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Wind-Tolerant Event-Based Adaptive Sliding-Mode
Control for VTOL Rotorcrafts Multi-Agent Systems

J. U. Alvarez-Muñoz1,∗, J. Escareno2, J. Chevalier1, S. Daix3, O. Labanni-Igbida2

Abstract—The present paper investigates the consensus control
of a Multi-Agent System (MAS) composed by Vertical Take-
off and Landing (VTOL) rotorcrafts subject to aerodynamic
disturbances. Initially, the attitude’s VTOLs model based on
quaternion formalism is detailed to subsequently derive the
corresponding control law. Likewise, the MAS translational
dynamics is extended to entail the airframe’s aerodynamics. In
order to achieve the consensus objective, a robust adaptive event-
triggered sliding-mode control (SMC) is synthesized considering
a leader-follower scheme guaranteeing Lyapunov’s closed-loop
stability and avoiding the Zeno behavior. Results from an extensive
simulation stage witness the effectiveness of the proposed control
scheme. The latter allows to fulfill the collective consensus and
leader’s trajectory tracking objectives in presence of unknown
disturbances while keeping a reduced computational cost.

I. INTRODUCTION

Recently, achievable missions of Unmanned Aerial Vehicles
(UAV) multi-agent systems (MAS) within the civilian and
industrial sectors have motivated the scientific community to
increase its research efforts. Current MAS-based applications
like precision agriculture, environmental monitoring or cargo
transportation, just to mention a few, require energy efficient
onboard control modules to enhance flight endurance while
exhibiting robustness against adverse atmospheric conditions.

Compared to continuous-time control techniques, which can
be deteriorated due to limited communication bandwidth, the
event-based control methodologies manage and reduce the
usage of the network bandwidth and computing resources.
Essentially, the event-based control computes and updates
the control signals when specific conditions are met, i.e. an
event occurs. Thus, for multi-agent systems based on such
control scheme, the information exchange among agents is
no longer periodical and it occurs only when necessary. On
this subject, the study of single and double integrator agents
show the relevance of event-based controllers when featuring
communication delays, packet drops or noise [1], [2], [3], [4].

Other important issues of multi-agent systems include the
presence of disturbances or model uncertainties. In this regard,
different works have considered adaptive and robust control
techniques combined with event-triggered mechanisms, as in
[5], [6] and [7]. Among the robust control techniques, the
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sliding mode control strategy is well known for its robustness
face to time-varying disturbances, as it is shown in [8]. For
example, in [9], an integral sliding mode controller is combined
with an event-triggered mechanism for the consensus problem
of second order multi-agent systems. [10] deals with the leader-
following consensus problem of a heterogeneous first-order
multi-agent system by means of an event-based SMC. This
approach is extended to a heterogeneous second-order multi-
agent systems in [11], where a novel event-triggered SMC for
consensus and formation objectives is implemented.

Knowing the advantages offered by the event-based control
techniques, these ones are being applied to multi-robot systems,
as in [12], which reports the design of an event-based formation
controller applied to terrestrial nonholonomic robots. The works
presented in [13] and [14] propose and validate respectively,
through simulations and experimental stages, different event-
based control strategies for the formation of multiple quadrotors
modeled as a second-order multi-agent system. In addition,
[15] proves, through simulations the effectiveness of an event-
based distributed model predictive control for the formation
of multiple UAVs. As it can be noticed, these works address
the problem of limited bandwith with different event-based
control techniques. However, none of them consider disturbance
or model uncertainties, which can lead to instability or
deterioration in the performance of the system.

It is then noteworthy that the benefits resulting from the
combination of robust control techniques with event-triggered
is threefold, i.e. the robustness against disturbances, reduced
energy consumption and enhanced inter-vehicles communi-
cation. Furthermore, to the best of the authors’ knowledge,
priorly mentioned works have not presented results regarding
collective maneuvering of multiple VTOL rotorcrafts within
atmospheric conditions based on similar robust triggered-based
control laws.

This paper is an extension of our previous work [16] and
it aims at investigating the efficient coordination control of a
VTOL rotorcrafts MAS based on a robust event-based control
scheme evolving within fluctuating atmospheric conditions.
Then, the contributions of this work are summarized next:

• Considering the inner-outer control loop scheme, the pre-
sentation of a robust nonlinear quaternion-based controller
for attitude stabilization of each VTOL rotorcraft.

• Taking into account the extended translational dynamics
entailing unknown disturbances, the synthesis of a robust
event-based control scheme for the leader-following con-
sensus of the MAS. The latter is composed of a SMC,
featuring an adaptive component and a trigger-mechanism.
The novelty of the proposed control law is that it exhibits
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robustness against wind-born disturbances, reduced control
solicitation and stable inter-vehicles communication. This
represents the main contribution of this work.

• The stability of the proposed event-triggered control law
is demonstrated via the Lyapunov theory. Furthermore,
the used event triggering rule renders the system Zeno
free, i.e. sampling is admissible.

• Regarding performance assessment purposes, a detailed
3D simulation scenario including five VTOL rotorcrafts
subject to 3D wind-born disturbances intended to reach
spatial consensus and formation is carried out.

The sequel of the paper is organised as follows. In Section
II, the notation and some mathematical preliminaries used
in the manuscript are presented. Section III is devoted to
the mathematical modeling of the VTOL-UAV system. Then,
section IV explains the attitude control law for each robot,
the robust control strategy for position consensus and the
formulation of the event-triggered mechanism for the set of
aerial vehicles. The simulation scenario and numerical results
are presented in Section V. Finally, the conclusions and future
works are presented in Section VI.

II. THEORETICAL PREREQUISITES

The current section presents the notations and the mathemat-
ical background of graph theory and quaternions for attitude
representation, which are used in this the paper.

A. Notation

In the following, let Rn and ∥ · ∥ be the n−dimensional
Euclidean space and the Euclidean norm, respectively. IN
stands for the identity matrix of dimension N . Denote by 1N
a column vector with all entries equal to one. A⊗B denotes
the Kronecker product of matrices A and B. Let OM×N be a
zero matrix of dimension M ×N .

B. Graph Theory

A MAS can be modeled as a set of dynamic systems
(or agents) in which an information exchange occurs. Such
information flow is mathematically represented by means of
graph theory. In this regard, [17], [18] establish that a directed
graph can be represented as G = {V, ξ,A}, where V is a
nonempty set containing finite number of vertices or nodes
such that V = 1, 2, ..., N and ξ is an edge set represented as
ξ = (i, j)∀i, j ∈ V with (i, j) implies that the node j can
obtain information from the node i. A is the adjacency matrix
A = a(i, j) ∈ RN×N where the element a(i, j) is positive
if (i, j) ∈ ξ and it is zero otherwise. degin(i) =

∑N
j=1 aij is

called the in-degree of node i, and degout(i) =
∑N
j=1 aji is

called the out-degree of the node i. The set of neighbors of
agent i is denoted by Ni = {j : (i, j) ∈ V}

The Laplacian matrix L of G is defined as L = D − A,
where D is a diagonal matrix D = diag(d1, d2, ...dn) with
elements

∑n
j=1 a(i, j), see [19], [20]. A directed graph is said

to have a spanning tree if a node in V contains directed path
to every other distinct node in V . Moreover, if a node set
V ∪ 0 exists in the directed graph G, describing the interaction

between a leader agent 0 and N followers, then B is a diagonal
matrix with entries 1, if there exists an edge between the leader
and any other agent in the group, and 0 otherwise.

Lemma II.1. G = {V, ξ,A} is said to be balanced if the in-
degree of each node is equal to its out-degree, i.e., degin(i) =
degout(i), i = 1, 2, ..., N . It is easy to prove that G is balanced
if and only if 1TNL = 0TN .

Lemma II.2. The matrix L + B has full rank when G has
a spanning tree with leader as the root, which implies non
singularity of L+ B

Remark II.3. From here, we shall refer to the matrix L+ B
as H, in order to avoid any confusion.

C. Unit Quaternion and Attitude Kinematics

Consider a body fixed, main coordinate frame with the
orthonormal right handed basis B(xb, yb, zb), and an inertial
frame North-East-Down (NED) with basis N(xn, yn, zn). Rigid
body rotations in the three dimensional space can be represented
without singularity by unit quaternions q ∈ S3, defined as:

q :=

(
cos β2

ev sin
β
2

)
=

(
q0
qv

)
∈ S3 (1)

where qv = (q1 q2 q3)
T ∈ R3 and q0 ∈ R are known as the

vector and scalar parts of the quaternion respectively.
Let ω = (ω1 ω2 ω3)

T be the angular velocity vector of
the body coordinate frame B, relative to the inertial coordinate
frame N , the kinematics equation is given by(

q̇0
q̇v

)
=

1

2

(
−qTv

I3q0 + [q×
v ]

)
ω =

1

2
Ξ(q)ω (2)

The rotation matrix R is related to the unit quaternion q
through the Rodrigues’ formula as:

R = (q20 − qTv qv)I3 + 2q0[q
×
v ] + 2[q×

v ]
2 (3)

where [×] maps the vector to a skew-symmetric matrix.
For two given unit quaternions q1 and q2, the quaternion

multiplication can be expressed by:

q1 ∗ q2 =

(
q01q02 − qTv1qv2

q01qv2 + q02qv1 + [q×
v2]qv1

)
(4)

with (∗) being the quaternion product. Then, the quaternion
error qe is given as the quaternion multiplication of the
conjugate of the quaternion q and the desired quaternion qd

qe := q−1
d ∗ q = (qe0 q T

ev )
T (5)

III. MATHEMATICAL MODELING

This section aims to present the overall dynamics of the ith

aerial vehicle in the group. Considering that the flight of the
multi-UAV system evolves within a real windy environment,
aerodynamic forces are produced, which are initially detailed.
This forces are taken into account to subsequently present the
kinematic and dynamic equations of motion.
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Figure 1: a)Aerodynamic situation. b)Free-body scheme: VTOL
rotorcraft

A. Aerodynamics

In order to have a real-world flight envelope, the aerial
multi-agent system is exposed to windy conditions. For the
aerodynamic analysis, we suppose that every vehicle in the
formation is fully submerged within the wind gusts streams.

The wind vector V I
ω = (υωx , υωy , υωz )

T ∈ R3 used in this
work is obtained from the Dryden spectral model [21], [22]. It
consists of a static dominant component and a turbulent wind
component. Thus, the vertical and horizontal wind components
correspond to a summation of sinusoidal functions with random
parameters (magnitude, frequency and phase)

υωk(t) = υsωk+

n∑
j=1

√
△ωjΦj sin(ωnj t+ ϵj) with k : {x, y, z}

(6)
where υsωk is the static wind, ωnj is a natural frequency, △ωj

is frequency samples and Φj is a power spectral density.
Considering the vehicles’ speeds vi and the ground wind

speed V I
ω, both expressed in the inertial frame, the airspeed

for each system, expressed in body frame, is given as:

u = RT (v − V I
ω) (7)

Now, the airspeed magnitude V , the angle of attack (AoA)
α and the sideslip angle β, see Fig. 1, are given as:

V =
√
u2x + u2y + u2z; α = tan−1

(
uz
ux

)
; β = sin−1

(uy
V

)
(8)

Finally, the resulting aerodynamic force W = (wx, wy, wz)
T

in its scalar form is:

wx = L sinα cosβ −D cosα cosβ

wy = L sinα sinβ −D cosα sinβ

wz = L cosα+D sinα

(9)

where L = 1
2ρV

2SCL and D = 1
2ρV

2SCD, with S the
reference area and CL and CD are lift and drag coefficients.

B. Dynamics

In a group of N -VTOL vehicles, each aerial system can be
modeled as a rigid body, see Fig. 1. Then, according to [23],
the six degrees of freedom model (position and orientation) of
the system can be separated into translational and rotational
motions, respectively defined by

ΣTi :

{
ṗi = vi
miv̇i = −mige3i + UT iRie3i + Wi

(10)

ΣRi :

{
q̇ = 1

2Ξ(qi)ωi
Jiω̇i = −ω×

i Jiωi + Γi + di
(11)

where i = 1, ..., N . pi and vi ∈ R3 are linear positions and
velocities vectors, mi is the mass of each aerial system, g is the
mass acceleration, e3 is a unitary vector along the z axis, R is
the rotation matrix given in (3), UT i is the total thrust generated
by the four rotors and Wi ∈ R3 corresponds to the disturbance
wind vector given in (9). Note that, since the disturbance is
produced by static and non-static components of wind, their
effects are translated into static Wsi = (wsxi, wsyi, wszi)

T and
non-static ∆Wi

= (∆Wxi
,∆Wyi

,∆Wzi
)T forces:

Wi = Wsi +∆Wi
(12)

Moreover, it is assumed that the non-static force is bounded
in the manner ∥∆Wi

(t)∥ ≤ ∆Wmaxi .
Ji ∈ R3×3 is the inertia matrix and Γi ∈ R3 is the vector

of applied torques, control couples generated by the actuators.
Finally, di ∈ R3 stands for time-varying external disturbances,
bounded as ∥di∥ ≤ δi.

IV. ATTITUDE AND POSITION CONTROL FOR THE VTOL
MAS

The current section is divided in two parts. First, we
introduce the attitude control law to stabilize the ith agent’s
attitude. Thus, the position control strategy to achieve consensus
to the leader and multi-agent formation is presented.

A. Attitude Control Scheme: Super-Twisting SMC

The aim of the attitude control is to drive the aerial vehicles
to attitude stabilization, i.e. to the asymptotic conditions
qi → [±1 0 0 0]T , ωi → 0 as t → ∞. For this, let
qdi = (qdi0 qdiv )

T and ωdi = (ω1i ω2i ω3i)
T be the desired

quaternion and angular velocity. For each aerial vehicle, the
quaternion error is given according to (5) and the angular
velocity error in terms of quaternions is expressed as

ωei = ωi −Riωdi (13)

where ωi corresponds to the actual orientation of the system
and Ri is the rotation matrix given by (3). Then, by calculating
the time derivative of the quaternion error and the angular
velocity error, the attitude error dynamics can be given by(

q̇ei0
q̇eiv

)
=

1

2

( −qTeiv
I3qei0 + [q×

eiv
]

)
ωei (14)

ω̇ei = ω×
eiRiωdi −Riω̇di − J−1

i ω×
eiJiωei + J−1

i Γi + J−1
i di
(15)

The design of the attitude control law consists of a robust
Super Twisting sliding mode control, where the sliding surface
and its time derivative are computed as follows

si = Jiωei + λiqeiv + κiεi (16)

ṡi = Jiω̇ei + λiq̇eiv + κiqeiv (17)
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where si ∈ R3 and εi ∈ R3 corresponds to the integral of the
error in terms of quaternions. Besides, λi > 0, κi ≥ 0 ∈ R3×3

are diagonal matrices standing as control tuning parameters.
Then, by substituting equation (15) into (17), allows to stabilize
the attitude dynamics via a Super Twisting SMC scheme, i.e.

Γi =− Ji(ω
×
eiRiωdi −Riω̇di) + ω×

eiJiωei

− λiq̇eiv − κiqeiv − k1i|si|
1
2 sign(si)

− k2i

∫ t

0

sign(si)dτ − aisign(si)

(18)

where ki > 0 ∈ R3×3 are diagonal matrices being the super
twisting gains. asign(si) is a reaching law with a > 0 ∈ R3×3

a diagonal matrix, used similarly to [16]. With this, the closed
loop error dynamics ṡi is given by

ṡi = −k1i|si|
1
2 sign(si)− k2i

∫ t

0

sign(si)dτ − aisign(si) + di

(19)

Now, let us introduce the state vector χ = (χ1i χ2i)
T . Then,

computing its time derivative and writing it the scalar form
we can obtain:

χ̇1i = −k1i|χ1i|
1
2 sign(χ1i) + χ2i

χ̇2i = −k2isign(χ1i) + di(t,χ)
(20)

Proof. Consider the next Lyapunov function given in [24], [25]
as:

V (χ) = ζTPζ (21)

where ζ = (|χ|
1
2
1 sign(χ1) χ2)

T . P = PT is a positive
definite matrix, and its construction is based on the next matrix
inequality (MI):(

ATP + PA+ ϵP + δ2CTC PB

BTP −1

)
≤ 0 (22)

where

A =

(
− 1

2k1
1
2

−k2 0

)
; B =

(
0
1

)
; C =

(
1 0

)
; (23)

with ϵ > 0. Then, the time derivative of the Lyapunov function
is:

V̇ (χ) =
1

|ζ|
{ζT (ATP+PA)ζ+d̃

T
BTPζ+ζTPBd̃} (24)

Finally, after some manipulations, it can be concluded that
V̇ (χ) satisfies:

V̇ (χ) ≤ − ϵ

|ζ1|
ζTPζ ≤ −ϵλ

1
2
minPV

1
2 (χ) (25)

Then, it can be shown that the state converges to zero in finite
time, as it is detailed in [24], [25].

B. Position Control Scheme: Event-based Adaptive SMC
The MAS control strategy proposed herein is intended

to fulfill the consensus objective while rejecting wind-born
disturbances. Generally speaking, considering a virtual leader,
the MAS must achieve a leader-following consensus, i.e.

lim
t→∞

||pi − 1N ⊗ p0|| → 0 (26)

where pi ∈ RmN and p0 ∈ Rm (m = 3 for our case) are
the position vectors of the ith follower and the virtual leader,
respectively. Let the ith rotorcraft translational dynamics (10)
be rewritten as:

ṗi =

 ṗxi
ṗyi
ṗzi

 =

 vxi
vyi
vzi

 , (27)

v̇i =

 v̇xi
v̇yi
v̇zi

 =


UTi
mi

(CψiSθiCϕi + SψiSθi) + wxi
UTi
mi

(SψiSθiCϕi − CψiSϕi) + wyi
UTi
mi

(Cϕi Cθi)− g + wzi


(28)

where S⋆ and C⋆ stand for sin(⋆) and cos(⋆), respectively.
For control purposes, let the virtual control inputs be defined

as follows
Vxi =

UTi
mi

(CψiSθiCϕi + SψiSθi)
Vyi =

UTi
mi

(SψiSθiCϕi − CψiSϕi)
Vzi =

UTi
mi

(Cϕi Cθi)− g

(29)

Hence, the desired Euler angles (θdi, ϕdi) and the total thrust
UT i can be obtained as

UTi = m
√
V 2
xi + V 2

yi + (Vzi + g)2

ϕdi = arctan(Cθdi(
VxiSψdi−VyiCψdi

Vzi+g
))

θdi = arctan(
VxiCψdi

+VyiSψdi
Vzi+g

)

(30)

where ψdi is the desired yaw angle.
Now, let us introduce the lumped tracking errors for the ith

aerial robot, which in terms of graph theory are given as

epi(t) = (L+ B)⊗ I3p̄(t) = H⊗ I3p̄i(t) ∈ R3N

evi(t) = (L+ B)⊗ I3v̄i(t) = H⊗ I3v̄(t) ∈ R3N
(31)

where matrix B = diag(b1, . . . , bN ) indicates the MAS mem-
bers receiving the navigation protocol (leader). Additionally:

• epi(t) = (eTp1(t), ..., e
T
pN (t))T ,

• evi(t) = (eTv1(t), ..., e
T
vN (t))T ,

• p̄i(t) = pi(t)− 1N ⊗ p0(t),
• v̄i(t) = vi(t)− 1N ⊗ ṗ0(t),
• pi(t) = (pT1 (t), ...,p

T
N (t))T ,

• vi(t) = (vT1 (t), ...,v
T
N (t))T ,

• ui(t) = (uT1 (t), ...,u
T
N (t))T ,

• Wi(t) = (WT
1 (t), ...,W

T
N (t))T

Then, the time derivative of (31) can be expressed by

ėpi = evi

ėvi = H⊗ I3 · (ui(t)− 1N ⊗ p̈0(t) + Wi(t))
(32)

To mitigate the wind-born disturbances degrading the MAS
leader-based consensus, a wind-tolerant control law is synthe-
sized.
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• The static wind component engenders a slow time-
varying force Wsi(t), considered unknown but assumed
bounded. Then, the latter is compensated with its estimated
value Ŵsi(t) = (ŵxsi(t), ŵysi(t), ŵzsi(t))

T , defining the
estimation error and its derivative as

W̃si(t) ≜ Ŵsi(t)− Wsi(t)

˙̃Wsi(t) =
˙̂Wsi(t)

(33)

assuming small magnitude fluctuations of Wsi(t), it is
thus assumed that Ẇsi(t) ≈ 0.

• The SMC technique is known for its inherent robustness,
it provides the framework to deal with time-varying
disturbances. Regarding our scenario, it corresponds to
disturbances arising from the non-static wind ∆Wi

(t)

From the latter, a sliding surface is then proposed to meet the
MAS consensus performance criteria,

Si(t) = evi(t) + λepi(t) (34)

where λ = diag(diag(λx1
, λy1 , λz1)), . . . , diag(λxN , λyN , λzN ),

λ ∈ R3N×3N , denotes the control gain matrix. Similarly to
[26], the control input proposed for the system is expressed
by:

ui(t) = H−1 ⊗ I3 ·
(
−Kstanh

⋆(Si(t))− λevi(t)

+B ⊗ I3 · 1N ⊗ p̈0(t)−H⊗ I3 · Ŵsi(t)
)

(35)
with Ks = diag(Ks1 , . . . ,KsN ) ⊗ I3, Ks ∈ R3N×3N , is a
positive-definite diagonal matrix. Let the adaptation law be
expressed as:

˙̂Wsi(t) = Ka · H ⊗ I3 · Si(t) (36)

where Ka = diag(Ka1 , . . . ,KaN )⊗ I3, Ka ∈ R3N×3N .

Remark IV.1. To alleviate inherent SMC-due chattering, the
hyperbolic function tanh(S(t)) is used. Moreover, the stability
analysis is done accordingly.

Event-based scheme suits to collective and cooperative tasks
that relies on effective MAS communication while featuring
limited resources (bandwidth and processing). Hence, the
sampled control input is updated only when an event occurs.
In consequence, data traffic network and power consumption
are diminished. Then, the control law u(t) given in (35) is
modified in such a way that ∀ t ∈ [tk, tk+1)

ui(t) = H−1 ⊗ I3 ·
(
−Kstanh

⋆(Si(t
k))− λevi(t

k)

+B ⊗ I3 · 1N ⊗ p̈0(t
k)−H⊗ I3 · Ŵsi(t

k)
)
(37)

where tanh⋆(Si(t
k)) verifies the following

tanh⋆(·) =

{
tanh(Si(t

k)) if ∥tanh(Si(tk))∥ < | κ
λm{Ks} |

κ
λm{Ks} if ∥tanh(Si(tk))∥ ≥ | κ

λm{Ks} |
(38)

where λm{Ks} represents a matrix’s minimal eigenvalue and
λm{Ks} > κ. Sampling errors arise due to the discretization
process of the controller, these are expressed as

ϵ̄pi(t) = pi(t)− pi(t
k)

ϵ̄vi(t) = vi(t)− vi(t
k)

ϵ̄u0
(t) = p̈0(t)− p̈0(t

k)
(39)

such that at tk, ϵ̄(t) = 0. Note that tki corresponds to the
triggering instant of the ith agent. Hence, ϵ̄i(t) and ϵ̄0(t)
denotes the discretization error between the agents and leader,
respectively. Likewise, it is possible to rewrite the lumped
errors as

ēpi(t) = epi(t)− epi(t
k)

ēvi(t) = evi(t)− evi(t
k)

(40)

Theorem IV.2. Considering the system described by (27-28),
with error variables (31) and (39-40), sliding manifold S(t)
in the notions of sliding mode and the control law (37)

• The convergence to the sliding manifold is confirmed for
some reachability constant κ > 0

• The event-based sliding mode control law (37) provides
stability in the sense of Lyapunov if the gain Ks accom-
plishes

κ ≥ sup
{
(H⊗ I3) ·

(
∆Wmax(t)− ∥1N ⊗ (ϵu0

(t))∥
)

+ |λ|∥ēvi(t)∥
}

(41)

Proof. Let a candidate Lyapunov function be given by:

V =
1

2
STi (t)Si(t) +

1

2
W̃
T

si(t)K
−1
a W̃si(t) (42)

where the adaptation gain Ka is defined in (36). From (42),
the time derivative of V is obtained as follows:

V̇ =STi (t)
{
H ⊗ I3 ·

(
ui(t)− 1N ⊗ p̈0(t) + Wi(t)

)
+ λevi(t)

}
+ W̃

T

si(t)K
−1
a

˙̃Wsi(t)
(43)

Introducing the control law (37) yields

V̇ = STi (t)
{
H⊗ I3 ·

[
H−1 ⊗ I3 ·

(
−Kstanh

⋆(Si(t
k))

− λevi(t
k) + B ⊗ I3 · 1N ⊗ p̈0(t

k)−H⊗ I3 · Ŵsi(t
k)
)

− 1N ⊗ p̈0(t) + Wi(t)
]
+ λevi(t)

}
+ W̃

T
si(t)K

−1
a

˙̂Wsi(t)

= STi (t)
{
λevi(t)− λevi(t

k)−Kstanh
⋆(Si(t

k))

+H⊗ I3 ·
(

Wsi(t) +∆Wi(t)− 1N ⊗ (p̈0(t)− p̈0(t
k))

− Ŵsi(t
k)
)}

+ W̃
T
si(t)K

−1
a

˙̂Wsi(t)

= STi (t)
{
λ(evi(t)− evi(t

k))−Kstanh
⋆(Si(t

k))

+H⊗ I3 ·
(

Wsi(t) +∆Wi(t)− Ŵsi(t
k)− 1N ⊗ ϵu0(t)

)}
+ W̃

T
si(t) · H ⊗ I3 · STi (tk)

where we have used (12) and (36). Now, using (??), (39).c and
the prior mentioned Ẇsi(t) ≈ 0, implying Ŵsi(t

k) ≈ Ŵsi(t),
also, considering (41) lead us to

V̇ ≤ ∥STi (t)∥
(
κ− λm{Ks}∥tanh⋆(Si(tk))∥

)
− STi (t)

(
∥H ⊗ I3∥ · (W̃si(t)− W̃si(t))

) (44)

Thus, the state trajectories are in the neighboring of the sliding
manifold, it yields

V̇ ≤ ∥STi (t)∥
(
κ− λm{Ks}∥tanh⋆(Si(t))∥

)
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Now, it is possible to verify that the Lyapunov function is
semi-definite negative (see 38). Actually, it implies that there
is an attractive manifold in the origin’s neighborhood

Ω ={
S(t) ∈ R3N : V̇ = 0 for ∥tanh(S(t)i)∥ = | κ

λm{Ks} |
}
(45)

such as the state vector remains bounded. Thus, the sliding
manifold contained in Ω is an attractor and the vector state
trajectories remains arbitrarily close to it ∀ ∈ [tk, tk+1).

Remark IV.3. Note that during the interval [tk, tk+1) the
states trajectories move away the sliding manifold S(t) till
the next triggering occurs. However, it remains bounded in the
vicinity of the manifold, where the band size is independent of
sampling interval and disturbance bound. Thus, the system is
said to be in practical sliding mode.

The time tk at which an event is triggered is described by
a trigger mechanism. In other words, as long as a criterion
(established by the trigger mechanism) is respected, the next
event is not triggered and the control signal keeps its prior
value constant. Let the trigger mechanism be expressed as

ξ = ∥ν1iepi + ν2ievi∥ − δi (46)

with ν1 > 0, ν2 > 0 diagonal matrices and δi ∈ R+. Both,
errors in position and velocity are taken into consideration by
the triggering rule to ensure a stable closed-loop performance.
Additionally, (δi) corresponds to a state independent threshold,
which ensures a finite positive lower bound between any
two consecutive triggering instants, thereby excluding Zeno
behavior, i.e. no two consecutive events occur at the same time.

Theorem IV.4. Consider the group of mini aerial vehicles
described by (27-28), with the control law (37) and the
discretization error given in (39). Let the triggering sequences
(tki )

∞
k=0 for the aerial vehicles satisfy the triggering rule given

by (46). Then, the inter-event execution T ki = tk+1
i − tki is

lower bounded by a positive value ϑ, and Zeno behavior is
avoided.

Assumption IV.5. A function f(·) satisfies the Lipschitz
condition over a domain Rd, if for every R > 0 there exists a
constant L > 0 such that

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ (47)

∀x1, x2 ∈ Rd such that ∥x1∥, ∥x2∥ ≤ R. L is denoted as the
Lipschitz constant for f(·)

Proof. Recall the control protocol given in (37) for each
vehicle, which can be rewritten as

ui(t) =H−1 ⊗ I3 ·
(
B ⊗ I3 · 1N ⊗ p̈0(t

k)− λ̃f(Xi(t
k))

+ λv0(t
k)−Kstanh

⋆(Si(t
k))

)
(48)

with

f(Xi(t
k)) =

(
vi(t

k)

H⊗ I3 · Ŵsi(t
k)

)
∈ R6N ,

λ̃ =


(λ1 I3) O3×6 . . . O3×6

O3×6 (λ2 I3)
. . .

...
...

. . .
. . . O3×6

O3×6 . . . O3×6 (λN I3)

 ∈ R3N×6N

Now, let us define a state vector Xi = (pi,vi)
T ∈ R6N .

Then, the collective behavior of the group of UAV’s from
system (27-28) can be expressed as

Ẋi(t) = f(Xi(t)) + IN ⊗ B̄ · (ui(t) +∆Wi
(t)) (49)

where f(Xi(t)) = (vi(t),Wsi(t))
T ∈ R6N , B̄ =

(O3×3, I3)
T ∈ R3×6. Even more, considering (40), let us define

an error state vector as

ϵ̂i(t) = (ϵ̄pi(t), ϵ̄vi(t))
T ∈ R6N (50)

Taking now the inter-event execution time as T ki = tk+1
i −tki ,

as the time it takes for ||ϵ̂i(t)|| to rise from 0 to ||ϵ̂i(t)||∞
for the (k + 1)th execution of the control signal (37). Then,
between kth and (k+1)th the sampling instant in the execution
of control, the discretization error is non zero. Now ∀ t ∈
[tk, tk+1)

d

dt
||ϵ̂i(t)|| ≤

∥∥∥∥ d

dt
ϵ̂i(t)

∥∥∥∥ ≤
∥∥∥∥ d

dt
Xi(t)

∥∥∥∥∥∥∥∥ d

dt
ϵ̂i(t)

∥∥∥∥ ≤
∥∥f(Xi(t)) + IN ⊗ B̄ · (ui(t) +∆Wi(t))

∥∥ (51)

Substituting the control law (48) in the inequality, we obtain

≤∥f(Xi(t)) + IN ⊗ B̄ ·
(
H−1 ⊗ I3 · (B ⊗ I3 · 1N ⊗ p̈0(t

k)

− λ̃f(Xi(t
k)) + λv0(t

k)−Kstanh
⋆(Si(t

k))) +∆Wi(t)
)
∥

≤∥f(Xi(t))∥+ ∥ΠB ⊗ I3 · 1N ⊗ p̈0(t
k)∥

+ ∥Πλ̃f(Xi(t
k))∥+ ∥Πλv0(t

k)∥+ ∥ΠKstanh
⋆(Si(t

k))∥
+ ∥IN ⊗ B̄ ·∆Wi(t)∥

(52)

where Π = (INH−1) ⊗ (B̄I3). Further simplifications lead
us to

≤L∥Xi(t)∥+ ∥Πλ̃∥L∥Xi(t
k)∥+Φ

≤L∥Xi(t
k) + ϵ̂i(t)∥+ ∥Πλ̃∥L∥Xi(t

k)∥+Φ

≤L∥ϵ̂i(t)∥+ L(IN + ∥Πλ̃∥)∥Xi(t
k)∥+Φ

≤L∥ϵ̂i(t)∥+Φ+Θ

(53)

with
Φ = ∥ΠB ⊗ I3 · 1N ⊗ p̈0(t

k)∥+ ∥Πλv0(t
k)∥

+ ∥ΠKstanh
⋆(Si(t

k))∥+ ∥IN ⊗ B̄ ·∆W (t)∥
Θ = L(IN + ∥Πλ̃∥)∥X(tk)∥

One way to understand the solution of the differential
inequality (53) for [tk, tk+1), is by invoking the Comparison
Lemma [27] and setting the initial condition ∥ϵ̂i(t)∥ = 0. It
can be easily verified that Θ is non zero for ∥Xi(t

k)∥ ≠ 0 as
the system is asymptotically stable. Furthermore, the quantities
in Φ are also positives. Hence, it is possible to verify that T ki
is always bounded below by a positive value ϑ so that

∥ϵ̂i(t)∥ ≤ ϑ (54)

which allows to end the proof.
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C. Formation Control
The control law (37) allows the convergence to zero between

followers and leader. However, if the objective is to obtain
geometrical patterns completed by the group of vehicles, then,
the consensus can be extended to formation control. Since the
followers move towards the virtual leader, a desired distance
must be considered to achieve and maintain the formation.
Then, let us define Λ as a feasible formation such that

Λ = {µij ∈ R| µij > 0; i, j = 1, ..., N} (55)

where µij = µji = ∥χi − χj∥ describe the inter-agent and
leader-follower distances. To attain the desired formation, let
the desired points in the space be defined by a set as

Q = {χ1, ...,χn}, χi ∈ R3 (56)

With this, the tracking errors (31) can be extended in the
following manner:

epi(t) = H⊗ I3 · (pi(t)− 1N ⊗ p0(t)− µi) ∈ R3N

evi(t) = H⊗ I3 · v̄(t) ∈ R3N
(57)

where µi(t) = (µT1 (t), ...,µ
T
N (t))T

Remark IV.6. Once the tracking errors given by (57) are
considered, the control design methodology follows the same
steps as the ones presented in subsection IV-B.

An overview of the entire closed-loop system is depicted in
Fig. 2

Figure 2: Block diagram of the system.

V. NUMERICAL SIMULATIONS

The current section presents the numerical simulation results
to validate the proposed control strategy of a group of five
VTOL aerial vehicles within realistic aerodynamic conditions.

A. Aerodynamic Simulations
In order to compute the aerodynamic parameters of the

aerial vehicles, which correspond to AR drone 2.0 models
from PARROT®, the Ansys Fluent® software was used.

The scenario considered for the simulation aims to present
the flight of the aerial vehicle in hover. Then, a wind profile
coming from different directions and at different speeds is
exerted on the drone’s airframe. The simulation study allows
to determine such forces in function of velocity, the AoA α
and the sideslip angle β, see Fig. 3.

Figure 3: Layout quadcopter wind tunnel simulation considering
horizontal wind vector.

B. Simulation Scenario

The set of simulations to assess the proposed control strategy
were performed using the Matlab/Simulink® environment.

The simulation model features the parameters depicted in
Table I for each VTOL vehicle. Besides, for the case of study

System Description Value Units
Mass (m) 650 g

Distance (d) 20 cm
Quadcopter Inertial moment x (Jϕ) 0.0075 Kg ·m2

Inertial moment y (Jθ) 0.0075 Kg ·m2

Inertial moment z (Jψ) 0.013 Kg ·m2

Table I: Physical parameters for the VTOL vehicle

presented in this work, five aerial vehicles are considered
(N = 5). A virtual leader, (N = 0), shares to the neighbors its
information related to position or trajectory. The communication
topology that is used for information exchange between the
agents is shown in Fig. 4, and has a directed configuration.

Figure 4: Multi-VTOL system and communication flow.

The corresponding matrices associated with the communica-
tion flow between vehicles are given as:

A =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 1 0

 ,B =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (58)

D =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

 ,L =


0 0 0 0 0
0 0 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 −1 0 −1 2

 (59)
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H =


1 0 0 0 0
0 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 −1 0 −1 2

 (60)

The eigenvalues of the matrix H are 1, 1, 1, 1, 2. Since
none of the eigenvalues is 0, then the matrix H has full rank
and there exists at least one spanning tree in the topology.

The control law and trigger mechanism parameters used
for the simulation can be found in Table II . Finally, for the

Description Parameter Value
Position controller λix,iy 2.5

λiz 1.6
Ksix,siy 1
Ksiz 3
ρix,iy 0.8
ρiz 0.1

Trigger mechanism ν1i 1
ν2i 1
δxi,yi 0.01
δzi 0.05

Table II: Numerical values for control laws and event function

simulations, two scenarios were considered and are detailed as
follows:

1) First Scenario: The consensus of a group of multi-
rotor aerial vehicles under unknown disturbances coming from
windy conditions. First, the multi-robot system is initialized
with the conditions given in the Table III. Then, the vehicles

VTOL MAS Orientation ◦ (ϕi, θi, ψi) Position m (pxi , pyi , pzi )
1 (1, -2, 5) (-1.2, 0.15, 0.01)
2 (2, 3, 1) (0.1, 1, 0.01)
3 (2, 2, -4) (1, 0.05, 0.01)
4 (-2, 1, -6) (0.5, -1, 0.01)
5 (-2, 1, 3) (-1, 0.8, 0.01)

Table III: Initial conditions for the vehicles

performs consensus with the virtual leader to a position
given by p0 = (0, 0, 2)Tm. Once the system is stabilized
(t = 15s), the virtual leader performs a trajectory described
as p0 = (2 sin(2πt/25), 2 cos(2πt/25), 3)Tm. At t = 20s a
wind profile, described by Fig. 5a is induced to analyse the
performance of the system. The simulation runs for 90s.

2) Second Scenario: The formation control of the multi-
agent system under unknown disturbances produced by windy
conditions. The initial conditions are the same as in the
first scenario, however the multi-robot system performs
formation control, where the positions of the agents are
intended to form a trapeze over the x − y plane, with
the following desired inter-agent distances with respect to
the leader: µ1 = (−1, 0, 0)T , µ2 = (0, 0, 0)T , µ3 =
(1, 0, 0)T , µ4 = (0.5, 0.9, 0)T , µ5 = (−0.5,−0.9, 0)T .
The set of VTOL’s take off and perform formation con-
trol to a position given by p0 = (0, 0, 2)Tm. Then, at
t = 15s a trajectory-tracking is executed and described by

p0 =
(

7
3−cos( 2t

25 )
cos( t25 ),

7
3−cos( 2t

25 )

sin( 2t
25 )

2 , sin( 2πt40 ) + 4
)T

m.
At t = 20s, a wind profile is generated in order to analyze the
performance of the proposed control law. The simulation runs
for 250s. A video of this scenario is accessible through the

following link: https://www.dropbox.com/s/paahosbuoa0hcu6/
event sliding 2022.mp4?dl=0
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Figure 5: Wind profile and Evolution of the events vs.
continuous-time.

C. Simulation Results and Discussion

1) First Scenario: Fig. 5 depicts the wind model profile
acting on the system as well as the evolution of the events
during the consensus. The behavior of the wind allows us
to observe that when its direction and intensity changes, the
triggering of events adapts to ensure convergence to the leader.
In addition to the behavior of the event mechanism, Figure 5b
shows a comparison to a periodic case communication system,
where a sampling rate of 0.01s is considered. Then, for the 90s
simulation, 9,000 events are produced for the periodic system
against the 4,923 of the vehicle that recorded the most events
with the proposed strategy, representing a 54% reduction in
transmissions and control updates. Table V shows the number
of events triggered during the simulation.

Fig. 6 shows the UAVs trajectories and linear velocities
during the consensus for each axe. It is shown that practical
convergence to the leader in terms of position and velocity
is ensured. The good performance of the closed-loop system
using the proposed strategy is confirmed through the Table IV,
which shows the norm of the errors for every vehicle in the
group. It is worth to mention that the norm is computed from
the moment the wind is generated (t = 30s), showing that the
effect of the disturbances is reduced.

∥e∥ m UAV1 UAV2 UAV3 UAV4 UAV5
∥ex∥ 0.048 0.048 0.053 0.054 0.056
∥ey∥ 0.085 0.082 0.073 0.077 0.083
∥ez∥ 0.047 0.048 0.086 0.088 0.091

Table IV: Norm of the errors for every vehicle during the
consensus

The behavior of the sliding manifolds and the control signals
for the different vehicles during the simulation are presented in
Fig. 7. Fig. 7a show that for time instants between [tk, tk+1)
the state variables show a tendency to deviate from the sliding
manifold, but remain bounded within a band near to it. The
performance of the event-triggered control law is presented

https://www.dropbox.com/s/paahosbuoa0hcu6/event_sliding_2022.mp4?dl=0
https://www.dropbox.com/s/paahosbuoa0hcu6/event_sliding_2022.mp4?dl=0
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in Fig. 7b. The time interval between (10 − 12)s is zoomed
to illustrate when the control law keeps the last value until
the next event is triggered, allowing a reduction in the control
solicitation. We can notice that from time t = 60s, with average
static wind speed υsωy = 10m/s, the adaptive term of the
proposed strategy compensates for the unknown static force
and consensus for position and velocity are reached again.

2) Second Scenario: Fig. 8 depicts, as in the previous
scenario, the wind profile causing unknown disturbances to
the system as well as the total of events triggered during
the formation control simulation. A comparison to a periodic
system is equally performed, and by running the simulation for
250s, 25, 000 events are produced for the periodic case, against
the maximum registered with our proposal (12, 060 events),
representing a 48% of reduction in control updates. Table V
presents the number of updates when using the event-based
control law studied in this work.

The behavior of the multi-VTOL system during the formation
on the planar space is presented in Fig. 9a. It shows explicitly
the reaction of the system to the changes of the wind directions
and intensities. Finally, the 3D trajectory tracking performed
by the group of aerial vehicles is depicted in Fig. 9b, where
some positions are highlighted to show how the control law
keeps the formation during the trajectory-following under the
external disturbances.

Updates UAV1 UAV2 UAV3 UAV4 UAV5
Scenario 1 2933 2944 3767 3857 4923
Scenario 2 6525 6533 9155 9350 12060

Table V: Control updates for consensus and formation with
control law (37)

VI. CONCLUSIONS AND PERSPECTIVES

The actual paper addressed the robust event-based consensus
problem and formation control of a group of VTOL-UAVs
subject to close-to-reality wind-born disturbances. The dynamic
model of the MAS is extended to take into account aerodynamic
effects for which a distributed and adaptive event-based
sliding mode-control law is synthesized. Merging the inherent
robustness furnished by the SMC with the benefits of an event-
based scheme, stable closed-loop behavior and low-power
computation are achieved. Due to the underactuated nature
of the quadrotors, the corresponding motion is based on a
two-level (inner-outer loop) control scheme. The performance
of the proposed event-triggered MAS control strategy is
assessed through Lyapunov-based stability analysis as well as
an extensive numerical stage. The simulation results witness the
tolerance to unknown-but-bounded disturbances while fulfilling
the consensus objective considering an event-triggered control
law.

Forthcoming research includes the real-time implementation
of the proposed strategy. In addition, the usage of event-
triggered control techniques within interactive scenarios, as
MAS-based cargo transport or collective manipulation will be
investigated.
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J. Rodrı́Guez-ReséNdiz, “Comparison of pd, pid and sliding-mode
position controllers for v–tail quadcopter stability,” IEEE Access, vol. 6,
pp. 38 086–38 096, 2018.

[9] D. Yao, H. Li, R. Lu, and Y. Shi, “Distributed sliding-mode tracking
control of second-order nonlinear multiagent systems: an event-triggered
approach,” IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3892–
3902, 2020.

[10] A. Sinha and R. K. Mishra, “Consensus in first order nonlinear
heterogeneous multi-agent systems with event-based sliding mode control,”
International Journal of Control, vol. 93, no. 4, pp. 858–871, 2020.

[11] R. K. Mishra and A. Sinha, “Event-triggered sliding mode based
consensus tracking in second order heterogeneous nonlinear multi-agent
systems,” European Journal of Control, vol. 45, pp. 30–44, 2019.

[12] C. Santos, F. Espinosa, M. Martinez-Rey, D. Gualda, and C. Losada, “Self-
triggered formation control of nonholonomic robots,” Sensors, vol. 19,
no. 12, p. 2689, 2019.

[13] C. Dong, M. Ma, Q. Wang, and S. Ma, “Event-based formation control of
multiple quadrotors on so (3),” Mathematical Problems in Engineering,
vol. 2018, 2018.

[14] J. Guerrero-Castellanos, A. Vega-Alonzo, S. Durand, N. Marchand, V. R.
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Figure 6: Linear positions and velocities of the aerial vehicles during the consensus.
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Figure 7: Sliding surface variables and Control inputs performance.
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”Automatique et Systèmes Micro-Mécatroniques” (AS2M) at FEMTO-ST
UMR CNRS 6174, France. From 2014-2018, he held an associate professor
position at the ”Institut Polytechnique des Sciences Avancées” at Ivry-sur-
Seine, France. Since 2018, he is associate professor at XLim CNRS Research
Institute and ENSIL-ENSCI Engineering School at University of Limoges.
His current research encompasses nonlinear control of multi-agent systems,
hybdrid and interactive robotic systems and autonomous robust navigation.

J. Chevalier received the M.Sc in 2016 in Mecha-
tronics engineering from the University Blaise Pascal.
From 2016 to 2018 He has held a mechanical engi-
neering position at SoftBank Robotics. Currently, he
holds a R&D robotics engineer position at ”EXTIA”,
in the robotics department.

S. Daix received the M.Sc in 2007 in modeling and
simulation of physical systems. He continued with a
Technological Research Diploma at the Atomic En-
ergy Commission for 18 months. Since the beginning
of 2016, he has been the technical referent within
the CFD and Thermal design office of PSA. Its main
mission is the development of the digital sector of the
underhood environment (Fluent and Taitherm) taking
into account the aeraulics and the modeling of heat
exchanges (conduction, convection and radiation).

O. Labanni-Igbida received the Eng. and PhD
Degrees in robotics from the ENSMM-University
of Franche-Comte, and the Habilitation Degree in
vision and robotics from the University of Picardie
Jules Verne, France. Since 2013, she has been Full
Professor with XLim CNRS Institute of Research
and ENSIL-ENSCI Engineering School at University
of Limoges. She is the Head of the Mechatronics
Department at ENSIL-ENSCI Engineering School
and supervises the Robotics and Mechatronics re-
search group at the XLim institute. Her main research

interests are in the field of robotics, including enactive perception and control,
omnidirectional catadioptric vision, cooperative robotics, and localization and
navigation of autonomous systems.


	Introduction
	Theoretical Prerequisites
	Notation
	Graph Theory
	Unit Quaternion and Attitude Kinematics

	Mathematical Modeling
	Aerodynamics
	Dynamics

	Attitude and Position Control for the VTOL MAS
	Attitude Control Scheme: Super-Twisting SMC
	Position Control Scheme: Event-based Adaptive SMC
	Formation Control

	Numerical Simulations
	Aerodynamic Simulations
	Simulation Scenario
	First Scenario
	Second Scenario

	Simulation Results and Discussion
	First Scenario
	Second Scenario


	Conclusions and Perspectives 
	References
	Biographies
	J. U. Alvarez-Muñoz
	J. Escareno
	J. Chevalier
	S. Daix
	O. Labanni-Igbida


