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Abstract
One of the main motivations for this work is to obtain a distributed Krohn-Rhodes theorem for
Mazurkiewicz traces. Concretely, we focus on the recently introduced operation of local cascade
product of asynchronous automata and ask if every regular trace language can be accepted by a
local cascade product of “simple” asynchronous automata.

Our approach crucially relies on the development of a local and past-oriented propositional
dynamic logic (LocPastPDL) over traces which is shown to be expressively complete with respect
to all regular trace languages. An event-formula of LocPastPDL allows to reason about the causal
past of an event and a path-formula of LocPastPDL, localized at a process, allows to march along
the sequence of past-events in which that process participates, checking for local regular patterns
interspersed with local tests of other event-formulas. We also use additional constant formulas to
compare the leading process events from the causal past. The new logic LocPastPDL is of independent
interest, and the proof of its expressive completeness is rather subtle.

Finally, we provide a translation of LocPastPDL formulas into local cascade products. More
precisely, we show that every LocPastPDL formula can be computed by a restricted local cascade
product of the gossip automaton and localized 2-state asynchronous reset automata and localized
asynchronous permutation automata.
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1 Introduction

Mazurkiewicz traces form a well-established model of concurrency [11], allowing in particular
to describe distributed processes synchronising via shared actions. The concept of recog-
nizability captures important properties of Mazurkiewicz trace languages and it is natural
to ask whether recognizable (or regular) trace languages can always be decomposed as a
product of simpler languages – in an appropriate formalism.

This is done in the case of regular languages of finite words by the Krohn-Rhodes
theorem [16], which states that every regular language is recognized by a cascade product of
simple automata, namely reset and permutation automata. The Krohn-Rhodes theorem has

© Bharat Adsul, Paul Gastin, Saptarshi Sarkar, and Pascal Weil;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adsul@cse.iitb.ac.in
https://orcid.org/0000-0002-0292-6670
mailto:paul.gastin@ens-paris-saclay.fr
https://orcid.org/0000-0002-1313-7722
mailto:sapta@cse.iitb.ac.in
https://orcid.org/0000-0001-6989-6050
mailto:pascal.weil@labri.fr
https://orcid.org/0000-0003-2039-5460
https://doi.org/10.4230/LIPIcs.CONCUR.2022.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 PDL and Cascade Decompositions for Traces

wide-ranging applications, in particular it offers a path to the proof of certain properties of
regular languages or of logical fragments by induction on the length of the cascade product [20].
One of the two main results of this paper is a distributed version of this theorem.

Earlier work by the authors [1, 2] established a similar result, but only for first-order
definable trace languages. The main ingredient of that proof was the study of a fragment of
local temporal logic on traces. As temporal logic specifies only first-order definable languages,
it could not be used to cover all regular trace languages and new ideas had to be introduced:
we define here a local and past-oriented propositional dynamic logic (LocPastPDL) over traces
and our second main result is that this logic is expressively complete with respect to all
regular trace languages, which is of independent interest.

Before we say more about our results, let us point out the general philosophy of our work:
the remarkable development of the theory of regular languages of finite words has used a
triple approach: automata-theoretic, logical and algebraic. An example of this approach is
the characterization of star-free languages by counter-free automata, by the aperiodicity of
their syntactic monoid, by first-order (FO) definability, or by definability in linear temporal
logic. See [10] for a survey on first-order definable word languages.

Our work is situated in an effort to apply the same philosophy to the study of regular
trace languages. Many results of this sort already exist. In particular, regular trace
languages are characterized by Zielonka’s asynchronous automata [24] (see Section 5), and
by MSO (monadic second-order) definability (Thomas [22]). Star-freeness is equivalent to
FO-definability (Ebinger, Muscholl [12]) and to definability in several global or local temporal
logics (Thiagarajan, Walukiewicz [21], Diekert, Gastin [8, 9]). Star-free trace languages
are also characterized by the aperiodicity of their syntactic monoids (Guaiana, Restivo,
Salemi [15]), and Kufleitner [17] gave algebraic and combinatorial characterizations of certain
fragments of local linear temporal logic. A discussion of these developments, and of why
there are not more algebraic characterizations of significant classes of regular trace languages
can be found in [1, 2].

In this paper, traces are viewed as implemented over a distributed architecture: each
action (each letter of the alphabet) is located over a non-empty subset of processes from a
finite set P, and this location determines which pairs of letters are independent. This view of
traces is what informs the definition of asynchronous automata [24]. As in [19, 1, 2], we use
asynchronous automata not just as acceptors, using accepting states, but also as machines
locally computing relabeling functions for input traces (similar in spirit to the sequential
letter-to-letter transducers on words). The composition of these relabeling functions is
captured by our notion of a local cascade product.

The precise statement of our Krohn-Rhodes theorem for trace languages uses also the
notion of a restricted local cascade product with the gossip automaton. The latter is an
asynchronous automaton introduced by Mukund and Sohoni [19], which is entirely determined
by the distributed architecture under consideration. The information contributed by the
gossip automaton in a restricted local cascade product is limited to the event-level and the
trace-level comparisons of the order that may exist within the trace of the latest views of the
different processes.

As indicated above, (local) temporal logic is not suitable to discuss trace languages that
are not FO-definable and we turn to propositional dynamic logic (PDL). This logic was
introduced by Fischer and Ladner [13] as a way to reason about programs. Over finite words,
an appropriate version called LDL was shown to be expressively complete with respect to MSO
by Giacomo and Vardi [7], see also [23]. PDL has been applied in different forms to various
structures, e.g., Kripke structures [14], message-sequence charts (MSC) and message-passing
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systems [6, 18]. Recently, Bollig, Fortin and Gastin [4] introduced a star-free version of PDL
interpreted on MSC, and showed its expressively completeness with respect to first-order
logic. There are however not many results using PDL on traces (see [5, Chapter 5]).

More specifically we introduce a past-oriented fragment of PDL, called PastPDL, and a
local fragment of it, called LocPastPDL. An event-formula of LocPastPDL allows to reason
about the causal past of an event and a path-formula of LocPastPDL, localized at a process,
allows to march along the sequence of past-events in which that process participates, checking
for local regular patterns interspersed with local tests of other event-formulas. We also use
additional constant formulas to compare the leading events for each process, in the strict
causal past of a given event. The proof of the expressive completeness of PastPDL and
LocPastPDL is rather subtle and the result is of independent interest.

The paper is organized as follows. Section 2 lays down the basic notion and terminology
for traces over distributed architecture and the PDL fragments PastPDL and LocPastPDL
are introduced in Section 3.

The precise statement on the expressive completeness of PastPDL and LocPastPDL,
Theorem 3, is proved in Section 4. The proof is by induction on the number of processes
in the distributed architecture. The case of a single process corresponds to the expressive
completeness of linear dynamic logic [7]. Generalizing this to several processes is highly
non-trivial. It crucially depends on a lifting lemma which constructs a formula liftP (φ) from
a formula φ in PastPDL so that φ holds on a suffix s of a (prime) trace t = rs if and only if
liftP (φ) holds on t – where the suffix s is determined by a subset P of processes.

In Section 5, we briefly describe asynchronous automata, and the important notion
of asynchronous labeling functions computed by such automata, introduced in [1, 2]. As
mentioned above, the latter notion generalizes sequential transducers, and is very close to
the locally computable functions of Mukund and Sohoni [19]. In the same section, we explain
how the composition of asynchronous labeling functions corresponds to the local cascade
product operation on asynchronous automata, and we define the notion of the restricted
local cascade products of the gossip automaton and an arbitrary asynchronous automaton.

Our main decomposition theorem, Theorem 16, is proved in Section 6. It shows how
any LocPastPDL event formula is computed by a restricted local cascade product of a copy
of the gossip automaton, followed by a cascade product of localized reset and permutation
automata. A Krohn-Rhodes-like statement, Corollary 17, follows immediately.

2 Mazurkiewicz traces

We consider (Mazurkiewicz) traces as implemented over a distributed architecture. More
precisely, we fix a finite set P of processes. A distributed alphabet over P is a pair (Σ, loc)
where the location function loc : Σ→ 2P \{∅} assigns to each letter a ∈ Σ the set of processes
which participate in a. For i ∈ P, we let Σi = {a ∈ Σ | i ∈ loc(a)}. The location function
induces an independence relation over Σ: letters a and b are independent if loc(a)∩ loc(b) = ∅,
and they are dependent otherwise.

When dealing with posets, and in particular with traces, we use the following notation.
If (E,≤) is a poset and e ∈ E, we let ↓e (the past of e) be the set {f ∈ E | f ≤ e}, and we
let ⇓e = ↓e \ {e} (the strict past of e). If X ⊆ E, we let ↓X =

⋃
e∈X ↓e.

A trace over (Σ, loc) is a triple t = (E,≤, λ) where (E,≤) is a finite poset and λ : E → Σ
is a labeling function, such that

if e, e′ ∈ E and e′ is an immediate successor of e (that is, e < e′ and e ≤ e′′ ≤ e′ implies
e′′ = e or e′′ = e′), then λ(e) and λ(e′) are dependent;
if e, e′ ∈ E and λ(e) and λ(e′) are dependent, then e ≤ e′ or e′ ≤ e.

CONCUR 2022
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The elements of E are traditionally called events. Further, if i ∈ P, Ei denotes the set of
i-events (i.e., events in which process i participates), namely Ei = {e ∈ E | i ∈ loc(λ(e))}. It
is clear that Ei is totally ordered by ≤.

We let Tr(Σ, loc) denote the set of all traces over (Σ, loc). We write simply Tr(Σ) if loc is
clear from the context. The empty trace (where E = ∅) is written ε.

Tr(Σ) is a monoid for the following concatenation operation on traces. Let t = (E,≤, λ)
and t′ = (E′,≤′, λ′) be elements of Tr(Σ). Without loss of generality, we can assume E and
E′ to be disjoint. We define tt′ to be the trace (E ∪ E′,≤′′, λ′′) where
≤′′ is the transitive closure of ≤∪≤′ ∪{(e, e′) ∈ E×E′ | λ(e) and λ′(e′) are dependent},
λ′′ : E′′ → Σ where λ′′(e) = λ(e) if e ∈ E; otherwise, λ′′(e) = λ′(e).

This operation is associative, with the empty trace ε as unit. Hence, Tr(Σ) is a monoid.
A trace t′ is said to be a prefix (resp. suffix) of a trace t if there exists t′′ such that t = t′t′′

(resp. t = t′′t′). Prefixes of t coincide with restrictions of t to downward-closed subsets of
events. Prefixes of the form ↓e or ⇓e (e ∈ E) are important examples.

A trace language over Σ is a subset of Tr(Σ). Regular trace languages are characterized
by different classical mechanisms: MSO logic, saturation of regular languages of words,
asynchronous automata. In this paper, we say that a trace language L is regular if it is
recognized by a morphism η : Tr(Σ)→M to a finite monoid: that is, if L = η−1(η(L)).

3 A propositional dynamic logic for traces

Past propositional dynamic logic. Inspired by the definition of PDL [13] and its version
meant to be interpreted on finite words (LDL [7]), we introduce PastPDL, past propositional
dynamic logic, to reason about Mazurkiewicz traces. The syntax of PastPDL is the following.

Φ ::= EMφ | Li ≤ Lj | Li,j ≤ Lk | Φ ∨ Φ | ¬Φ
φ ::= a | Yi ≤ Yj | Yi,j ≤ Yk | φ ∨ φ | ¬φ | ⟨π⟩
π ::=←i | φ? | π + π | π · π | π∗

Calling this logic past is justified by the fact that we allow only backward ←i edges and
past-oriented constant formulas Li ≤ Lj , Li,j ≤ Lk, Yi ≤ Yj , Yi,j ≤ Yk, (semantics below).

Formulas of the form Φ, φ and π are called, respectively, trace formulas or sentences, event
formulas and path formulas. A trace formula is evaluated on a trace (and hence it defines a
trace language), an event formula is evaluated at an event of a trace, and a path formula is
evaluated at a pair of events. The semantics of PastPDL is as follows. Let t = (E,≤, λ) be a
trace. For each process i ∈ P, let Ei denote the set of i-events of t. We let

t |= EMφ if t, e |= φ for some maximal event e in t,
t |= Li ≤ Lj if Ei ̸= ∅, Ej ̸= ∅ and max(Ei) ≤ max(Ej),
t |= Li,j ≤ Lk if Ei ̸= ∅, Ej ∩ ↓Ei ̸= ∅, Ek ̸= ∅ and max(Ej ∩ ↓Ei) ≤ max(Ek).

In other words, a trace satisfies Li ≤ Lj if the last event on process i is below the last event
on process j, and it satisfies Li,j ≤ Lk when the maximal event on process j which is below
some event on process i is below the last event on process k.

Note also that t |= EMφ implies in particular that the trace t is nonempty, so the sentence
¬EM⊤ defines the empty trace. Also, Li ≤ Li simply means that Ei ̸= ∅, i.e., the trace
contains some i-event.
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We now turn to event and path formulas. Recall that if t = (E,≤, λ) is a trace and e ∈ E
is an event, then ⇓e denotes the strict past of e in t. For a process i ∈ P, we denote by ei
the unique maximal event of ⇓e ∩ Ei, if it exists, i.e., if ⇓e ∩ Ei ≠ ∅. If j ∈ P, we write ei,j
for (ei)j , that is, for the maximal event of ⇓ei ∩ Ej if ei exists and ⇓ei ∩ Ej ̸= ∅. If e, f are
events of t, we let

t, e |= a if λ(e) = a

t, e |= Yi ≤ Yj if ei, ej exist and ei ≤ ej
t, e |= Yi,j ≤ Yk if ei,j , ek exist and ei,j ≤ ek
t, e |= ⟨π⟩ if there exists an event f ∈ E such that t, e, f |= π

t, e, f |=←i if f is the immediate predecessor of e on process i
t, e, f |= φ? if e = f and t, e |= φ

t, e, f |= π1 + π2 if t, e, f |= π1 or t, e, f |= π2

t, e, f |= π1 · π2 if there is an event g, such that t, e, g |= π1 and t, g, f |= π2

t, e, f |= π∗ if there are events e = e0, e1, . . . , en = f with n ≥ 0
and t, ei, ei+1 |= π for all 0 ≤ i < n

We sometime use ⟨π⟩φ as a macro for ⟨π · φ?⟩. For instance, we may easily express a strict
since modality restricted to events on a specified process. More precisely, if i ∈ P is a
process and φ,ψ are event formulas, then the event formula ⟨(←i · φ?)∗ · ←iψ?⟩, denoted
φ Si ψ, holds at some event e of a trace t when there is a sequence fn, fn−1, . . . , f1, f0 = e of
consecutive i-events (n > 0) with t, fn |= ψ and t, fj |= φ for all 0 < j < n.

PastPDL is no more expressive than MSO logic.

▶ Proposition 1. For all PastPDL sentences Φ, event formulas φ and path formulas π, we
can construct MSO sentences Φ, and formulas φ(x), π(x, y) with respectively one or two free
first-order variables such that, for all traces t and events e, f in t, we have

t |= Φ if and only if t |= Φ
t, e |= φ if and only if t, x 7→ e |= φ(x)

t, e, f |= π if and only if t, x 7→ e, y 7→ f |= π(x, y)

The proof technique is folklore and is an easy structural induction. For the base case(s), we
note that the constant formulas Li ≤ Lj , Li,j ≤ Lk, Yi ≤ Yj and Yi,j ≤ Yk all have first-order
definitions. For the Kleene star π⋆, the induction step relies on the well-known fact that
transitive closure of an MSO-definable relation can be expressed in MSO.

It will be convenient in the sequel to use automata instead of regular expressions to
specify path formulas. Define a path automaton to be a tuple of the form A = (Q,∆, I, F ),
where Q is a finite, non-empty set of states, I, F ⊆ Q are, respectively, the sets of initial and
final states, and ∆ is a finite set of transitions of the form (q, α, q′) with q, q′ ∈ Q and

either α = φ? for some event formula φ (a test transition),
or α ∈ {←i | i ∈ P} (a move transition).

A path automaton specifies a path formula with the expected semantics: for a trace
t = (E,≤, λ) and two events e, f ∈ E, we have t, e, f |= A if there exists an accepting run
q0

α1−→ q1 · · · qn−1
αn−−→ qn and a sequence of events e = e0, e1, . . . , en−1, en = f such that for

all 0 ≤ m < n we have t, em, em+1 |= αm. Notice that if n = 0 the condition is simply e = f .
If A is a path automaton, then ⟨A⟩ is an event formula where t, e |= ⟨A⟩ if there exists

an event f ∈ E such that t, e, f |= A.

CONCUR 2022



28:6 PDL and Cascade Decompositions for Traces

▶ Proposition 2. Path formulas and path automata are equally expressive:
1. For each path formula π, we can construct a path automaton Aπ such that for all traces t

and events e, f we have t, e, f |= π if and only if t, e, f |= Aπ.
2. For each path automaton A, we can construct a path formula πA such that for all traces

t and events e, f we have t, e, f |= A if and only if t, e, f |= πA.

This is a direct consequence of the equivalence between regular expressions and finite
state automata. Indeed, a path formula π can be seen as a regular expression over the
alphabet Γπ consisting of the moves ←i (i ∈ P) and the tests φ? which occur at the top level
of π. If Aπ is an automaton accepting the language of Γπ specified by π, then Aπ is a path
automaton which is equivalent to the path formula π. The converse is similarly justified.

Local past propositional dynamic logic. Proposition 2 shows that we may replace ⟨π⟩ with
⟨A⟩ in the syntax of PastPDL event formulas without changing the expressivity of the logic.
Adopting the syntax using path automata allows us to state the definition of LocPastPDL,
the local fragment of PastPDL. More precisely, say that a path automaton A is i-local for
some process i ∈ P, if all its move transitions are labeled with ←i. The automaton A is local
if it is i-local for some i ∈ P. The syntax of LocPastPDL is as follows:

Φ ::= EMφ | Li ≤ Lj | Li,j ≤ Lk | Φ ∨ Φ | ¬Φ
φ ::= a | Yi ≤ Yj | Yi,j ≤ Yk | φ ∨ φ | ¬φ | ⟨A⟩ .

where i, j, k ∈ P, a ∈ Σ and A ranges over local path automata.
The semantics of LocPastPDL is inherited from PastPDL. We show in Section 4 that both

logics are expressively complete with respect to regular trace languages.

4 Expressivity

The main result in this section is the following.

▶ Theorem 3. PastPDL and LocPastPDL are expressively complete, that is: a trace language
is regular if and only if it can be defined by a PastPDL (resp. LocPastPDL) sentence.

One direction of Theorem 3 is easily taken care of: we saw in Proposition 1 that PastPDL
sentences define regular trace languages. Conversely, let L be a regular language, and let η be
a morphism from Tr(Σ) to a finite monoid M , recognizing L. Since sentences of LocPastPDL
are closed under disjunction, it is enough to show that every trace language of the form
η−1(m) (m ∈M) is LocPastPDL-definable.

This is established in two steps. We first deal with prime traces. Recall that a trace
t = (E,≤, λ) is prime if E has a single maximal event, which we then denote by max(t). In
Theorem 4, we show how to construct a LocPastPDL event formula φ(m) such that, if t is a
prime trace, then η(t) = m if and only if t,max(t) |= φ(m).

Leveraging this partial result to handle all traces – and not just prime traces –, is done
in Theorem 7.

4.1 Expressivity of event formulas in LocPastPDL
As announced, we first show that event formulas in LocPastPDL are expressive enough to
describe regular sets of prime traces.
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▶ Theorem 4. Let η : Tr(Σ)→M be a morphism to a finite monoid. For each m ∈M , we
can construct a LocPastPDL event formula φ(m) such that, if t ∈ Tr(Σ) is a prime trace, then
η(t) = m if and only if t,max(t) |= φ(m).

The proof of Theorem 4, to be completed at the end of Section 4.1, is by induction on the
number of processes. We start with a high-level description of this proof. Let t be a prime
trace, let e = max(t) and let k be a process such that e ∈ Ek. Let f1 < f2 < · · · < fℓ = e

be the sequence of events on process k. Then t is equal to the product t1t2 · · · tℓ with
ti = ↓fi \ ↓fi−1 (↓f0 = ∅). Note that ti is prime, with max(ti) = fi, and that ti has no event
on process k apart from fi: this property of ti with respect to k opens the door to the usage
of the induction hypothesis.

More precisely, we use induction to construct for each m ∈ M an event formula φ(m)

such that, for all prime traces s = ↓g such that g is the only event on process k (and each ti
is of this form), we have η(s) = m if and only if s, g |= φ(m).

The next task is to “lift” the formula φ(m), meant to be interpreted on the factors ti, to
a formula liftk(φ(m)) to be interpreted on the full trace t. This is done in Lemma 6, in such
a way that ti, fi |= φ(m) if and only if t, fi |= liftk(φ(m)). The difference is subtle: in one
case, past modalities are evaluated on a scope contained in ti, whereas in the other, their
scope may span the full past of fi in t, i.e., t1 · · · ti. The lifted formula has to ensure that
one never goes below fi−1.

The particular properties of the ti which make this possible are abstracted out, and
generalized, by what we call residues. Somewhat informally, if P is a set of processes and
g is an event, we let resP (g) (the residue of the event g with respect to P ) be the largest
suffix of ↓g which does not contain any event on the processes in P except, perhaps, g itself.
Notice that ti = res{k}(fi). Lemma 6 proves, by structural induction, that event formulas in
PastPDL can be lifted with respect to residues.

Lemma 5, which plays a crucial role in the inductive proof of Lemma 6, shows how the
set P of processes may increase to some set P ′ when one moves from an event g to some
previous event g′. The determination of this set P ′ is possible thanks to the event formulas
Yi ≤ Yj and Yi,j ≤ Yk (primary and secondary comparisons).

The last step of the proof of Theorem 4 uses a k-local path automaton to visit the
sequence of events f1 < f2 < · · · < fℓ = e backward, checking along the path the values of
the η(ti) with event formulas of the form liftk(φ(mi)) and storing in its state the value of the
product η(ti) · · · η(tℓ): when the automaton has reached f1, the first event on process k, it
has computed η(t1)η(t2) · · · η(tℓ) = η(t).

The precise definition of residuation is as follows. For an event e of a trace t = (E,≤, λ)
and a process i ∈ P, recall that ei = max(⇓e∩Ei), if it exists, where Ei is the set of i-events
in E. By convention, we let ↓ei = ∅ when ei does not exist, i.e., when ⇓e ∩ Ei = ∅.

If P ⊆ P is a set of processes, the residue of e by P is the trace resP (e) = ↓e \
⋃
i∈P ↓ei.

In particular, resP (e) is a suffix of the trace ↓e, itself a prefix of t. We will use the following
technical result, which makes essential use of the primary and secondary comparison formulas
Yi ≤ Yj and Yi,j ≤ Yk.

▶ Lemma 5. Let t be a trace, i ∈ P a process and P ⊆ P a set of processes. Let e be an
event in t such that ei exists. Then we have

↓ei ∩ resP (e) =
{
ε if t, e |=

∨
k∈P Yi ≤ Yk,

resP ′(ei) otherwise,

where P ′ = P ∪ {j ∈ P | t, e |= Yi,j ≤ Yk for some k ∈ P}.
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Proof. By definition, we have ↓ei ∩ resP (e) = ↓ei \
⋃
k∈P ↓ek. This is the empty trace if and

only if ei is in one of the ↓ek (k ∈ P ), that is, if and only if t, e |=
∨
k∈P Yi ≤ Yk.

Let us now assume that t, e ̸|=
∨
k∈P Yi ≤ Yk. Note that resP ′(ei) = ↓ei \

⋃
k∈P ′ ↓ei,k.

Let f ∈
⋃
k∈P ′ ↓ei,k. We have f ≤ ei,k for some k ∈ P ′. If k ∈ P , then ei,k ≤ ek. If

k ̸∈ P , then ei,k ≤ ej for some j ∈ P . In both cases we have f ∈
⋃
k∈P ↓ek. Therefore⋃

k∈P ′ ↓ei,k ⊆
⋃
k∈P ↓ek and hence

↓ei ∩ resP (e) = ↓ei \
⋃
k∈P

↓ek ⊆ ↓ei \
⋃
k∈P ′

↓ei,k = resP ′(ei).

Conversely, let f ∈ resP ′(ei). In particular, f ∈ ↓ei. Assume that f ≤ ek for some
k ∈ P . Since t, e ̸|= Yi ≤ Yk, we know that ei ̸≤ ek. If ek < ei, then ei,k = ek and we get
f ∈

⋃
j∈P ′ ↓ei,j , a contradiction.

It follows that the events ei and ek are concurrent: ei∥ek. Let g be a maximal event in
↑f ∩ ↓ei ∩ ↓ek (this set is not empty since it contains f). Then there exists ℓ ∈ loc(g) such
that g = ei,ℓ. This implies that ℓ ∈ P ′ and again f ∈

⋃
j∈P ′ ↓ei,j , a contradiction.

This concludes the proof that resP ′(ei) is contained in ↓ei \
⋃
k∈P ↓ek = ↓ei ∩ resP (e). ◀

We now establish the technical core of the proof of Theorem 4, namely the following
lifting lemma, which turns an event formula satisfied by a residue of a trace t, into another
satisfied by the trace t itself.

▶ Lemma 6 (Lifting lemma). Let φ ∈ PastPDL be an event formula and P ⊆ P be a set of
processes. We can construct an event formula liftP (φ) ∈ PastPDL such that, for all traces
t = (E,≤, λ) and events e ∈ E in t, we have resP (e), e |= φ if and only if t, e |= liftP (φ).
Moreover, if φ ∈ LocPastPDL then liftP (φ) ∈ LocPastPDL.

Proof. The construction is by structural induction on φ. We first let

liftP (a) = a for each a ∈ Σ

liftP (Yi ≤ Yj) = (Yi ≤ Yj) ∧ ¬
∨
ℓ∈P

(Yi ≤ Yℓ) ∨ (Yj ≤ Yℓ)

liftP (Yi,j ≤ Yk) = (Yi,j ≤ Yk) ∧ ¬
∨
ℓ∈P

(Yi,j ≤ Yℓ) ∨ (Yk ≤ Yℓ)

The announced statement is easily verified for these atomic formulas. Similarly, boolean
combinations of formulas are handled by letting liftP (φ ∨ ψ) = liftP (φ) ∨ liftP (ψ) and
liftP (¬φ) = ¬liftP (φ).

The last, and more interesting case, is that where φ = ⟨A⟩, for a past path automaton
A = (Q,∆, I, F ). We let liftP (⟨A⟩) = ⟨AP ⟩, where AP = (Q′,∆′, I ′, F ′) is the path
automaton defined as follows:

Q′ = Q× 2P, I ′ = I × {P} and F ′ = F × 2P,
for each test transition (q1, φ?, q2) ∈ ∆ of A and each set P1 ⊆ P, we define the test
transition ((q1, P1), liftP1(φ)?, (q2, P1)) in AP ,
for each move transition (q1,←k, q2) ∈ ∆ of A and each sets P1, P2 ⊆ P with P1 ⊆ P2,
we define a test and move1 transition ((q1, P1), changek,P1,P2? · ←k, (q2, P2)) in AP where

changek,P1,P2 =
(
¬

∨
i∈P1

Yk ≤ Yi
)
∧

( ∧
j∈P2\P1

∨
i∈P1

Yk,j ≤ Yi
)
∧

( ∧
j /∈P2

¬
∨
i∈P1

Yk,j ≤ Yi
)

1 Formally, in order to comply with the definition of a path automaton, we should split each test and move
transition into a test transition followed by a move transition with a new intermediary state in-between.
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The formula above characterises the change of context when moving from an event e
on process k to the previous event ek on process k. It is based on Lemma 5. The first
conjunct says that resP1(e) ∩ ↓ek is nonempty. The remaining conjuncts characterises the
set P2 such that resP1(e) ∩ ↓ek = resP2(ek).

Observe that AP is again a past automaton and all reachable states (q, P ′) in AP satisfy
P ⊆ P ′. Moreover, if A is k-local then so is AP .

We claim that this construction is correct, i.e., resP (e), e |= ⟨A⟩ if and only if t, e |= ⟨AP ⟩.
The proof of this claim is in Appendix A. ◀

We can finally complete the proof of Theorem 4, which shows that, as far as prime traces
are concerned, LocPastPDL event formulas can express all regular properties.

Proof of Theorem 4. We establish a more precise statement: for m ∈ M and P ⊆ P,
we construct a LocPastPDL event formula φ

(m)
P such that, if t is a prime trace satisfying

loc(t \ {max(t)}) ⊆ P , then η(t) = m if and only if t,max(t) |= φ
(m)
P . The statement of the

theorem corresponds to the case P = P.
The proof is by induction on the cardinality of P . If P = ∅, a prime trace t satisfying the

condition loc(t \ {max(t)}) ⊆ P consists of the single event max(t). Therefore, we let

φ
(m)
∅ =

∨
a∈Σ s.t. η(a)=m

a .

Assume that P ̸= ∅ and consider a prime trace t = (E,≤, λ) satisfying loc(t \ {max(t)}) ⊆ P .
If P ∩ loc(max(t)) = ∅, the primality of t implies that E is a singleton, and we let φ(m)

P = φ
(m)
∅ .

If P ∩ loc(max(t)) ̸= ∅, we pick k ∈ P ∩ loc(max(t)). Let f1 < f2 < · · · < fℓ be the
sequence of events in Ek. In particular, ℓ ≥ 1 and max(t) = fℓ. For each 1 ≤ i ≤ ℓ,
let ti = res{k}(fi). Then ti = ↓fi \ ↓fi−1 (letting ↓f0 = ∅) and hence, t = t1t2 · · · tℓ and
η(t) = η(t1)η(t2) · · · η(tℓ). By construction, loc(ti \ {fi}) ⊆ P \ {k} for each 1 ≤ i ≤ ℓ and
we can use the induction hypothesis: η(ti) = m′ if and only if ti, fi |= φ

(m′)
P\{k}. Using the

lifting lemma (Lemma 6), we then get that η(ti) = m′ if and only if t, fi |= lift{k}(φ(m′)
P\{k}).

The membership of a trace t in η−1(m) – subject to the current assumption that t is
prime, loc(t \ {max(t)}) ⊆ P and k ∈ P ∩ loc(max(t)) – can be computed by a k-local path
automaton A(m)

P,k as follows: we let A(m)
P,k = (M ∪ {$},∆, 1M , $), where the initial state is the

unit 1M of the monoid M , the final state is $ and ∆ consists of two types of transitions:
1. test and move transitions of the form (m1, actm1,m2? · ←k,m2) where m1,m2 ∈M and

actm1,m2 =
∨

m′|m2=m′m1

lift{k}(φ(m′)
P\{k})

The intuition is as follows. We use the notations above. Assume that←k moves from fi to
fi−1 and that, at fi, the automaton has already computedm1 = η(ti+1 · · · tℓ) = η(↓fℓ\↓fi).
We have seen that t, fi |= lift{k}(φ(m′)

P\{k}) if and only if η(ti) = m′. Since the disjunction
ranges over all m′ with m2 = m′m1, we deduce that m2 = η(ti · · · tℓ) = η(↓fℓ \ ↓fi−1).
Therefore, walking down the sequence fℓ, . . . , f1, the automaton computes the values of
η on the suffixes ti · · · tℓ.

2. (accepting) test transitions of the form (m1, {actm1,m ∧ ¬⟨←k⟩}?, $), where m1 ∈M .
To conclude, we let

φ
(m)
P =

( ∨
a∈Σ|η(a)=m,loc(a)∩P=∅

a

)
∨

( ∨
k∈P,a∈Σk

a ∧ ⟨A(m)
P,k ⟩

)
. ◀
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4.2 Expressivity of sentences in LocPastPDL
We now generalize Theorem 4 from prime traces to all traces, which concludes the proof of
Theorem 3. The precise statement of this generalization is as follows.

▶ Theorem 7. Let η : Tr(Σ) → M be a morphism to a finite monoid. For each m ∈ M ,
we can construct a LocPastPDL sentence Φ(m) such that, for all traces t ∈ Tr(Σ), we have
η(t) = m iff t |= Φ(m).

As in Section 4.1, where we dealt with event formulas, we introduce a notion of trace
residuation. If t = (E,≤, λ) is a trace, i ∈ P is a process and P ⊆ P is a set of processes, we
let resi,P (t), the residue of process i with respect to P , be the trace induced by the set of
events ↓Ei \ ↓EP . Here EP denotes the set

⋃
k∈P Ek, of all events involving a process in P .

We record the following result, analogous to Lemma 5 (proof in Appendix A).

▶ Lemma 8. Let t be a trace, i ∈ P a process and P ⊆ P a set of processes. Then we have

resi,P (t) =
{
ε if t |= ¬(Li ≤ Li) ∨

∨
j∈P (Li ≤ Lj),

resP ′(e) otherwise,

where e = maxEi and P ′ = {j ∈ P | t |=
∨
k∈P Li,j ≤ Lk}.

Proof of Theorem 7. The proof consists in identifying a particular, LocPastPDL-definable
decomposition of a trace t as a product of prime traces, and using Theorem 4 to handle its
factors.

Let t = (E,≤, λ) be a non-empty trace and let e1, . . . , eℓ be its maximal events. We choose
a process ik ∈ loc(ek) for each maximal event. As maximal events are pairwise concurrent,
the ik are pairwise distinct. We let t1 = ↓e1 and, for 1 < k ≤ ℓ, we let Qk = {i1, . . . , ik−1}
and tk = resik,Qk

(t). In particular, each tk is a non-empty prime trace and t = t1 · t2 · · · tℓ.
For each tuple i1, . . . , iℓ of pairwise distinct processes, the following LocPastPDL-sentence

checks that a trace has ℓ maximal events located on processes i1, . . . , iℓ (we use i as an
abbreviation for the event formula

∨
a∈Σi

a):

MAXi1,...,iℓ =
( ∧

1≤k≤ℓ

EM ik

)
∧ ¬EM¬

( ∨
1≤k≤ℓ

ik

)
∧ ¬EM

( ∨
1≤k,k′≤ℓ,k ̸=k′

ik ∧ ik′

)
Letting P1 = ∅ we have t1 = resP1(e1). Using Lemma 8, we find subsets Pk ⊆ P such

that tk = resPk
(ek) for each 1 < k ≤ ℓ. We note that Lemma 8 also justifies the following

specification of the sets Pk: assuming that t |= MAXi1,...,iℓ , these sets Pk are characterized
by the sentence∧

1≤k≤ℓ

RESPk

ik,{i1,...,ik−1}

where

RESP
′

i,P =
( ∧
j∈P ′

∨
k∈P

Li,j ≤ Lk
)
∧

( ∧
j /∈P ′

¬
∨
k∈P

Li,j ≤ Lk
)
.

Finally, once the sequence i1, . . . , iℓ and the sets P1, . . . , Pℓ are fixed, the equality η(t) = m

is checked by the sentence∨
m=m1···mℓ

∧
1≤k≤ℓ

EM
(
ik ∧ liftPk

(φ(mk))
)
,

where the φ(mk) (1 ≤ k ≤ ℓ) are given by Theorem 4.
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To conclude the proof of the theorem, if m ̸= 1M , we let Φ(m) be the sentence∨
i1,...,iℓ
P1,...,Pℓ

MAXi1,...,iℓ ∧
∧

1≤k≤ℓ

RESPk

ik,{i1,...,ik−1} ∧
∨

m=m1···mℓ

∧
1≤k≤ℓ

EM
(
ik ∧ liftPk

(φ(mk))
)
. (1)

Note that, the empty trace does not satisfy MAXi1,...,iℓ for any tuple (i1, . . . , iℓ) with ℓ > 0,
and hence it does not satisfy the formula in Equation (1), with m = 1M . Therefore, we let
Φ(1M ) be the disjunction of ¬EM⊤ (which specifies the empty trace) and the formula in
Equation (1), with m = 1M . ◀

5 Asynchronous automata and local cascade products

In Section 6, we exploit the expressive completeness of LocPastPDL established above to give
a Krohn-Rhodes style decomposition result for regular trace languages. Here, we first review
the distributed model of asynchronous automata (Zielonka, [24]), seen both as acceptors of
trace languages and as letter-to-letter trace transducers, and the related cascade product.

Asynchronous automata. work in a concurrent manner on traces over a distributed alphabet,
say (Σ, loc). They have local states, for each process in P, and their transitions on a letter
a ∈ Σ read and update only the states that are local to a process in loc(a). Formally, an
asynchronous automaton A over (Σ, loc) is a tuple ({Si}i∈P, {δa}a∈Σ, sin) where

Si is a finite non-empty set of local i-states for each process i;
For a ∈ Σ, let Sa =

∏
i∈loc(a) Si be called the set of a-states. Then δa : Sa → Sa is a

(deterministic and complete) transition function on a-states;
sin ∈ S (where S =

∏
i∈P Si is called the set of global states) is the initial global state.

If s is a global state, we write sa for its projection on Sa and s−a for its projection on the
remaining processes. It is convenient to write s = (sa, s−a).

For a ∈ Σ, let ∆a : S → S be the global transition function defined by ∆a((sa, s−a)) =
(δa(sa), s−a). Composing these functions defines the global transition ∆t of any trace
t ∈ Tr(Σ): we let ∆ε be the identity function and, if t = t′a, then ∆t = ∆a ◦∆t′ . We denote
by A(t) the global state reached when running A on t, that is, A(t) = ∆t(sin).

Zielonka’s fundamental theorem [24] states that a trace language is recognizable if and
only if it is accepted by some asynchronous automaton A, that is, if there exists a subset
Sfin ⊆ S of final global states such that L = {t ∈ Tr(Σ) | A(t) ∈ Sfin}.

Asynchronous labeling functions. Asynchronous automata can be used not only as accept-
ors, as above, but also as devices to compute certain functions on traces: maps which, given
a trace t = (E,≤, λ), compute a trace with the same underlying poset structure (E,≤), and
with a richer labeling function.

That point of view, which was developed by the authors in [1, 2], generalizes the notion
of sequential letter-to-letter word transducers, and is closely related to the locally computable
functions defined in [19].

Formally, let (Σ, loc) be a distributed alphabet and Γ be a finite non-empty set. Then
Σ× Γ is a distributed alphabet (over the same set P of processes as (Σ, loc)) for the location
function given by loc(a, γ) = loc(a) for every (a, γ) ∈ Σ×Γ. A map θ : Tr(Σ)→ Tr(Σ×Γ) is
called a Γ-labeling function if, for each t = (E,≤, λ) ∈ Tr(Σ), we have θ(t) = (E,≤, (λ, µ)),
i.e., θ adds a new label µ(e) ∈ Γ to each event e in t.
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▶ Example 9. Let F be a finite set of LocPastPDL event formulas and ΓF = {0, 1}F . For
each trace t ∈ Tr(Σ) and event e of t, we let µF (e) be the tuple of truth values of each φ ∈ F
at e. We then let θF be the ΓF -labeling function which maps a trace t = (E,≤, λ) ∈ Tr(Σ)
to the trace (E,≤, (λ, µF )) ∈ Tr(Σ× ΓF ).

An asynchronous (letter-to-letter) Γ-transducer over (Σ, loc) is a tuple Â = (A, {µa})
where A = ({Si}, {δa}, sin) is an asynchronous automaton and each µa (a ∈ Σ) is a map
µa : Sa → Γ. We associate with Â the Γ-labeling function, also denoted by Â, from Tr(Σ) to
Tr(Σ× Γ), which maps t = (E,≤, λ) to Â(t) = (E,≤, (λ, µ)) in such a way that, for every
event e ∈ E with λ(e) = a and s = A(⇓e), we have µ(e) = µa(sa). We say that Â computes
(or implements) the Γ-labeling function Â. We also say that an asynchronous automaton
A = ({Si}, {δa}, sin) computes a Γ-labeling function θ if there are maps µa : Sa → Γ such
that θ = Â, with Â = (A, {µa}).

Notice that a Γ-labeling function is defined on every input trace, hence an asynchronous
transducer admits a run on all traces and it does not use an acceptance condition.

▶ Example 10. Let i ∈ P be a process, let φi = (Yi ≤ Yi) be the LocPastPDL event formula
which states that there is an event on process i in the strict past of the current event. With
reference to Example 9, ΓF = {0, 1} and the ΓF -labeling function θF is computed by the
following asynchronous transducer. For each process j, the set of j-states is {0, 1}, and the
global initial state has every process start in state 0. When the first event e occurs on process
i, all processes in loc(e) switch to state 1: for every a ∈ Σi, δa is the constant map sending
all states in Sa to (1, . . . , 1). This information is then propagated via synchronizing events:
for every b ∈ Σ \ Σi, the map δb sends (0, . . . , 0) to itself and every other state to (1, . . . , 1).
It is easy to add output functions {µa}a∈Σ in order to compute θF .

Local cascade product. It turns out that the composition of labeling functions computed
by asynchronous transducers, can also be computed by an asynchronous transducer. This
asynchronous transducer is the result of the local cascade product operation defined below.

▶ Definition 11. Let Â = ({Si}, {δa}, sin, {µa}) be a Γ-labeling asynchronous transducer
over (Σ, loc), and let B̂ = ({Qi}, {δ(a,γ)}, qin, {ν(a,γ)}) be a Π-labeling asynchronous trans-
ducer over (Σ × Γ, loc). We define the local cascade product of Â and B̂ to be the
(Γ×Π)-labeling asynchronous transducer Â ◦ℓ B̂ = ({Si ×Qi}, {∇a}, (sin, qin), {τa}) where
∇a((sa, qa)) = (δa(sa), δ(a,µa(sa))(qa)) and τa : Sa ×Qa → Γ×Π is defined by τa((sa, qa)) =
(µa(sa), ν(a,µa(sa))(qa)).

▶ Remark 12. It is directly verified that, with the notation of Definition 11, if Â implements
fA : Tr(Σ)→ Tr(Σ× Γ) and B̂ implements fB : Tr(Σ× Γ)→ Tr(Σ× Γ×Π) then the local
cascade product Â ◦ℓ B̂ implements the composition fB ◦ fA : Tr(Σ)→ Tr(Σ× Γ×Π).

In the sequential case, that is, when |P| = 1, the local cascade product coincides with the
well-known operation of cascade product of sequential letter-to-letter transducers.

Slightly abusing language, we view a local cascade product also as an asynchronous
automaton (forgetting the local labeling functions) and we can use it to accept trace
languages as well. The celebrated theorem by Krohn and Rhodes [16] characterizes regular
word languages as those accepted by cascade products of two simple kinds of automata:

2-state reset automata, where the transition function of each letter is either the identity
function or constant;
permutation automata, where each letter induces a permutation of the state set.
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▶ Theorem 13 (Krohn-Rhodes [16]). Any regular word language is accepted by a cascade
product of 2-state reset automata and permutation automata.

In the setting of traces, we consider distributed analogues of reset and permutation automata.
If i ∈ P is a process, a 2-state reset automaton localized at i is an asynchronous automaton
with two i-local states, where all other local state sets are singletons and the local transition
induced by each letter is either the identity function, or a constant function. Similarly, a
permutation automaton localized at i is an asynchronous automaton where each set of j-states
(j ̸= i) is a singleton and the local transition by any letter is a permutation.

Another important asynchronous automaton is Mukund and Sohoni’s gossip (asynchron-
ous) automaton G, see [19]. Its main purpose is to compute the primary and secondary
comparisons, as stated in the theorem below.

▶ Theorem 14 (Mukund-Sohoni [19]). Let Y = {Yi ≤ Yj ,Yi,j ≤ Yk | i, j, k ∈ P} be the set of
all constant event formulas of LocPastPDL and let θY be the corresponding labeling function.
The gossip automaton G computes θY.

We say that a local cascade product Ĝ ◦ℓ B̂ is restricted (or θY-restricted) if the labeling
function computed by Ĝ is θY, i.e., the information passed to B̂ by Ĝ is restricted to the
truth values of the event formulas in Y.
▶ Remark 15. The gossip automaton G also computes the truth values of the constant trace
sentences L = {Li ≤ Lj , Li,j ≤ Lk | i, j, k ∈ P}, this time globally. More precisely, if S is the
global state set of G, then there is a map ζ : S → {0, 1}L such that, for every trace t, and
sentence Φ ∈ L, t |= Φ if and only if the Φ-component of ζ(G(t)) is 1.

6 Cascade decomposition

The following is the main result of this section.

▶ Theorem 16. Let φ be a LocPastPDL event formula and θφ (for θ{φ}) be the correspond-
ing {0, 1}-labeling function. One can construct a restricted cascade product of the gossip
automaton followed by a local cascade product of localized reset and permutation automata,
which computes θφ.

Before we prove Theorem 16, we establish an important corollary.

▶ Corollary 17. Any regular trace language is accepted by a restricted local cascade product
of the gossip automaton and a local cascade product of localized reset automata and localized
permutation automata.

Proof. By Theorem 3, any regular trace language L is defined by a sentence Φ in LocPastPDL.
If Φ is of the form Li ≤ Lj or Li,j ≤ Lk, then L is accepted by the gossip automaton, by
Remark 15. The case where Φ is a non-trivial boolean combination is easily handled, and we
are left with sentences of the form EMφ.

If i ∈ P is a process, let EMi φ be the sentence which expresses that a trace has at
least one i-event, and that its maximum i-event satisfies φ. Then EMφ is equivalent to the
disjunction

∨
i∈P

(
EMi φ ∧ ¬(

∨
j∈P Li < Lj)

)
, where Li < Lj = (Li ≤ Lj)∧¬(Lj ≤ Li), so we

only need to deal with sentences of the form EMi φ.
By Theorem 16, the labeling function θφ is computed by an asynchronous transducer Aφ

of the required local cascade form. Let B be the localized reset automaton with local i-states
{q0, q1} (and other local state sets singletons), initial state q0, on alphabet Σ× {0, 1}, with
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the following transitions. The transition induced by a letter (a, 1) such that i ∈ loc(a) is a
constant map to q1. Other transitions labeled (a, 0) with i ∈ loc(a) are the constant map
to q0. Then Aφ ◦ℓ B recognizes EMi φ when the global final state of the B component is q1.
Notice that B only needs to check if the maximal i-event of t satisfies φ, an information
which is already added to the label of this event by Aφ (as 0 or 1). ◀

We now move towards the proof of Theorem 16. We first associate with each local path
automaton a regular word language over a decorated alphabet. Specifically, let A be an
i-local path automaton and let F be the set of event formulas in its test transitions. Recall
that, if t ∈ Tr(Σ) and e, f are events in t, we have t, e, f |= A if there is an accepting run
q0

α1−→ q1 · · · qn−1
αn−−→ qn and a sequence of events e = e0, e1, . . . , en−1, en = f such that for

all 0 ≤ m < n we have t, em, em+1 |= αm. Checking whether t, em, em+1 |= φ? for some
φ ∈ F is done by a simple inspection of the label of event em = em+1 in θF (t) ∈ Tr(Σ× ΓF ).
Observe also that, since A is i-local, all the em are i-events. This leads to the definition of a
word language LF (A) over the alphabet Σi × ΓF . Each word w in LF (A) is induced by a
trace t and a pair of events e, f such that t, e, f |= A, and consists of the sequence of labels
in θF (t) of the i-events from f to e.

LF (A) = {θF (t) ∩ Ei ∩ ↓e ∩ ↑f | t, e, f |= A} ⊆ (Σi × ΓF )∗ .

▶ Lemma 18. Let A be an i-local path automaton and let F be the set of event formulas in
its test transitions. Then LF (A) is a regular language.

Proof. The automaton A accepts a regular language over the alphabet {φ? | φ ∈ F} ∪ {←i}.
Processing a letter from the alphabet translates to a move to a different event in the trace
(see the semantics of path automata recalled above) if that letter is ←i, but not if it is of
the form φ?. To smooth out this difference, we modify A to an automaton B with the same
semantics (in the sense that t, e, f |= A if and only if t, e, f |= B), where transitions to an
accepting state have labels of the form ψ? and all other transitions have a label of the form
ψ′?←i, where ψ,ψ′ are conjunctions of formulas in F (we talk of test-and-move transitions).

Let Q be the set of states of A and let qa /∈ Q be a new state. The set of states of B is
Q′ = Q ∪ {qa}, B has the same initial states as A, and qa is the only accepting state of B.
The transitions of B are as follows.
1. Let q, q′ ∈ Q and let ψ be a conjunction of formulas in F . B has a test-and-move transition

from q to q′ labeled ψ? · ←i in B if there is a path from q to q′ in A starting with a
sequence of test transitions using exactly all the conjuncts of ψ and ending with a move
transition (labeled ←i).

2. Let q ∈ Q and let ψ be a conjunction of formulas in F . B has a test transition from q to
qa labeled ψ? if there is a path in A from q to some accepting state q′ of A consisting of
test transitions using exactly all the conjuncts of ψ.

It is not difficult to see that A and B have the same semantics. For each φ ∈ F , let ∆φ

be the set of letters (a, γ) ∈ Σi × ΓF such that the φ-component of γ is 1. We now modify
B into a new automaton B′ by changing the labels of transitions: for each edge labeled by∧k
j=1 φj?←i (resp.

∧k
j=1 φj?), replace the label with

⋂k
j=1 ∆φj . The automaton B′, over

Σi×ΓF is easily seen to accept the reverse language of LF (A), so LF (A) itself is regular. ◀

We can finally prove Theorem 16, the last missing element of this paper.
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Proof of Theorem 16. The proof is by structural induction on the LocPastPDL event formula
φ. If φ = a (a ∈ Σ), Aa is the asynchronous transducer where each set of local states is
a singleton. The labeling function is defined by µb(s) = 1 if b = a and 0 otherwise. If
φ = Yi ≤ Yk or φ = Yi,j ≤ Yk, Theorem 14 shows that we can use the gossip automaton as
Aφ. Boolean combination of event formulae are easily handled.

The case where φ = ⟨A⟩, for some i-local path automaton A, is non-trivial. Let F be the
set of event formulas in the test transitions of A. By induction hypothesis, for each ψ ∈ F ,
we have an asynchronous transducer Aψ in the required local cascade form which computes
θψ. By the usual direct product construction, which can be subsumed by a local cascade
product (factorizing the gossip automaton), we then have an asynchronous transducer AF in
the required form which computes θF . We then construct Aφ in the form of a local cascade
product AF ◦ℓ B for an appropriate asynchronous transducer B on alphabet Σ× ΓF .

Let LF (A) be the language (over alphabet Σi × ΓF ) defined above, which is regular by
Lemma 18, and let C be an automaton accepting (Σi × ΓF )∗ · LF (A). By Krohn-Rhodes’s
theorem (Theorem 13 above), C can be chosen to be a cascade product of 2-state reset
automata and permutation automata. Let us localize each of these automata at process i, by
adding singleton local state sets for each process j ̸= i. The resulting local cascade product
(of localized reset and permutation asynchronous transducers) allows us to check whether
an i-local state is final in C or not. It is easily verified that a labeling function can then be
imposed on B, by which AF ◦ℓ B computes θφ.

This completes the proof of Theorem 16. ◀

7 Conclusion

We have shown that LocPastPDL is expressively complete. Recall that a basic trace formula
of LocPastPDL is either of the form EMφ or a constant comparision formula such as Li ≤ Lj
or Li,j ≤ Lk. We could instead use basic trace formula EMi φ which asserts that the maximum
i-event exists and satisfies the event formula φ. It follows from the results in [3] that boolean
combinations of EMi φ suffice to arrive at an expressively complete logic. Note that our
expressive-completeness proof of LocPastPDL is direct and self-contained. In view of this, it
would be interesting to directly express Li ≤ Lj and Li,j ≤ Lk using only basic formulas of the
form EMi φ. Another exciting question concerns the necessity of the primary and secondary
event comparision formulas Yi ≤ Yj and Yi,j ≤ Yk for the expressive completeness result.
This is also intimately related to the necessity of the gossip automaton in our distributed
Krohn-Rhodes theorem. It would be also interesting to identify a natural fragment of
LocPastPDL which matches first-order logic in expressive power, and also extend the results
in this work to infinite traces.
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A Appendix for Section 4

▶ Lemma 6 (Lifting lemma). Let φ ∈ PastPDL be an event formula and P ⊆ P be a set of
processes. We can construct an event formula liftP (φ) ∈ PastPDL such that, for all traces
t = (E,≤, λ) and events e ∈ E in t, we have resP (e), e |= φ if and only if t, e |= liftP (φ).
Moreover, if φ ∈ LocPastPDL then liftP (φ) ∈ LocPastPDL.

Proof. The construction is by structural induction on φ. We first let

liftP (a) = a for each a ∈ Σ

liftP (Yi ≤ Yj) = (Yi ≤ Yj) ∧ ¬
∨
ℓ∈P

(Yi ≤ Yℓ) ∨ (Yj ≤ Yℓ)

liftP (Yi,j ≤ Yk) = (Yi,j ≤ Yk) ∧ ¬
∨
ℓ∈P

(Yi,j ≤ Yℓ) ∨ (Yk ≤ Yℓ)

The announced statement is easily verified for these atomic formulas. Similarly, boolean
combinations of formulas are handled by letting liftP (φ ∨ ψ) = liftP (φ) ∨ liftP (ψ) and
liftP (¬φ) = ¬liftP (φ).

The last, and more interesting case, is that where φ = ⟨A⟩, for a past path automaton
A = (Q,∆, I, F ). We let liftP (⟨A⟩) = ⟨AP ⟩, where AP = (Q′,∆′, I ′, F ′) is the path
automaton defined as follows:

Q′ = Q× 2P, I ′ = I × {P} and F ′ = F × 2P,
for each test transition (q1, φ?, q2) ∈ ∆ of A and each set P1 ⊆ P, we define the test
transition ((q1, P1), liftP1(φ)?, (q2, P1)) in AP ,
for each move transition (q1,←k, q2) ∈ ∆ of A and each sets P1, P2 ⊆ P with P1 ⊆ P2,
we define a test and move2 transition ((q1, P1), changek,P1,P2? · ←k, (q2, P2)) in AP where

changek,P1,P2 =
(
¬

∨
i∈P1

Yk ≤ Yi
)
∧

( ∧
j∈P2\P1

∨
i∈P1

Yk,j ≤ Yi
)
∧

( ∧
j /∈P2

¬
∨
i∈P1

Yk,j ≤ Yi
)

The formula above characterises the change of context when moving from an event e
on process k to the previous event ek on process k. It is based on Lemma 5. The first
conjunct says that resP1(e) ∩ ↓ek is nonempty. The remaining conjuncts characterises the
set P2 such that resP1(e) ∩ ↓ek = resP2(ek).

Observe that AP is again a past automaton and all reachable states (q, P ′) in AP satisfy
P ⊆ P ′. Moreover, if A is k-local then so is AP .

We claim that this construction is correct, i.e., resP (e), e |= ⟨A⟩ if and only if t, e |= ⟨AP ⟩.
Let us first assume that resP (e), e |= ⟨A⟩. There is an accepting run q0

α1−→ q1 · · · qn−1
αn−−→

qn of A and a sequence of events e = e0, e1, . . . , en−1, en such that for all 1 ≤ m ≤ n we have
resP (e), em−1, em |= αm. We construct inductively

a sequence P0, P1, . . . , Pn ⊆ P so that ↓em ∩ resP (e) = resPm
(em) for all 0 ≤ m ≤ n,

an accepting run (q0, P0) β1−→ (q1, P1) · · · (qn−1, Pn−1) βn−−→ (qn, Pn) of AP such that
t, em−1, em |= βm for all 1 ≤ m ≤ n.

We start with P0 = P so that ↓e0 ∩ resP (e) = resP0(e0) and (q0, P0) is initial in AP . Now,
let 0 < m ≤ n and assume that we have constructed the sequence of sets and the run up to
m− 1. There are two cases.

2 Formally, in order to comply with the definition of a path automaton, we should split each test and move
transition into a test transition followed by a move transition with a new intermediary state in-between.
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1. If αm = ψ? is a test, we have em = em−1 and resP (e), em−1 |= ψ. Since ψ is a past
formula and ↓em−1 ∩ resP (e) = resPm−1(em−1), we deduce that resPm−1(em−1), em−1 |= ψ.
By our induction hypothesis, we then have t, em−1 |= liftPm−1(ψ), and we let βm =
liftPm−1(ψ)? and Pm = Pm−1. With this definition, the required conditions are satisfied:
↓em ∩ resP (e) = resPm

(em), ((qm−1, Pm−1), βm, (qm, Pm)) is a transition in AP , and
t, em−1, em |= βm.

2. If αm =←k is a left move, we have em−1, em ∈ Ek and em is the predecessor of em−1 on
process k. In particular, em is the maximal event in ⇓em−1 ∩ Ek. We apply Lemma 5:
first, ↓em ∩ resPm−1(em−1) = ↓em ∩ resP (e) is nonempty since it contains em; it follows
that t, em−1 |= ¬

∨
i∈Pm−1

Yk ≤ Yi. Let Pm = Pm−1 ∪ {j ∈ P | t, em−1 |= Yk,j ≤
Yi for some i ∈ Pm−1}. By Lemma 5, we have ↓em ∩ resP (e) = ↓em ∩ resPm−1(e) =
resPm(em). By definition of Pm, we get t, em−1 |= changek,Pm−1,Pm

. We then let βm =
changek,Pm−1,Pm

? · ←k so that ((qm−1, Pm−1), βm, (qm, Pm)) is a transition in AP , and
t, em−1, em |= βm.

Using the constructed run in AP and the same sequence of events e = e0, e1, . . . , en−1, en,
we find that t, e |= ⟨AP ⟩.

Conversely, assume that t, e |= liftP (⟨A⟩) = ⟨AP ⟩. There is an accepting run (q0, P0) β1−→
(q1, P1) · · · (qn−1, Pn−1) βn−−→ (qn, Pn) of AP and a sequence of events e = e0, e1, . . . , en−1, en
such that t, em−1, em |= βm for all 1 ≤ m ≤ n. We show by induction that ↓em ∩ resP (e) =
resPm

(em) for all 0 ≤ m ≤ n. We construct simultaneously a sequence α1, . . . , αn such
that q0

α1−→ q1 · · · qn−1
αn−−→ qn is an accepting run of A and resP (e), em−1, em |= αm for all

1 ≤ m ≤ n.
Since (q0, P0) is initial in AP , we have P0 = P . Using e0 = e, we get ↓e0 ∩ resP (e) =

resP0(e0). Now, assume that our properties hold up to m− 1. There are two cases.
1. If βm = liftPm−1(ψ)? is a test, then Pm = Pm−1 and em = em−1. In particular, ↓em ∩

resP (e) = resPm(em). Let αm = ψ?. By definition of AP , we know that (qm−1, αm, qm)
is a transition of A. From t, em−1, em |= βm = liftPm−1(ψ)?, we get t, em−1 |= liftPm−1(ψ)
and, by the induction hypothesis, we obtain resPm−1(em−1), em−1 |= ψ. Since ψ is a past
formula and resPm−1(em−1) = ↓em−1 ∩ resP (e), we deduce that resP (e), em−1 |= ψ and
finally resP (e), em−1, em |= αm = ψ?.

2. If βm = changek,Pm−1,Pm
? · ←k is a test-and-move, we let αm = ←k. Then t, em−1 |=

changek,Pm−1,Pm
and (qm−1, αm, qm) is a transition of A. Moreover, t, em−1, em |=

←k. Using the fact that t, em−1 |= ¬
∨
i∈Pm−1

Yk ≤ Yi, Lemma 5 shows that em ∈
resPm−1(em−1) = ↓em−1 ∩ resP (e). Therefore, resP (e), em−1, em |= ←k. Finally, us-
ing Lemma 5 again and the fact that t, em−1 |= changek,Pm−1,Pm

, we get resPm
(em) =

↓em ∩ resPm−1(em−1) = ↓em ∩ resP (e).
Thus resP (e), e |= ⟨A⟩, and this concludes the proof. ◀

▶ Lemma 8. Let t be a trace, i ∈ P a process and P ⊆ P a set of processes. Then we have

resi,P (t) =
{
ε if t |= ¬(Li ≤ Li) ∨

∨
j∈P (Li ≤ Lj),

resP ′(e) otherwise,

where e = maxEi and P ′ = {j ∈ P | t |=
∨
k∈P Li,j ≤ Lk}.

Proof. Observe that resi,P (t) is the empty trace if Ei is empty or if the maximal i-event is
below a j-event for some j ∈ P . The first condition is exactly captured by ¬(Li ≤ Li), and
the second one by

∨
j∈P (Li ≤ Lj).
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Let us now assume that resi,P (t) is not the empty trace. Then e = maxEi exists.
Moreover, by definition, resi,P (t) = ↓e \ ↓EP and resP ′(e) = ↓e \

⋃
j∈P ′ ↓ej where ej is the

maximal event in Ej ∩ ⇓e, if it exists.
Let f be an event in resi,P (t). Then f ≤ e. Suppose that f ≤ ej for some j ∈ P ′. By

definition of P ′, there exists k ∈ P such that t |= Li,j ≤ Lk. Then

f ≤ ej = max(Ej ∩ ⇓e) ≤ max(Ej ∩ ↓e) ≤ max(Ek).

In particular, f ∈ ↓EP , a contradiction since f ∈ resi,P (t) = ↓e \ ↓EP . Therefore resi,P (t) is
contained in ↓e \

⋃
j∈P ′ ↓ej = resP ′(e).

Conversely, suppose that f ∈ resP ′(e). Then, again, f ≤ e. Suppose that f ∈ ↓EP , i.e.,
f ≤ e′ = max(Ek) for some k ∈ P . If e′ < e, then f ≤ e′ = max(Ek ∩ ⇓e) = ek. Also,
Ek ⊆ ↓e, so t |= Li,k ≤ Lk and hence k ∈ P ′, which is impossible since f ∈ resP ′(e).

We cannot have e ≤ e′ either, since t ̸|= (Li ≤ Lk). Therefore e and e′ are concurrent
events. Let g be a maximal event in ↑f ∩ ↓e ∩ ↓e′. There exists j ∈ loc(g) such that
ej = g = max(Ej ∩ ↓e). Again this implies that j ∈ P ′ and f ∈

⋃
j∈P ′ ↓ej , a contradiction.

It follows that resP ′(e) is contained in resi,P (e), which concludes the proof. ◀
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