator.

The Pearcey kernel operator

The Pearcey process is a determinantal point process associated to the Pearcey kernel operator.

For (x, τ) ∈ R2 define θx(µ) := µ4

4 − τµ2

2 − xµ and introduce the Pearcey Kernel

KP (x, y; τ) := 1
(2iπ)2

∫
Σ

∫
iR

eθx(µ)−θy(λ)

(λ − µ) dλdµ (6)

where Σ := Σ− ∪ Σ+ is as in the folowing figure:
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Σ−

Σ+

iR

Introduce KP : L2(R) → L2(R) with kernel KP . According to Theorem 2 of [15], if s and ai’s
are all finites, then the generating function F (−→a +s, τ,

−→k ) and the Fredholm determinant of the
operator KP are linked in the folowing way:

F (−→a + s, τ,
−→k ) = det

1 −
N−1∑
j=1

kjχ(aj+s,aj+1+s)KP

 (7)

where χI is the characteristic function of the interval I.

From Pearcey kernel operator to an integrable operator

The kernel of the operator KP defined as (6) is not the kernel of an integrable operator. Therefore
we link this Fredholm determinant with the one of an integrable operator in the sense of [14]
so that we can study F (−→a + s, τ,

−→k ) with Riemann-Hilbert problem associated to integrable
operator.
Define

f̃(µ) = 1
2iπ


e

1
2 θ0(µ)χΣ(µ)

√
k1 − k0e− 1

2 θ0(µ)+(a1+s)µχiR(µ)
...√

kN − kN−1e− 1
2 θ0(µ)+(aN +s)µχiR(µ)

 (8)

g̃(µ) =


e− 1

2 θ0(µ)χiR(µ)
√

k1 − k0e
1
2 θ0(µ)−(a1+s)µχΣ(µ)

...√
kN − kN−1e

1
2 θ0(µ)−(aN +s)µχΣ(µ)

 (9)

We decompose f̃ and g̃ in a block 1 × 1 and a vector of size N because in what follows we will
study a Riemann-Hilbert problem of size (N + 1) × (N + 1) and matrices will be partitioned in
four blocks of size 1 × 1, 1 × N , N × 1 and N × N .
Define K : L2(Σ ∪ iR) → L2(Σ ∪ iR) integrable operator in the sense of [14] with kernel

K(u, v) = f̃T (u)g̃(v)
u − v

(10)

We establish the relation between F (−→a +s, τ,
−→k ) and the Fredholm determinant of the operator

K as follow:
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Proposition 4. Let F (−→a + s,
−→k ) be as in Theorem 2 and K be as in (10). Then

F (−→a + s, τ,
−→k ) = det(1 − K)L2(Σ∪iR)

Proof. The idea of the proof is to compose the operator K with multiplication operator and
Fourier operator so that its Fredholm determinant will not change and to obtain an operator

defined on L2(R) with kernel
N−1∑
j=1

kjχ(aj+s,aj+1+s)(x)KP (x, y).

The proof of this proposition is similar to the one of Theorem 4.1 in [6] and can be adapted as
follows.
Since iR and Σ are disjoint, you can decompose L2(Σ ∪ iR) as L2(iR) ⊕ L2(Σ) and write the
following equality using matrix notation:

det(1 − K)L2(Σ∪iR) = det

1 −

 0
N∑

j=1
Gj

F 0




L2(iR)⊕L2(Σ)

= det

1 −
N∑

j=1
Gj ◦ F


L2(iR)

where F and Gj are defined below with Gj depending on kj ’s

F : L2(iR) −→ L2(Σ)

f 7−→ e
1
2 θ0(λ)

2iπ

∫
Σ

e− 1
2 θ0(µ)

λ − µ
g(µ)dµ

Gj : L2(Σ) −→ L2(iR)

g 7−→ (kj − kj−1)e− 1
2 θ0(ξ)+ξ(aj+s)

2iπ

∫
Σ

e
1
2 θ0(λ)−λ(aj+s)

ξ − λ
g(λ)dλ

Then composing with a multiplication operator M and using a Fourier operator T (for example as
in [16]) it is possible to relate Fredholm determinants of K and KP . Here the Fourier composition
allows to go from an operator on L2(iR) to one on L2(R).
With M := e− 1

2 θ0(µ) and

T : L2(iR) −→ L2(R)
f 7−→ 1√

2iπ

∫
iR

e−ξxf(ξ)dξ

T ◦ M−1 ◦ Gj ◦ F ◦ M ◦ T −1 has kernel

Lj(x, y) = kj − kj−1
(2iπ)2

∫
iR

eξ(aj+s−x)
∫

iR

∫
Σ

eθaj +s(λ)−θy(µ)

(ξ − λ)(λ − µ)dλdµ
dξ

2iπ

Lj(x, y) =


kj − kj−1

(2iπ)2

∫
iR

∫
Σ+

eθx(λ)−θy(µ)

(µ − λ) dλdµ, x > aj + s

−kj − kj−1
(2iπ)2

∫
iR

∫
Σ−

eθx(λ)−θy(µ)

(µ − λ) dλdµ, x < aj + s
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If x < a1 + s, then x < aj + s for all j and ∑N
j=1 T ◦ M−1 ◦ Gj ◦ F ◦ M ◦ T −1 has kernel

−
∑N

j=1 kj − kj−1

(2iπ)2

∫
Σ−

∫
iR

eθx(µ)−θy(λ)

(λ − µ) dλdµ = −kN − k0
(2iπ)2

∫
Σ−

∫
iR

eθx(µ)−θy(λ)

(λ − µ) dλdµ = 0

The same holds for x > aN + s.
If x ∈ (aj + s, aj+1 + s), then

N∑
j=1

Lj(x, y) =
∑j

ℓ=1 kℓ − kℓ−1
(2iπ)2

∫
iR

∫
Σ+

eθx(λ)−θy(µ)

(µ − λ) dλdµ −
∑N

ℓ=j+1 kℓ − kℓ−1

(2iπ)2

∫
iR

∫
Σ−

eθx(λ)−θy(µ)

(µ − λ) dλdµ

= kjχ(aj+s,aj+1+s)(x)KP (x, y)

This concludes the proof.

We can study det(1 −K)L2(Σ∪iR) with the theory of Riemann-Hilbert problem associated to
integrable operator. We describe the Riemann-Hilbert problem associated to K in what follows.

Riemann-Hilbert Problem associated to Pearcey kernel operator

The contours for the Riemann-Hilbert problem associated to F (−→a + s, τ,
−→k ) is Σ ∪ iR oriented

as in the previous figure.
For the jump matrix, introduce

f(µ) :=


−

√
k1 − k0e−θa1+s(µ)

...
−
√

kN − kN−1e−θaN +s(µ)

χiR(µ) and g(µ) :=


−

√
k1 − k0eθa1+s(µ)

...
−
√

kN − kN−1eθaN +s(µ)

χΣ(µ)

Riemann-Hilbert Problem 5 (RHP for Γ). We consider the Riemann-Hilbert problem with

contours Σ ∪ iR and jump matrix J(µ; −→a , τ, s) :=

 1 gT (µ)
f(µ) In

 = IN+1 − 2iπf̃(µ)g̃T (µ).

We search a matrix valued function Γ(µ) = Γ(µ; −→a , τ, s) such that:

• Γ : C\Σ ∪ iR → GℓN+1(C) is analytic

• Γ+(µ) = Γ−(µ)J(µ), µ ∈ Σ∪ iR where Γ is continuous up to boundary of the contours and
Γ±(µ) are non-tangential limits approaching µ from left(+) or right(-).

•

Γ(µ) = IN+1 +
∑
j⩾1

Γj

µj
= IN+1 + 1

µ

 −δ(−→a , τ, s) pT (−→a , τ, s)
q(−→a , τ, s) ∆(−→a , τ, s)

+ ... as µ → ∞ (11)

Remark 6. If Γ satisfies the previous RHP, then det(Γ) is entire and according to the asymptotic
det(Γ) ≡ 1. Since det(Γ) ≡ 1, the previous RHP has an unique solution (if it exists), Tr(Γ1) = 0
and δ = Tr(∆).
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3 Study of the Riemann-Hilbert Problem associated to Pearcey
kernel operator

In this section, we obtain a Lax Pair associated to the previous RHP which leads to a system
of coupled vector differential equation for pT and q (see equation (11) for the defintion of pT

and q). Studying the derivative with respect to τ yields to a coupled non linear heat equation
satisfied by pT and q.

A Lax Pair for Ψ

Let Γ be a solution of RHP 5 and T be the gauge transformation:

T (µ) := e

1
N + 1

N∑
j=1

θaj+s(µ)
Diag

(
1, e−θa1+s(µ), ..., e−θaN +s(µ)

)
.

Defining Ψ(µ) := Γ(µ)T (µ), the following result holds for Ψ.

Proposition 7 (Lax pair for Ψ). If Γ is solution of RHP 5 then Ψ satisfy a system of partial
differential equation polynomial in µ.

∂sΨ(µ) = A(µ)Ψ(µ)
∂µΨ(µ) = B(µ)Ψ(µ)
∂τ Ψ(µ) = C(µ)Ψ(µ)

(12)

where

A(µ) = µA1 + A0 = µ

N + 1

 −N (0)
(0) IN

+

 0 pT

−q (0)

 (13)

B(µ) = µ3B̃3 + µ2B2 + µ(B̃1 + B1) + B̃0 + B0 (14)

with Bj’s depending on Γj’s and B̃3 = −A1, B̃1 = τA1

B̃0 = sA1 + 1
N + 1 Diag

−
N∑

j=1
aj , Na1 −

∑
j ̸=1

aj , ..., NaN −
∑
j ̸=N

aj


and

C(µ) = µ2C̃2 + µC1 + C0 = µ2

2 A1 + µC1 + C0 (15)

with C1 and C0 depending on Γj’s.

Proof. It is easy to show that if Γ satisfies the previous RHP then Ψ satisfies a RHP with jump
matrix which does not depend on −→a , τ, s and µ (the jump only depends on
kj , j = 0, ..., N).

Then Ψ and ∂sΨ have same jump on the contours. From this fact we deduce that A(µ) :=
∂sΨ(µ)Ψ(µ)−1 is entire. Using Liouville’s theorem with asymptotics of Ψ and ∂sΨ from there
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RHP we conclude A is a polynomial of degree 1 in µ. More precisely, we compute A and obtain:

A(µ) = µA1 + A0 = µ

N + 1

 −N (0)
(0) IN

+

 0 pT

−q (0)


Using same methods we conclude that B(µ) := ∂µΨ(µ)Ψ(µ)−1 (respectively C(µ) := ∂τ Ψ(µ)Ψ(µ)−1)

is a polynomial of degree 3 (respectively degree 2). We will not do all computations for B and
C with the asymptotic as we did for A: we precise what we will do.
Computations with the asymptotic involve T , its partial derivative with respect to µ (respec-
tively τ) and (Γj)j⩾1. For now we will only compute terms in B (respectively C) which does
not depend on (Γj)j⩾1.
We start with B and write it as:

B(µ) = µ3B̃3 + µ2B2 + µ(B̃1 + B1) + B̃0 + B0

where only (Bj)j∈{0,1,2} (respectively (B̃j)j∈{0,1,3}) depends (respectively does not depend) on
(Γj)j⩾1.

B(µ) = (ΓµT + ΓTµ)T −1Γ−1 = ΓµΓ−1 + ΓTµT −1Γ−1

ΓµΓ−1 = O(µ−2) as µ → ∞, then

B(µ) ∼
(

IN+1 + Γ1
µ

+ ...

)
TµT −1

(
IN+1 − Γ1

µ
+ ...

)

B(µ) = TµT −1 +
2∑

j=0
µjBj because of Liouville’s theorem. We compute TµT −1 and obtain:

B̃3 = −A1, B̃1 = τA1

B̃0 = sA1 + 1
N + 1 Diag

−
N∑

j=1
aj , Na1 −

∑
j ̸=1

aj , ..., NaN −
∑
j ̸=N

aj


Similarly C(µ) = Tτ T −1 +

1∑
j=0

µjCj and Tτ T −1 = µ2

2 A1.

Remark 8. For δ, pT and q as in (11) the following holds: ∂sδ = −pT q.
Actually, computing the term in 1/µ in the asymptotic of A, we obtain ∂sΓ1+[Γ2, A1]−[Γ1, A1]Γ1.
Then, because of Liouville’s theorem this term is 0 and the block 1 × 1 on the diagonal block
matrix leads to the equation. This equation will be useful later when we will compute the loga-
rithmic derivative for F (−→a + s, τ,

−→k ).

Proposition 9. Let pT and q be as in (11). Then they satisfy the following coupled vector 3rd
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order differential equation and non linear coupled heat equation:{
∂ssspT + 3(∂spT )qpT + 3pT q(∂spT ) − τ∂spT + pT Ds,−→a = 0
∂sssq + 3(∂sq)pT q + 3qpT (∂sq) − τ∂sq − Ds,−→a q = 0

(16)

{
−1

2∂sspT − ∂τ pT = pT qpT

−1
2∂ssq + ∂τ q = qpT q

. (17)

Proof. The compatibility condition for the Lax pair of Ψ leads to the equation

∂sB − ∂µA = [A, B] (18)

We use the same approach as in [17] and [12]. If we write Bki
j blocs of matrix Bj where B11

j is
a scalar, B12

j is a row of size N , B21
j a column of size N and B22

j a N × N matrix. Then (18)
gives a polynomial equation in µ and we obtain an equation for every monomial. This leads to
the following equations:

B12
2 = −pT , B21

2 = q (19)
∂sB11

j = pT B21
j + B12

j q

∂sB12
j = −B12

j−1δj ̸=0 + pT B22
j − B11

j pT + τpT δj,1 + pT Ds,−→a δj,0

∂sB21
j = B12

j−1δj ̸=0 − qB11
j + B22

j q + τqδj,1 + Ds,−→a qδj,0

∂sB22
j = −qB12

j − B21
j pT

(20)

where Ds,−→a = Diag(a1 + s, ..., aN + s) and δi,j is the Kronecker delta.
We define formally the operator ∂−1

s such that ∂−1
s ∂s = 1. From the first and the last equation

of (20) we obtain B11
j = ∂−1

s

(
pT B21

j + B12
j q
)

and B22
j = −∂−1

s

(
qB12

j + B21
j pT

)
. With j = 2,

B11
2 = ∂−1

s (0) = c11
2 , B22

2 = ∂−1
s ((0)) = c22

2

with c11
2 and c22

2 independent of s. Actually with the asymptotics we obtain: B2 = −A0. Then
c11

0 = 0 and c22
0 = (0). Same for B1, even if it depends on Γ2, diagonal terms only depend on

Γ1. The asymptotic leads to
B11

1 = pT q, B22
1 = −qpT

Using second and third equations of (20) we compute B12
1 and B21

1 with j = 2 then B12
0 and

B21
0 with j = 1.

B12
1 = ∂spT , B21

1 = ∂sq

B12
0 = −∂sspT − 2pT qpT + τpT , B21

0 = ∂ssq + 2qpT q − τq

Using first and last equations of (20) with j = 0 and integrating, we compute B11
0 and B22

0 .

B11
0 = pT (∂sq) − (∂spT )q

B22
0 = q(∂spT ) − (∂sq)pT

Finally, it remains two equations (second and third of (20) with j = 0). Replacing Bki
0 in these
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equations we obtain a system of equations satisfied by pT and q:{
∂ssspT + 3(∂spT )qpT + 3pT q(∂spT ) − τ∂spT + pT Ds,−→a = 0
∂sssq + 3(∂sq)pT q + 3qpT (∂sq) − τ∂sq − Ds,−→a q = 0

(21)

Studying the compatibility condition of A and C the same way as for A and B, pT and q satisfied
a coupled non-linear heat equation:{

−1
2∂sspT − ∂τ pT = pT qpT

−1
2∂ssq + ∂τ q = qpT q

. (22)

In appendix A of [9], doing formal computation on an interval semi infinite, Kimura and
Zahabi obtained a scalar version of the system of coupled differential equation (21).
Similar equations as in Proposition 9 appeared in the study of limiting one-point distribution of
periodic TASEP [18]. The authors obtained coupled mKdV equations and coupled non linear
heat equations. Combining these two equations, they proved the second log-derivative of the
Fredholm determinant they studied satisfied the second Kadomtsev-Petviashvili equation. It
is possible to do similar computations to obtain a PDE for the second log-derivative of the
Fredholm determinant of K. The next section will be partially devoted to this computation.

4 The logarithmic derivative of F and proof of Theorem 2

Finally we prove Theorem 2.
From Remark 1 and Proposition 4, the Fredholm determinant of (1 − K) is different of 0 and
1 − K is invertible.
Defining

F̃ := (1 − K)−1f̃ , , with f̃ as in equation (8), (23)

if we write F̃ =


F0

F1
...

FN

 and g̃ =


g0

g1
...

gN

 (where g̃ is defined in equation (9)), we have the

following result.

Lemma 10. Let ∆ be as in (11) and Fi’s, gi’s as above. Then:

∆ =
∫

Σ∪iR


F1(µ)

...
FN (µ)

 (g1(µ), . . . , gN (µ)) dµ

Proof. According to theory of Riemann-Hilbert problem, since (1−K) is invertible, the resolvent
of K and the unique solution to RHP 5 are linked and F̃ = Γ+f̃ .
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With this last equality we obtain:

Γ(ξ) = IN+1 −
∫

Σ∪iR

F̃ (µ)g̃T (µ)
µ − ξ

dµ

Expanding 1
µ − ξ

we express Γ1 in function of F̃ and g̃.

Γ1 =
∫

Σ∪iR
F̃ (µ)g̃T (µ)dµ

According to this previous equality and because of the decomposition by blocks of Γ1 in (5),
with

F̃ =


F0

F1
...

FN

 and g̃ =


g0

g1
...

gN

 , (24)

∆ =
∫

Σ∪iR


F1(µ)

...
FN (µ)

 (g1(µ), . . . , gN (µ)) dµ.

Proposition 11. Let F (−→a + s, τ,
−→k ) be as in Theorem 2 and δ as in (11). The following holds:

∂

∂s
log(F (−→a + s, τ,

−→k )) = −δ

Proof.

∂

∂s
log(F (−→a + s, τ,

−→k )) = ∂

∂s
log(det(1 − K)) = ∂

∂s
Tr(log(1 − K)) = − Tr

(
(1 − K)−1∂sK

)
Let (en)n∈N be an orthonormal basis of L2(Σ ∪ iR).

Tr((1 − K)−1∂sK) =
∑
n∈N

⟨(1 − K)−1∂sKen, en⟩

But ∂sK has kernel χiR(u)f̃T (u)g̃(v)χΣ(v). Then

Tr((1 − K)−1∂sK) =
∑
n∈N

⟨(1 − K)−1(χiRf̃T ), en⟩⟨χΣg̃, en⟩

According to (24), definitions of f̃ (8), g̃ (9) and F̃ (23),

Tr((1 − K)−1∂sK) =
∑
n∈N

(⟨F1, en⟩, . . . , ⟨FN , en⟩)


⟨g1, en⟩

...
⟨gN , en⟩

 = Tr(∆)

The last equation is a consequence of Lemma 10 and the fact that en is an orthonormal basis.

11



Finally, because of −δ + Tr(∆) = Tr(Γ1) = 0 (see Remark 6),

∂

∂s
log(F (−→a + s, τ,

−→k )) = −δ

We use the previous proposition and the discussion on the Lax Pair to prove Theorem 2.

Proof of Theorem 2. Using the previous proposition we derive ∂

∂s
log

(
F (−→a + s, τ,

−→k )
)

with
respect to s.

∂2

∂s2 log
(
F (−→a + s, τ,

−→k )
)

= −∂sδ = pT (s)q(s) (25)

because ∂sδ = −pT q (see Remark 8). From the Proposition 9 pT and q satisfy equations (3) and
(4).

We now prove equation (5).

Define u(s, τ) := log
(
F (−→a + s, τ,

−→k )
)

and v(s, τ) := ∂2

∂s2 u(s, τ). According to Proposition 11,
v(s, τ) = pT (s)q(s). Deriving v with respect to τ and using equation (22) to express ∂τ pT and
∂τ q, we obtain:

∂τ v = 1
2∂s

(
pT ∂sq − ∂spT q

)
(26)

Deriving a second time v with respect to τ (again using equation (22)) yields to

∂ττ v = 1
2

(
2v∂sv + 1

2
(
pT ∂sssq + ∂ssspT q

)
− 1

2∂s

(
∂spT ∂sq

))
(27)

Recall v(s, τ) = pT (s)q(s), then deriving three times with respect to s the following equation
holds:

∂s

(
∂spT ∂sq

)
= 1

3
(
∂sssv −

(
pT ∂sssq + ∂ssspT q

))
(28)

Replacing ∂s

(
∂spT ∂sq

)
in equation (27) and using equation (21) we obtain:

∂ττ v = ∂s

(
−v∂sv − 1

12∂sssv + 1
3τ∂sv

)
. (29)

Replacing v by ∂ssu and integrating two times with respect to s we prove u satisfies equation
(5).
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