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Abstract

This paper is about numerical control of HIV propagation. The contribution
of the paper is threefold: first, a novel model of HIV propagation is proposed;
second, the methods from numerical optimal control are successfully applied
to the developed model to compute optimal control profiles; finally, the com-
puted results are applied to the real problem yielding important and practically
relevant results.
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1. Introduction

Since the outbreak of the global HIV/AIDS pandemic in the early 1980s
about 35 million people died from AIDS-related illnesses [1]. Although the
annual number of new cases of HIV (incidence) has been decreasing globally,
among men who have sex with men (MSM) in developed countries incidence5

is increasing [8, 20]. The current public health challenge in these populations
is effective triage of limited prevention resources. Two recent advancements in
HIV prevention science are relevant to this issue. First, new forms of highly ac-
tive antiretroviral therapy (HAART) are so effective that viral load in infected
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patients become undetectable and that patients on effective treatment are es-10

sentially non-infectious [13]; we will refer to this as the Treatment as Prevention
(TaP) modality. Second, new treatments targeted at uninfected persons have
been shown to reduce the rate of infection to nearly zero when treatment is ad-
hered to [4], which is referred to as Pre-Exposure Prophylaxis (PrEP). We have
therapies that are effective at both blocking transmissions from infected per-15

sons and protecting uninfected persons from becoming infected; however, there
is little consensus on how these technologies should be deployed [12, 14]. The
main obstacle is that while the individual-level efficacy of these interventions
can be ascertained with controlled trials, their effectiveness as public health
interventions cannot. This is due to the fact that populations are different20

from one another both in terms of the fundamental transmission dynamics of
HIV, but also in the availability of prevention resources. Identifying the opti-
mal strategy of resource allocation must be based on a model of the underlying
medical, biological, and social processes that captures the relevant features of
the population.25

Theoretical studies of intervention effectiveness are generally based on either
state-space models represented by a system of ordinary differential equations
(ODE) (often referred to as ‘compartmental‘ models in the epidemiology liter-
ature, [21, 19]) and agent-based models where large-populations of individuals
with complex behavioral patters are directly simulated. The trade-off between30

these approaches exchanges verisimilitude in the agent-based formation for effi-
cient computation in the compartmental formulation. Due to the computational
challenges in calculating optimal allocation strategies, compartmental models
are generally preferred [22, 30, 25, 17]. In this paper, we present a method
for calculating the optimal allocation strategy for a hypothetical health agency35

in a major US city, which receives funding to set up a long-term HIV preven-
tion program for MSM in that city. Our analysis is based on a compartmental
model of HIV transmission that includes natural history of infection, dynamic
risk behavior, and partner preference components. For the sake of simplicity
we restrict the interventions the health agency can allocate resources to TaP40

and PrEP. This in turn allows us to address the important question to which
extent the investment into PrEP for MSM should be scaled up in the future,
which is an open question in HIV prevention policy. While this type of model
is in widespread use, our approach to modeling the enrollment of infecteds and
high-risk susceptible into ART and PrEP, respectively, and our ability to find45

dynamic optimal resource allocation patterns over long time horizons is unique.
The described problem of determining the optimal allocation strategy can

be formulated as an optimal control problem with a specific set of constraints.
We developed an efficient numerical scheme to deal with this problem. The
described approach is very general and can be applied to a wide class of opti-50

mization problems. To facilitate the reuse of the proposed scheme we provide
a detailed description of all steps and indicate possible extensions and ramifi-
cations of the method. When solving optimal control problems, there are two
classes of methods: indirect and direct ones. Indirect methods employ the first-
order optimality condition to formulate a two-point boundary-value problem for55
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the system of 2N Hamiltonian equation, [10], which is solved, either analyti-
cally or numerically (see, e.g., [26, 34]). Analytical solutions to these problems
are available only for systems of low order and will not be treated here. The
use of numerical schemes is however also restricted. Numerical implementations
of indirect methods are often numerically unstable and require a good initial60

guess which is in most cases not available, [3]. Furthermore, many non-standard
constraints cannot be addressed within the framework of the classical optimal
control theory. This is in particular true for the problem considered in the
paper. Thus one has to resort to direct methods.

Direct methods attempt to directly minimize the cost function using con-65

strained nonlinear programming. Within the class of direct methods, there are
different possible approaches, most notable are shooting methods and simulta-
neous methods (see [27, 7]). Shooting methods parametrize the controls and
use numerical simulation to obtain the solution of the system’s equations on
the whole interval (single shooting) or on a number of subintervals (multiple70

shooting), [33]. Nonlinear programming is then used to optimize the control
parameters while obeying the constraints. The multiple shooting method has
proven to be very efficient for solving many practical problems. However, the
necessity of numerical integration of system’s equations makes this method very
time consuming. Simultaneous methods parametrize both the controls and the75

system’s trajectory and determine the missing values of parameters by solving
a (typically) large system of nonlinear algebraic equations. All unknown pa-
rameters are determined simultaneously thus giving the name to this class of
methods. Along with system’s equations, one describes the constraints using
the introduced parametrization. This is referred to as the transcription proce-80

dure. The optimal control problem is thus formulated as a large scale nonlinear
optimization problem, [15].

A modification of the latter method was employed in the paper. It was used
it to compute a set of optimal allocation strategies for a particular scenario of
HIV propagation for different parameters of the treatment.85

The paper is organized as follows: in Section 2, a model of HIV propagation
is derived and analyzed, Section 3 describes the optimal control problem of
resource allocation for HIV treatment and prevention while Section 4 describes
the numerical scheme used to solve the optimal control problem. Finally, Section
5 presents and analyzes the numerical results.90

2. Epidemiological model

2.1. Derivation of the model

We base our approach on a population balance model. This means that
we divide the whole population of MSM in the respective city into a number
of groups. All individuals within a given group are assumed to be identical in
their evolution. The state variables of the model correspond to the number of
people within each group. These are described in Table 1, together with other
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important notation used throughout the paper. The dynamics of each state
variable can be described by the following differential equation:

Ż = Vin − Vout,

where Vin and Vout describe the in- and out-flows. That is the number of people
that enter or leave the respective group within the unit time interval. The
disaggregation is based on whether an individual is infected and in which stage,95

what is his risk behavior, and whether he receives treatment and which one. In
our model, the time unit is set equal to [month].

Size variables:
n Dimension of the state vector
nint Number of solution segments
ncp Number of collocation points
m Dimension of the control vector

Points:
ti, i = 0, . . . , nint Knot points
τ ik, k = 0, . . . , ncp Grid points

State vectors:
X(t) State evolution of the system,

X̂(t) Polynomial interpolation of X(t) through the grid points τ ik,

X̃i(t) The solution of the uncontrolled system on the ith interval,
Xi Matrix of the state values at grid points τ ik
State variables:
S·(t) untreated susceptible individuals
I· ·(t) untreated infected individuals
T·(t) infected individuals on TaP
P (t) susceptible individuals on PrEP
D(t) individuals deceased due to AIDS
N(t) all individuals
N·(t) all individuals displaying a given risk behavior
Indices:
A/C Infectious stage (acute/chronic)
H/L Risk status (high/low)

Table 1: Notation used in the paper. The state variables have up to two indices. For variables
with one index it indicates the risk status, for variables with two indices infectious stage and
risk status are indicated.

The structure of the flows within the system is shown in Fig. 1, the model
parameters are summarized in Table 2. Transitions between states happen due
to individuals becoming infected, progressing from acute to chronic stage, and100

dying of AIDS (S· → IA· → IC· → D). Moreover, individuals change their
risk behavior ((·)L ↔ (·)H , P → SL), are put on PrEP or TaP treatment
or cancel it (SH ↔ P , IC· ↔ T·). Finally there is flow into the system due
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to individuals reaching an age of sexual activity and outflow from the system
because of non-HIV related death or individuals becoming sexual inactive or105

settling in a monogamous, lifelong relationship.

SH IAH ICH

P

TH
αH φH

uP

δA
uT + ūT

x
y

SL IAL ICL TL
αL φL δA

uT + ūT

y

D

δC

δC

ρH
ρH ρL

µ

Figure 1: The dynamics of the system. In the upper darkgrey box all high-risk states are
located, in the lower darkgrey box all low-risk states. All annotations on the arrows are
relative transition rates except for uP and uT which are non-rate quantities that govern the
rates of the respective transition. There are transitions between high- and low-risk in both
directions for susceptibles, infecteds, and people treated with TaP. But people treated with
PrEP only can adapt a low risk behavior and become low-risk susceptibles, while there are
no transitions from low risk individuals into the group on PrEP treatment. The outflow µ
applies to all groups equally.

Parameters used in the model were selected from studies of general MSM
populations from the United States. Behavioral parameters including the pro-
portion of the population that is high-risk, the contact rate ratio of high and
low-risk individuals, and the rate at which high-risk individuals become low risk110

and vice versa were taken from an analysis of longitudinal sexual contact rate
data of unaffected gay men in 3 large cities in the United States [28].

Finally, we selected values of λL and ūT such that the endemic equilibrium
prevalence is about 20% and about 25% of infected individuals are on effective
treatment, which is consistent with an average large MSM population in the115
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Infection parameters:
φH , φL transmission rate for high-risk resp. low-risk susceptibles
δA rate that acutely infected individuals become chronically infected
δC rate that chronically infected individuals die due to AIDS
λH , λL contact rate of high-risk resp. low risk individuals
βA, βC infection probability per act for acutely resp. chronically infecteds
π probability that a sexual contact takes place at the respective preferred sites
Treatment parameters:
x rate at which PrEP fails or is canceled
ūT baseline enrollment rate into TaP
y rate at which TaP fails or is canceled
Other parameters:
αH , αL recruitment rate of new high-risk resp. low-risk susceptibles
µ rate that adults die of non-HIV related causes, reach an age of

sexual inactivity, or settle in a monogamous, lifelong relationship
ρH rate that high-risk persons become low-risk
ρL rate that low-risk persons become high-risk

Table 2: Model parameters. The variables are grouped into the ones directly governing the
infection process and the treatment process, respectively, and other variables. The parameters
βA, βC , and π are all probabilities, all other parameters are rates, measured in individuals
per month.

United States [32, 29]. However, there are several important aspects of the
model which deserve particular attention. These are described below.

Mixing. To model infection events (which take place at rate φH resp. φL in our
model), we assume that transmissions occur at three distinct sites:

• locations frequented exclusively by high-risk individuals120

• locations frequented exclusively by low-risk individuals

• locations jointly used by both low- and high-risk individuals

The total rate of contact of high- resp. low-risk individuals is denoted by λH
resp. λL. Hereby, both risk groups make a proportion π of their contacts at the
site which is exclusively frequented by their own risk group and the remainder125

of contacts at the mixing site.
To derive φH and φL, we omit the time dependency in the state variables

for now. Then, the total number of contacts made at a given time is given by

θ = λHNH + λLNL

with

NH = SH + IAH + ICH + P + TH ,

NL = SL + IAL + ICL + TL.
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The probability that, given a random individual has a contact, this contact is
with a high resp. low risk individual is

ηH =
λHNH
θ

, resp. ηL =
λLNL
θ

.

Then, denoting the probability of transmission per contact by βA for acute-stage
infecteds and βC for chronic-stage infecteds, the probability of transmission per
contact at the mixing site is130

σ = βA

(
ηH

IAH
NH

+ ηL
IAL
NL

)
+ βC

(
ηH

ICH
NH

+ ηL
ICL
NL

)
= θ−1 [βA(λHIAH + λLIAL) + βC(λHICH + λLICL)] .

Consequently, the per-capita instant rate of a high-risk susceptible becoming
infected at the common site is

τH = (1− π)λHσ.

Moreover, the per-capita instant rate of a high-risk susceptible becoming in-
fected at the high-risk preferred site is

ψH = πλH

[
βA

IAH
NH

+ βC
ICH
NH

]
.

Therefore, the total per-capita transmission rate for high-risk susceptibles is
given by

φH = ψH + τH .

Analogously, the per-capita instant rate of a low-risk susceptible becoming in-
fected at the common site is

τL = (1− π)λLσ

and the per-capita instant rate of a low-risk susceptible becoming infected at
the low-risk preferred site is

ψL = πλL

[
βA

IAL
NL

+ βC
ICL
NL

]
.

The total per-capita transmission rate for low-risk susceptibles is given by

φL = ψL + τL.

Enrollment. For the enrollment on PrEP and TaP, we assume that both is
done by randomly sampling individuals at locations where high-risk individuals
resp. chronically infecteds are prevalent. In case a sampled individual turns out
to be a high-risk susceptible resp. chronically infected, he is urged to enroll in
PrEP resp. TaP.135
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That is, for PrEP we assume that there is a high-risk environment (HRE)
where high risk individuals are overrepresented, like bars or sex clubs. The
recruitment of the patience then would be carried out during the period in which
the location is strongly frequented, i.e., typically in the evening on weekends.
Then, denoting the probability that a random high resp. low risk individual is140

in a HRE at a random moment during the recruitment period by

pH = P (HRE|R = H)

pL = P (HRE|R = L),

The probability of a random individual encountered in a HRE at a random
moment to be a high-risk susceptible is

P (SH |HRE) =
P (HRE|R = H)P (SH)

P (HRE|R = H)P (R = H) + P (HRE|R = L)P (R = L)

=
pH

SH

N

pH
NH

N + pL
NL

N

=
rbSH

rbNH +NL
=: ζP ,

where rb = pH/pL. That is, rb is the odds of a high-risk person to go to a HRE
compared to a low-risk person, which we assume to be rb = 0.8/0.2 in our work.
Consequently, if u is the relative rate at which individuals are sampled at HREs
and then put on PrEP in case they are high risk susceptibles, the absolute rate
for transition from SH to P is

uNP (SH |HRE) = uζPN.

Using the same modeling approach for TaP, we obtain the absolute rate for
transition from ICH to TH beyond the baseline to be vζT,HN with

ζT,H =
rbICH

rbNH +NL
.

Analogously, the absolute rate for transition from ICL to TL beyond the baseline
is vζT,LN with

ζT,L =
ICL

rbNH +NL
.

Dynamical system. Based on the considerations presented in the previous para-
graphs, we obtain the following system of ODEs describing the dynamics of our145
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system:

ṠH = αH − (φH(X) + ρH + µ)SH + ρLSL + xP − uP ζP (X)N

ṠL = αL − (φL(X) + ρL + µ)SL + ρH(SH + P )

İCH = δAIAH − (ρH + µ+ δC + vb)ICH + ρLICL + yTH − uT ζT,H(X)N

İCL = δAIAL − (ρL + µ+ δC + vb)ICL + ρHICH + yTL − uT ζT,L(X)N

İAH = φHSH − (ρH + µ+ δA)IAH + ρLIAL

İAL = φLSL − (ρL + µ+ δA)IAL + ρHIAH

ṪH = − (y + ρH + µ)TH + vbICH + ρLTL + uT ζT,H(X)N

ṪL = − (y + ρL + µ)TL + vbICL + ρHTH + uT ζT,L(X)N

Ṗ = − (x+ ρH + µ)P + uP ζP (X)N,

(1)

where X =
[
TH TL ICH ICL IAH IAL SH SL P

]′
is the vector of

state variables; N is the sum of all states, N = 〈1, X〉, 1 is the column of ones;
φH(X), φL(X), ζT,H(X), ζT,L(X), and ζP (X) are the non-linear (rational)
functions of X which take on non-negative values for any X ∈ Rn≥0; uP and150

uT are the control inputs which correspond to the fraction of total population
being involved either in PrEP (uP ) or in TaP (uT ), and all the remaining terms
are non-negative constants.

Below, we analyze an important property of the system (1) that will be used
later on.155

2.2. Nonnegativity

Consider the control system

Ẋ = f(X) + g(X,u), (2)

where f(X) : Rn → Rn, and g(X) : Rn × Rm → Rn.
The system (2) is said to be nonnegative if any solution starting at t0 from

X0 ∈ Rn≥0 belongs to Rn≥0 for all t ∈ [t0,∞), i.e., ∀X0 ∈ Rn≥0, ∀t ∈ [t0,∞),
X(t0, X0, t) ∈ Rn≥0 (see [18, 19] for more details).160

Definition 2.1. Let f = [f1, . . . , fn]′ : Rn → Rn. Then f is essentially nonneg-
ative if fi(X) ≥ 0, for all i = 1, . . . , n, and X ∈ Rn≥0 such that Xi = 0, where
Xi denotes the i-th element of X.

We have the following result:

Theorem 2.1. The system (2) is nonnegative for any nonnegative control u(t) :165

[t0,∞)→ Rm≥0 if f(X) and g(X,u) are essentially nonnegative.

Proof. This result can be proved geometrically by examining the direction of
the vector field on the bounding hyperplanes Hi = {X ∈ Rn≥0|Xi = 0}. The
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essential nonnegativeness condition guarantees that on each Hi the system’s
vector field points towards the positive orthant Rn≥0.170

In our case, we can readily observe that φH and φL as well as ζT,L, ζT,H , and
ζP are positive for all X ∈ Rn≥0. Also, we have that the latter three functions
turn to zero when, respectively, ICH , ICL or SH is equal to zero. Thus the
right hand side of (1) is essentially nonnegative and the system’s dynamics is
non-negative either.175

3. Optimal control problem

The optimal control problem is to minimize the total cost while respecting
certain structural and budgetary restrictions. The instantaneous cost is defined
as C(t,X(t), U(t)) and the total cost to be minimized is

JC(X) =

tf∫
0

C(t,X(t), U(t))dt, (3)

where tf is the time horizon which is chosen to correspond to the duration of the
intervention. In the following we set the initial time to 0, but the problem can
be easily modified to account for an arbitrary initial time. Note that a possible
problem statement could include a discounting factor e−ρt, ρ > 0 which is180

typically used to describe our priorities: one may attach greater importance to
decreasing the incidence in the near future while paying less attention to what
will happen in the farther future. This factor could be used to discount some
of the future benefits for shorter term benefits to account to for uncertainty in
the validity of the model assumptions in the far future.185

Remark 3.1. Note that the optimization problem with the cost functional
(3) is well-posed if C(t,X(t), U(t)) is nonnegative for all admissible values of
X(t) and U(t). Since the system (1) is nonnegative, an instantaneous cost
function defined as a linear combination of the state variables (as it is typical
in epidemiological applications) would satisfy this requirement.190

The restrictions imposed on the system are twofold:

Restriction on the admissible control policies. The first class of restrictions is
due to the structural limitations of the decision unit. Since the intervention
is performed by a medical organization the control profile must be sufficiently
regular. We assume that the set of admissible controls consists of piecewise195

constant functions with a fixed interval between two consecutive switches. This
restriction can be easily relaxed in different ways: we can assume that the
switches occur at some non-regular times, that the control is not piece-wise
constant, but rather piece-wise linear (or even piece-wise continuous) and so
forth.200
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Let T = {ti}nint
i=0 , 0 = t0 < t1 < . . . < tnint = tf be the time instants at

which control switches occur along with the initial and final time. We assume
that for any 1 ≤ i ≤ nint, the duration of the respective interval is constant:
ti − ti−1 = δt. In practice, δt is chosen to be a multiple of 1 year. The set of
admissible controls is thus:

U : [0, tf )→ Rm≥0 s.t. U(t) = U i ∈ Rm≥0, t ∈ [ti−1, ti), 1 ≤ i ≤ nint. (4)

The controls are assumed to be right-continuous at ti. In this way, a con-
tinuous control is described by a set of its discrete values {U i}i=1,...,nint

. The
goal of the optimization is to determine these values in order to minimize the
cost function (3) while respecting the constraints.

Note that the controls are bounded by zero from below, but there are no205

upper bounds. The upper bounds are imposed implicitly as will be described
below.

Dynamic budget allocation. The second class of constraints is due to the bud-
getary limitations. In practice, an intervention incurs large expenses which are
compensated by the government only to some extent. We assume that at the210

beginning of each control interval [ti−1, ti) the government sets a baseline bud-
get by estimating the expected expenses and allocates the money to be spent
for the intervention starting from this baseline. This works as follows:

The total expenditures related to treating people with TaP or PrEP and the
enrollment costs for TaP or PrEP are captured by the following cost function:

JBi (X,U i) =

ti∫
ti−1

Bi(X(s), U(s))ds,

where Bi(X(s), U(s)) are certain positive defined functions. In our case, we for-
mulate the optimal control problem to minimize the incidence of HIV infection.
The instantaneous cost is thus defined as the incidence rate of HIV, i.e.,

C(X,U) = SHφH(X) + SLφL(X).

Furthermore, when computing the budgetary restrictions we assumed

Bi(X(t), U i) = K
(t)
T [TH(t)+TL(t)]+K

(t)
P P (t)+K

(e)
T N(t)uiT (t)+K

(e)
P N(t)uiP (t)

for i = 1, . . . , nint and t ∈ [ti−1, ti). Here, K
(t)
T and K

(t)
P are the monthly cost

for treatment with TaP and PrEP, respectively, per patient. The coefficients215

K
(e)
T and K

(e)
P represent the costs for approaching and, if necessary, enrolling

one patient into TaP and PrEP, respectively.
We compute this cost for the uncontrolled case to determine the baseline

expenses, i.e., the expenses that the government would defray if there is no
intervention. The assigned budget is allocated atop the baseline budget. Let
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X̃i(t), t ∈ [ti−1, ti) be the uncontrolled (U i = 0) solution of (1) with initial con-
dition X̃i(ti) = X(ti). The dynamic budget constraint (DBC) is thus formulated
as follows:

JBi (X,U i)− JBi (X̃i,0) ≤ B, i = 1, . . . , nint, (5)

where U i ∈ Rm≥0 and

JBi (X̃i,0) =

ti∫
ti−1

Bi(X(s),0)ds.

The constraints (5) set an implicit limit to the set of admissible controls U .
In terms of optimal control theory such constraints can be classified as mixed
integral inequality path constraints. There is in general no way to handle such220

constraints analytically, but they can be treated numerically as will be shown
below.

Finally we formulate the resulting optimization problem as follows. Deter-
mine the discrete values of control U i ∈ R2

≥0, i = 1, . . . , nint s.t.

JC(X) =
tf∫
0

C(t,X(t), U(t))dt→ min

JBi (X,U i)− JBi (X̃i,0) ≤ B, i = 1, . . . , nint

X(t), t ∈ [0, tf ], satisfies (1) with X(0) = X0 and u(t) = U i, t ∈ [ti−1, ti),

X̃i(t), t ∈ [ti−1, ti] satisfies (1) with Xi(0) = X(ti) and u(t) = 0, t ∈ [ti−1, ti).

(6)

4. Numerical solution of the optimal control problem

Consider a dynamic system (2). From now on we will follow the established
convention and will assume that the state X(t) is a row vector. Both f(X) and225

g(X,u) are thus row-valued vector functions.
A collocation method interpolates the state and the control functions at a

number of time points (called grid points), and requires the solution to satisfy
the respective differential equation at the collocation points which may not
necessarily coincide with the grid points. Some grid points can be used to230

ensure additional conditions on the solution, e.g., continuity.

4.1. Lagrange interpolation

The optimal state trajectory is a piece-wise smooth function whose first
derivative is discontinuous at the points ti. Therefore it is natural to break
it into nint intervals coinciding with [ti−1, ti) and interpolate on each interval
separately using the basis of Lagrange polynomials, [6]

Lik(t) =

ncp∏
l=0, l 6=k

t− τ il
τ ik − τ il

,

12



where ncp is the number of collocation points τ i = {τ ik}k=0,...,ncp within the ith
interval1, i = 1, . . . , nint. Since the intervals are of equal length we assume that
the number of grid points is the same for each interval.235

Figure 2 shows a family of Lagrangian polynomials defined on a non-uniform
grid. Notice that for any grid point there is only one polynomial that takes on
a non-zero value (which is equal to 1) at this point.

Figure 2: A family of Lagrange polynomials on the interval [−1, 1]. The grid points are
indicated by red circles on the x axis.

Let X(t) be the state trajectory for t ∈ [ti−1, ti). We define Xi to be
the [(ncp + 1) × n] matrix of the values of the state at times τ ik, i.e., Xi

kj =

[Xj(τ
i
k)], j = 1, . . . , n, k = 0, . . . , ncp. The interpolating polynomial for the jth

component of the state over the ith interval is thus

X̂i
j(t) =

ncp∑
k=0

Lik(t)Xj(τ
i
k).

It is well known that for a regular (i.e., equispaced) grid the interpolating
polynomial may fluctuate heavily between the interpolation points, especially240

close to the endpoints of the interval (this is referred to as the Runge phe-
nomenon, see, e.g., [16]). To overcome this drawback one uses unevenly spaced
grid points whose distribution density increases as we approach the endpoints
of the interval. There are two standard choices for the grid points: Legendre
and Chebyshev points which are zeros of Legendre or Chebyshev polynomials.245

These polynomials belong to the class of orthogonal polynomials thus giving the
name to the method (orthogonal collocations), [16, 11].

Figure 3 illustrates this thesis. It shows a sample trajectory along with its
Lagrange interpolation obtained using 3 and 5 non-uniformly distributed points

1In the following, the upper index i will refer to the number of the respective interval
[ti−1, ti), i = 1, . . . , nint. We will drop this superscript when the reference to a specific
interval is not relevant. Furthermore, the lower index j will refer to the element of the state
vector, i.e., j = 1, . . . , n.
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a) b)

Figure 3: Interpolation of a sample trajectory using different number of non-uniformly spaced
grid points: a) 3 points, b) 5 points. The sample trajectory is shown in blue, its interpolation
is in red. Grid points are indicated by circles on the x-axis. Dashed lines separate different
intervals.

per interval. It is seen that the interpolation becomes nearly exact already250

with 5 grid points. In contrast to this, when using regular grid points the
interpolating function may deviate from the approximated trajectory by several
orders of magnitude.

There has been an extensive discussion regarding the merits and drawbacks
of either of two choices (see, e.g., [35] and references therein). However, it seems255

that neither of the two is clearly superior to another one. In this study, we have
chosen to use the Legendre points.

4.2. Collocation at Legendre-Gauss-Radau points

In the previous step the state was described using Lagrange interpolation
polynomials which go through (ncp + 1) values of the state Xj(t) at t = τ ik.260

Determining the values Xj(t) corresponds to determining an approximation of
the solution of (2). To do so the derivatives of the interpolating polynomials are

computed at points τ ik, k = 1, . . . , ncp, i.e.,
˙̂
Xi
j(τ

i
k) and the computed derivatives

are required to collocate with the right-hand sides of (2) computed for Xj(τ
i
k).

Additionally, the continuity of the trajectory can be ensured by requiring the265

interpolating polynomials to be attached to each other at the knot points τ i0 = ti,
i = 1, . . . , (nint − 1): X̂i−1(ti) = X̂i(ti).

To get the required distribution of points we use a particular class of Leg-
endre points, referred to as the Legendre-Gauss-Radau (LGR) points, which
are the roots of Pncp+1(θ) +Pncp(θ), where Pk(θ) is the k-th degree normalized270

Legendre polynomial, Pk(1) = 1. The LGR points have the property that one of
these points coincides with the left endpoint of the interval, i.e., the respective
polynomial has a root at θ = −12. That is, the LGR points are defined on the

2One can also define LGR points which include the right endpoint instead the left one.
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interval [−1, 1).

Remark 4.1. Note that alternatively one can use the Legendre-Gauss (LG) or275

the Legendre-Gauss-Lobato (LGL) points which are determined as the roots of
Pncp

(θ) or as the roots of Ṗncp−1(θ) together with {−1} ∪ {1}. The LG points
lie completely within the interval while the LGL points include both endpoints.
That is, the LG are defined on (−1, 1) and the LGL points on [−1, 1].

Any t ∈ [ti−1, ti) can be associated with θ ∈ [−1, 1) by the affine transfor-
mation

t = ti−1 +
δt

2
(θ + 1). (7)

Consider the (ncp + 1) LGR points θk, k = 0, . . . , ncp with θ0 = −1. One
can map the LGR points θk to the respective grid points τ ik using (7), i.e.,
τ ik = ti−1 + δt

2 (θk + 1). Following the procedure described above we use La-
grange polynomials to approximate the state trajectory at points τ ik. For the
jth component of the state this results in a polynomial of degree at most equal
to ncp:

Xj(t) ≈ X̂i
j(t) =

ncp∑
k=0

Xj(τ
i
k)Lik(t), t ∈ [ti−1, ti). (8)

Differentiating (8) and evaluating at the collocation point τ ik we get

˙̂
Xi
j(τ

i
k) =

ncp∑
l=0

Xj(τ
i
l )L̇

i
l(τ

i
k) =

ncp∑
l=0

Xj(τ
i
l )D

i
kl, (9)

where Di is an [ncp × (ncp + 1)] differentiation matrix whose (k, l)-th element280

is the derivative of the Lagrange polynomial Lil at the collocation point τ ik,
k = 1, . . . , ncp. Note that we do not collocate at the knot points τ i0 = ti. The
differentiation matrix D extends the idea of finite difference approximations of
derivatives which are computed based on the trajectory evaluation at a finite
number of points. In our case, the approximation of the derivative is a function285

of the state at all the ncp + 1 grid points.

Remark 4.2. In [15], it was shown that the differential matrix D turns out to
be singular when the number of collocation points is equal to the number of grid
points (here denoted by ngp). The reason for this is that while the interpolating
polynomial is degree ngp−1 its derivative is degree ncp−2 and so, requires only290

ngp − 1 conditions to be uniquely determined. Thus the number of collocation
points has to be one less than the number of grid points.

To overcome this difficulty, it is proposed in [15] to use the set of LGR or LG
points along with a boundary point {−1} or {1}. The interpolating polynomial
is computed for the extended set of points while the collocation is carried out295

only at the LGR, resp. LG points.
The flaw of this approach is that it results in a set of grid points which is

not longer produced by an orthogonal polynomial. This leads to a decrease in
the accuracy of the resulting polynomial interpolation. The obvious remedy is
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to compute the interpolating polynomial for the whole set of orthogonal points300

while collocating at all but one point. The remaining point can be used to
enforce the continuity condition as it is done in this paper.

The Lagrange basis polynomials defined for the LGR points can be written
in barycentric form [6] as

Lj(t) =
Pncp+1(t) + Pncp

(t)

(t− τj)
(
Ṗncp+1(τj) + Ṗncp(τj)

) ,
whence (see [31] for the derivation)

L̇j(τk) =



Ṗncp+1(τk) + Ṗncp
(τk)

(τk − τj)
(
Ṗncp+1(τj) + Ṗncp(τj)

) , j 6= k,

τk
1− τ2k

(ncp + 1)Pncp(τk)

(1− τ2k )
(
Pncp+1(τk) + Pncp

(τk)
) , j = k 6= 0,

−ncp(ncp + 2)
4 , j = k = 0.

Remark 4.3. Note that the Lagrange basis polynomials are invariant with
respect to the shift or the dilatation of the abscissa axis. Thus the approxi-
mate differentiation matrix does not change for different intervals provided the305

number and the type of grid points do not change. However, the use of the
affine transformation (7) implies that the system’s differential equations should
be modified accordingly to take into account the transformed time variable. In
practice, this means that the right-hand sides of (2) are to be multiplied with
the correction factor δt/2.310

Denoting by
˙̂
Xi
kj the approximate values of the derivatives of Xj(t) at collo-

cation points τ ik we write compactly
˙̂
Xi = DXi. We also compute the derivatives

of the state trajectory by evaluating the right-hand side of the ODE (2). We

write F (X̂i, U i)kj = fj(X(τ ik)) + gj(X(τ ik), U i) and the resulting set of ncp · n
constraints is hence

DXi − δt

2
F (Xi, U i) = 0. (10)

4.3. Defect constraints

While (10) determine values of n · ncp · nint samples of the state trajectory,
there are still n · nint free X’s which can be used to ensure continuity of the
trajectory. These are the values of X at the knot points t = ti, i = 0, . . . , nint−1.
The initial value X0 determines the first n points: X(t0) = X0. The remaining
values should be determined from the defect constraints which can be written
as follows:

Xi(ti)−Xi+1(ti) = 0 ∀i = 1, . . . , nint − 1.
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The second term in the left-hand side is Xi+1(ti) = X(τ i0) and the first term is

Xi(ti) = Xi(ti−1) +

∫ ti

ti−1

f(X(s)) + g(X(s), U i)ds. (11)

The integral in (11) can be computed numerically using Gaussian quadrature:∫ ti

ti−1

fj(X(s)) + gj(X(s), U i)ds =
δt

2

ncp∑
k=0

wkFj(X(τ ik), U i), (12)

where wj are the weights computed for the given distribution of grid points,
[11, 16].

Now we have n · (ncp + 1) · nint constraints to determine the same number
of discrete values of the state function. Solving these equations is equivalent to315

getting a numerical solution of the respective differential equations. In other
words, we reduced the procedure of integrating the system of ODEs to solving
a system of nonlinear algebraic equations.

Now we have the solution for given values of the control {U i}, i = 0, . . . , nint−
1. Before proceeding to the optimization we have to formulate the constraints320

imposed on the controls.

4.4. Numerical approximation of dynamic budget constraints

To compute the dynamic budget constraints one has to solve the system’s
ODEs with zero controls for nint intervals with initial conditions determined by
the solution of the controlled system. This problem can be formulated within the
considered framework in the following way. Let Xi

0 be state values at the grid
points within the ith interval. We set Xi

0(ti−1) = X(tii−1) and the remaining
discrete values Xi

0(τ ik), k = 1, . . . , ncp are determined from

DXi
0 −

δt

2
F (Xi

0, 0) = 0. (13)

The resulting set of inequality constraints is thus

δt

2

ncp∑
k=0

wk
[
Bi(Xi(τ ik), U i)−Bi(Xi

0(τ ik), 0)
]
−Blim ≤ 0, i = 1, . . . , nint.

4.5. Constrained nonlinear programming problem

The cost function (3) is computed numerically using Gaussian quadrature
and hence the optimal control problem (6) turns into the following constrained
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optimization problem:

δt

2

nint∑
i=1

ncp∑
k=0

wkC(X(τ ik), U i)→ min

s.t. DXi − δt

2
F (Xi, U i) = 0

X(τ i0)− δt

2

ncp∑
k=0

wkFj(X(τ ik), U i) = 0, i = 1, . . . , nint,

DXi
0 −

δt

2
F (Xi

0, 0) = 0, i = 1, . . . , nint,

Xi
0(ti−1) = X(tii−1), i = 1, . . . , nint,

δt

2

ncp∑
k=0

wk
[
Bi(Xi(τ ik), U i)−Bi(Xi

0(τ ik), 0)
]
−Blim ≤ 0,

i = 1, . . . , nint.

The above nonlinear optimization problem was implemented in Matlab with
the use of fmincon function. The optimization was performed using Sequential325

quadratic programming (SQP) algorithm, see Sec. 5.1 for details.

5. Results

We calculated the optimal allocation strategy for an outbreak scenario in a
large US city with 100,000 at-risk MSM individuals. That is, the introduction
of HIV into a subpopulation with a low prevalence (e.g. people aged 15-25)330

is considered. We assume the infection probability to be βA = 0.015 and βC
= 0.001, i.e., acutely infecteds are 15 times more contagious than chronically
infecteds [5]. Furthermore, we consider a situation in which risk is static, that is,
individuals do not change their risk behavior over time, ρH = ρL = 0. Hereby,
90 % of the MSM population exhibits a low risk behavior, the remaining 10 %335

display high-risk behavior. Hence, we set αL = 250 to be nine times αH = 28
so that the probability that a newly entering individual is high-risk is 10%.

We set µ = 1
360 , leading to the individuals staying 30 years in the system

on average if there was no HIV-related removal. Here removal represents either
natural death, becoming sexually inactive for medical or social reasons, or set-340

tling in a monogamous relationship of two uninfected individuals. There is little
data available on the mixing patterns among high and low-risk individuals that
we could use to fix π. However, we assumed that π = 0 which is a common
assumption when mixing dynamics are unknown. Furthermore, we assume that
individuals from the high risk group have ten times more sexual contacts than345

the ones from the low risk group based on analysis of longitudinal sexual be-
havioral data [28]. Finally, we optimized over values of λL and ūT such that at
equilibrium the prevalence was 20% and the proportion of infected individuals
on treatment was 25%, which is consistent with measured values [32, 29], lead-
ing to λH = 40.9, λL = 4.09, and ūT = 0.00148. We also assume that treatment350

never fails and is never stopped, i.e., y = 0.
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We consider four scenarios varying in the value of x: 0, 1
60 , 1

24 , 1
12 . That is,

in one scenario PrEP never fails and is never canceled and in three scenarios
this happens on average after 5, 2, and 1 year, respectively. These scenarios
are meant to correspond to different distribution policies. More precisely, we355

assume that PrEP never fails and that a high risk individual, once identified,
is prescribed PrEP either indefinitely or is only provided with it for 5, 2, and 1
year, respectively. The parameters of the cost function are given in table 3. The
cost of enrollment was estimated by considering the total cost per enrollee of a
similar intervention program implemented by the New York City Department360

of Health [9] plus the cost of the labs involved in determining infectious status.
The cost of TaP and PrEP is taken from [2].

K
(t)
T K

(t)
P K

(e)
T K

(e)
P

1299 776 266 213

Table 3: Numerical values of the coefficients in the budget functional.

The trajectories of the controls are shown in Fig. 4, the ones of the number
of individuals in the various states in Fig. 5-7. We can observe that the lower
the value of x is, the lower is the total number of newly infecteds and the higher365

is both the overall values of uP relative to uT and the number of individuals
on PrEP. These two dependencies are to be expected as we try to optimize the
allocation strategy of the agency in charge of fighting HIV in the considered city
and this agency does not cover the long-term cost of prescribing PrEP, but only
the enrollment costs. Therefore, a lower x should render the overall intervention370

more effective and the agency should become more prone to employ PrEP more
intensively.

For x = 0, elimination is nearly achieved, whereas for the other values of x
this is not the case. That is, only the value x = 0 allows the agency to push
the epidemic over the tipping point where the intervention leads to the infection375

cycle to break down. Moreover, the difference in the number of infecteds over
time is much more pronounced between the scenario with x = 0 and the three
scenarios with x > 0 than between the three scenarios with x > 0. Most
extreme, the difference in the total number of infecteds is only 0.2 % between
x = 1

24 and x = 1
12 . This is probably due to buffering effects also observed for380

other exogenous variables [24] leading to a low influenceability of the system for
these values of x.

Since only the consequences unfolding over the 50 year period considered
are taken into account by the cost function, the choice of how to allocate the
resources to enrollment into TaP and PrEP, respectively, becomes myopic to385

the end of the considered period. That is, for x = 1
24 and x = 1

12 resources are
jammed into PrEP towards the end although letting the number of infecteds on
treatment drop would ultimately backfire, i.e., leading to number of infecteds
higher than necessary after a while. The same effect with the roles of TaP
and PrEP switched can be observed for x = 1

60 . Moreover, since the number390

of infecteds or high-risk susceptibles declines over time when TaP or PrEP is
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favored, successful enrollment into TaP or PrEP, respectively, becomes more and
more expensive, eventually favoring the other treatment. This can be observed
for x = 0, x = 1

60 , and x = 1
24 . For x = 1

12 , TaP is favored over PrEP the whole
period except for the switch at the very end.395

It is therefore advantageous to modify the optimization problem to avoid
such unrealistic results. However, as this reformulation is not always feasible, a
possible remedy would be to to discard a period long enough at the end of the
time interval for which the controls were optimized.

There are two heuristic approaches to accomplish this: (a) Calculating the400

costs for an only-PrEP and an only-TaP strategy and determining when the
last switch between these strategies in terms of which strategy incurs less costs
(normally there is only one) takes place. The length of the period discarded
is then chosen to be equal to the duration until this switch. (b) Running the
optimization procedure on intervals of different length and checking whether the405

same type of strategy switch taking place at the same distance to the end of the
respective calculation period occurs. If yes, this switch is an numerical artifact
and needs to be discarded.

5.1. Numerical implementation

The described optimization problem was solved both using the multiple410

shooting (not described in the paper) and the orthogonal collocation meth-
ods. In general, the orthogonal collocations approach is about 3-5 times faster
than the multiple shooting one3. However, the latter typically provides a better
result albeit the improvement never exceeds a fraction of percent. Furthermore,
with orthogonal collocations one may sometimes experience the situation when415

the program runs out of memory. This is overcome by a slight change of the
initial guess.

Practice shows that it is in general advantageous to choose an initial guess
that provides a low value of the cost function while violating constraints. SQP
algorithm recovers from the constraints violation in a couple of steps while420

keeping the cost function relatively small. If on the contrary, one chooses the
initial guess in order to satisfy the constraints, the deviation from the optimal
value of the cost function may turn out to be rather large. As the convergence
of the algorithm is rather slow, it may take unnecessary many steps to achieve
the optimal value.425

The slow convergence of the algorithm is explained by the particular non-
local structure of the budget constraints. Since these constraints are computed
along the to-be-optimized trajectory, any change of the control variables leads to
the variation of the trajectory and thus to the re-computation of the constraints.
As an example, a little change of the control during the first interval influences430

the budget constraints all over the whole optimization interval.

3For the optimization time interval equal to 50 years the computational time for orthogonal
collocations was typically within the range of 5e+3−10e+3 seconds while for multiple shooting
this time was about 2e+4 − 5e+4 seconds. Note that the computational time is strongly
influenced by the length of the optimization interval and by the choice of the initial guess.
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To speed up the computation the gradient of the cost function was supplied
to the optimization algorithm. The Hessians were computed numerically using
centered finite differences due to the complexity of the respective analytical
expressions.435

6. Conclusions

This paper presents a novel model describing an HIV propagation dynam-
ics for a geographically concentrated MSM population, along with two control
actions. The two controls represent allocation of funding to the two major drug-
based interventions available for HIV, HAART / TaP and PrEP, by an health440

agency. Addressing this setting is of particular interest as it is heavily debated
to which extent PrEP should enter the intervention portfolio of health care
systems [25, 4, 23, 36]. A suitably modified orthogonal collocations method is
applied to compute optimal control profiles for a realistic outbreak scenario in a
large US city. Hereby, the influence of the effective cost of PrEP on the optimal445

allocation strategy and the dynamics of the epidemic is studied, by varying a
parameter governing said cost. The obtained results show that the allocation
pattern heavily depends on the cost of PrEP, rendering PrEP the dominant
intervention or not employed at all depending on said cost. Moreover, whether
elimination of HIV in the considered population is achievable also is dependent450

on the effective cost of PrEP.
Currently, we work on improving the developed algorithm in order to intro-

duce it into the epidemiological community. A manuscript aimed at a public
health health audience illustrating use of these methods is currently prepared.
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Figure 5: The trajectories of SH , SL, TH , and TL over 50 years.
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Figure 6: The trajectories of IAH , IAL, ICH , and ICL over 50 years.
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