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A Riemann Hilbert approach to the study of the generating function associated to Pearcey process

Using Riemann-Hilbert problem methods, we establish a Tracy-Widom like formula for generating function of occupancy numbers of the Pearcey process. This formula is linked to a coupled vector differential equation of order 3. We also obtained a non linear coupled heat equation. Combining these two equations leads to a PDE for the logarithm of the Fredholm determinant for the Pearcey process.

Introduction

The Pearcey process is a universal determinantal point process associated to the Pearcey kernel (see [START_REF] Bertola | The Transition between the Gap Probabilities from the Pearcey to the Airy Process -a Riemann-Hilbert Approach[END_REF] for the definition of the kernel). It appeared for the first time in the study of spectrum of random matrices with external sources [START_REF] Brézin | spacing of random matrices in an external source[END_REF]. If 2N is the size of matrices, the Pearcey process describes the behaviour, when N → ∞, of eigenvalues near a point where the density of states admits a cusp-like gap. Another model linked with Pearcey process is a 2N 1-dimension non intersecting Brownian motions model [START_REF] Bleher | Large n limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit[END_REF] starting from 0 at t = 0 and ending at ±a (half particules at a and the others at -a) at time t = 1. For this model, there exists a time t c such that, for t < t c the distribution of particles is supported in an interval and for t > t c it splits in two disjoint intervals. The distribution of particles of the Brownian motion for t close to t c is described by the Pearcey process. A last example which reveals the universality of the Pearcey process is the one of random skew plane partition [START_REF] Okounkov | Random skew plane partitions and the pearcey process[END_REF]. Studying the limit shape associated to this model leads to different processes: Beta process, extended Airy process, and extended Pearcey process.

As for the Airy process, it is possible to express probabilities associated to the Pearcey process in terms of some partial derivative equations by studying the Fredholm determinant of the Pearcey kernel operator [START_REF] Bertola | The Transition between the Gap Probabilities from the Pearcey to the Airy Process -a Riemann-Hilbert Approach[END_REF]. Studying Brownian motion model at several times and deriving the kernel associated to the Pearcey process, Tracy and Widom [START_REF] Tracy | The Pearcey Process[END_REF], obtained partial derivatives equations for the distribution associated to the Pearcey process. Using KP-tau functions and Hirota bilinear equations for the study of random matrix with external sources, Adler and van Moerbeke [START_REF] Adler | Pdes for the gaussian ensemble with external source and the pearcey distribution[END_REF] introduced a non linear 4 th order PDE for the Pearcey process. With Riemann-Hilbert methods Bertola and Cafasso [START_REF] Bertola | The Transition between the Gap Probabilities from the Pearcey to the Airy Process -a Riemann-Hilbert Approach[END_REF] obtained same PDE's as Adler and van Moerbeke and introduced a new one for the gap probability for the Pearcey process.

The aim of this article is to present a Tracy-Widom formula for the generating function of the Pearcey process linked with two vector valued functions satisfying a system of coupled non linear third order differential equations and of non linear heat equation.

Let N > 1 be an integer, -→ a := (a 1 , ..., a N ) with a 1 < ... < a N and

- → k = (k 0 , k 1 , ..., k N -1 , k N ) such that k 0 = k N = 0, k j ∈ [0, 1], j = 1, ..., N -1 and k j ̸ = k j+1 , j = 0, ..., N -1.
Consider the Pearcey process (which depends on an additional positive parameter τ ) and define its generating function

F ( - → a , τ, - → k ) := E   N -1 j=1 (1 -k j ) ♯(a j ,a j+1 )   ( 1 
)
where ♯I is the random variable counting the number of points of the process in the interval I.

This generating function is well defined for (a i ) 1⩽i⩽N finites.

Computing derivatives with respect to k j 's of F ( -→ a , τ, -→ k ) allows us to express joint probability of occupancy numbers of particles:

P   N -1 j=1 ♯(a j , a j+1 ) = m j   = (-1) m 1 +...+m N -1 m 1 !...m N -1 ! ∂ m 1 +...+m N -1 ∂k m 1 1 ...∂k m N -1 N -1 F ( - → a , τ, - → k ) -→ k =(1,...,1) (2) 
(see for instance [START_REF] Johansson | Discrete orthogonal polynomial ensembles and the plancherel measure[END_REF] for a similar computation).

Remark 1. Since for all

B ⊂ R bounded borelian ♯B < ∞, F ( - → a , τ, - → k ) > 0.
Right, with Jensen's inequality,

F ( - → a , τ, - → k ) ⩾ exp   N -1 j=1 log(1 -k j )E (♯(a j , a j+1 ))   and ∀1 ⩽ j ⩽ N -1, log(1 -k j )E (♯(a j , a j+1 )) > -∞.
Charlier and Moreillon studied generating function of the Pearcey process [START_REF] Charlier | On generating function of the Pearcey process[END_REF] on intervals of the form (-x j , x j ). They considered a parameter r of dilatation of their intervals and obtained an expression for the generating function of the Pearcey process linked with an hamiltonian. Recently, Kimura and Zahabi [START_REF] Kimura | Universal cusp scaling in random partitions[END_REF] introduced higher order Pearcey kernels and obtained an hamiltonian structure for the level spacing distribution by studying a different Lax Pair for the Pearcey process on intervals of the form [-s, s].

In this article, we follow a different way. We consider generating function not necessarily on symmetric intervals and we use a parameter s of translation of intervals instead of dilatation.

This work is inspired by works of Claeys and Doeraene [START_REF] Claeys | The Generating Function for the Airy Point Processes and a System of Coupled Painlevé II Equations[END_REF] and Charlier and Doeraene [START_REF] Charlier | The generating function for the bessel point process and a system of coupled painlevé v equations[END_REF] where they studied generating function for the Airy process and for the Bessel process. Recently Cafasso and Tarricone [START_REF] Cafasso | The Riemann-Hilbert approach to the generating function of the higher order Airy point processes[END_REF] obtained a Tracy-Widom type formula for generating function associated to the higher order Airy process.

The generating function associated to the Pearcey process satisfies the following:

Theorem 2. Let s ∈ R, F ( - → a + s, τ, - → k ) be as (1)
where -→ a + s = (a 1 + s, ..., a N + s), then

∂ 2 ∂s 2 log F ( - → a + s, τ, - → k ) = p T (s)q(s) with (p(s), q(s)) = p(s, τ, - → a , - → k ), q(s, τ, - → a , - → k ) vectors of size N satisfying:
a coupled third order differential equation

∂ sss p T + 3(∂ s p T )qp T + 3p T q(∂ s p T ) -τ ∂ s p T + p T D s, -→ a = 0 ∂ sss q + 3(∂ s q)p T q + 3qp T (∂ s q) -τ ∂ s q -D s, -→ a q = 0 (3)
where D s, -→ a := Diag(a 1 + s, ...a N + s) and a coupled non linear heat equation

-1 2 ∂ ss p T -∂ τ p T = p T qp T -1 2 ∂ ss q + ∂ τ q = qp T q . ( 4 
)
Defining u(s, τ ) := log F ( - → a + s, τ, - → k ) , u satisfies ∂ 2 ∂τ 2 u(s, τ ) + 1 2 ∂ 2 ∂s 2 u(s, τ ) 2 + 1 12 
∂ 4 ∂s 4 u(sτ ) - 1 3 τ ∂ 2 ∂s 2 u(s, τ ) = 0 (5) 
Remark 3. The equation [START_REF] Adler | Pdes for the gaussian ensemble with external source and the pearcey distribution[END_REF] was already known for the gap probability for the Pearcey process (see for instance equation (1.10) in [START_REF] Adler | Non-linear PDEs for gap probabilities in random matrices and KP theory[END_REF]).

The paper is organised as follows: in Section 2 we establish a link between F ( -→ a + s, τ, -→ k ) and a Fredholm determinant of an integrable operator in the sense of IIKS [START_REF] Its | Differential Equations for Quantum Correlation Functions[END_REF] and introduce the Riemann-Hilbert problem associated to this integrable operator. In Section 3 we present a Lax pair associated to the Riemann-Hilbert problem for the Pearcey kernel and obtain a coupled vector differential equation with respect to the variable s and a coupled non linear heat equation with respect to s and τ for elements of the Riemann-Hilbert problem. Finally, in Section 4 we compute the logarithmic derivative of F ( -→ a + s, τ, -→ k ) with respect to s and prove Theorem 2 with results of Sections 2 and 3.

From generating function of Pearcey process to a Riemann-Hilbert Problem

In this section we establish a link between the generating function F ( -→ a + s, τ, -→ k ) and the Fredholm determinant of an integrable operator and introduce the Riemann-Hilbert Problem (RHP) associated to this integrable operator.

The Pearcey kernel operator

The Pearcey process is a determinantal point process associated to the Pearcey kernel operator.

For (x, τ ) ∈ R 2 define θ x (µ) := µ 4 4 - τ µ 2 2
-xµ and introduce the Pearcey Kernel

K P (x, y; τ ) := 1 (2iπ) 2 Σ iR e θx(µ)-θy(λ) (λ -µ) dλdµ ( 6 
)
where Σ := Σ -∪ Σ + is as in the folowing figure:

Σ - Σ + iR Introduce K P : L 2 (R) → L 2 (R) with kernel K P .
According to Theorem 2 of [START_REF] Soshnikov | Determinantal random point fields[END_REF], if s and a i 's are all finites, then the generating function F ( -→ a + s, τ, -→ k ) and the Fredholm determinant of the operator K P are linked in the folowing way:

F ( - → a + s, τ, - → k ) = det   1 - N -1 j=1 k j χ (a j +s,a j+1 +s) K P   (7) 
where χ I is the characteristic function of the interval I.

From Pearcey kernel operator to an integrable operator

The kernel of the operator K P defined as ( 6) is not the kernel of an integrable operator. Therefore we link this Fredholm determinant with the one of an integrable operator in the sense of [START_REF] Its | Differential Equations for Quantum Correlation Functions[END_REF] so that we can study

F ( - → a + s, τ, - → k ) with Riemann-Hilbert problem associated to integrable operator. Define f (µ) = 1 2iπ        e 1 2 θ 0 (µ) χ Σ (µ) √ k 1 -k 0 e -1 2 θ 0 (µ)+(a 1 +s)µ χ iR (µ) . . . k N -k N -1 e -1 2 θ 0 (µ)+(a N +s)µ χ iR (µ)        (8) g(µ) =        e -1 2 θ 0 (µ) χ iR (µ) √ k 1 -k 0 e 1 2 θ 0 (µ)-(a 1 +s)µ χ Σ (µ) . . . k N -k N -1 e 1 2 θ 0 (µ)-(a N +s)µ χ Σ (µ)        (9) 
We decompose f and g in a block 1 × 1 and a vector of size N because in what follows we will study a Riemann-Hilbert problem of size (N + 1) × (N + 1) and matrices will be partitioned in

four blocks of size 1 × 1, 1 × N , N × 1 and N × N . Define K : L 2 (Σ ∪ iR) → L 2 (Σ ∪ iR)
integrable operator in the sense of [START_REF] Its | Differential Equations for Quantum Correlation Functions[END_REF] with kernel

K(u, v) = f T (u)g(v) u -v (10)
We establish the relation between F ( -→ a + s, τ, -→ k ) and the Fredholm determinant of the operator K as follow:

Proposition 4. Let F ( - → a + s, - → k )
be as in Theorem 2 and K be as in [START_REF] Claeys | The Generating Function for the Airy Point Processes and a System of Coupled Painlevé II Equations[END_REF]. Then

F ( - → a + s, τ, - → k ) = det(1 -K) L 2 (Σ∪iR)
Proof. The idea of the proof is to compose the operator K with multiplication operator and Fourier operator so that its Fredholm determinant will not change and to obtain an operator defined on L 2 (R) with kernel

N -1 j=1 k j χ (a j +s,a j+1 +s) (x)K P (x, y).
The proof of this proposition is similar to the one of Theorem 4.1 in [START_REF] Bertola | The Transition between the Gap Probabilities from the Pearcey to the Airy Process -a Riemann-Hilbert Approach[END_REF] and can be adapted as follows.

Since iR and Σ are disjoint, you can decompose L 2 (Σ ∪ iR) as L 2 (iR) ⊕ L 2 (Σ) and write the following equality using matrix notation:

det(1 -K) L 2 (Σ∪iR) = det     1 -     0 N j=1 G j F 0         L 2 (iR)⊕L 2 (Σ) = det   1 - N j=1 G j • F   L 2 (iR)
where F and G j are defined below with G j depending on k j 's

F : L 2 (iR) -→ L 2 (Σ) f -→ e 1 2 θ 0 (λ) 2iπ Σ e -1 2 θ 0 (µ) λ -µ g(µ)dµ G j : L 2 (Σ) -→ L 2 (iR) g -→ (k j -k j-1 ) e -1 2 θ 0 (ξ)+ξ(a j +s) 2iπ Σ e 1 2 θ 0 (λ)-λ(a j +s) ξ -λ g(λ)dλ
Then composing with a multiplication operator M and using a Fourier operator T (for example as in [START_REF] Girotti | Gap Probabilities for the Generalized Bessel Process: A Riemann-Hilbert Approach[END_REF]) it is possible to relate Fredholm determinants of K and K P . Here the Fourier composition allows to go from an operator on L 2 (iR) to one on L 2 (R).

With M := e -1 2 θ 0 (µ) and

T : L 2 (iR) -→ L 2 (R) f -→ 1 √ 2iπ iR e -ξx f (ξ)dξ T • M -1 • G j • F • M • T -1 has kernel L j (x, y) = k j -k j-1 (2iπ) 2 iR e ξ(a j +s-x) iR Σ e θ a j +s (λ)-θy(µ) (ξ -λ)(λ -µ) dλdµ dξ 2iπ L j (x, y) =            k j -k j-1 (2iπ) 2 iR Σ + e θx(λ)-θy(µ) (µ -λ) dλdµ, x > a j + s - k j -k j-1 (2iπ) 2 iR Σ - e θx(λ)-θy(µ) (µ -λ) dλdµ, x < a j + s If x < a 1 + s, then x < a j + s for all j and N j=1 T • M -1 • G j • F • M • T -1 has kernel - N j=1 k j -k j-1 (2iπ) 2 Σ -iR e θx(µ)-θy(λ) (λ -µ) dλdµ = - k N -k 0 (2iπ) 2 Σ -iR e θx(µ)-θy(λ) (λ -µ) dλdµ = 0
The same holds for x > a N + s.

If x ∈ (a j + s, a j+1 + s), then N j=1 L j (x, y) = j ℓ=1 k ℓ -k ℓ-1 (2iπ) 2 iR Σ + e θx(λ)-θy(µ) (µ -λ) dλdµ - N ℓ=j+1 k ℓ -k ℓ-1 (2iπ) 2 iR Σ - e θx(λ)-θy(µ) (µ -λ) dλdµ = k j χ (a j +s,a j+1 +s) (x)K P (x, y)
This concludes the proof.

We can study det(1 -K) L 2 (Σ∪iR) with the theory of Riemann-Hilbert problem associated to integrable operator. We describe the Riemann-Hilbert problem associated to K in what follows.

Riemann-Hilbert Problem associated to Pearcey kernel operator

The contours for the Riemann-Hilbert problem associated to

F ( - → a + s, τ, - → k ) is Σ ∪ iR oriented as in the previous figure.
For the jump matrix, introduce

f (µ) :=      - √ k 1 -k 0 e -θ a 1 +s (µ) . . . -k N -k N -1 e -θ a N +s (µ)      χ iR (µ) and g(µ) :=      - √ k 1 -k 0 e θ a 1 +s (µ) . . . -k N -k N -1 e θ a N +s (µ)      χ Σ (µ)
Riemann-Hilbert Problem 5 (RHP for Γ). We consider the Riemann-Hilbert problem with contours Σ ∪ iR and jump matrix J(µ; -→ a , τ, s)

:=   1 g T (µ) f (µ) I n   = I N +1 -2iπ f (µ)g T (µ).
We search a matrix valued function Γ(µ) = Γ(µ; -→ a , τ, s) such that:

• Γ : C\Σ ∪ iR → Gℓ N +1 (C) is analytic • Γ + (µ) = Γ -(µ)J(µ), µ ∈ Σ ∪ iR
where Γ is continuous up to boundary of the contours and Γ ± (µ) are non-tangential limits approaching µ from left(+) or right(-). 

• Γ(µ) = I N +1 + j⩾1 Γ j µ j = I N +1 + 1 µ   -δ( - → a , τ, s) p T ( - → a , τ, s) q( - → a , τ, s) ∆( - → a , τ, s)   + ...

Study of the Riemann-Hilbert Problem associated to Pearcey kernel operator

In this section, we obtain a Lax Pair associated to the previous RHP which leads to a system of coupled vector differential equation for p T and q (see equation [START_REF] Charlier | The generating function for the bessel point process and a system of coupled painlevé v equations[END_REF] for the defintion of p T and q). Studying the derivative with respect to τ yields to a coupled non linear heat equation satisfied by p T and q.

A Lax Pair for Ψ

Let Γ be a solution of RHP 5 and T be the gauge transformation:

T (µ) := e 1 N + 1 N j=1 θ a j +s (µ)
Diag 1, e -θ a 1 +s (µ) , ..., e -θ a N +s (µ) .

Defining Ψ(µ) := Γ(µ)T (µ), the following result holds for Ψ.

Proposition 7 (Lax pair for Ψ). If Γ is solution of RHP 5 then Ψ satisfy a system of partial differential equation polynomial in µ.

       ∂ s Ψ(µ) = A(µ)Ψ(µ) ∂ µ Ψ(µ) = B(µ)Ψ(µ) ∂ τ Ψ(µ) = C(µ)Ψ(µ) (12) 
where

A(µ) = µA 1 + A 0 = µ N + 1   -N (0) (0) I N   +   0 p T -q (0)   (13) B(µ) = µ 3 B3 + µ 2 B 2 + µ( B1 + B 1 ) + B0 + B 0 ( 14 
)
with B j 's depending on Γ j 's and

B3 = -A 1 , B1 = τ A 1 B0 = sA 1 + 1 N + 1 Diag   - N j=1 a j , N a 1 - j̸ =1 a j , ..., N a N - j̸ =N a j   and 
C(µ) = µ 2 C2 + µC 1 + C 0 = µ 2 2 A 1 + µC 1 + C 0 ( 15 
)
with C 1 and C 0 depending on Γ j 's.

Proof. It is easy to show that if Γ satisfies the previous RHP then Ψ satisfies a RHP with jump matrix which does not depend on -→ a , τ, s and µ (the jump only depends on k j , j = 0, ..., N ). Then Ψ and ∂ s Ψ have same jump on the contours. From this fact we deduce that A(µ) := ∂ s Ψ(µ)Ψ(µ) -1 is entire. Using Liouville's theorem with asymptotics of Ψ and ∂ s Ψ from there RHP we conclude A is a polynomial of degree 1 in µ. More precisely, we compute A and obtain:

A(µ) = µA 1 + A 0 = µ N + 1   -N (0) (0) I N   +   0 p T -q (0)  
Using same methods we conclude that B(µ

) := ∂ µ Ψ(µ)Ψ(µ) -1 (respectively C(µ) := ∂ τ Ψ(µ)Ψ(µ) -1 )
is a polynomial of degree 3 (respectively degree 2). We will not do all computations for B and C with the asymptotic as we did for A: we precise what we will do. Computations with the asymptotic involve T , its partial derivative with respect to µ (respectively τ and (Γ j ) j⩾1 . For now we will only compute terms in B (respectively C) which does not depend on (Γ j ) j⩾1 .

We start with B and write it as:

B(µ) = µ 3 B3 + µ 2 B 2 + µ( B1 + B 1 ) + B0 + B 0
where only (B j ) j∈{0,1,2} (respectively ( Bj ) j∈{0,1,3} ) depends (respectively does not depend) on

(Γ j ) j⩾1 . B(µ) = (Γ µ T + ΓT µ )T -1 Γ -1 = Γ µ Γ -1 + ΓT µ T -1 Γ -1 Γ µ Γ -1 = O(µ -2 ) as µ → ∞, then B(µ) ∼ I N +1 + Γ 1 µ + ... T µ T -1 I N +1 - Γ 1 µ + ... B(µ) = T µ T -1 + 2 j=0
µ j B j because of Liouville's theorem. We compute T µ T -1 and obtain:

B3 = -A 1 , B1 = τ A 1 B0 = sA 1 + 1 N + 1 Diag   - N j=1 a j , N a 1 - j̸ =1 a j , ..., N a N - j̸ =N a j   Similarly C(µ) = T τ T -1 + 1 j=0 µ j C j and T τ T -1 = µ 2 2 A 1 .
Remark 8. For δ, p T and q as in (11) the following holds:

∂ s δ = -p T q.
Actually, computing the term in 1/µ in the asymptotic of A, we obtain

∂ s Γ 1 +[Γ 2 , A 1 ]-[Γ 1 , A 1 ]Γ 1 .
Then, because of Liouville's theorem this term is 0 and the block 1 × 1 on the diagonal block matrix leads to the equation. This equation will be useful later when we will compute the loga-

rithmic derivative for F ( - → a + s, τ, - → k ).
Proposition 9. Let p T and q be as in [START_REF] Charlier | The generating function for the bessel point process and a system of coupled painlevé v equations[END_REF]. Then they satisfy the following coupled vector 3 rd order differential equation and non linear coupled heat equation:

∂ sss p T + 3(∂ s p T )qp T + 3p T q(∂ s p T ) -τ ∂ s p T + p T D s, -→ a = 0 ∂ sss q + 3(∂ s q)p T q + 3qp T (∂ s q) -τ ∂ s q -D s, -→ a q = 0 (16) -1 2 ∂ ss p T -∂ τ p T = p T qp T -1 2 ∂ ss q + ∂ τ q = qp T q . ( 17 
)
Proof. The compatibility condition for the Lax pair of Ψ leads to the equation

∂ s B -∂ µ A = [A, B] (18) 
We use the same approach as in [START_REF] Warren | The vector nonlinear Schrödinger hierarchy[END_REF] and [START_REF] Cafasso | The Riemann-Hilbert approach to the generating function of the higher order Airy point processes[END_REF]. If we write B ki j blocs of matrix B j where B 11 j is a scalar, B 12 j is a row of size N , B 21 j a column of size N and B 22 j a N × N matrix. Then (18) gives a polynomial equation in µ and we obtain an equation for every monomial. This leads to the following equations:

B 12 2 = -p T , B 21 2 = q (19)              ∂ s B 11 j = p T B 21 j + B 12 j q ∂ s B 12 j = -B 12 j-1 δ j̸ =0 + p T B 22 j -B 11 j p T + τ p T δ j,1 + p T D s, -→ a δ j,0 ∂ s B 21 j = B 12 j-1 δ j̸ =0 -qB 11 j + B 22 j q + τ qδ j,1 + D s, -→ a qδ j,0 ∂ s B 22 j = -qB 12 j -B 21 j p T (20) 
where D s, -→ a = Diag(a 1 + s, ..., a N + s) and δ i,j is the Kronecker delta.

We define formally the operator ∂ -1 s such that ∂ -1 s ∂ s = 1. From the first and the last equation of ( 20 

B 11 1 = p T q, B 22 1 = -qp T
Using second and third equations of (20) we compute B 12 1 and B 21 1 with j = 2 then B 12 0 and B 21 0 with j = 1.

B 12 1 = ∂ s p T , B 21 1 = ∂ s q B 12 0 = -∂ ss p T -2p T qp T + τ p T , B 21 0 = ∂ ss q + 2qp T q -τ q
Using first and last equations of (20) with j = 0 and integrating, we compute B 11 0 and B 22 0 .

B 11 0 = p T (∂ s q) -(∂ s p T )q B 22 0 = q(∂ s p T ) -(∂ s q)p T
Finally, it remains two equations (second and third of (20) with j = 0). Replacing B ki 0 in these equations we obtain a system of equations satisfied by p T and q:

∂ sss p T + 3(∂ s p T )qp T + 3p T q(∂ s p T ) -τ ∂ s p T + p T D s, -→ a = 0 ∂ sss q + 3(∂ s q)p T q + 3qp T (∂ s q) -τ ∂ s q -D s, -→ a q = 0 (21)
Studying the compatibility condition of A and C the same way as for A and B, p T and q satisfied a coupled non-linear heat equation:

-1 2 ∂ ss p T -∂ τ p T = p T qp T -1 2 ∂ ss q + ∂ τ q = qp T q . ( 22 
)
In appendix A of [START_REF] Kimura | Universal cusp scaling in random partitions[END_REF], doing formal computation on an interval semi infinite, Kimura and Zahabi obtained a scalar version of the system of coupled differential equation ( 21).

Similar equations as in Proposition 9 appeared in the study of limiting one-point distribution of periodic TASEP [START_REF] Baik | Limiting one-point distribution of periodic TASEP[END_REF]. The authors obtained coupled mKdV equations and coupled non linear heat equations. Combining these two equations, they proved the second log-derivative of the Fredholm determinant they studied satisfied the second Kadomtsev-Petviashvili equation. It is possible to do similar computations to obtain a PDE for the second log-derivative of the Fredholm determinant of K. The next section will be partially devoted to this computation.

The logarithmic derivative of F and proof of Theorem 2

Finally we prove Theorem 2.

From Remark 1 and Proposition 4, the Fredholm determinant of (1 -K) is different of 0 and 1 -K is invertible.

Defining F := (1 -K) -1 f , , with f as in equation ( 8),

if we write F =        F 0 F 1 . . . F N        and g =        g 0 g 1 . . . g N        (23) 
(where g is defined in equation ( 9)), we have the following result.

Lemma 10. Let ∆ be as in [START_REF] Charlier | The generating function for the bessel point process and a system of coupled painlevé v equations[END_REF] and F i 's, g i 's as above. Then:

∆ = Σ∪iR      F 1 (µ) . . . F N (µ)      (g 1 (µ), . . . , g N (µ)) dµ
Proof. According to theory of Riemann-Hilbert problem, since (1-K) is invertible, the resolvent of K and the unique solution to RHP 5 are linked and F = Γ + f .

With this last equality we obtain:

Γ(ξ) = I N +1 - Σ∪iR F (µ)g T (µ) µ -ξ dµ Expanding 1 µ -ξ
we express Γ 1 in function of F and g.

Γ 1 = Σ∪iR F (µ)g T (µ)dµ
According to this previous equality and because of the decomposition by blocks of Γ 1 in (5), with

F =        F 0 F 1 . . . F N        and g =        g 0 g 1 . . . g N        , ( 24 
) ∆ = Σ∪iR      F 1 (µ) . . . F N (µ)      (g 1 (µ), . . . , g N (µ)) dµ.
Proposition 11. Let F ( -→ a + s, τ, → k ) be as in Theorem 2 and δ as in [START_REF] Charlier | The generating function for the bessel point process and a system of coupled painlevé v equations[END_REF]. The following holds:

∂ ∂s log(F ( - → a + s, τ, - → k )) = -δ Proof. ∂ ∂s log(F ( - → a + s, τ, - → k )) = ∂ ∂s log(det(1 -K)) = ∂ ∂s Tr(log(1 -K)) = -Tr (1 -K) -1 ∂ s K
Let (e n ) n∈N be an orthonormal basis of L 2 (Σ ∪ iR). because ∂ s δ = -p T q (see Remark 8). From the Proposition 9 p T and q satisfy equations ( 3) and (4).

Tr((1 -K) -1 ∂ s K) = n∈N ⟨(1 -K) -1 ∂ s Ke n , e n ⟩ But ∂ s K has kernel χ iR (u) f T (u)g(v)χ Σ (v). Then Tr((1 -K) -1 ∂ s K) = n∈N ⟨(1 -K) -1 (χ iR f T ),
We now prove equation [START_REF] Adler | Pdes for the gaussian ensemble with external source and the pearcey distribution[END_REF].

Define u(s, τ ) := log F ( -→ a + s, τ, -→ k ) and v(s, τ ) := ∂ 2 ∂s 2 u(s, τ ). According to Proposition 11, v(s, τ ) = p T (s)q(s). Deriving v with respect to τ and using equation ( 22) to express ∂ τ p T and ∂ τ q, we obtain:

∂ τ v = 1 2 ∂ s p T ∂ s q -∂ s p T q (26)
Deriving a second time v with respect to τ (again using equation ( 22)) yields to

∂ τ τ v = 1 2 2v∂ s v + 1 2 p T ∂ sss q + ∂ sss p T q - 1 2 ∂ s ∂ s p T ∂ s q (27)
Recall v(s, τ ) = p T (s)q(s), then deriving three times with respect to s the following equation holds:

∂ s ∂ s p T ∂ s q = 1 3
∂ sss v -p T ∂ sss q + ∂ sss p T q (28)

Replacing ∂ s ∂ s p T ∂ s q in equation ( 27) and using equation ( 21) we obtain:

∂ τ τ v = ∂ s -v∂ s v - 1 12 ∂ sss v + 1 3 τ ∂ s v . ( 29 
)
Replacing v by ∂ ss u and integrating two times with respect to s we prove u satisfies equation [START_REF] Adler | Pdes for the gaussian ensemble with external source and the pearcey distribution[END_REF].

as µ → ∞ ( 11 ) 6 .

 116 Remark If Γ satisfies the previous RHP, then det(Γ) is entire and according to the asymptotic det(Γ) ≡ 1. Since det(Γ) ≡ 1, the previous RHP has an unique solution (if it exists), Tr(Γ 1 ) = 0 and δ = Tr(∆).

c 11 2

 2 ) we obtain B 11 j = ∂ -1 s p T B 21 j + B 12 j q and B 22 j = -∂ -1 s qB 12 j + B 21 j p T . With j = 2, and c 22 2 independent of s. Actually with the asymptotics we obtain: B 2 = -A 0 . Then c 11 0 = 0 and c 22 0 = (0). Same for B 1 , even if it depends on Γ 2 , diagonal terms only depend on Γ 1 . The asymptotic leads to

⟨g 1 =

 1 e n ⟩⟨χ Σ g, e n ⟩ According to (24), definitions of f (8), g[START_REF] Kimura | Universal cusp scaling in random partitions[END_REF] and F (23),Tr((1 -K) -1 ∂ s K) = n∈N (⟨F 1 , e n ⟩, . . . , ⟨F N , e n ⟩) , e n ⟩ . . . ⟨g N , e n ⟩ Tr(∆)The last equation is a consequence of Lemma 10 and the fact that e n is an orthonormal basis.Finally, because of -δ + Tr(∆) = Tr(Γ 1 ) = 0 (see Remark 6),We use the previous proposition and the discussion on the Lax Pair to prove Theorem 2.Proof of Theorem 2. Using the previous proposition we derive∂ ∂s log F ( -→ a + s, τ, -→ k ) with respect to s. ∂ 2 ∂s 2 log F ( -→ a + s, τ, -→ k ) = -∂ s δ = p T (s)q(s)(25)
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