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Abstract
We tackle the problem of building a prediction interval in heteroscedastic Gaussian regression. We

focus on prediction intervals with constrained expected length in order to guarantee interpretability
of the output. In this framework, we derive a closed form expression of the optimal prediction interval
that allows for the development a data-driven prediction interval based on plug-in. The construction
of the proposed algorithm is based on two samples, one labeled and another unlabeled. Under mild
conditions, we show that our procedure is asymptotically as good as the optimal prediction interval
both in terms of expected length and error rate. In particular, the control of the expected length
is distribution-free. We also derive rates of convergence under smoothness and the Tsybakov noise
conditions. We conduct a numerical analysis that exhibits the good performance of our method.
It also indicates that even with a few amount of unlabeled data, our method is very effective in
enforcing the length constraint.

1 Introduction
Prediction is one of the main goals in supervised learning, it consists in building, given historical data,
a candidate output for a new observation. One common practice thereafter is to carry out inference
on the output and then to ask for confidence in the predicted value, therefore, prediction interval (PI)
appears as appropriate tools to handle this problem in the regression setting. A typical application is
the prediction in the linear regression case when the data are assumed Gaussian with common variance.
In this context, the notion of PI is well studied and well understood both from practice and theory.

However, in the general case, inference as a post-processing step may produce irrelevant conclusions
due to the stochastic nature of the data-driven prediction procedure (see for instance [3]). Therefore,
in order to guarantee the theoretical validity of the prediction intervals, it is suitable to process at once
both aspects of the problem, that is, one might design a data-driven procedure directly devoted to the
prediction interval purpose.

In a classical setting of PI, one often asks for a pre-specified level of confidence for the predicted
range of values (says 95% or 99% according to the problem). This is for instance the approach that is
considered in the conformal prediction literature [19, 18, 12, 11]. However, this strategy may suffer from
interpretability issues for problems where prediction task is difficult or when classical assumptions on the
noise are not satisfied. Specifically, for relatively restrictive values of the confidence level, the resulting
output might be so large that it becomes useless.

In contrast, our purpose is to produce for future observation a prediction interval with a pre-
determined expected length. This framework is completely different from the previous one since it
does not ensure any coverage guarantee but rather ensures the interpretability of the predicted output.
Indeed, since the length of the output interval is controlled, we do not expect for a given input instance
x ∈ Rd a too large set of candidate values.

Generally speaking, the range of values that we would output with PI has no reason to be an interval.
However, in a Gaussian model, this range of values indeed forms an interval (or a union of it). In this
paper, we investigate the problem of PI under expected length constraint in the Gaussian regression
setup. We aim at providing a general device that outputs a PI for a new feature. Our procedure relies
on the plug-in principle and we propose in the present contribution a statistical analysis of it in this
setting.
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Main contributions. Denote by Γ : Rd → P(R) a given prediction set, where P(R) is the set of
subsets of R. One of the main inputs of the present work is the introduction of a novel framework for PI
in the regression setting, taking sides of controlling the expected size E [L(Γ(X))] of the output predictor
Γ while minimizing its error rate P (Y /∈ Γ(X)), where L(Γ(X)) =

∫
R 1y∈Γ(X)dy stands for the Lebesgue

measure of Γ. We derive the optimal rule for this problem which is defined as

Γ∗
ℓ ∈ argmin

Γ:E[L(Γ(X))]≤ℓ

P (Y /∈ Γ(X)) ,

where ℓ > 0 is a preset length chosen by the practitioner.
In the Gaussian framework, based on the plug-in principle, we then build a general procedure that

estimate the optimum and prove that the resulting empirical predictor performs as well as Γ∗
ℓ both in

term of expected length and error rate. Notably, the control on the expected length of the proposed
estimator is distribution-free. Furthermore, our algorithm has two appealing properties. It can benefit
from a semi-supervised setting and can be applied to any off-the-shelf machine learning algorithm.

On the other hand, we evaluate the performance of our estimator with respect to the symmetric
difference distance and a risk measure which properly balances the expected length and the error rate.
Specifically, we establish the consistency for our procedure under mild assumptions and provide rates of
convergence under suitable assumptions on the distribution of the data.

We additionally conduct a numerical study that confirms our theoretical findings and shows how
effective our method is in controlling the length, an important aspect to ensure the interpretability of
the output. Finally, we provide a numerical comparison with the strategy which consists in building PI
under expected coverage constraint. Our numerical experiment highlights that our proposed approach
produced significantly more stable PI. In particular, our algorithm seems to be more adapted when the
sample size of the training sample is moderate.

Related works. A first line of work related to PI is confidence intervals. This is one of the most
popular tools in statistical inference and differs from PI by the fact that the purpose there is to output a
range of values for a given parameter of the model such that the mean, while our goal is here the predic-
tion. The spectrum of applications of confidence interval is extremely wide and from some perspective PI
can be seen as part of the confidence interval literature where we focus on building a confidence interval
for the output of a new observation.

Probably the closest direction of works to ours is conformal prediction [19, 12, 11]. The main difference
relies on the way the expected length and the error rate of the prediction interval is considered. The
goal there is to produce a PI with a pre-specified level of accuracy. The connection of PI with controlled
expected size is important to figure out since, at the population level, each PI with controlled accuracy
corresponds to a PI with controlled expected size. From practice however, the two approaches start to
differ. We defer this discussion to Sections 4.2 and 5.2 where a complete comparison to PI with controlled
accuracy is conducted.

Providing an output with a pre-defined length has rarely been considered. Probably the first reference
that deals with such notion is [10]. There, the authors build confidence intervals for the mean and variance
in a Gaussian problem that reach given confidence level while being of size L. In contrast to that work,
we deal with prediction intervals, our control on the length is in expectation which offers more flexibility
on “hard” points, we do not focus on a pre-specified level of confidence but rather minimize the error
under a size constraint, and we derive a statistical and a numerical analysis of our method.

Finally, let us notify that constraining the expected length is not novel. It has already been considered
in the multi-class classification setting [6, 5]. There, the control of the length is interpreted as the desired
average number of output labels. Similar to the present work, the goal is to focus on a set of values for
prediction while maintaining the interpretability of the output. The main difference with earlier work is
that we deal here with real valued output which is more tricky. From this perspective the present paper
is a generalization of these previous works to the Gaussian regression setting.

Outline of the paper. Section 2 provides the main notation and describes the framework of pre-
diction intervals under expected length constraint in the Gaussian regression. In particular, the explicit
form of the optimal rule is provided. Section 3 introduces our data-driven procedure as well as its statis-
tical analysis. This theoretical analysis is complemented with a numerical study presented in Section 5.
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Additional considerations beyond the Gaussian assumption and other frameworks of prediction intervals
are considered in Section 4. A conclusion is provided in Section 6, while the proofs of our results are
postponed to the Appendix.

2 General framework
In the present contribution we focus on the Gaussian model, that is, we assume that (X, Y ) ∈ Rd × R
are such that

Y = f∗(X) + σ(X) ε , (1)

where ε ∼ N (0, 1) is independent of X. In this expression, f∗ : Rd → R is the regression function and
σ : Rd → R∗

+ is the conditional variance function, both of them assumed to be unknown. The main
assumptions that we consider throughout the paper are presented in Section 2.1. The characterization of
the optimal prediction interval under expected length constraint is provided in Section 2.2. Finally, we
define the measure of performance dedicated to asses the quality of a prediction interval in Section 2.3.

2.1 Assumptions
Given an observation X ∈ Rd, our goal is to produce the most accurate, in a certain sense to be specified
later, a range of predicted values where the corresponding label Y ∈ R lies. Such predictions will be
describe a set of P (R) and denoted by Γ(x) for each x ∈ Rd. In other words, the predictor Γ is a
mapping from Rd onto P (R).

Throughout the paper we denote by p(·|x) the conditional density of Y given x, that is, for all y ∈ R

p(y|x) = 1√
2πσ(x)

exp
(

− (y − f∗(x))2

2σ2(x)

)
,

that is, we focus on the heteroscedastic Gaussian regression model. In order to avoid pathological
situations, we impose the following mild assumptions on the regression and conditional variance functions.

Assumption 1. There exist 0 < σ0 < σ1 < ∞ such that for all x ∈ Rd

σ0 ≤ σ(x) ≤ σ1 .

Assumption 2. There exists C1 > 0 such that

E [|f∗(X)|] ≤ C1 .

In addition, we consider an assumption which is PI context-specific. It ensures in particular the
existence and uniqueness and the optimal PI. Note that similar assumption is considered in the set-
valued classification framework [5].

Assumption 3 (Continuity). For all y ∈ R, the mapping t 7→ PX(p(y|X) ≥ t) is continuous on R∗
+.

In other word, we assume that p(y|X) is atomless.

2.2 Prediction interval with expected length
For a given predictor Γ two features are of interest, its error rate P(Y /∈ Γ(X)) and its expected Lebesgue
measure defined as

L(Γ) := E [L(Γ(X)] = E
[∫

R
1{y∈Γ(X)}dy

]
.

Given ℓ > 0, we focus on the following problem

Γ∗
ℓ ∈ arg min{P (Y /∈ Γ(X)) : Γ such that L(Γ) ≤ ℓ} . (2)

The next proposition provides the characterization of the optimal predictor under Assumption 3.
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Proposition 1. Let ℓ > 0, under Assumption 3, the optimal predictor Γ∗
ℓ can be expressed as

Γ∗
ℓ (X) = {y ∈ R : p(y|X) ≥ λ∗

ℓ } ,

where λ∗
ℓ = G−1(ℓ) with G(t) :=

∫
R P(p(y|X) ≥ t)dy for all t > 01.

The parameter λ∗
ℓ , which corresponds to the value of the generalized inverse function G−1 at ℓ, plays

a crucial role in our study since it fully determines the optimal predictor Γ∗. This being said, let us
comment on Proposition 1. First, an important consequence of the above proposition is that the predictor
Γ∗

ℓ is an interval of length ℓ, that is L(Γ∗
ℓ ) = ℓ and we additionally can express Γ∗

ℓ as

Γ∗
ℓ (X) =

f∗(X) −

√√√√2σ2(X) log
(

1√
2πλ∗

ℓ σ(X)

)
, f∗(X) +

√√√√2σ2(X) log
(

1√
2πλ∗

ℓ σ(X)

)  .

Second, the function G defined in Proposition 1 is the extension to the regression case of the function G
defined in [6] in the multi-class setting. Note that the function G is always well-defined and continuous
for t > 0, since by Markov Inequality and Fubini Theorem,

G(t) =
∫
R
P(p(y|X) ≥ t)dy ≤ 1

t

∫
R
E [p(y|X)] dy ≤ 1

t
E
[∫

R
p(y|X)dy

]
≤ 1

t
.

Finally, we highlight that parameter λ∗
ℓ is simply the Lagrange multiplier of the minimization problem

defined by Equation (2). Therefore, Γ∗
ℓ can be expressed as the minimizer of the unconstrained problem

Γ∗
ℓ ∈ arg min

Γ
P (Y /∈ Γ(X)) + λ∗

ℓE [L(Γ(X)] . (3)

2.3 Measures of performance
In this paragraph we introduce two ways to quantify the quality of a given prediction interval Γ . The
first one, suggested by Equation (3), balances the error rate and the expected length of the predictor

Rℓ(Γ) = P (Y /∈ Γ(X)) + λ∗
ℓE [L(Γ(X)] ,

with λ∗
ℓ = G−1(ℓ). This risk is particularly important from our perspective since minimizing it over

all predictors lead to the optimal predictor Γ∗
ℓ , which reaches the requested expected length. A natural

“distance” to the optimal predictor is then evaluated through the excess risk

Eℓ (Γ) = Rℓ(Γ) − Rℓ(Γ∗
ℓ ) .

The following proposition provides a closed formula for this term.

Proposition 2. Let ℓ ≥ 0. For any predictor Γ

Eℓ(Γ) = E

[∫
Γ(X)△Γ∗

ℓ
(X)

|p(y|X) − λ∗
ℓ | dy

]
.

Interestingly, the above result shows that the performance of a predictor Γ is directly linked to
the behavior of the conditional density p(y|x) around the threshold λ∗

ℓ on the symmetric difference
{Γ(X)△Γ∗

ℓ (X)}.
A second measure of performance arises naturally when we deal with predictors that are intervals. It

is the expectation of symmetric difference between the considered predictor Γ and optimal predictor Γ∗
ℓ

defined for all predictor Γ as

H (Γ) = E [L (Γ(X)△Γ∗
ℓ (X))] = E

[∫
Γ(X)△Γ∗

ℓ
(X)

dy

]
.

In some sense, we note that the measure H provides a stronger guarantee than the excess risk since
Eℓ(Γ) ≤ C2H(Γ) where C2 is a positive constant which depends on σ0. Besides, H(Γ) = 0 implies that
Γ = Γ∗

ℓ while this property does not necessarily hold for the excess risk.
1When t = 0, we have G(t) = +∞ and then we will use the convention G−1(+∞) = 0.
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3 Data-driven procedure
In this section, we provide a general data-driven procedure to estimate the optimal predictor Γ∗

ℓ . Two
key features are expected from the resulting empirical prediction interval. The expected length should
be of order ℓ while keeping its error rate close to one obtained by the oracle predictor. The estimation
procedure is presented in the Section 3.1, and its main properties are provided in Section 3.2. Finally,
Section 3.3 is dedicated to the study of rates of convergence.

3.1 Empirical prediction interval
The result provided in Proposition 1 suggests that an empirical prediction interval can be obtained
through the plug-in principle by considering estimators of the conditional density p and the parameter
λ∗

ℓ = G−1(ℓ). From a theoretical perspective, this learning task requires two independent samples.
First, in order to build an estimator of the conditional density p, we estimate the functions f∗ and

σ. Hence, we exploit a labeled sample Dn = {(Xi, Yi)}n
i=1 and build based on it estimators f̂ and σ̃ of

these two functions by the means of any machine learning algorithm. However, to establish theoretical
guarantees, we require that the estimator σ̃ satisfies similar assumption as Assumption 1. To this end,
we consider a thresholded version of the estimator σ̃ denoted by σ̂ and define for s > 0 as

σ̂2(x) = σ̃2(x)1{s−1≤σ̃2(x)≤s} + s−11{σ̃2(x)<s−1} + s1{σ̃2(x)>s} .

A straightforward consequence of the definition of σ̂ is that 1
s ≤ σ̂2(x) ≤ s. Furthermore, if s satisfies

1
s ≤ σ2

0 ≤ σ2
1 ≤ s, we have for all x∣∣σ̂2(x) − σ2(x)

∣∣ ≤
∣∣σ̃2(x) − σ2(x)

∣∣ ,

Hence consistency of σ̃2 would imply the consistency of σ̂2.
Based on f̂ and σ̂, an estimator p̃ of the conditional density p naturally derives and can be written

for all (x, y) ∈ Rd × R as

p̃(y|x) = 1√
2πσ̂(x)

exp

−

(
y − f̂(x)

)2

2σ̂2(x)

 .

The second step is devoted to the estimation of the parameter λ∗
ℓ and requires an unlabeled sample

DN = {Xn+1, . . . , Xn+N } which consists of i.i.d. observations of X and is independent of Dn. Since λ∗
ℓ

depends on the function G, it is suitable to consider the empirical counterpart of the function G, that
we build based on p̂ and define for all t ∈ [0, 1] as

G̃(t) =
∫
R

1
N

N∑
i=1

1{p̂(y|Xn+i)>t}dy .

As a result, the empirical prediction interval is defined2 point-wise as

Γ̃(x) = {y ∈ R : p̃(y|x) ≥ G̃−1(ℓ)} .

The predictor Γ̃ is very natural but has a few limitations: i) because Y is unbounded, the study of
the theoretical properties of the estimator Γ̃ might be difficult; ii) in addition, establishing a theoretical
analysis on Γ̃ involves similar assumption to Assumption 3 for G̃. More precisely, it requires that
conditional on Dn the cumulative distribution of p̃(y|X) is atomless; iii) furthermore, the above expression
of Γ̃(x) is explicit but relies on computing an integral in order to evaluate the function G̃. This integral
should be approximated. To circumvent all these issues, we consider the following modifications of the
initial estimator Γ̃.

For i) – Thresholding. Let s > 0, we consider a thresholded version of p given by

p̂(y|x) = 1√
2πσ̂(x)

exp

−

(
y − f̂(x)

)2

2σ̂2(x)

1{|y|≤s} . (4)

2Here again, we use the convention G̃−1(+∞) = 0.
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For ii) – Randomization. To ensure the continuity of the conditional C.D.F. of p̂(y|X) for y ∈ [−s, s],
we introduce a random perturbation ζ distributed according to a Uniform distribution on [0, u], for u > 0
and independent of (X, Y ). We then define the randomized version of p̂ as

p̂(y|X, ζ) = p̂(y|X) + ζ1{|y|≤s} . (5)

For iii) – Discretization. To approximate G̃, we simply consider the Riemann sum based on the
regular grid G = {y1, . . . , yM } of [−s, s] for some M ≥ 1. To this end, we introduce (ζ1, . . . , ζN ) i.i.d.
copies of ζ and then define

Ĝ(t) = 2s

MN

M∑
k=1

N∑
i=1

1{p̂(yk|Xn+i,ζi)>t} .

Finally, the resulting empirical prediction interval writes as

Γ̂(X, ζ) = {y ∈ R : p̂(y|X, ζ) ≥ Ĝ−1(ℓ)} . (6)

3.2 Theoretical guarantees
In this section, we provide the main properties of the empirical prediction interval Γ̂. We first illustrate
that the prediction interval Γ̂ has an expected length equal to the requested value ℓ. This is one of the
main striking feature of our data-driven procedure.

Proposition 3. Assume that M > 4
√

N , then

E
[∣∣∣L(Γ̂) − ℓ

∣∣∣] ≤ C
s√
N

,

where C > 0 is an absolute constant.

The above result states that our methodology is able to produce a prediction interval with an expected
length ℓ, irrespectively of the distribution of the data and of whether or not we have build accurate esti-
mates for f∗ and σ. Importantly, Proposition 3 holds even if (X, Y ) does not satisfy Equation (1). From
this perspective the control on the expected length of the produced prediction interval is distribution-free.
Notice in particular that the stated bound depends only on the parameter s which should be specified
by the practitioner (this choice is discussed later) and on the number N of unlabeled data. In some
semi-supervised applications, the amount of these data can be very large so that we can get a good
approximation of the marginal distribution PX and then we can expect a good control of the expected
length almost for free. Let us also add that Proposition 3 is a fundamental step to show the following
bound on the excess risk:

Proposition 4. Let Assumption 3 be satisfied. For M > 4
√

N , we have

E
[
Eℓ

(
Γ̂
)]

≤ C

(
E
[∫

R
|p̂(y|X) − p(y|X)| dy

]
+ su + s√

N

)
,

where C > 0 is an absolute constant.

The above result shows that the excess-risk of Γ̂ is mainly controlled by the L1-risk of the estimator
of the conditional density. The residual terms are related to the randomization on the one hand and to
the control of the expected length of Γ̂, given in Proposition 3, on the other hand. Proposition 4 is an
intermediate step to establish consistency of the proposed prediction interval as well as to build explicit
rates of convergence for the excess-risk of Γ̂. This is the purpose of the next paragraph and Section 3.3
respectively.

Consistency result. Proposition 4 shows that the consistency of Γ̂ with respect to the excess-risk
relies to the consistency of the estimator p̂(y|x). In view of Equation (4), it is clear that the performance
of p̂ is directly linked to the statistical properties of f̂ and σ̂. More precisely, we obtain the following
result.
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Theorem 1. Let Assumptions 1, 2, and 3. Consider s = log(min(n, N)), M > 4
√

N , and u = un → 0.
Assume that √

sE
[
(f̂(X) − f∗(X))2

]
→ 0, and s5/2E

[
|σ̂2(X) − σ(X)|

]
→ 0 ,

then the following holds
E
[
Eℓ

(
Γ̂
)]

≤ C2E
[
H
(

Γ̂
)]

→ 0 .

Let us make several comments on this theorem. First, under suitable assumptions, both excess-
risk and expected symmetric difference of Γ̂ converge to 0. Notably, since E

[
Eℓ

(
Γ̂
)]

≤ C2E
[
H
(

Γ̂
)]

,
consistency w.r.t. the expected symmetric difference implies consistency w.r.t. the excess-risk. From
this perspective, symmetric difference control is a more difficult problem that excess-risk control. In
particular, E

[
H
(

Γ̂
)]

→ 0 indicates that Γ̂ = Γ∗
ℓ asymptotically. Another aspect that need to be

discussed is the assumptions that are requested for the proof of Theorem 1. More specifically, consistency
of f̂ , and σ̂2 are naturally required to ensure that p̂ is a consistent estimator of p. In particular,
convergence of f̂ and σ̂ can be made possible by several learning algorithms such as kernel methods,
local polynomials, regularized least-squares among many others.

3.3 Rates of convergence
Theorem 1 establishes the consistency of the prediction interval Γ̂ under mild assumptions. In this
section, we focus on rates of convergence. More structural assumptions are then required. We borrow
conditions from [7] introduced in the framework of regression with abstention. We assume that X belongs
to a compact C, and we consider the following assumptions.

Assumption 4 (Regularity). The functions f∗ and σ2 are Lipschitz.

Assumption 5 (Strong density assumption). The marginal distribution PX satisfies the strong density
assumption

• PX is supported on a compact regular set C ⊂ Rd,

• PX admits a density µ w.r.t. to the Lebesgue measure such that 0 < µmin ≤ µ(x) ≤ µmax < ∞, for
all x ∈ C.

Assumption 6 (α-Margin assumption). We say that p(·|X) satisfies Margin assumption with parameter
α ≥ 0 at level λℓ with respect to PX if there exist constants c0 > 0 and t0 > 0 such that for all 0 < t ≤ t0,∫

R
PX (|p(y|X) − λℓ| ≤ t) dy ≤ c0tα .

The above first two assumptions are rather classical when we deal with rates of convergence in non-
parametric statistic. We refer the reader to the book [8] for a more detail discussion. In addition,
Assumption 6, also known as Tsybakov noise condition [15], has been introduced in the binary classi-
fication setting to get fast rates of convergence [1]. In our setting, we notice that the Tsybakov noise
condition is required around the threshold λℓ. Moreover, since we extend this assumption to the case
of regression, we need to ingrate it w.r.t. y ∈ R. Based on the above conditions, we can establish the
following result.

Proposition 5. Let Assumptions 1, 4, 5, and 6 be satisfied. For s = log(min(n, N)), and M > 4
√

N ,
we have that

E
[
Eℓ

(
Γ̂
)]

≤ C

E

( sup
(x,y)∈C×[−s,s]

|p̂(y|x) − p(y|x)|
)1+α

+ 1
min(n, N)1+α

+ u1+α + log(N)√
N

 ,

where C > 0 is a constant which depends on f∗, σ2, c0, α, and C.

As compared to the upper-bound that we get in Proposition 4, the bound here is better because of
the exponent 1 + α against 1. However, it is obtained under stronger assumptions.
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Estimators of regression and variance function. The framework that we have described so far is
quite general and allows to use any off-the-shelf machine learning algorithms to estimate the regression
and the variance functions. In what follows, we propose a more concrete illustration of our approach by
considering empirical prediction intervals Γ̂ where both regression and variance functions are estimated
with the kNN algorithm. Hereafter, we briefly recall the definition of the estimators that are based on
the labeled sample Dn. For any x ∈ Rd, we denote by (X(i,n)(x), Y(i,n)(x)), i = 1, . . . n the reordered
data according to the ℓ2 distance in Rd, meaning that

∥X(i,n)(x) − x∥ < ∥X(j,n)(x) − x∥ ,

for all i < j in {1, . . . , n}. For simplicity, we assume that ties occur with probability 0. Let k = kn be
an integer. The kNN estimator of f∗ and σ2 are then defined, for all x ∈ Rd, as follows

f̂(x) = 1
kn

kn∑
i=1

Y(i,n)(x) and σ̃2(x) = 1
kn

kn∑
i=1

(
Y(i,n)(x) − f̂(X(i,n)(x))

)2
. (7)

The properties of these estimator are provided in [8] for the regression function and in [7] for the variance
function. In particular, the authors in [7] establish rates of convergence w.r.t. the sup-norm for the
estimator σ̂.

Rates of convergence. The next result, which is an adaption of Proposition 3.1 in [5], is useful to
derive upper-bound on the measure of risk H of Γ̂ thanks to a control on the excess-risk.

Proposition 6. Let Assumptions 6 be satisfied. There exists an absolute constant C3 > 0 such that

E
[
H(Γ̂)

]
≤ C3

(
E
[
Eℓ

(
Γ̂
)])α/α+1

.

Importantly, this proposition, together with the inequality Eℓ (Γ) ≤ C2H(Γ) for all Γ, shows that
under appropriate regularity condition consistency of Γ̂ w.r.t. the distance H and the excess-risk are
equivalent. The only difference is in the rates of convergence. The above result highlights the link between
them under Assumption 6. In particular, we only have to establish rates of convergence w.r.t. E . Let us
introduce the following notation. When a ∝ b, it means that the quantities a and b are equal up to a
constant. Moreover ≲log(n) says that the inequality holds up to some constants and logarithmic factors.
Now, we state the main result of this section.

Theorem 2. Let Assumptions 1 and 4-6 be satisfied. Let kn ∝ n−2/d+2, s = log(min(n, N)), M > 4
√

N ,
and un = 1

n . The following holds

E
[
Eℓ(Γ̂)

]
≲log(n) n−(1+α)/(d+2) + min(n, N)−(1+α) + N−1/2 .

Several comments can be made from the above result. The first term is the classical nonparametric
fast rate of convergence for the excess-risk under the Margin assumption and the Lipschitzness of the
regression function. The last two terms that are related to the problem of PI estimation have different
behavior according to the interplay between n and N . In particular, as soon as N ≤ n, the limiting term
is N−1/2 and the rate becomes slow if n−(1+α)/(d+2) goes faster to 0. On the other hand, if the number of
unlabeled data N is large with N ≫ n1+α we recover the fast rate of convergence n−(1+α)/(d+2). Between
these two extremes, N−1/2 can still be the limiting term. However, we hope that in our semi-supervised
setting, enough data are available to make this term negligible as compared to the others.

4 Extension and other approach
In this section, we discuss some points beyond the considered framework in this paper. The extension of
our results to other regression models is presented in Section 4.1. Another approach to build prediction
interval based on the control of the expected error rate [12] is described in Section 4.2. In particular, we
exhibit the main differences with our considered procedure.
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4.1 Beyond Gaussian setting
In the present work, we study prediction intervals under expected length constraint in the heteroscedastic
Gaussian regression setup. The appealing aspect of this framework lies in the form of the optimal
predictor

Γ∗
ℓ (X) = {y ∈ R : p(y|X) ≥ λ∗

ℓ } , (8)

with λ∗
ℓ = G−1(ℓ) and G(t) :=

∫
R P(p(y|X) ≥ t)dy. Furthermore, the density p(y|X) has an explicit

expression that exclusively depends on the regression and the conditional variance functions f and σ.
Therefore, our proposed algorithm only involves estimators of f and σ to estimate the conditional density
p. In particular, we do not consider any general procedure for density estimation.

In this paragraph, we discuss possible extensions outside the Gaussian framework but still considering
the regression framework Y = f∗(X) + σ(X) ε. In order to make sure that the optimal predictor is well
defined, we require the following assumption.

Assumption 7. We assume that the variable Y given X has density p(·|X).

If we do not assume that Y |X belongs to a given family of distribution, the characterization of
the prediction interval (8) still holds but the expression of the conditional density can not be simplify.
Therefore, a data-driven predictor, based on the plug-in principle, must rely on estimates p̂(·|x) of the
conditional density p(·|x). The way to build the estimator Γ̂ does not differ from the Gaussian case ones
p̂ is obtained (see Section 3). From the theoretical perspective, general properties such as Propositions 1
and 2 still hold and the question here is to investigate consistency results of the algorithm Γ̂. The control
on the expected length of the prediction interval E

[∣∣∣L(Γ̂) − ℓ
∣∣∣] ≤ C

s√
N

given in Proposition 3 is also
still valid since this result is distribution-free. On the other hand, consistency for the excess-risk requires
conditions. In the case where Y is bounded, if the estimator of the conditional probabilities is such that
E
[∫

R |p̂(y|X) − p(y|X)|dy
]

−→
n→+∞

0, we can establish under Assumptions 1, 2, 3, and 7 that

E
[
H
(

Γ̂
)]

−→
n,N→+∞

0 .

Essentially, this result says that the estimation procedure that we study in this paper extends beyond
the Gaussian setting. In particular, we still manage to get consistency for bounded random variable. It
is worth mentioning that consistency might also be obtained as soon as Y |X is sub-Gaussian. Then our
method is statistically valid for general settings.

4.2 Prediction interval under expected coverage constraint
In this section, we present the approach which focuses on the construction of prediction interval under
expected coverage. This method consists in minimizing the length of the prediction interval under a
constraint on its expected error rate. This approach is for instance studied in [12].

More precisely, let β > 0. We consider the following problem

Γ∗
β = arg min

P(Y /∈Γ(X)≤β
E [L(Γ(X)]] .

Under Assumptions 3 and 7 we can derive an expression of Γ∗
β based on thresholding of the conditional

densities:
Γ∗

β = {y ∈ R, p(y|x) ≥ tβ} ,

with tβ defined as solution of

E
[
1{p(Y |X)≥tβ}

]
=
∫
R
1{p(y|x)≥tβ}p(y|x) dy = 1 − β .

Therefore, from the above equation, we deduce that

H−1(tβ) = 1 − β ,

9



where H(t) = E
[
1{p(Y |X)≥t}

]
. Similarly to the procedure described in Section 3.1, we are able to provide

a randomized prediction interval Γ̂β based on the estimator p̂. We point out that an important difference
between the construction of estimators Γ̂β and Γ̂ is the estimation of the function H. Indeed, this step
require a labeled and not an unlabeled dataset, but do not request the discretization step. More formally,
considering a labeled dataset DK = {(Xi, Yi), i = 1, . . . , K}, and (ζ1, . . . , ζK) the vector of perturbation,
the estimator Ĥ of the function H is defined for each t > 0, as follows

Ĥ(t) = 1
K

K∑
i=1

1{p(Yi|Xi,ζi)≥t} .

Although a theoretical comparison with our proposed method is not our purpose, using similar arguments
as in [12], we can establish the consistency of Γ̂β under same assumptions as in Theorem 1.

E
[
H
(

Γ̂β

)]
→ 0 .

In Section 5, we focus on a comparison between our method and the expected coverage approach from
a numerical perspective.

5 Numerical experiments
This section is devoted to a numerical study of the performance of our procedure. More precisely, we
analyze our approach on synthetic data in Section 5.1 and provide a comparison with the expected
coverage approach described in Section 5.2.

5.1 Simulation study
We illustrate the performance of our procedure on the following model

Y = exp(−∥X∥2) + dε

2 + 4∥X∥2
, X ∈ Rd , (9)

where X = (X1, . . . , Xd) is such that for j = 1, . . . , d, the Xj are i.i.d. simulated according to a Uniform
distribution on [0, 1] and are independent from ε ∼ N (0, 1). Note that the considered model satisfies
Equation 1, and that Assumptions 1, and 2 are fulfilled.

For our numerical experiments, we choose reasonable dimensions of the features space d ∈ {1, 5}.
Before going further in our investigations, we display the boxplots of the output variable Y in Figure 1.
We see that the range of values of Y is much larger for d = 5 and is included in [−5, 5] for both d = 1, 5.
Besides, we chose to focus on ℓ ∈ {0.1, 0.5, 1, 2} which seems to be relevant values according to Figure 1
in order to still get interpretation of the output. For ℓ ∈ {0.1, 0.5, 1, 2}, we provide the evaluation of the
expected length and the error rate for the oracle prediction set Γ∗

ℓ . To this end, we repeat 100 times the
following scheme.

i) estimate λ∗
ℓ from an unlabeled dataset of size N = 1000 on a regular grid of size M = 1000 of the

interval [−5, 5];

ii) derive the resulting prediction interval on the same grid over a test set of size T = 1000;

iii) based on the test set, compute the expected length and the error rate.

From these repetitions, we compute the mean and standard deviation of the estimates. The obtained
results are provided in Table 1.

Simulation scheme. To assess the performance of our procedure, we consider the following scheme.
For d ∈ {1, 5} and ℓ ∈ {0.1, 0.5, 1, 2}, we repeat 100 the following steps.

i) estimate f∗ and σ2 from a training test of size n = 500. We consider the residual-based method [9].
The estimation of f∗ and σ2 relies on the random forests algorithm from python library sklearn.
We also choose u = 10−5 for the parameter of the perturbation ζ (see Eq. (5));

10
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Figure 1: Boxplot of the output Y for d = 1, 5

Expected length Error rate
ℓ d = 1 d = 5 d = 1 d = 5

0.1 0.1 (0.01) 0.1 (0.01) 0.81 (0.01) 0.94 (0.01)
0.5 0.49 (0.01) 0.49 (0.01) 0.34 (0.01) 0.71 (0.01)
1 0.99 (0.01) 0.99 (0.01) 0.07 (0.01) 0.48 (0.01)
2 1.99 (0.03) 1.99 (0.01) 0.00 (0.00) 0.17 (0.01)

Table 1: Performance of the Oracle PI for ℓ ∈ {0.1, 0.5, 1, 2}.

ii) compute Ĝ−1(ℓ) using an unlabeled dataset of size N = 100 on a regular grid of size M = 100 of
the interval [−s, s], where s = max(− min(Ytrain); max(Ytrain),

iii) derive the resulting prediction interval on a regular grid of size 1000 of [−s, s] over a test set of size
T = 1000;

iv) based on the test set, compute the expected length and the error rate.

From these experiments, we compute the empirical means and standard deviations expected length and
the error rate. The results are provided in Table 2. A visual description of the behavior of our PI is also
given in Figure 2.

Notice that the value of s that we consider here is different from the one suggested by the theory in
Theorem 2. This is a minor point. The parameter s in the theory is set such that most of the labels lie
in [−s, s] with high probability. This happens when n and M grow since s = log(min(n, N)). Our choice
in practice ensures that this property holds regardless the values of n and N .

Results. Two conclusions can be made from this first numerical study. First Tables 1 and 2 highlight
how effective our method is in producing PI with (almost) exactly the right length. This is an important
point and suggests that our strategy succeeds to enforce the constraint on the length prescribed by the
optimization problem. Second, let us focus on a comparison between Γ∗

ℓ , the oracle PI, and its empirical
counterpart Γ̂. Table 1 and Table 2 show how close are the performance of these two PI both in terms of

Expected length Error rate
ℓ d = 1 d = 5 d = 1 d = 5

0.1 0.1 (0.01) 0.1 (0.02) 0.81 (0.02) 0.94 (0.01)
0.5 0.50 (0.01) 0.50 (0.02) 0.34 (0.02) 0.72 (0.02)
1 1.00 (0.02) 1.00 (0.02) 0.07 (0.01) 0.48 (0.01)
2 2.01 (0.06) 2.01 (0.01) 0.00 (0.00) 0.17 (0.01)

Table 2: Performance of Γ̂ for ℓ ∈ {0.1, 0.5, 1, 2}.
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Figure 2: Visual description of the empirical PI Γ̂ and its oracle counterpart Γ∗
ℓ , with ℓ = 0.5 on the

left and ℓ = 1 on the right for d = 1. The scatter plot of data is displayed and the graph of both
regression function f∗ and estimator f̂ is represented (solid line for f∗, dashed line for f̂ . The oracle PI
Γ∗

ℓ (empirical PI Γ̂, respectively) is given in blue (orange, respectively).

expected length and of error rate. Interestingly, the performance of Γ̂ is obtained with a moderate size N
of the unlabeled sample that is used to estimate the threshold. These results also suggest that n = 500
is enough to have good estimations of the regression and variance functions. The closeness between Γ∗

ℓ

and Γ̂ is also illustrated in Figure 2.

5.2 Numerical comparison with expected coverage approach
In this section, we numerically compare our procedure to the approach that constraint the expected
coverage described in Section 4.2. We consider the model defined in Equation 9 with d = 5 and focus on
the estimation of Γ∗

ℓ for ℓ = 2. With this expected length, the oracle predictor Γ∗
ℓ reaches an error rate

of β = 0.17. Therefore, for this learning task, we are able to provide empirical PI for both approaches.
That is to say, we compute Γ̂ with ℓ = 2 as expected length and Γ̂β with β = 0.17 as expected error.
In order to get a fair comparison of the methods, we repeat 20 times the following steps. For both
approaches, we use a training set of size n = 500 to estimate the density p and we estimate the threshold
of the considered procedure with a dataset of size N ∈ {10, 30, 50, 70, 100, 150, 200, 500, 1000}. Finally,
we compute the expected length and error rate of both empirical PI over a test set of size T = 1000.
From these repetitions, we compute empirical means and standard deviations. The results are displayed
in Figure 3.

As expected, in average, both methods behaves similarly. However there are important differences in
favor of our approach. First, the convergence of our method is much faster to the mean value both for
the expected length and the error rate. We notice that N = 10 is already enough for our method while
more than 500 samples are needed for the method that focus on the coverage as constraint. Second, it
seems that our construction is much more stable, in particular for length calibration. It illustrates the
efficiency of our procedure to build prediction interval with the right expected length.

The two approaches are definitively not comparable in terms of objectives. Indeed, if we are really
focused on constraining the error rate, then the length constraint appears (at first sight) sub-optimal
and vice versa if we ask for interpretable outputs. However, our numerical analysis clearly suggests that
our methodology is more stable: it induces a procedure with a lower variance.

6 Conclusion
In this paper, we provide a general methodology to build prediction intervals with controlled expected
length in the Gaussian regression. Our proposed algorithm is very effective in controlling the expected
length of the output and then ensure the interpretability of the outcome. The theoretical analysis
indicates that our method mimics the optimal rule w.r.t. the expected length and, under appropriate
properties on the base estimators of the regression function, it is also efficient w.r.t. the symmetric
difference distance and the excess-risk. Furthermore, a numerical study supports our theoretical results.
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Figure 3: Comparison between Γ̂ and Γ̂β . We plot the expected length (on the left) and the expected
coverage (on the right) as a function of N over 20 repetitions for Γ̂ (dashed) and Γ̂β (solid line in red).
The true value of the parameter is given by the dotted line.

Notably, it highlights good stability properties as compared to prediction intervals that focus on expected
coverage constraints.

Our numerical comparison to PI under expected coverage constraint additionally opens a very sig-
nificant door to the use of our method. Because of the stability of our method, one may think to the
following two-stage procedure to produce a PI with error rate β.

• Step 1. Build the PI with error rate β and evaluate its length ℓ̃;

• Step 2. Build our PI with average length ℓ̃.

While we do not expect a significant improvement in average, the resulting prediction interval might be
more stable. This will be the purpose of future investigation.

On the other hand, inference in the high-dimensional setting is a crucial challenge with modern
data. Several successful studies consider the Gaussian homoscedastic linear regression [13, 16, 14, 2]. An
important direction for future research is to carry out PI i) for non Gaussian models; ii) and that can
handle heteroscedastic model. Both of these questions have their applications in the high dimensional
setting.
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Appendix
This appendix is devoted to the proof of our main results. The proofs related to Section 2 are provided
in Section B, while Section C is devoted to the proofs of Section 3. Finally, Section A gathers useful
results. In particular, we give rates of convergence for KNN estimates for both regression and variance
function. Notice that in the whole appendix, C is a positive constant that may change from one line to
another.

A Technical results
In this section, we provide some useful properties that are used for the proof of our main results

A.1 Technical lemmas
The first tool we introduce is a generalization of the classical inverse transform theorem [17, Lemma 21.1]
to the continuous case. Let a > 0. We consider a random process (Zy)y∈[−a,a] such that the function H
defined by

H(t) = 1
2a

∫ a

−a

P(Zy ≥ t)dy ,

is continuous on R+.

Lemma 1. Let T uniformly distributed on [−a, a] and independent of (Zy)y∈[−a,a]. We consider the
random variable ZT and let U be distributed according to the uniform distribution on [0, 1]. Then

H(ZT ) L= U and H−1(U) L= ZT .

Proof. For every t ≥ 0, we have P(H(ZT ) ≤ t) = P(ZT ≥ H−1(t)). Denote by dPT the marginal
distribution of T . Since the variable T is independent of (Zy)y∈[−a,a] and H is continuous, one gets

P(H(ZT ) ≤ t) =
∫

P(ZT ≥ H−1(t)|T = y)) dPT (y)

= 1
2a

∫ a

−a

P(Zy ≥ H−1(t)|T = y)) dy

= 1
2a

∫ a

−a

P(Zy ≥ H−1(t)) dy = H(H−1(t)) = t ,

and we deduce that H(ZT ) L= U . For the second point of the Lemma, we observe that

P(H−1(U) ≤ t) = P(U ≥ H(t)) = 1
2a

∫ a

−a

P(Zy ≤ t)dy = 1
2a

∫ a

−a

P(Zy ≤ t|T = y))dy = P(ZT ≤ t) .

A.2 Rates of convergence for K-NN estimators
In this section, we gather the results we use for K-NN estimators of both regression and variance function.
The proof of this result is provided in [7].

Theorem 3. Grants Assumptions 4, 5, for kn ∝ n−2/d+2, and all α > 0, the K-NN estimators defined
in Equation (7) satisfy

E

[(
sup
x∈C

|f̂(x) − f∗(x)|
)1+α

]
≤ C log(n)1+αn−(1+α)/(2+d) ,

E

[(
sup
x∈C

|σ̂2(x) − σ(x)|
)1+α

]
≤ C log(n)1+αn−(1+α)/(2+d) .
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B Proof of Section 2
In this section, we provide proofs related to the optimal confidence and to the excess-risk formula

Proof of Proposition 1. First, let us consider the Lagrangian of the optimization problem 2. It can be
written as

H(Γ, λ) = P (Y /∈ Γ(X)) + λ (EX[L(Γ(X)] − ℓ) ,

where λ ≥ 0 is a dual variable of the problem. Since,

P (Y ∈ Γ(X)) = EX
[
E
[
1{Y ∈Γ(X)}|X

]]
= EX

[∫
R

p(y|X)1{y∈Γ(X)}dy

]
,

the Lagrangian reads as

H(Γ, λ) = 1 − λℓ − EX

[∫
R
(p(y|X) − λ)1{y∈Γ(X)}dy

]
. (10)

Minimizing w.r.t. Γ leads to an optimal solution that can be written for all λ ≥ 0 and all x ∈ Rd as

Γ∗(λ, x) = {y ∈ R : p(y|X) ≥ λ} .

Injecting this value into 10 gives

H(Γ∗(λ, X), λ) = 1 − λℓ − EX

[∫
R
(p(y|X) − λ)+1{y∈Γ∗(λ,X)}dy

]
,

where (·)+ stands for the positive part. First order optimality conditions for convex non-smooth min-
imization problems implies 0 ∈ ∂H(Γ∗(λ∗

ℓ , X), λ∗
ℓ ) where ∂H is the sub-differential of H. Therefore,

using the Fundamental Theorem of Calculus, we get EX

[∫
R 1{y∈Γ∗(λ∗

ℓ
,X)}dy

]
= ℓ. But, using the above

definition of Γ∗ we can write by Fubini’s theorem the left hand side term as EX

[∫
R 1{y∈Γ∗(λ∗

ℓ
,X)}dy

]
=∫

R P ((p(y|X) ≥ λ∗
ℓ ) dy = G(λ∗

ℓ ). We then conclude that λ∗
ℓ = G−1(ℓ). Notice that for this value, we have

L(Γ∗) = EX[L(Γ∗(λ∗
ℓ , X)] = EX

[∫
1{y∈Γ∗(λ∗

ℓ
,X)}dy

]
= G(λ∗

ℓ ) = ℓ .

Proof of Proposition 2. Let ℓ ≥ 0. Considering a similar decomposition as in the proof of Proposition 1,
we can write the error rate of a predictor Γ as

Rℓ(Γ) = 1 − EX

[∫
R
(p(y|X) − λ∗

ℓ )1{y∈Γ(X)}dy

]
. (11)

Therefore, we deduce

Eℓ (Γ) = EX

[∫
R
(p(y|X) − λ∗

ℓ )
(
1{y∈Γ∗

ℓ
(X)} − 1{y∈Γ(X)}

)
dy

]
,

and the result follows from the fact that 1{y∈Γ∗
ℓ

(X)} − 1{y∈Γ(X)} = sgn(p(y|X) − λ∗
ℓ ) since we have the

equality between events {y ∈ Γ∗
ℓ (X)} = {p(y|X) − λ∗

ℓ ≥ 0}, where sgn : R → {−1, 1} stands for the
sign.

C Proof of Section 3
We now consider the theoretical properties of the prediction interval Γ̂. We first consider its expected
length and then derive a finite sample bound on its excess-risk.
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C.1 Length control
Proof of Proposition 3. To show this result, we need to introduce some pseudo-oracle predictor that has
expected length ℓ. Let us then define the randomized predictor

Γ̄(X, ζ) = {y ∈ R : p̂(y|X, ζ) ≥ Ḡ−1(ℓ)} , (12)
where Ḡ(t) :=

∫
R PX,ζ(p̂(y|X, ζ) ≥ t)dy for all t > 0. Here again, the property L(Γ̄) := EX,ζ

[
L
(
Γ̄(X, ζ)

)]
=

ℓ is due to the fact that the conditional on the data Dn the r.v. p̂(y|X, ζ) has no atoms since it is ran-
domized.

Let us now consider the purpose of the proposition. We need to bound E
[∣∣L(Γ̂) − ℓ

∣∣]. We can write

∣∣L(Γ̂) − ℓ
∣∣ =

∣∣L(Γ̂) − L(Γ̄)
∣∣ =

∣∣∣∣E [∫
R

(
1{Ĝ(p̂(y|X,ζ))≤ℓ} − 1{Ḡ(p̂(y|X,ζ))≤ℓ}

)
dy

] ∣∣∣∣ (13)

≤ E
[∫

R

∣∣∣∣1{Ĝ(p̂(y|X,ζ))≤ℓ} − 1{Ḡ(p̂(y|X,ζ))≤ℓ}

∣∣∣∣dy

]
≤ E

[∫
R
1{|Ĝ(p̂(y|X,ζ))−Ḡ(p̂(y|X,ζ))|≥|Ḡ(p̂(y|X,ζ))−ℓ|}dy

]
=

∫
R
P
(

|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ |Ḡ(p̂(y|X, ζ)) − ℓ|
)

dy ,

where we use Fubini’s theorem at last. Now notice that the above integral is limited to the compact
[−s, s] since, this is the support of the function p̂(·|x, z) for all (x, z) ∈ Rd × [0, u]. To bound this integral,
we make use of the peeling technique of [1]. That is, we consider for δ > 0 and y ∈ [−s, s]

A0(y) =
{

0 ≤ |Ḡ(p̂(y|X, ζ)) − ℓ| ≤ δ
}

Aj(y) =
{

2j−1δ ≤ |Ḡ(p̂(y|X, ζ)) − ℓ| ≤ 2jδ
}

, for j ≥ 1 .

Since for y ∈ [−s, s], the events (Aj(y))j≥0 are mutually exclusive, we deduce∫ s

−s

P
(

|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ |Ḡ(p̂(y|X, ζ)) − ℓ|
)

dy =∫ s

−s

∑
j≥0

P
(

|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ |Ḡ(p̂(y|X, ζ)) − ℓ| , Aj(y)
)

dy . (14)

Controlling this term relies on a bound on
∫ s

−s
P(Aj(y))dy. It is clear that 0 ≤ Ḡ(t) =

∫ s

−s
PX(p̂(y|X, ζ) ≥

t|Dn)dy ≤ 2s for all t ∈ [0, 1]. We can apply Lemma 1 to say that Ḡ(ZT ) is uniformly distributed on
[0, 2s] and then, for all j ≥ 0 and δ > 0, we deduce that∫ s

−s

P(Aj(y))dy = 2s
1
2s

∫ s

−s

P
(
|Ḡ(p̂(y|X, ζ)) − ℓ| ≤ 2jδ | Dn

)
dy

= 2s × P
(
|Ḡ(ZT ) − ℓ| ≤ 2jδ|Dn

)
≤ 2s

2j+1δ

2s
= 2j+1δ . (15)

Next, let us consider (14). We observe that for all j ≥ 1∫ s

−s

P
(

|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ |Ḡ(p̂(y|X, ζ)) − ℓ| , Aj(y)
)

dy

≤
∫ s

−s

P
(

|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−1δ , Aj(y)
)

dy

≤
∫ s

−s

E(Dn,X,ζ)

[
PDN

(
|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−1δ

)
1Aj(y)

]
dy. (16)

In Section 3.1, we have presented the predictor Γ̂ that relies on the function Ĝ which is discretized. On
the other hand, Ḡ is not discretized. Because of this difference, it is convenient, in order to control (16),
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to provide some additional notation. Let us define

ˆ̄G(t) := 1
N

N∑
i=1

∫ s

−s

1{p̂(y|Xn+i,ζi)≥t}dy .

Then for all y ∈ [−s, s], conditional on (Dn, X, ζ), the probability in Eq. (16) is bounded as follows

PDN

(
|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−1δ

)
≤

PDN

(
| ˆ̄G(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−1 δ

2

)
+ PDN

(
| ˆ̄G(p̂(y|X, ζ)) − Ĝ(p̂(y|X, ζ))| ≥ 2j−1 δ

2

)
.(17)

These two last terms are treated in different ways. For the first one, we observe that for all t ∈ [0, 1]

|Ĝ(t) − ˆ̄G(t)| =
∣∣∣∣∣ 1
N

N∑
i=1

M∑
k=1

(∫ yk+1

yk

1{p̂(y|Xn+i,ζi)≥t} − 1{p̂(yk|Xn+i,ζi)≥t}

)
dy

∣∣∣∣∣
≤ 1

N

N∑
i=1

M∑
k=1

(∫ yk+1

yk

∣∣1{p̂(y|Xn+i,ζi)≥t} − 1{p̂(yk|Xn+i,ζi)≥t}
∣∣) dy .

We recall that for all |y| ≤ s, we have p̂(y|x, ζ) = p̂(y|x) + ζ. Because, conditional on Dn, the function
p̂(·|x) is a Gaussian density and since the perturbation ζ acts on each y in the same way, it turns out
that the function p̂(.|x, ζ) is continuously increasing and then decreasing with a maximum at y = f̂(x).
Therefore, for any fixed t the indicators 1{p̂(y|Xn+i,ζi)≥t} and 1{p̂(yk|Xn+i,ζi)≥t} differ at most in 2 intervals
of the form [yk, yk+1]. Then we deduce that

|Ĝ(t) − ˆ̄G(t)| ≤ 2 × 2s

M
.

Injecting this inequality to (17) gives

PDN

(
|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−1δ

)
≤

PDN

(
| ˆ̄G(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−1 δ

2

)
+ 1{4s/M≥2j−2δ} . (18)

Let us now consider the second term. Conditional on (Dn, X, ζ), the random variable ˆ̄G(p̂(y|X, ζ)) is
an empirical mean of i.i.d. random variables of common mean Ḡ(p̂(y|X, ζ)) ∈ [0, 2s], we deduce from
Hoeffding’s inequality that

PDN

(
| ˆ̄G(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ 2j−2δ|Dn, X

)
≤ 2 exp

(
−Nδ222j−1

16s2

)
.

Therefore, from Inequalities (14), (15), (16), and (18) one gets for δ = 4s√
N

and M > 4
√

N

∫ s

−s

P
(

|Ĝ(p̂(y|X, ζ)) − Ḡ(p̂(y|X, ζ))| ≥ |Ḡ(p̂(y|X, ζ)) − ℓ|
)

dy

≤
∫ s

−s

P(A0(y))dy +
∑
j≥1

2 exp
(

−Nδ222j−1

16s2

)∫ s

−s

P(Aj(y))dy

≤ 2δ + δ
∑
j≥1

2j+2 exp
(

−Nδ222j−1

16s2

)
≤ Cs√

N
. (19)
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C.2 Excess-risk control
Proof of Proposition 4. Throughout the proof, we denote λ̄ℓ := Ḡ−1(ℓ), where Ḡ is defined in Equa-
tion (12). We start with the following decomposition.

Eℓ

(
Γ̂
)

= E
(
Γ̄
)

+
(

Rℓ(Γ̂) − Rℓ(Γ̄)
)

. (20)

For the second term of the r.h.s. in the above equation, thanks to Equation (11), we have that

Rℓ(Γ̂) − Rℓ(Γ̄) = EX,ζ

[∫
R

(p(y|X) − λℓ)
(
1{y∈Γ̄(X,ζ)} − 1{y∈Γ̂(X,ζ)}

)
dy

]
.

From Assumption 1, we have that |p(y|X) − λℓ| is bounded by C1 > 0 which depends on σ0. Hence, we
deduce that

E
[∣∣∣Rℓ(Γ̂) − Rℓ(Γ̄)

∣∣∣] ≤ C1E
[∫

R

∣∣∣1{y∈Γ̄(X,ζ)} − 1{y∈Γ̂(X,ζ)}

∣∣∣ dy

]
.

This last inequality can be rewritten as

E
[∣∣∣Rℓ(Γ̂) − Rℓ(Γ̄)

∣∣∣] ≤ C1E
[∫

R

∣∣∣∣1{Ĝ(p̂(y|X,ζ))≤ℓ} − 1{Ḡ(p̂(y|X,ζ))≤ℓ}

∣∣∣∣dy

]
.

Therefore, from Equation 13, and (19), we deduce

E
[∣∣∣Rl(Γ̂) − Rl(Γ̄)

∣∣∣] ≤ C
s√
N

. (21)

Now we bound the first term in the r.h.s. in Equation (20). Thanks to Proposition 2, we have that

Eℓ(Γ̄) = EX,ζ

[∫
Γ̄(X,ζ)△Γ∗

ℓ
(X)

|p(y|X) − λ∗
ℓ | dy

]
.

Now, we consider the following cases
• If y ∈ Γ̄(X, ζ) \ Γ∗

ℓ (X), we have that p(y|X) < λ∗
ℓ and p̂(y|X, ζ) ≥ λ̄ℓ. Therefore,

|p(y|X) − λ∗
ℓ | = (λ∗

ℓ − λ̄ℓ) + (λ̄ℓ − p̂(y|X, ζ)) + (p̂(y|X, ζ) − p(y|X)) .

Using the fact that λ̄ℓ − p̂(y|X, ζ) ≤ 0, we get∫
|p(y|X) − λ∗

ℓ |1{y∈Γ̄(X,ζ)\Γ∗
ℓ

(X)}dy ≤
∫ (

(λ∗
ℓ − λ̄ℓ) +

∣∣p̂(y|X, ζ) − p(y|X)
∣∣)1{y∈Γ̄(X,ζ)\Γ∗

ℓ
(X)}dy .

• If y ∈ Γ∗
ℓ (X) \ Γ̄(X, ζ), we have that p(y|X) ≥ λ∗

ℓ and p̂(y|X, ζ) < λ̄ℓ. Therefore,
|p(y|X) − λ∗

ℓ | = (p(y|X) − p̂(y|X, ζ)) + (p̂(y|X, ζ) − λ̄ℓ) + (λ̄ℓ − λ∗
ℓ ) .

Using the fact that p̂(y|X, ζ) − λ̄ℓ < 0, we get∫
|p(y|X) − λℓ|1{y∈Γ∗

ℓ
(X)\Γ̄(X,ζ)}dy ≤

∫ (
(λ̄ℓ − λ∗

ℓ ) +
∣∣p̂(y|X, ζ) − p(y|X)

∣∣)1{y∈Γ∗
ℓ

(X)\Γ̄(X,ζ)}dy .

From the above considerations, we deduce the following inequality

EX,ζ

[∫
Γ̄(X,ζ)△Γ∗

ℓ
(X)

|p(y|X) − λ∗
ℓ | dy

]

≤ |λ̄ℓ − λ∗
ℓ | E

[∫
R
1{y∈Γ̄(X,ζ)△Γ∗

ℓ
(X)}dy

]
+ E

[∫
R

|p̂(y|X, ζ) − p(y|X)| dy

]
≤ |λ̄ℓ − λ∗

ℓ | × (L(Γ̄) − L(Γ∗)) + E
[∫

R
|p̂(y|X) − p(y|X)| dy

]
+ 2su ,

where the last inequality is due to the fact that p̂(y|X, ζ) = p̂(y|X) + ζ1y∈[−s,s] with |ζ| ≤ u. But
L(Γ̄) = L(Γ∗) = ℓ by construction. Then,

E
[
Eℓ(Γ̄)

]
≤ E

[∫
R

|p̂(y|X) − p(y|X)| dy

]
+ 2su .

Injecting this last inequality and (21) into (20) gives the announced result.
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C.3 Consistency Result
This section is devoted to the proof of Theorem 1. We first provide a result on the L1-integrated
estimation error of p̂.

Proposition 7. Under Assumption 1, we have that

E
[∫

R
|p̂(y|X) − p(y|X)| dy

]
≤

C
(√

sE
[
(f̂(X) − f∗(X))2

]
+ E

[∣∣∣f̂(X) − f∗(X)
∣∣∣])

+ Cs5/2E
[
|σ̂2(X) − σ2(X)|

]
,

where C > 0 is a constant which depends on σ0 and σ1 in Assumption 1.

Proof. To build this proof, we use the triangle inequality to split the term |p̂(y|X) − p(y|X)| into 3. We
then have to consider each of these terms consecutively. The first of these terms can be bounded as
follows:∣∣∣∣∣ 1√

2πσ̂2(X)
exp

(
− (y − f̂(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f̂(X))2

2σ̂2(X)

)∣∣∣∣∣
≤ 1√

2πσ̂2(X)
exp

(
− (y − f̂(X))2

2σ̂2(X)

)∣∣∣∣1 − σ̂(X)
σ(X)

∣∣∣∣
= 1√

2πσ̂2(X)
exp

(
− (y − f̂(X))2

2σ̂2(X)

)∣∣∣∣σ(X) − σ̂(X)
σ(X)

∣∣∣∣ . (22)

This upper-bound consists of two parts. One part which is the density of a Gaussian random variable
(whose integral w.r.t. y is 1) and a second term which is independent of y. Observe that this second
term |σ(X) − σ̂(X)| is of the same order as |σ2(X) − σ̂2(X)|. Indeed, notice that when σ(X) > σ̂(X)

σ2(X) − σ̂2(X) = (σ(X) − σ̂(X))(σ(X) + σ̂(X)) ≥
(

σ0 + 1√
s

)
(σ(X) − σ̂(X)) ,

where in the last inequality, we use Assumption 1 and the fact that σ̂(X) ≥ 1/
√

s. Written differently,
this means that

|σ(X) − σ̂(X)| ≤
√

s

1 + σ0
√

s
|σ2(X) − σ̂2(X)| ≤ σ0

√
s

1 + σ0
√

s

|σ2(X) − σ̂2(X)|
σ0

≤ C|σ2(X) − σ̂2(X)| ,

since 1/σ0 ≤ C. The same reasoning holds in the case where σ(X) < σ̂(X) and then we conclude that

|σ(X) − σ̂(X)| ≤ C|σ2(X) − σ̂2(X)| .

Injecting this bound into (22) and using again Assumption 1, we deduce that

∫
R

∣∣∣∣∣ 1√
2πσ̂2(X)

exp
(

− (y − f̂(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f̂(X))2

2σ̂2(X)

)∣∣∣∣∣ dy

≤ C |σ(X) − σ̂(X)| ≤ C
∣∣σ2(X) − σ̂2(X)

∣∣ . (23)

Let us now consider the second term in the decomposition of |p̂(y|X) − p(y|X)|. Since x 7→ exp(−x) is
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1-Lipschitz on R+, from Assumption 1 we have that in the case where (y − f̂(X))2 ≥ (y − f∗(X))2∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f̂(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)∣∣∣∣∣
= 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

) ∣∣∣∣∣exp
(

−

(
(y − f̂(X))2

2σ̂2(X) − (y − f∗(X))2

2σ̂2(X)

))
− 1
∣∣∣∣∣

≤ 1√
2πσ2(X) × 2σ̂2(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

) ∣∣∣(y − f̂(X))2 − (y − f∗(X))2
∣∣∣

≤ C√
2πσ̂2(X)σ̂(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

) ∣∣∣(y − f̂(X))2 − (y − f∗(X))2
∣∣∣ .

Using the following decomposition
(y − f̂(X))2 − (y − f∗(X))2 = (f̂(X) − f∗(X))2 + 2(y − f∗(X)(f∗(X) − f̂(X)) ,

we deduce∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f̂(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)∣∣∣∣∣
≤ C√

2πσ̂2(X)σ̂(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)((
f̂(X) − f∗(X)

)2
+ |y − f∗(X)||f̂(X) − f∗(X)|

)
. (24)

In the case where (y − f̂(X))2 ≤ (y − f∗(X))2, we obtain similar bound as in the above equation by

switching the role of f̂ by f∗. Notice that
∫
R

1√
2πσ̂2(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

)
× |y − f∗(X)|dy is the

expectation of the r.v. |Y − f∗(X)| where Y is Gaussian with expectation f∗(X) and variance σ̂2(X).
Therefore, using the fact that E [|Z − E [Z]|] ≤

√
Var(Z) for any real valued random variable Z, we get∫

R

∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f̂(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)∣∣∣∣∣ dy

≤ C

σ̂(X)

((
f̂(X) − f∗(X)

)2
+ σ̂(X)|f̂(X) − f∗(X)|

)
.

Finally, using that σ̂(X) ≥ 1/
√

s, we deduce∫
R

∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f̂(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)∣∣∣∣∣ dy

≤ C

(√
s
(

f̂(X) − f∗(X)
)2

+ |f̂(X) − f∗(X)|
)

. (25)

The remaining term in the decomposition of |p̂(y|X) − p(y|X)| is∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

)∣∣∣∣∣
= 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

) ∣∣∣∣exp
(

−
(

(y − f∗(X))2

2σ̂2(X) − (y − f∗(X))2

2σ2(X)

))
− 1
∣∣∣∣ .

Hence, if σ2(X) ≥ σ̂2(X), since x 7→ exp(−x) is 1-Lipschitz on R+, we deduce from the above inequality
that∣∣∣∣∣ 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

)∣∣∣∣∣
≤ 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

) ∣∣∣∣ (y − f∗(X))2

2σ̂2(X) − (y − f∗(X))2

2σ2(X)

∣∣∣∣ .
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Therefore, from Assumption 1, and since σ̂2(X) ≥ 1/s, we get in the case where σ2(X) ≥ σ̂2(X)∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

)∣∣∣∣∣
≤ 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

)
Cs(y − f∗(X))2 ∣∣σ̂2(X) − σ2(X)

∣∣ . (26)

In the case where σ2(X) ≤ σ̂2(X), using same arguments and additionally the fact that σ̂2(X) ≤ s, we
can obtain∣∣∣∣∣ 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

)∣∣∣∣∣
≤

√
s

σ0
√

2πσ̂2(X)
exp

(
− (y − f∗(X))2

2σ̂2(X)

)
Cs(y − f∗(X))2 ∣∣σ̂2(X) − σ2(X)

∣∣ . (27)

Therefore, from Equation (26), and (27), we get

∫
R

∣∣∣∣∣ 1√
2πσ2(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

)
− 1√

2πσ2(X)
exp

(
− (y − f∗(X))2

2σ2(X)

)∣∣∣∣∣ dy

≤ Cs5/2 ∣∣σ̂2(X) − σ2(X)
∣∣ , (28)

where we used the fact that the integral w.r.t. y is the variance of Gaussian r.v. with variance σ̂2(X) and

is then such that
∫
R

1√
2πσ̂2(X)

exp
(

− (y − f∗(X))2

2σ̂2(X)

)
(y − f∗(X))2dy = σ̂2(X) ≤ s. The combination

of Equations (23), (25), and (28) yields the result.

Now, we provide the proof of Theorem 1.

Proof of Theorem 1. We prove the consistency Γ̂ w.r.t. the symmetric difference distance H. We have
that

H(Γ̂) ≤ E

[∫
Γ̂(X,ζ)△Γ̄(X,ζ)

dy

]
+ E

[∫
Γ̄(X,ζ)△Γ∗(X)

dy

]
. (29)

We bound the first term in the r.h.s. in the above inequality.

E

[∫
Γ̂(X,ζ)△Γ̄(X,ζ)

dy

]
= E

[∫
R

∣∣∣1{y∈Γ̂(X,ζ)} − 1{y∈Γ̄(X,ζ)}

∣∣∣]
= E

[∫
R

∣∣∣∣1{Ĝ(p̂(y|X,ζ))≤ℓ} − 1{Ḡ(p̂(y|X,ζ))≤ℓ}

∣∣∣∣dy

]
.

Therefore, from Equations (13) and (19), we deduce

E

[∫
Γ̂(X,ζ)△Γ̄(X,ζ)

dy

]
≤ Cs√

N
. (30)

Now, we study the second term in the r.h.s. of Equation (29). We observe that if y ∈ Γ̄(X, ζ) \ Γ∗
ℓ (X)

the following holds

• on the event {Ḡ−1(ℓ) ≥ G−1(ℓ)}, |p̂(y|X, ζ) − p(y|X)| ≥
∣∣p(y|X) − G−1(ℓ)

∣∣ ,
• on the event {Ḡ−1(ℓ) < G−1(ℓ)},

either p̂(y|X, ζ) ∈ (Ḡ−1(ℓ), G−1(ℓ)) or |p̂(y|X, ζ) − p(y|X)| ≥
∣∣p(y|X) − G−1(ℓ)

∣∣ .
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Note that similar reasoning holds if y ∈ Γ∗
ℓ (X) \ Γ̄(X, ζ). Therefore, we deduce that conditional on Dn,

E

[∫
Γ̄(X,ζ)△Γ∗(X)

dy

]
≤ E

[∫
R
1{|p̂(y|X,ζ)−p(y|X)|≥|p(y|X)−G−1(ℓ)|}dy

]
+ 1{Ḡ−1(ℓ)<G−1(ℓ)}E

[∫
R
1{p̂(y|X,ζ)∈(Ḡ−1(ℓ),G−1(ℓ))}dy

]
+ 1{Ḡ−1(ℓ)≥G−1(ℓ)}E

[∫
R
1{p̂(y|X,ζ)∈(G−1(ℓ),Ḡ−1(ℓ))}dy

]
.

Using first the definition of Ḡ and then the fact that Ḡ(Ḡ−1(ℓ)) = G(G−1(ℓ)) = ℓ in this last inequality,
we deduce the following

E

[∫
Γ̄(X,ζ)△Γ∗(X)

dy

]
≤ E

[∫
R
1{|p̂(y|X,ζ)−p(y|X)|≥|p(y|X)−G−1(ℓ)|}dy

]
+ E

[∣∣G(G−1(ℓ)) − Ḡ(G−1(ℓ))
∣∣] .

Now, we observe that

E
[∣∣G(G−1(ℓ)) − Ḡ(G−1(ℓ))

∣∣] ≤ E
[∫

R

∣∣1{p(y|X)≥G−1(ℓ)} − 1{p̂(y|X,ζ)≥G−1(ℓ)}
∣∣ dy

]
≤ E

[∫
R
1{|p̂(y|X,ζ)−p(y|X)|≥|p(y|X)−G−1(ℓ)|}dy

]
.

Therefore, we have obtained

E

[∫
Γ̄(X,ζ)△Γ∗(X)

dy

]
≤ 2E

[∫
R
1{|p̂(y|X,ζ)−p(y|X)|≥|p(y|X)−G−1(ℓ)|}dy

]
(31)

≤ 2
∫
R
P
(
|p̂(y|X, ζ) − p(y|X)| ≥

∣∣p(y|X) − G−1(ℓ)
∣∣) dy .

Let us consider the term in the r.h.s of Equation (31). Let δ > 0, we have that∫
R
P
(
|p̂(y|X, ζ) − p(y|X)| ≥

∣∣p(y|X) − G−1(ℓ)
∣∣) dy ≤

∫
R
P (|p̂(y|X, ζ) − p(y|X)| ≥ δ) dy

+
∫
R
P
(∣∣p(y|X) − G−1(ℓ)

∣∣ ≤ δ
)

dy .

From Markov’s inequality, we deduce∫
R
P
(
|p̂(y|X, ζ) − p(y|X)| ≥

∣∣p(y|X) − G−1(ℓ)
∣∣) dy ≤ 1

δ
E
[∫

R
|p̂(y|X, ζ) − p(y|X)| dy

]
+ G(G−1(ℓ) − δ) − G(G−1(ℓ) + δ) . (32)

Since p̂ is supported on [−s, s], we observe that

E
[∫

R
|p̂(y|X, ζ) − p(y|X)| dy

]
= E

[∫
[−s,s]

|p̂(y|X, ζ) − p(y|X)| dy

]
+ E

[∫ +∞

|y|≥s

p(y|X)dy

]

≤ E

[∫
[−s,s]

|p̂(y|X) − p(y|X)| dy

]
+ 2su + E

[∫ +∞

|y|≥s

p(y|X)dy

]
. (33)

Now, we observe that

E
[∫ +∞

s

p(y|X)dy

]
= E

[
1{|f∗(X)|≤ s

2 }

∫ +∞

s

p(y|X)dy

]
+ E

[
1{|f∗(X)|> s

2 }

∫ +∞

s

p(y|X)dy

]
.

23



From Markov inequality and Assumption 2, the second term of the r.h.s. in the above inequality is
bounded by

E
[
1{|f∗(X)|> s

2 }

∫ +∞

s

p(y|X)dy

]
≤ E

[
1{|f∗(X)|> s

2 }

]
≤ 2C1

s
.

On the other hand, we observe that

E
[
1{|f∗(X)|≤ s

2 }

∫ +∞

s

p(y|X)dy

]
≤ E

[∫ +∞

s

1√
2πσ2(X)

exp
(

− (y − s/2)2

2σ2(X)

)
dy

]

= E

[∫ +∞

s/2

1√
2πσ2(X)

exp
(

− y2

2σ2(X)

)
dy

]
.

Therefore, Assumption 1 and standard result on Gaussian tails yields for s ≥ 1

E
[
1{|f∗(X)|≤ s

2 }

∫ +∞

s

p(y|X)dy

]
≤ 1√

2π
exp

(
− s2

8σ2
1

)
.

Hence combining the above inequalities, we get for s ≥ 1

E
[∫ +∞

s

p(y|X)dy

]
≤ C ′

[
exp

(
− s2

8σ2
1

)
+ C

s

]
,

where C and C ′ are two positive constants. Note that similar arguments yields

E
[∫ −s

−∞
p(y|X)dy

]
≤ C ′

[
exp

(
− s2

8σ2
1

)
+ C

s

]
.

Therefore considering Equation (33) and Proposition 7 and defining s = log(min(n, N)), we get

lim
n

1
δ
E
[∫

R
|p̂(y|X, ζ) − p(y|X)| dy

]
= 0 .

Hence we obtain from Equation (32) that for all δ > 0

lim sup
n

∫
R
P
(
|p̂(y|X, ζ) − p(y|X)| ≥

∣∣p(y|X) − G−1(ℓ)
∣∣) dy ≤ G(G−1(ℓ) − δ) − G(G−1(ℓ) + δ) .

Since G is continuous, with δ → 0, we get

lim
n

∫
R
P
(
|p̂(y|X, ζ) − p(y|X)| ≥

∣∣p(y|X) − G−1(ℓ)
∣∣) dy = 0 .

The above equation together with Equation (29), (30), (31) yields the desired result.

C.4 Rates of convergence
We start this section with a result on the estimation error of p̂ w.r.t. the sup-norm.

Proposition 8. Let s = log(min(n, N)). Under Assumptions 1, 4, and 5, we have that

sup
(x,y)∈C×[−s,s]

|p̂(y|x) − p(y|x)| ≤

C

(
s sup

x∈C

(
f̂(x) − f∗(x)

)2
+ s2 sup

x∈C

∣∣∣f̂(x) − f∗(x)
∣∣∣+ s3 sup

x∈C

∣∣σ̂2(x) − σ2(x)
∣∣) ,

where C > 0 is a constant which depends on f∗, σ2, and on the set C.
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Proof. We consider the same decomposition into 3 that we used in the proof of Proposition 7. Using the
fact that σ̂(x) ≥ 1√

s
and Assumption 1, we get for all x ∈ C, and y ∈ [−s, s] (c.f., Eq. (22)), the first

term is controlled as follows:∣∣∣∣∣ 1√
2πσ̂2(x)

exp
(

− (y − f̂(x))2

2σ̂2(x)

)
− 1√

2πσ2(x)
exp

(
− (y − f̂(x))2

2σ̂2(x)

)∣∣∣∣∣ ≤ Cs sup
x∈C

∣∣σ̂2(x) − σ2(x)
∣∣ . (34)

According to the second term, from Assumptions 4 and 5, and since f∗ is a Lipschitz function on the
compact C, we have that |f∗(x)| ≤ s for n, N large enough. Therefore, using the fact that x 7→ exp(−x)
is 1-Lipschitz on R+ and that 1

s ≤ σ̂2(x), we get (c.f., Eq. (24))∣∣∣∣∣ 1√
2πσ2(x)

exp
(

− (y − f̂(x))2

2σ̂2(x)

)
− 1√

2πσ2(x)
exp

(
− (y − f∗(x))2

2σ̂2(x)

)∣∣∣∣∣ ≤

C

(
s sup

x∈C

(
f̂(x) − f∗(x)

)2
+ s2 sup

x∈C

∣∣∣f̂(x) − f∗(x)
∣∣∣) . (35)

Finally, considering the last term, we deduce from (26) and (27) that∣∣∣∣∣ 1√
2πσ2(x)

exp
(

− (y − f∗(x))2

2σ̂2(x)

)
− 1√

2πσ2(x)
exp

(
− (y − f∗(x))2

2σ2(x)

)∣∣∣∣∣ ≤ Cs3 sup
x∈C

∣∣σ̂2(x) − σ2(x)
∣∣ .

(36)
The combination of Equations (34), (35), and (36) gives the proposition.

Proof of Proposition 5. We recall that

Eℓ

(
Γ̄
)

= E

[∫
Γ̄(X,ζ)△Γ∗

ℓ
(X)

|p(y|X) − λ∗
ℓ | dy

]
.

Now, we observe that for y ∈ Γ̄(X, ζ)△Γ∗
ℓ (X)

|p(y|X) − λ∗
ℓ | ≤ |p̂(y|X, ζ) − p(y|X) | +

∣∣λ̄ℓ − λ∗
ℓ

∣∣ ,

where we recall that λ̄ℓ := Ḡ−1(ℓ), with Ḡ defined in Eq. (12). Using similar arguments as those used
in the proof of Theorem 4.4 in [7] that is inspired by Theorem 2.12 in [4], it is not difficult to see that
conditional on Dn , ∣∣λ̄ℓ − λ∗

ℓ

∣∣ ≤ sup
(x,y)∈C×R

|p̂(y|x) − p(y|x)| + u := m̂(u) .

Therefore, we deduce that

E

[∫
Γ̄(X,ζ)△Γ∗

ℓ
(X)

|p(y|X) − λ∗
ℓ | dy

]
≤ 2m̂(u)E

[∫
R
1{|p(y|X)−λ∗

ℓ |≤2m̂(u)}dy

]
.

Hence from the above inequality, and Assumption 6 we get

E
[
Eℓ

(
Γ̄
)]

≤ 21+αc0E
[
m̂(u)1+α

]
.

Therefore, from Equations (20) and (21), we obtain the following with s = log(min(n, N))

E
[
Eℓ

(
Γ̂
)]

≤ C

E

( sup
(x,y)∈R×C

|p̂(y|x) − p(y|x)|
)1+α

+ u1+α + log(N)
N

 .

Finally, since p̂ is supported on [−s, s], we have

sup
(x,y)∈C×R

|p̂(y|x) − p(y|x)| ≤ sup
(x,y)∈C×[−s,s]

|p̂(y|x) − p(y|x)| + sup
(x,y)∈C×R\[−s,s]

p(y|x) .
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For n, N large enough, we can assume, since f∗ is bounded, that |f∗(X)| ≤ s/2. From Assumption 1,
we have for n, N large enough

sup
(x,y)∈C×R\[−s,s]

p(y|x) ≤ C exp
(

− s2

8σ2
1

)
≤ exp(−s) ≤ C

min(n, N) ,

which yields the desired result.

Proof of Theorem 2. The proof is a straightforward application of Proposition 5, 8, and Theorem 3,
where we also use the fact that for n, N large enough∣∣σ̂2(x) − σ2(x)

∣∣ ≤
∣∣σ̃2(x) − σ2(x)

∣∣ .
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