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Abstract

The 50-year old definition of an evolutionarily stable strategy provided a key tool

for theorists to model ultimate drivers of behavior in social interactions. For decades

economists ignored ultimate drivers and used models in which individuals choose strate-

gies based on their preferences. This article summarizes some key findings in the literature

on evolutionarily stable preferences, which in the past three decades has proposed models

that combine the two approaches: Nature equips individuals with preferences, which deter-

mine their strategy choices, which in turn determines evolutionary success. The objective

is to highlight complementarities and potential avenues for future collaboration between

biologists and economists.

1 Introduction

What drives human behavior in their interactions with others? The premise in evolutionary

game theory is that each individual is programmed to use a certain strategy. Since the typical

life of a human being consists of a large number of different kinds of interactions, Nature should

thus have equipped us with automatic play of a certain strategy tailored to each one of them,

the ultimate driver of the strategies played in a population being natural selection [1]. Such
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a worldview is, however, at odds with the idea that we both understand the situations we find

ourselves in and choose how to act. But if this is an accurate description of how strategies are

selected, what then guides the strategy choice?

One theory comes from economics, where the overwhelmingly common premise is that

each individual is aware of his or preferences over the available strategies, which simply means

that if presented with a pair of strategies, say A and B, (s)he can tell whether (s)he prefers A to

B, she prefers B to A, or is indifferent between the two strategies. In an interaction with others,

the answer may depend on what strategies the others are expected to play. Rational behavior

requires that a strategy that is preferred over the others be selected by the individual. A Nash

equilibrium strategy profile is such that no interactant wishes to alter his or her strategy given

the opponents’ strategies. In this approach, the individual’s preferences is the proximate driver

of his/her behavior.

When combining these two strands of thought, the question that follows naturally is: if

humans choose strategies in accordance with their preferences, which preferences should we

expect evolutionary forces to favor, if any? The literature on preference evolution, initiated

by Frank [2] and Güth and Yaari [3], provides some answers to this question. This article

summarizes some of the key findings of this literature, found mostly in economics journals, and

draws some parallels with related contributions by biologists.

2 Strategy evolution in biology

2.1 Framework and definition of ESS

Throughout I follow John Maynard Smith by defining a “ ‘strategy’ [as] a behavioral pheno-

type, i.e. it is a specification of what an individual will do in any situation in which it may

find itself” ([4] p.10, see also the recent book by McNamara and Leimar [5]); this is also in

line with standard vocabulary in non-cooperative game theory, see [6]). To fix ideas, consider

first a simultaneous-move one-shot Prisoners’ dilemma (PD), in which there are two actions—

Cooperate (C) and Defect (D), and with payoffs as shown in Figure 1. In this interaction each

individual will find itself in only one decision situation: a strategy can then be formalized as

a probability of playing C, with D being played with the complementary probability. In the
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simultaneous-move PD a strategy is thus a scalar in the interval [0, 1].

C D
C R,R S, T
D T, S P, P

Figure 1: The payoff matrix of the simultaneous-move Prisoners dilemma.

Consider now instead a Sequential prisoners’ dilemma (SPD), played by two individuals,

say i and j. Nature first draws the assignment of the individuals to the first-mover and second-

mover roles, with equal probability for both assignments. The first-mover then chooses between

the two actions C and D, following which the second-mover chooses between the two actions

C and D. The game tree that represents this interaction is shown in Figure 2. Here an indi-

vidual’s strategy consists of specifying choices in the three situations it may find itself (i.e., at

the decision nodes of the game tree, following standard vocabulary associated with sequential

games, see [6]. Allowing again for randomization, a strategy is thus a three-dimensional vector

in the simplex [0, 1]3. As shown in the game tree, I denote by x = (x1, x2, x3) the strategy of i,

where x1 is the probability that i plays C as a first-mover, x2 the probability that i plays C as a

second-mover following play C by j, and x3 the probability that i plays C as a second-mover

following play D by j; likewise, y = (y1, y2, y3) denotes the strategy used by individual j.

Note that in both the PD and the SPD with role-randomization by Nature, the set of strategies

is the same for both individuals: the interval [0, 1] in the PD and the simplex [0, 1]3 in the SPD.

We will restrict attention to interactions sharing this feature, and call X the common strategy

Nature

i = 1

j = 2

(R,R)

C y2

(S, T )

D

C x1

j = 2

(T, S)

C y3

(P, P )

D

D

1
2

j = 1

i = 2

(R,R)

C x2

(T, S)

D

C y1

i = 2

(S, T )

C x3

(P, P )

D

D

1
2

Figure 2: Meta-game protocol for the Sequential Prisoners’ Dilemma (T > R > P > S)
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set. Letting w(x, y) denote the fitness of an individual using strategy x when the other is using

strategy y, we will refer to Γ = ⟨X,w⟩ as the fitness game.1

Using standard notation for the fitness payoffs in the PD (as displayed in the payoff matrix

in Figure 1), the (expected) fitness from using strategy x against strategy y is

w (x, y) = xyR + (1− x)yT + x(1− y)S + (1− x)(1− y)P. (1)

In the SPD, the (expected) fitness from using strategy x = (x1, x2, x3) against strategy y =

(y1, y2, y3) is

w (x, y) =
1

2
[x1y2R + x1 (1− y2)S + (1− x1) y3T + (1− x1) (1− y3)P ] (2)

+
1

2
[y1x2R + y1 (1− x2)T + (1− y1)x3S + (1− y1) (1− x3)P ].

I adopt the standard evolutionary game theory assumption that the population at hand is

a continuum population, and that individuals are randomly matched into pairs to interact ac-

cording to some given fitness game Γ = ⟨X,w⟩. This setting encompasses a large number of

commonly studied games besides the PD and the SPD, for example:

• Simultaneous and one-shot games with a finite number (say, two) of pure strategies, like

Hawk-Dove and Coordination (see the payoff matrices in Figure 1). The strategy set is

the set of mixed strategies, X = [0, 1].

• The sequential versions of the aforementioned games (following a similar structure as in

the Sequential prisoners’ dilemma described in detail above).

• Simultaneous and one-shot linear public goods games: X = [0, E] and w (x, y) = V (x+

y) + E − x, for some endowment E > 0 and multiplication factor V ∈ (1/2, 1)

• Simultaneous and one-shot non-linear public goods games where strategies are strategic

substitutes: X = R+ and w (x, y) = (x+ y)τ − x2, for some τ ∈ (0, 1) (strategies are

strategic substitutes because ∂2w(x, y)/(∂x∂y) < 0)

1To simplify the exposition, I here refer to w(x, y) as the individual’s fitness, although it should instead be
thought of some proxy of invasion fitness, like in [5].
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• Simultaneous and one-shot non-linear public goods games where strategies are strategic

complements: X = R+ and w (x, y) = (xy)µ − x2, for some µ ∈ (0, 1) (strategies are

strategic complements because ∂2w(x, y)/(∂x∂y) > 0)

• Simultaneous and one-shot common pool resource games: X = R+ and w (x, y) =

(a− x− y)x− cx, for some a > c ≥ 0.

• Helping games:

– Nature draws the initial wealth distribution: with probability 1/2, player 1’s initial

wealth is mH and 2’s is mL ≤ mH , and with probability 1/2 the players’ wealths

are reversed

– the wealthier individual may transfer any amount of his/her wealth to the other

– let h : R+ → R measure the material utility from net wealth m ∈ R+, where h′ > 0

and h′′ ≤ 0

– letting x be player 1’s transfer when rich and y 2’s transfer when rich, with x, y ∈
X =

[
0,mH

]
, then the (expected) material payoff is:

w (x, y) =
1

2

[
h
(
mH − x

)
+ h

(
mL + y

)]
Note that the framework even applies to both finitely and infinitely repeated games, in which

a strategy specifies which action to undertake as a function of the history of play (see [6]); due

to the complex notation required to rigorously define repeated games and to space restrictions,

however, I will not explicitly study these games here.

Letting x denote the resident strategy and ε the share of the population that uses some mutant

strategy y, an evolutionarily stable strategy is then formally defined as follows [7]:

Definition 1. A strategy x ∈ X is evolutionarily stable (ES) against strategy y ∈ X , y ̸= x, if

there exists ε̄y ∈ (0, 1) such that for all ε ∈ (0, ε̄y):

(1− ε) · w (x, x) + ε · w (x, y) > (1− ε) · w (y, x) + ε · w (y, y) . (3)
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And x is an evolutionarily stable strategy (ESS) if it is evolutionarily stable against all y ∈ X ,

y ̸= x.

In (3) the left-hand side is the average fitness of individuals playing the resident strategy,

while the right-hand side is the average fitness of individuals playing the mutant strategy, given

the share ε of mutants in the population. The population being infinitely large and the interac-

tants being matched in a uniformly random manner, any individual is matched with a resident

with probability 1− ε and with a mutant with probability ε. In words, then, an ESS is a strategy

which, once it has become prevalent in a population, earns a higher average fitness than any

rare mutant strategy.

2.2 An “as if” interpretation of ESS

As a first step towards analysis of preference evolution, it is worth noting that a population in

which an ESS is played can be viewed as being populated by individuals who seek to maximize

own fitness.

To this end—and also to facilitate description of the analytical challenges that preference

evolution sometimes entails—it proves useful to express the difference between the average

fitnesses earned by residents and mutants as a function of the share of mutants ε, using what is

called the score function [8]:

Sx,y (ε) = (1− ε) · [w (x, x)− w (y, x)] + ε · [w (x, y)− w (y, y)]. (4)

This function being linear in ε, Sx,y (0) ≥ 0 is a necessary condition for x to be ES against y,

while Sx,y (0) > 0 is a sufficient condition. Moreover, if Sx,y (0) = 0 then the slope of the score

function must be strictly positive for x to be ES against y. This leads to the following result,

and also simple test for whether a strategy is evolutionarily stable:

Result 1. 1. If w(x, x) > w(y, x), then x is ES against y.

2. If w(x, x) = w(y, x), then x is ES against y only if w(x, y) > w(y, y).

3. If w(x, x) < w(y, x), then x is not ES against y.
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Since x is ESS only if w(x, x) ≥ w(y, x) for all y ̸= x, an individual in a population where

the ESS x is played by everyone can be interpreted as if (s)he were choosing the strategy which

maximizes his or her fitness, given that any individual (s)he interacts with uses strategy x. This

observation brings us to the main question: what if, instead of equipping us with automatic

play of a strategy tailored to each possible interaction, Nature has equipped humans with (a)

the ability to understand the situations they find themselves in, and (b) some preferences that

guide their strategy choice in any given interactions? Which preferences should we then expect

evolutionary forces to favor, if any?

3 Preference evolution

3.1 In economics, preferences guide behavior

In their analyses of human behavior, economists typically rely on the premise that in any given

situation each individual chooses the option that (s)he prefers among all the options that are

feasible for him/her. Choosing an option other than a preferred one is deemed irrational. This

simple idea is captured by positing that each individual is able to rank all the feasible options.

This ranking is then formalized as a preference ordering, which for any pair of feasible options

A and B tells whether the individual prefers A, B, or is indifferent between A and B. It turns

out that under certain conditions, such a preference ordering can be fully described by a function

that to each feasible option associates a real number: the number associated with option A is

higher (resp. lower) than that associated with option B if and only if the individual prefers A

over B (resp. B over A), and the same number to both options if the individual is indifferent

between them (see, e.g., [9]). Such a function is called a utility function in economics. Here we

will instead refer to it as a preference function, or simply preferences. In any given situation, an

individual is expected to choose that option that yields the highest possible value of the function,

since this is the option (s)he prefers. Economists do not interpret this utility maximization

literally: it is simply a mathematical tool that the researcher uses to describe behavior that

amounts to choosing the preferred item from the feasible set.

In the context of a fitness game Γ = ⟨X,w⟩, an individual’s feasible set is the set of strate-

gies X . The individual with whom (s)he is matched to interact—the opponent—also chooses
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some strategy in the strategy set X . To capture the fact that an individual’s ranking over own

strategies may depend on what strategy the opponent is expected to use, a preference function

is some function u : X2 → R that to each pair of own and opponent’s strategy associates a

real number. If the individual strictly prefers some strategy profile, say (x, y), over another, say

(x′, y′), then u gives a strictly higher number to the former, while if the individual is indifferent,

then u gives the same number to both strategy profiles.

The question posed at the end of the previous section can now be formally stated as follows:

given that fitness drives evolutionary success, should we expect evolution to favor preferences

that are a simple reflection of the fitness function?

Definition 2. In any given fitness game Γ = ⟨X,w⟩, a fitness-maximizer has a preference

function that coincides with the fitness function, i.e.,

u(x, y) = w(x, y). (5)

For any given strategy that a fitness-maximizer expects the opponent to choose, (s)he chooses

a strategy that maximizes own fitness, since this is the strategy that (s)he prefers. Should we

expect evolution to lead humans to be such fitness-maximizers? The literature has revealed that

information plays a key role in this context.

3.2 Interactions under complete information

An example will serve as an introduction. Consider a population in which individuals are

matched pairwise to interact according to a fitness game Γ = ⟨X,w⟩ which is a simultaneous-

move and one-shot non-linear public goods game with strategy set X = R+ and fitness function

w (x, y) = (x+ y)1/2 − x2, (6)

where the first term is the benefit from the sum of own and other’s contribution to the public

good and the second term is the individual’s cost of making contribution of size x. Suppose that

all individuals in the population are fitness-maximizers, i.e., each individual has preferences

u : X2 → R defined in (5), namely u(x, y) = (x+ y)1/2−x2, over own and other’s contribution

towards the public good, x and y. Suppose further that individuals who are matched to interact
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can observe each other’s preference function, i.e., they interact under complete information

([6]). In such an interaction, what pair of strategies will be played? While this question has no

simple general answer (see, e.g., [10]), it is common in economics to apply the Nash equilibrium

concept. A pair of strategies (x∗, y∗) is a Nash equilibrium if neither individual would like to

deviate from their strategy, given the other’s strategy. Formally: x∗ ∈ argmaxx∈X (x+ y∗)1/2 − x2

y∗ ∈ argmaxy∈X (x∗ + y)1/2 − y2.
(7)

Differentiability of the preference function together with an unbounded strategy set implies

that (x∗, y∗) must satisfy the following set of first-order conditions (these conditions are also

sufficient because of the strict concavity of the preference function): 1
2
(x∗ + y∗)−1/2 = 2x∗

1
2
(x∗ + y∗)−1/2 = 2y∗.

(8)

It follows that x∗ = y∗ = (1/32)1/3. Suppose now that another preference function enters this

population. For example suppose that some individuals have the preference function

v(x, y) = w(x, y)− 1

2
w(y, x). (9)

For any given strategy used by the individual, x, and any given strategy used by the opponent,

y, in this function both the individual’s own fitness, w(x, y), and the fitness of the opponent,

w(y, x), appears. Since the former enters with a positive sign and the latter with a negative

sign, this function means that the individual prefers strategy profiles (x, y) that give a higher

fitness to itself and a lower fitness to the opponent. In economics such an individual is said

to have spiteful preferences (see, e.g., [11]). In an interaction between one fitness-maximizer

(with preference function u) and one spiteful individual (with preference function v) a pair of

strategies (x̂, ŷ) is a Nash equilibrium if and only if: x̂ ∈ argmaxx∈X (x+ ŷ)1/2 − x2

ŷ ∈ argmaxy∈X (x̂+ y)1/2 − y2 − 1
2
[(x̂+ y)1/2 − x̂2].

(10)
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The following first-order conditions are necessary (and also sufficient because of the strict con-

cavity of the preference functions): 1
2
(x̂+ ŷ)−1/2 = 2x̂

1
4
(x̂+ ŷ)−1/2 = 2ŷ.

(11)

It follows that x̂ = 31/3 · (1/32)1/3 and ŷ = x̂/2. By valuing the benefit of the public good

(x+ y)1/2 less than a fitness-maximizer, the spiteful individual is less willing to contribute than

a fitness-maximizer; in turn, compared to when he interacts with another fitness-maximizer,

the fitness-maximizer compensates for the ensuing lower contribution by his opponent by in-

creasing his contribution. Indeed, note that x̂ > x∗ > ŷ. Calling the preference function u

the resident trait, and the spiteful preference function v the mutant trait, and letting ε denote

the share of individuals with the mutant trait, it follows that the average fitness of the resident

fitness-maximizers is

(1− ε) · w (x∗, x∗) + ε · w (x̂, ŷ) (12)

while the average fitness of the mutant spiteful individuals is

(1− ε) · w (ŷ, x̂) + ε · w (x̃, x̃) , (13)

where x̃ = (1/128)1/3 is the contribution that a spiteful individual makes when matched with

another spiteful individual. It follows from x̂ > x∗ > ŷ that w(ŷ, x̂) > w (x∗, x∗), and hence

that for ε close enough to zero, the mutants obtain a strictly higher average fitness than the

residents. Following the same logic as in standard evolutionary game theory, we conclude that

a population of fitness-maximizers would not resist the invasion by mutants with the spiteful

preference function v.

This conclusion, here reached in a simple example, has been shown by Heifetz, Shannon,

and Spiegel [12] to hold for any fitness game Γ = ⟨X,w⟩ such that w is a thrice differentiable

function and X is an open subset of R (see also Ok and Vega-Redondo [13]). They show this

general result in a model which encompasses any preference function of the form

u (x, y) = w(x, y) +B(x, y, τ), (14)
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where τ ∈ E ⊆ R is the evolving trait and B is some thrice differentiable function (the fitness-

maximizer is the special case with B(x, y, τ) = 0 for all (x, y) ∈ X2).

This observation begs the question: which preference function, if any, is evolutionarily

stable?

Definition 3. Consider a population in which individuals are matched into pairs to interact

according to the fitness game Γ = ⟨X,w⟩ and under complete information about each other’s

preference function. Let Θ denote the set of all possible preference functions u : X2 → R such

that there exists a unique Nash equilibrium in each matched pair. Then, a preference function

u is evolutionarily stable under complete information (ESC) against preference function v if

there exists ε̄v ∈ (0, 1) such that for all ε ∈ (0, ε̄v):

(1− ε) · w (x∗, x∗) + ε · w (x̂, ŷ) > (1− ε) · w (ŷ, x̂) + ε · w (x̃, x̃) , (15)

where (x∗, x∗) is the unique Nash equilibrium in an interaction between two residents, (x̂, ŷ) is

the unique Nash equilibrium in an interaction between a resident and a mutant, and (x̃, x̃) is

the unique Nash equilibrium in an interaction between two mutants.

The preference function u is an evolutionarily stable preference function under complete

information (ESPFC) if it is evolutionarily stable against all preference functions v ∈ Θ,

v ̸= u.

In words, an ESPFC is a preference function which, once it has become prevalent in a popu-

lation, cannot be displaced by any other preference function, the criterion being fitness evaluated

at Nash equilibrium. It is important to note that researchers who have adopted this definition do

not necessarily believe that individuals in real life do play some Nash equilibrium; however, it

is a useful first approach, and the definition can be readily adapted to other equilibrium notions.

It should also be remarked that the definition can be generalized to encompass settings where

there exist multiple Nash equilibria; however, most of the literature has restricted attention to

settings with a unique Nash equilibrium (an exception is the model of Dekel, Ely, and Yilankaya

[14], but their analysis is on the other hand restricted to fitness games with finite action sets).

In settings where there exists a unique Nash equilibrium in each matched pair, the score

11



function is well defined:

Su,v (ε) = (1− ε) · [w (x∗, x∗)− w (ŷ, x̂)] + ε · [w (x̂, ŷ)− w (x̃, x̃)]. (16)

Since Su,v is linear in ε, the following result and simple test obtains:

Result 2. Let (x∗, x∗) be the unique Nash equilibrium in an interaction between two residents,

(x̂, ŷ) the unique Nash equilibrium in an interaction between a resident and a mutant, and (x̃, x̃)

the unique Nash equilibrium in an interaction between two mutants. Then:

1. If w(x∗, x∗) > w(ŷ, x̂), then u is ESC against v.

2. If w(x∗, x∗) = w(ŷ, x̂), then u is ESC against v only if w(x̂, ŷ) > w(x̃, x̃).

3. If w(x∗, x∗) < w(ŷ, x̂), then u is not ESC against v.

A fundamental difference with strategy evolution is that the set of potential preference func-

tions, Θ, is a priori undetermined. Hence, the researcher must make some assumption. Thus

far most of the analyses of preference evolution under complete information have adopted the

parametric class of preferences originally proposed by Bester and Güth in their seminal paper

[15]. In a model with the following fitness function

w (x, y) = (m− x+ ky)x (17)

for some 1 > k > −1 and m > 0, they examine preference functions of the form

uα (x, y) = w(x, y) + α · w(y, x), (18)

where α ∈ [0, 1] is the evolving trait. Bolle [16] and Possajennikov [17] generalize the original

model by extending the range of possible values of α to R+. Like in the example studied in de-

tail above (which corresponded to the special case α = −1/2), a straightforward interpretation

is that an individual with such a preference function attaches some weight, α, to the conse-

quences of his strategy choice on the opponent. If α > 0, he is willing to reduce own fitness in

order to enhance that of the other, i.e., to act in a pro-social manner; economists refer to prefer-

ences with α > 0 as altruistic preferences [18]. By contrast an individual with α < 0 is willing
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to reduce own fitness in order to reduce that of the other, i.e., to act in an anti-social manner;

economists refer to preferences with α < 0 as spiteful ones. Finally, fitness-maximizing individ-

uals correspond to the special case α = 0. Although this class of preferences thus encompasses

altruism, self-interest, and spite, we will simply refer to α as the degree of altruism.

A key insight delivered by the analyses of Bester and Güth [15], Bolle [16], and Possajen-

nikov [17], is that the evolutionarily stable value of α depends on the parameters of the fitness

function, k and m. Alger and Weibull [11] subsequently generalized the analysis of the same

class of preference functions by considering any fitness game with a continuous fitness function

w such that there exists a unique (and regular, meaning that it is differentiable) Nash equilibrium

in any dyadic interaction. Letting x∗(α, α) denote the equilibrium strategy employed by both

individuals in a dyad where both have degree of altruism α, they first show that the following

equation is necessary for a preference function of the form (18) with α = α∗ to be evolutionarily

stable:

α∗ · x∗
1(α

∗, α∗) = x∗
2(α

∗, α∗), (19)

where the index 1 (resp. 2) indicates the partial derivative with respect to the first (resp. second)

argument. This equation shows that the observability of the opponent’s preferences drives a

wedge between fitness-maximizing preferences and evolutionarily stable preferences. Indeed,

the right-hand side represents the effect that an individual’s preferences has on the opponent’s

equilibrium strategy, and fitness-maximizing preferences (α∗ = 0) are evolutionarily stable

if and only if this effect is nil (x∗
2(0, 0) = 0). More generally, the characterization in (19)

unveils a connection between the qualitative nature of the fitness function w and the sign of the

evolutionarily stable value of α.

Result 3. [Alger and Weibull [11]] A preference function of the form (18) with α = α∗ is an

ESPFC only if:

1. α∗ < 0 if the strategies are strategic substitutes (i.e., ∂2w(x, y)(∂x∂y) < 0).

2. α∗ > 0 if the strategies are strategic complements (i.e., ∂2w(x, y)(∂x∂y) > 0).

3. α∗ = 0 if the strategies are strategically neutral (i.e., ∂2w(x, y)(∂x∂y) = 0).

This result generates a clear prediction for the relationship between preferences on the one hand,

and the specifics of the fitness function w on the other hand, where w presumably depends on
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the environment in which the population evolves. Typical examples of interactions involving

strategic complementarity are those that require teamwork: if heavy enough, trying to pull up

a fishing net is useless unless someone else also pulls; rowing the oar on one side of a boat is

useless unless the rower on the other side also rows; going for the Stag rather than the Hare (in

the famous Stag-Hunt game) pays off only if the other does so as well; etc. Typical examples

of interactions involving strategic substitutability are those where individuals compete over the

same resources.

The prediction is testable if the researcher can measure whether individuals in the population

at hand are willing to reduce own fitness in order to enhance that of the other (in which case

α > 0), or rather to reduce it (in which case α < 0). If such direct measurement is impossible,

the following comparison between the strategy that is employed by individuals in the population

at hand and the ESS can be used as an indirect test:

Result 4. Suppose that the fitness game Γ = ⟨X,w⟩ is such that w(x, x) is increasing in x, and

suppose that there is a unique ESS, denoted xESS . Then in a population where a preference

function of the form (18) with α = α∗ is an ESPFC and in which the (unique) Nash equilibrium

strategy x∗(α∗, α∗) is employed:

1. x∗(α∗, α∗) < xESS if the strategies are strategic substitutes (i.e., ∂2w(x, y)(∂x∂y) < 0).

2. x∗(α∗, α∗) > xESS if the strategies are strategic complements (i.e., ∂2w(x, y)(∂x∂y) >

0).

3. x∗(α∗, α∗) = xESS if the strategies are strategically neutral (i.e., ∂2w(x, y)(∂x∂y) = 0).

3.2.1 Related models in the biology literature

Following McNamara, Gasson, and Houston [19], a series of contributions in biology have ex-

amined the evolutionary stability of negotiation rules. This literature takes interest in fitness

games whereby individuals engage in a series of interaction rounds which eventually lead to a

“negotiated outcome”. Compared to the standard strategy evolution setting, where each indi-

vidual is programmed to employ a certain strategy, here each individual is programmed with

a response rule which specifies the strategy to play in response to the strategy used by the op-
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ponent in the previous round. This alternating process converges to a pair of strategies—the

negotiated outcome—which the interactants then employ in the remaining rounds.

Like in the preference evolution literature, there is a priori no clear set of possible negotia-

tion rules. McNamara, Gasson, and Houston [19] and Taylor and Day [20] posit the following

rule for an individual playing x in response to the opponent’s play of y in the previous round:

x = ρ− λ · y. (20)

The evolving trait is the vector (λ, ρ), which represents the slope and the intercept. A population

consisting of individuals with the rule (λ, ρ) = (0, xESS) would play the ESS xESS , and this rule

is evolutionarily stable. However, there are also rules (λ, ρ) with λ ̸= 0 that are evolutionarily

stable [19, 20]. Note that the non-degenerate slope λ ̸= 0 implies that an individual’s behavior

is swayed by the opponent’s behavior: the similarity with the non-nil effect of an individual’s

preferences on the opponent’s behavior in the model on the evolution of altruistic preferences

under complete information (i.e., x∗
2(·, ·) ̸= 0 in (19)) is thus clear. The following remark

examines in greater detail the similarities and differences between the seminal models.

Remark 1. An interesting parallel can be drawn between the response rule in (20) and the

model analyzed by Bester and Güth [15]. Recalling the fitness function that they posit (see

(17)), an individual with altruistic preferences chooses a strategy x that maximizes the following

expression, where y is the opponent’s strategy:

(m− x+ ky)x+ α · (m− y + kx) y (21)

The necessary (and sufficient) first-order condition for this maximization is

m− 2x+ ky + α · ky = 0, (22)

or

x = m
2
+ k(1+α)

2
y, (23)

In other words, the best response of an individual with degree of altruism α to the opponent’s

strategy is equivalent to the response rule examined by McNamara, Gasson, and Houston [19]
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and Taylor and Day [20] (see (20)) for ρ = m
2

and λ = −k(1+α)
2

. Hence, the system of necessary

conditions for a Nash equilibrium strategy profile in a dyad with degrees of altruism (α, α′) at

which Bester and Güth [15] evaluate fitness, x∗(α, α′) = m
2
+ k(1+α)

2
· x∗(α′, α)

x∗(α′, α) = m
2
+ k(1+α′)

2
· x∗(α, α′)

(24)

coincides with the system of equations that define the negotiated outcome in a dyad with re-

sponse rules (ρ, λ), (ρ′, λ′) at which McNamara, Gasson, and Houston [19] and Taylor and

Day [20] evaluate fitness, x∗((ρ, λ), (ρ′, λ′)) = ρ− λ · x∗((ρ′, λ′), (ρ, λ))

x∗((ρ′, λ′), (ρ, λ)) = ρ′ − λ′ · x∗((ρ, λ), (ρ′, λ′))
(25)

if ρ = ρ′ = m/2, λ = k(1 + α)/2, and λ′ = k(1 + α′)/2. This comparison highlights

two differences between Bester and Güth [15] on the one hand, and McNamara, Gasson, and

Houston [19] and Taylor and Day [20] on the other hand. First, in the latter both the slope and

the intercept of the response rule are evolving traits, while in the former only the slope evolves.

Second, they do not use the same fitness function.

This remark brings us to the contribution by Akcay et al. [21], which builds a nice bridge

between the biology literature on the evolution of negotiation rules on the one hand, and the

economics literature on preference evolution under complete information on the other hand. In

a model with the fitness function

w(x, y) = y1/2 − x2, (26)

they consider preference functions of the form

u (x, y) = w(x, y) · [w(y, x)]β, (27)

and let β > 0 be the evolving trait. They derive the best response of an individual with such

preferences, they determine the conditions under which a negotiation phase would converge to
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Nash equilibrium in a complete information game between two individuals with such prefer-

ences, and they characterize the evolutionarily stable value of β. They further derive a result

in a general model with generic but differentiable fitness and preference functions, such that in

each dyad there exists a unique Nash equilibrium. This result can be described as follows:

Result 5. [Akcay et al. [21]] Suppose that the fitness game Γ = ⟨X,w⟩ is such that w(x, x) is

increasing in x, and suppose that there is a unique ESS, denoted xESS . Then in a population

where a preference function of the form (27) with β = β∗ is an ESPFC and in which the (unique)

Nash equilibrium strategy x∗(β∗, β∗) is employed:

1. x∗(β∗, β∗) > xESS if the strategies are strategic complements (i.e., ∂2w(x, y)(∂x∂y) >

0).

2. x∗(β∗, β∗) = xESS if the strategies are strategically neutral (i.e., ∂2w(x, y)(∂x∂y) = 0).

The qualitative nature of this result is in line with that of a subset of the results found by Alger

and Weibull [11] in the case of altruistic/spiteful preference functions (see Result 4 above), an

observation which would be expected in light of the following remark.

Remark 2. It is well-known in economics that any preference ranking over items in an indi-

vidual’s choice set that can be described by some preference function u, can equally well be

described by any positive monotone transformation of u. Taking the logarithm of the function

posited by Akcay et al. [21] (see (27)), and defining,

ũ (x, y) = lnw(x, y) + β · lnw(y, x), (28)

it is clear that this class of preference functions is qualitatively similar to the one adopted in the

economics literature that built on Bester and Güth [15] (see (18)).

It is still an open question whether the qualitative nature of Results 4 and 5 generalizes to

other preference function classes. As mentioned earlier, it is a priori not clear which prefer-

ence classes should be examined by modelers, a question that will be brought up again in the

discussion section below.
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3.3 Interactions under incomplete information

By contrast to interactions that take place under complete information, in interactions where the

individuals cannot observe each other’s preference function their behavior cannot be swayed by

the opponent’s preference function. However, an individual may still adapt behavior to the

distribution of preference functions present in the population. This is the assumption adopted

in the analyses of preference evolution under incomplete information [13, 14, 22]. This section

summarizes results by closely following the modeling assumptions of Alger and Weibull [22],

for a reason that will become clear below.

Let a population state s = (u, v, ε) be defined by the resident preference function u ∈ Θ,

the mutant preference function v ∈ Θ, and the share ε of mutants. Under the same match-

ing protocol as in the standard framework—i.e., that any individual faces a probability ε of

being matched with a mutant—the criterion used in the literature is fitness evaluated at type-

homogenous Bayesian Nash equilibrium strategy profiles (below these will simply be referred

to as equilibrium strategy profiles, or equilibria), defined as follows.

Definition 4. In any state s = (u, v, ε) ∈ Θ2 × (0, 1), a strategy pair (x∗, y∗) ∈ X2 is a

type-homogenous Bayesian Nash Equilibrium (BNE) if x∗ ∈ argmaxx∈X (1− ε) · u (x, x∗) + ε · u (x, y∗)
y∗ ∈ argmaxy∈X (1− ε) · v (y, x∗) + ε · v (y, y∗) .

(29)

The first (resp. second) equation says that a resident (resp. a mutant) chooses a strategy that

maximizes the expected value of the preference function u (resp. v), where the expectation is

taken over the value that the preference function takes in a match with another resident, who

plays x∗, and the value that it takes in a match with a mutant, who plays y∗. Type-homogeneity

means that all individuals with the same preference function (or preference type) use the same

strategy.

Given some equilibrium strategy profile (x∗, y∗) associated with population state s = (u, v, ε),

define the equilibrium fitnesses of residents and mutants:

Wu (x
∗, y∗, ε) = (1− ε) · w(x∗, x∗) + ε · w(x∗, y∗) (30)
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Wv (x
∗, y∗, ε) = (1− ε) · w(y∗, x∗) + ε · w(y∗, y∗) (31)

By contrast to the analyses of interactions under complete information, the typical approach

for interactions under incomplete information consists in minimally constraining the set of pos-

sible preference functions, Θ. In particular it turns out that it is possible to derive general results

even for settings in which there are states s = (u, v, ε) with multiple equilibria.

Definition 5. [Alger and Weibull [22]] A preference function u ∈ Θ is evolutionarily stable

under incomplete information (ESI) against a function v ∈ Θ if there exists an ε̄ > 0 such

that Wu (x
∗, y∗, ε) > Wv (x

∗, y∗, ε) in all Nash equilibria (x∗, y∗) in all states s = (u, v, ε)

with ε ∈ (0, ε̄). A preference function u is an evolutionarily stable preference function under

incomplete information (ESPFI) if it is ESI against all preference functions v ̸= u in Θ.

To illustrate the analytical challenge that this setting presents, focus momentarily on a set-

ting where in each state s = (uθ, uτ , ε) ∈ Θ2 × (0, 1) there exists a unique equilibrium strategy

profile. In such a setting the score function is:

Su,v (ε) = (1− ε) · [w (x∗(ε), x∗(ε))− w (y∗(ε), x∗(ε))]

+ ε · [w (x∗(ε), y∗(ε))− w (y∗(ε), y∗(ε))], (32)

where I have made it explicit that the equilibrium strategy profile may vary with the share ε

of mutants. Clearly, the score function is not necessarily linear in ε. In fact, without further

assumptions it may even be discontinuous, since the equilibrium strategy profile may vary dis-

continuously with ε. This contrasts sharply with the linearity in ε of the score functions under

strategy evolution (4) and under preference evolution under complete information (16), which

implies that analysis of the score function at ε = 0 is sufficient to check evolutionary stability

(recall Results 1 and 2).

Nonetheless, there are conditions that render general analysis possible, even for settings

with multiple equilibria. In view of Remark 2, there will, however, typically be many preference

functions that are behaviorally equivalent. Clearly, the fitness-maximizing preference function

cannot be evolutionarily stable against such behavioral alikes, defined as follows.

Definition 6. Let X0 be the set of type-homogenous Nash equilibria in a population consisting

solely of fitness-maximizers. A preference function u′ is a behavioral alike to fitness-maximizers
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if there exists some x0 ∈ X0 such that x ∈ argmaxx∈X u′(x, x0) and x ∈ argmaxx∈X w(x, x0).

In words (and somewhat loosely) a behavioral alike to fitness-maximizers is a preference

type that would be willing to play a strategy that the fitness-maximizer would also be willing

to play, given that the opponent plays some x0 ∈ X0. The following result identifies sufficient

conditions for the fitness-maximizing preference function to be evolutionarily stable. It is a

slight variation of the result as stated by Alger and Weibull [22], found in [23] (the difference

stems from a slight difference in how behavioral alikes are defined, which does not affect the

core of the result).

Result 6. If the strategy set X is compact and convex, and all the preference functions in Θ as

well as the fitness function w are continuous, then the fitness-maximizing preference function

(see (5)) is ESI against any preference function that is not its behavioral alike.

The topological properties stated in the result ensure that the correspondence, which to each

population state s = (u, v, ε) ∈ Θ2 × (0, 1) associates the set of equilibrium strategy profiles,

is upper-hemicontinuous. Hence, even if the introduction of an infinitesimal share of mutants

sways the equilibrium strategy of the residents away from the equilibrium strategy played in

the absence of mutants, the “new” equilibrium strategy is arbitrarily close to some strategy that

the fitness-maximizers could have played in the absence of mutants. Continuity of the fitness

function then implies that any mutant which is not a behavioral alike to fitness-maximizers

obtains a strictly lower equilibrium fitness than the fitness-maximizers.

Ok and Vega-Redondo [13] adopt similar topological properties, and they show that fitness-

maximizers are robust to the entry of non-fitness-maximizers even in finite but large enough

populations. By contrast, in small populations the entry of mutants makes the resident fitness-

maximizers shift their strategy away from any strategy they would have played in the absence

of mutants in many fitness games, and the result no longer holds (this is reminiscent of the fact

that a strategy that is ES in infinite populations is not necessarily ES in finite populations [24]).

3.4 Bringing relatedness into the picture

All of the analyses summarized above were derived in the standard panmictic setting [4]. Some

of them have been extended to encompass relatedness [25, 26, 27], which arises in naturally
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structured populations [28] and is part of the environment of evolutionary adaptation of the

human lineage [29].

Relatedness is introduced as follows into the abstract evolutionary stability concept [30]. For

any given resident preference function u and mutant preference function v in the considered set

of preference functions, and a share ε ∈ (0, 1) of mutants, let Pr [v|u, ε] denote the probability

that a resident is matched with a mutant, and Pr [v|v, ε] the probability that a mutant is matched

with another mutant. In a panmictic population Pr [v|u, ε] = Pr [v|v, ε] = ε, which implies that

as the share of mutants tends to 0, the probability that a mutant is matched with another mutant

tends to 0 as well. Relatedness means that rare mutants are more likely to be matched with each

other, than a resident is to be matched with a mutant. This is formalized by assuming that

lim
ε→0

Pr [v|v, ε] = r (33)

for some relatedness r ∈ [0, 1]. The analyses summarized above correspond to the special case

r = 0.

Remark 3. In the models included in this overview the matching probabilities are exogenously

given. Put differently, there is no partner choice.

3.4.1 Interactions under complete information

Starting with interactions under complete information and preference functions of the form

(18), Definition 3 readily generalizes to encompass relatedness by replacing (15) by:

Pr [u|u, ε] ·w (x∗, x∗)+Pr [v|u, ε] ·w (x̂, ŷ) > Pr [u|v, ε] ·w (ŷ, x̂)+Pr [v|v, ε] ·w (x̃, x̃) , (34)

and the score function in (16) generalizes to:

Su,v (ε) = Pr [u|u, ε] · w (x∗, x∗) + Pr [v|u, ε] · w (x̂, ŷ)

− Pr [u|v, ε] · w (ŷ, x̂)− Pr [v|v, ε] · w (x̃, x̃)]. (35)

Recall that differentiability of this function facilitates analysis, since it is then sufficient to ex-

amine the value (and sometimes the derivative) of Su,v at ε = 0 to establish whether u is ES
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against v. Such differentiability obtains if the conditional probability functions are differen-

tiable. Positing such differentiability, Result 3 generalizes to:

Result 7. [Alger and Weibull [11]] In a population where the matching process entails relat-

edness r ∈ [0, 1], a preference function of the form (18) with α = α∗ is an ESPFC only if:

1. α∗ < r if the strategies are strategic substitutes (i.e., ∂2w(x, y)(∂x∂y) < 0).

2. α∗ > r if the strategies are strategic complements (i.e., ∂2w(x, y)(∂x∂y) > 0).

3. α∗ = r if the strategies are strategically neutral (i.e., ∂2w(x, y)(∂x∂y) = 0).

Given that the value of α determines how willing individuals are to act generously in interac-

tions with relatives, this result suggests that evolution may have led to variation in the degree

of intra-family generosity across different regions of the world, the ultimate driving force being

the qualitative nature of the fitness game. Furthermore, even for a given category of fitness

game (i.e., where strategies are strategic substitutes or complements), the specifics of the fitness

game may matter. To wit, in the production-and-sharing fitness game studied in [31], where

the strategies are strategic substitutes, the evolutionarily stable degree of altruism is found to be

lower, the harsher is the environment.

Note that Result 7 implies that equilibrium behavior in a population with an evolutionarily

stable degree of altruism would be at odds with the strategy predicted by Hamilton’s rule [26,

27] under strategy evolution [32]. However, the result is in line with Hamilton’s rule once it is

brought up to the selection of preference functions rather than strategies (see the discussion in

[11]).

3.4.2 Interactions under incomplete information

Turning now to interactions under incomplete information and relatedness, a straightforward

generalization of the panmictic setting examined above is sufficient. Inserting the conditional

probabilities into the system of best-response equations (29) in Definition 4, x∗ ∈ argmaxx∈X Pr [u|u, ε] · u (x, x∗) + Pr [v|u, ε] · u (x, y∗)
y∗ ∈ argmaxy∈X Pr [u|v, ε] · v (y, x∗) + Pr [v|v, ε] · v (y, y∗) ,

(36)
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and into the equilibrium fitnesses of residents and mutants (see (30) and (31)),

Wu (x
∗, y∗, ε) = Pr [u|u, ε] · w(x∗, x∗) + Pr [v|u, ε] · w(x∗, y∗) (37)

Wv (x
∗, y∗, ε) = Pr [u|v, ε] · w(y∗, x∗) + Pr [v|v, ε] · w(y∗, y∗), (38)

the definition of an evolutionarily stable preference function under incomplete information ap-

plies as is (see Definition 5). The simple fitness-maximizing preference function (see (5)) is no

longer evolutionarily stable, however. Instead, the analysis in [22] (see also [23] for a general-

ization to n-player interactions), reveals that evolution favors Homo moralis preferences:

Definition 7. An individual is a Homo moralis if her preference function is of the form

uκ (x, y) = (1− κ) · w (x, y) + κ · w (x, x) , (39)

for some κ ∈ [0, 1], her degree of morality.

While it was the mathematical analysis that led to the “discovery” of this preference class,

the choice of the name Homo moralis was triggered by the fact that the second term in (39)

can be interpreted as a concern for universalization, reminiscent of Kant’s reasoning [33]: what

would happen (to the individual’s fitness) if the individual’s strategy was universalized? The

first term being the individual’s fitness given own and opponent’s actual strategies, the Homo

moralis preference function can be thought of as representing a form of partial Kantian moral

concern (see also [32] for a similar “as if” interpretation, in a model with strategy evolution for

interactions between siblings).

The following definition and result generalize Definition 6 and Result 6 to encompass relat-

edness.

Definition 8. Let Xr be the set of type-homogenous Nash equilibria in a population consisting

solely of Homo moralis with degree of morality κ = r. A preference function u′ is a behavioral

alike to such Homo moralis if there exists some xr ∈ Xr such that y ∈ argmaxx∈X u′(x, xr)

and x ∈ argmaxx∈X(1− r) · w(x, xr) + r · w(x, x).

A behavioral alike to a Homo moralis with a degree of morality κ = r is a preference type

that would be willing to play a strategy that such a Homo moralis would also be willing to play,
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given that the opponent plays some xr ∈ Xr. Modulo the slight difference in the definition

of behavioral alikes already referred to, the following result was derived by Alger and Weibull

[22, 23].

Result 8. If the strategy set X is compact and convex, all the preference functions in Θ as well

as the fitness function w are continuous, and the conditional probability functions Pr [u|u, ε]
and Pr [u|v, ε] are continuous in ε, then the preference function

ur (x, y) = (1− r) · w (x, y) + r · w (x, x) , (40)

is ESI against any preference function that is not its behavioral alike, in a population where the

matching process entails relatedness r ∈ [0, 1].

A population of Homo moralis resists entry by mutants because their preferences make them

select a strategy that maximizes the average fitness of vanishingly rare mutants. Indeed, such

mutants, who play some strategy, say z, obtain average fitness which, given the topological

properties (see the discussion following Result 6), is arbitrarily close to (see (38))

(1− r) · w(z, xr) + r · w(z, z), (41)

where xr is some equilibrium strategy in a monomorphic population consisting of Homo moralis:

xr ∈ argmax
x∈X

ur (x, xr) , (42)

where

ur (x, xr) = (1− r) · w(x, xr) + r · w(x, x). (43)

A mutant preference type that is not a behavioral alike to Homo moralis with degree of morality

κ = r must play some strategy z which does not belong to the set argmaxx∈X(1−r)·w(x, xr)+

r · w(x, x), and hence obtains an average fitness that is strictly smaller than that of residents,

which is is arbitrarily close to w(xr, xr).

Interestingly, while altruistic preferences (see (18)) with degree of altruism α = r are some-

times behavioral alikes to Homo moralis preferences with degree of morality κ = r, only the

latter preference function is evolutionarily stable for the entire set of fitness games defined by
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the assumptions stated in Result 8 (see the discussions in [32], [22], and [34]).

4 Discussion

The first contributions to the literature on the evolution of preferences by natural selection ex-

tended the concept of evolutionary stability from the level of strategies [1] to the level of pref-

erences guiding the choice of strategy, an approach that is sometimes referred to as indirect

evolution [15], since evolution then operates on strategies only indirectly, by “delegating” the

strategy choice to the individual. Several novel insights were delivered by these contributions,

as summarized above. This literature is arguably still in its infancy, and I here discuss some

possible future paths.

To begin, some readers may wonder: is there really a deep difference between strategy

evolution and preference evolution? After all, and as highlighted in this article, it is typically

possible to reformulate preference evolution as evolution of response rules. I’d make the case

that there is a fundamental difference, however. Strategies are mere descriptions of behavior.

Preferences are expressed within individuals as the result of some process which may involve

reasoning, emotions, hormones, and/or other neurobiological mechanisms, and which may re-

spond to the stimuli and information the individual receives. Some preference classes present

the advantage of lending themselves to psychological interpretation. For example, one possible

interpretation of an individual with altruistic preferences of the form (18) with a positive degree

of altruism α > 0 is that (s)he has emotions that are swayed by the fitness of the person with

whom (s)he interacts: the better off is the opponent, the happier (s)he gets. By contrast, an

individual Homo moralis preferences of the form (39) with a positive degree of morality κ > 0

would not react to information about the opponent’s fitness: (s)he instead evaluates different

courses of action by taking into account what own fitness would be if—hypothetically—the

course of action was universalized to all the interactants. This observation suggests three possi-

ble future research paths.

First, over the past few decades the behavioral economics literature has proposed a wealth

of preference classes to explain observed behaviors in social interactions: altruism [18], warm

glow [35], a preference for conformity [36], for reciprocity [37, 38, 39, 40], inequity aversion

[41, 42], guilt aversion [43, 44], and image concerns [45, 46]. These preference classes were
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inspired mostly by research in psychology and sociology. It should be noted that Homo moralis

preferences [22], examined above, are novel to behavioral economics: the theory of prefer-

ence evolution may thus contribute to economics through the discovery of hitherto unstudied

preference classes, and future analyses may make further similar discoveries.

Second, the theory of preference evolution may unveil ultimate drivers of the aforemen-

tioned preference classes (besides altruistic and Homo moralis preferences, already extensively

studied). A question of particular interest is whether there may be stable polymorphisms—

populations in which several preference classes co-exist—and if so, which factors are expected

to affect the stable distribution of preferences. Such theories may help explain observed hetero-

geneity both within and between populations in survey and experimental data [47, 48, 49].

Third, researchers working with models of preference evolution must make assumptions on

the set of potential preference functions. In reality, however, the set of potential preference

functions available for a given organism may be determined by physiological constraints. An

open question is thus whether findings on the neurobiology of our species would help reduce

this set. Such an approach has already been used in the theoretical literature on the evolution

of preference functions that govern choices in decision situations other than social interactions,

see, e.g., [50, 51].

Readers may also ask: how realistic is the process by which individuals are matched to-

gether in preference evolution models that extend the standard evolutionary game theory model?

An important question is thus whether the results found under this assumption are robust to the

extension to other matching processes. Two nascent paths can be mentioned in this context.

First, the model of preference under incomplete information found in [22, 23] has been in-

corporated by Alger, Weibull, and Lehmann [52] into a standard island model [53], in which the

population is structured into groups between which there is limited migration. This approach

allowed the researchers to distinguish between preference functions defined over fitness on the

one hand and preference functions defined over material payoffs on the other hand. Arguably,

the preference function defined over material payoffs that is found to be uninvadable in [52] is

more relevant for social scientists who seek to estimate the preferences of individuals by way

of observing their behavioral responses to trivial material payoff consequences, such as in the

experimental economics literature [38, 54, 55, 56, 57]. This function differs from the Homo

moralis function, whose evolutionary viability was established under the standard evolutionary
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game theory matching protocol. However, the Homo moralis preference function is uninvadable

when defined over fitnesses rather than material payoffs, thus providing one first robustness test.

It remains to be seen which preference functions—or distributions over preference functions—

would resist the invasion of mutants in models with more sophisticated modeling of the migra-

tion decisions, such as in [58], for example.

Second, individuals are typically free to choose with whom they interact. Such active part-

ner choice is known to matter for the evolution of cooperative strategies [59]. How would it

affect the evolution of preference functions? One possible formalization is provided by Hop-

kins [60], in a model with altruistic preference functions where individuals differ in their ability

to understand the mental processes of others.

Readers may further ask: if preferences emanate from mental and neurobiological pro-

cesses, is it reasonable to assume that one can observe others’ preferences? In the model

proposed by Heller and Mohlin [61] this issue—reminiscent of the well-known “mimicry” is-

sue in biology—is addressed by examining the co-evolution of preferences and the ability to

deceive others about preferences and intentions. The extensive work on the commitment role

that emotions may have played in our evolutionary past, and the concomitant ability to signal

(e.g., through anger) and also detect such emotions (see, e.g., [62], may perhaps also inspire

formal work on emotions that can be incorporated into the theory of preference evolution.

The definition of an evolutionarily stable strategy [1] provided a key tool for theorists to

model ultimate drivers of behavior in social interactions. Adding the idea that Nature delegates

the strategy choice to the individuals by way of equipping them with preferences over strategies

[2, 3], arguably brings the theory closer to reality. Although the literature has already delivered

many insights, most of the work on evolutionarily viable preferences undoubtedly still lays

ahead of us. I hope that this article has underlined the fundamental role played by the bridges

built between the models of biologists and economists, both in the past and in the future.
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