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A decomposition method for directional Total Variation with application to needle reconstruction in interventional imaging

INTRODUCTION

Flat-panel C-arm systems provide real-time 2D imaging to guide the navigation of therapeutic devices during minimally invasive vascular or percutaneous procedures. In the following, we shall focus on interventions using metallic needles, such as vertebroplasty, radiofrequency ablations, or biopsies. Cone-beam computed tomography (CBCT) is available through the rotation of the C-arm around the patient. It allows the 3D reconstruction of highly attenuating metallic devices together with the patient background anatomy. In the guidance phase of the procedure, the patient is positioned to optimize the real-time visualization of the device and its trajectory. Although a CBCT scan could be performed to precisely assess the position of the device according to the planned trajectory, repeated acquisitions increase the X-ray dose received by the patient. Furthermore, the patient may need to be moved to another position to avoid collisions during the 200°rotation required by tomography. Rotating over a smaller angular coverage would reduce the number of times changing the position of the patient is needed and would reduce the number of projections and the amount of X-ray dose. Model-based iterative reconstruction methods (MBIR) have proven useful in reconstructing soft tissues from a reduced number of projections over a full tomographic angular coverage. In Ref., 1 a least-squares criterion regularized with total variation (TV) was used to remove the under-sampling streaks of dense objects over the less dense soft tissues. However, TV regularization is isotropic: in 2D, it penalizes the ℓ 1 norm of the image partial derivatives along the vertical and horizontal directions equally. TV cannot recover the edges along directions not sampled by the limited angular coverage. Only edges and details tangent to the projection directions are recovered. [START_REF] Quinto | Tomographic reconstructions from incomplete data numerical inversion of the exterior radon transform[END_REF] For piecewise constant geometrical objects, successful results have been obtained with the anisotropic total variation (ATV). ATV assigns different weights to the vertical and horizontal partial derivatives of the image. This strategy allows for considering the angular range as an additional prior information. [START_REF] Wang | Reweighted anisotropic total variation minimization for limited-angle ct reconstruction[END_REF] Since the non-convex ℓ 0 pseudo-norm is the most direct measure of the sparsity of an object, ℓ 1 -reweighting strategies and heuristics have been investigated to incorporate the idea of independence on the magnitude of the ℓ 0 -norm into the ATV approach. However, due to non-convexity, it is not clear that the resulting optimization methods converge to a global minimum. [START_REF] Wang | Reweighted anisotropic total variation minimization for limited-angle ct reconstruction[END_REF][START_REF] Yu | Edge-preserving reconstruction from sparse projections of limited-angle computed tomography using ℓ 0 -regularized gradient prior[END_REF][START_REF] Xu | An image reconstruction model regularized by edge-preserving diffusion and smoothing for limited-angle computed tomography[END_REF] Recently, ATV-constrained formulations (instead of regularization-based ones) allowed for reconstructing complex patterns from limited angle acquisitions. [START_REF] Zhang | Directional-tv algorithm for image reconstruction from limited-angular-range data[END_REF] The anisotropic regularizer proposed in Ref. [START_REF] Bayram | Directional total variation[END_REF] is particularly suited to thin objects like needles because it emphasizes one specific direction. In the following, we call it directional total variation (DTV). DTV relies on estimating the gradient norm along one selected direction that is not necessarily aligned with the pixel grid. Applications on denoising and reconstructing images of fiber materials have been successful. [START_REF] Kongskov | Directional total generalized variation regularization[END_REF] Additionally, DTV with a spatially varying direction and strength, 9-11 that includes higher order derivatives [START_REF] Kongskov | Directional total generalized variation regularization[END_REF][START_REF] Parisotto | Higher-order total directional variation: Imaging applications[END_REF] has been proposed to extend the applicability of DTV, for instance, to vessels and fingerprints. In this work, we consider the simple geometric shape of needles that is very sparse and can be reconstructed from a limited-angle acquisition. However, we here allow more directions than one and superimpose them over a non-sparse anatomical background. We adopt an image decomposition approach that applies DTV over multiple directions for the needles and TV to approximate the background. Decomposition was first proposed for texture-geometry decomposition [START_REF] Aujol | Structure-texture image decomposition-modeling, algorithms, and parameter selection[END_REF] and has also been applied to CT imaging to decompose the reconstruction into three components of the object, sub-sampling artifacts and noise. [START_REF] Li | Robust frame based x-ray ct reconstruction[END_REF] In Section 2, we review the DTV regularization for incorporating directional information and the decomposition method to selectively apply separate directional constraints on separate components and exclude the anatomical background. Numerical experiments are then provided and discussed in Section 3 to illustrate the potential of the proposed method.

METHOD

Scanning model

Data collected in X-ray tomographic imaging can be modeled by the following discrete linear system

y = Hx + b (1) 
where H ∈ R M ×N is the discretized model of forward projection, [START_REF] Savanier | Magnification-driven B-spline interpolation for cone-beam projection and backprojection[END_REF] x ∈ R N is the unknown attenuation image, y ∈ R M represents the log-transform of the data measured by the detector and b ∈ R M is an additive noise term.

In a limited angle setting, ( 1) is a severely under-determined system of linear equations. The lack of data must be compensated by a priori knowledge that constrains the problem by limiting the space of feasible solutions.

To estimate x, we consider the sum of a least-squares data fidelity term and a convex regularizer g embedding this prior information, in particular, sparsity and direction:

minimize x∈R N 1 2 ∥y -Hx∥ 2 D + g(x). ( 2 
)
Matrix D is symmetric positive definite. We now discuss the choices for g.

Directional total variation (DTV)

DTV enforces the prior that the object is piecewise constant and follows one main direction. For an image x ∈ R N , its DTV can be defined as DTV

Ω (x) = N n=1 ∥(∇ Ω x) n ∥ 1 = ∥ΛR θ (∇x)∥ 1,1 where Ω = {θ, s}, ∇ Ω ∈ R 2×N contains two directional derivatives at pixel n, ∆ θ n x and ∆ θ+π/2 n
x, parameterized by direction angle θ ∈ [0°, 180°[, and a "stretching factor" s ∈]0, 1] for anisotropy, i.e.

(∇ Ω x) n = ∆ θ n x s∆ θ+π/2 n x = ΛR θ ∆ h n x ∆ v n x = 1 0 0 s cos θ sin θ -sin θ cos θ ∆ h n x ∆ v n x , (3) with 
∆ h n ∈ R N , ∆ v n ∈ R N
, respectively, the horizontal and vertical discrete gradient operators at location n. These quantities can be obtained by applying a forward finite difference scheme with zero boundary conditions. Given that a set of needles makes a very sparse image, we add an ℓ 1 penalty so that g(x) = g Ω (x) = ρDTV Ω (x)+ α∥x∥ 1 , (α, ρ) ∈]0, +∞[ 2 in (2).

Image decomposition

With a non-sparse background, the lack of data cannot be compensated, and the problem does not have a sparse solution. Decomposing x into a linear combination of several components aims to restore sparsity in all components that can then be recovered from the limited data. A component is thus defined by its specific sparsity prior. A different sparse approximation is used to direct the interfering background into a single component. Then instead of estimating the sum directly, we solve the minimization problem for each component simultaneously.

Here we decompose x into the anatomical background component x B penalized with TV and I ∈ N directional components x Ωi penalized with DTV of direction θ i ∈ [0°, 180°[ and stretching parameter s i ∈ ]0, +∞[ such that

x = x B + I i=1 x Ωi (4) 
where

Ω i = {θ i , s i }, i ∈ {1, . . . , I}.
Altogether, we must solve the following convex problem:

minimize xB,(xΩ i ) I i=1 ∈R N 1 2 ∥y -H(x B + I i=1 x Ωi )∥ 2 D + I i=1 g Ωi (x Ωi ) + g TV (x B ).
where

g TV (x B ) = β∥∇x B ∥ 1,2 , β ∈]0, +∞[+i [0,+∞[ T (x B ).
Note that each directional component x Ωi can capture a needle or a group of needles following about the same direction.

Optimization algorithm

To minimize Problem ( 5), we reformulate it.

Let z = x ⊤ B x ⊤ Ω1 . . . x ⊤ Ω I ⊤ ∈ R (I+1)N
. Let H = ΠH and D = ΠD where Π : M → M . . . M ∈ R ((I+1)L)×L . We then write: minimize

z∈R (I+1)N 1 2 ∥y -Hz∥ 2 D + h(z), (5) 
with h : z → I i g Ωi (x Ωi ) + g TV (x B ). The cost function in Equation ( 5) is convex but non-smooth. In this context, FISTA algorithm [START_REF] Chambolle | On the convergence of the iterates of "fista[END_REF] is attractive due to its simplicity and low-memory requirements. It relies on the use of proximal operators. Let us recall that the proximity operator of h at x is defined as prox h (x) = argmin z∈R N h(z) + 1 2 ∥x -z∥ 2 . Let a be a positive real number such that a > 2. The k-th iteration of FISTA applied to Problem (5) reads:

   β k = k/(k + 1 + a) zk = z k + β k (z k -z k-1 ) z k+1 = prox τ h (z k -τ H⊤ D(Hz k -y)) (6) 
where z 0 ∈ R (I+1)N . Thanks to the separability in each component of z, we derive an update rule for each map:

                         β k = k/(k + 1 + a) xk B = x k B + β k (x k B -x k-1 B ) For i ∈ {1, . . . , I}: xk Ωi = x k Ωi + β k (x k Ωi -x k-1 Ωi ) x k = xk B + I i xk i x k+1 B = prox τ gTV (x k B -τ H ⊤ D(Hx k -y)) For i ∈ {1, . . . , I}: x k+1 Ωi = prox τ gΩ i (x k Ωi -τ H ⊤ D(Hx k -y)) (7) 
The convergence of Algorithm 7 is guaranteed for 0 < τ ⩽ 1/||| H⊤ D H||| = 1/(I + 1)|||H ⊤ DH||| where ||| • ||| denotes the spectral norm of the input matrix. The proximity operators of x → τ g TV (x) and x → τ g Ωi (x) do not have a closed form; hence they are both approximated by using inner iterations of the dual forward-backward (DFB) algorithm 17 with warm-restart. In particular, for DTV, x = prox τ gΩ i (x) is estimated using the following sub-iteration:

x n = proj [0,+∞[ N (x -∇ ⊤ Ω u n ) u n+1 = proj ∥•∥∞,∞⩽τ ρ (u n + γ∇ Ω x n ) ( 8 
)
where γ < 2/|||∇ Ω ||| 2 , u 0 ∈ R 2N and ∥u n ∥ ∞,∞ is the maximum value of the 2 components of u n ∈ R 2N .

EXPERIMENTS

Simulations

We carry out simulations in parallel geometry using two numerical phantoms on a 256 × 256 grid. Hounsfield units (HU) are shifted such that air has value 0 HU and water is 1000 HU. Phantom (A) is purely geometric and represents a set of needles of intensity 3500 HU covering 8 directions (5°, 27.5°, 50°, 72.5°, 95°, 107.5°, 130°, 152.5°) as shown in Figure 1 (angles start at twelve o'clock and grow clockwise). Phantom (B) is the sum of an axial CT slice of an abdomen (see Figure 1) with a subset of needles of varying intensity (3000-5000 HU).

A needle is within the scanning arc if the projection data contain its so-called bull's eye view, i.e., the view orthogonal to its axis. We computed simulated data of these phantoms over a circular arc of amplitude ν = 66°f rom angle θ min = 29°to angle θ max = 95°(indicated by the arrows in Figure 1) so that the projection data contained the bull's eye view of three needles. Noise term b was i.i.d. Gaussian of mean 0 and standard deviation 50. The angular sampling was uniform with a step of 2°. Reconstruction with TV regularization was taken as a baseline. FBP reconstruction followed by thresholding of the intensity was added to the comparison. We performed 100 iterations of DFB and 5000 iterations of FISTA. First, we analyzed the performance of our decomposition method (5) for the reconstruction of a subset of the needles of Phantom (A) thanks to four DTV of direction {5°, 27.5°, 72.5°, 107.5°} (i.e., I = 4). Then we showed the method's applicability to the more complex case of a background and needles of different intensities by reconstructing Phantom (B). This time, a set of I = 3 directions was used: {27.5°, 72.5°, 107.5°}. In all these simulations, the needles have the same size, so we used the same stretching parameter s = 0.001. Needles with the same intensity have the same regularization parameters ρ and α. Matrix D was chosen as the ramp filter which provides an approximate inversion of HH ⊤ . [START_REF] Langet | Compressed-sensing-based content-driven hierarchical reconstruction: Theory and application to C-arm cone-beam tomography[END_REF] The TV and DTV parameters then became thresholds that are homogeneous to the HU intensity values of the image. 

Background-free needles

Figure 2 shows the reconstructions of Phantom (A) with FBP, TV (β = 50) and DTV (ρ = 50, α = 1). First, we see that with FBP, only partial reconstruction of the three needles within the scanning arc is achieved. Figure 3 displays the four reconstructed directional components. Both DTV and TV regularization lead to similar reconstructions for the three needles in the scanning arc. For the two needles of direction close to θ min , TV yielded a partial recovery only, whereas DTV fully recovered 12 out of 16 needles because their directions were sufficiently close to the imposed a priori directions. The four remaining missing needles show that there is no recovery without a priori directional information. 

Needles with background

Figure 5 shows the reconstruction of the needles of Phantom (B) with FBP, TV, and DTV (sum of all needle maps). First, as expected, the anatomical background cannot be recovered with a sparse prior in this limited angle setting. The needles reconstructed with FBP are distorted, and the intensity values are not recovered. With TV, only the three needles within the scanning arc remain after thresholding, whereas five needles are recovered with DTV. Figure 4 shows that the decomposition method coupled with directional information separates the three sets of needles from the background map. 

DISCUSSION AND CONCLUSION

In this paper, we exploited the simple geometric shape of percutaneous needles, which is very sparse and follows one main direction for iterative reconstruction. We introduced a decomposition method that allows several DTV regularizations -and thus several directional a priori to be considered at once -and treats the anatomical background separately. The potential of our DTV decomposition method for reconstructing geometrical objects from small scanning arcs was confirmed in our results, where needles are recovered even when their bull's eye view is not sampled. This approach is promising for increasing the precision of interventional radiology procedures through limited-angle acquisitions. Our study is, however, limited to background interference, as it is based on nearly perfect data. Data corruption due to physical effects and stronger noise, particularly metallic artifacts, is another source of interference that may limit the capacity of sparse priors and must be dealt with before clinical application.
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 1 Figure 1. Reference images. From left to right: Phantom (A) with needles of intensity 3500 HU, Image with needles of growing intensity from 3000 HU up to 5000 HU, Anatomical background [1800-2200 HU].

Figure 2 .

 2 Figure 2. Reconstructed images for ν = 66°. From left to right: FBP, TV, DTV.

Figure 3 .

 3 Figure 3. Directional components obtained with DTV model on Phantom (A). Top: from left to right, θ1 = 107.5°, θ2 = 72.5°. Bottom: from left to right, θ3 = 27.5°, θ4 = 5°.

Figure 4 .

 4 Figure 4. Reconstructed needles maps obtained with DTV model on Phantom (B). From left to right: xΩ 1 (θ1 = 107.5°), xΩ 2 (θ2 = 27.5°), xΩ 3 (θ3 = 72.5°).

Figure 5 .

 5 Figure 5. Reconstruction of needles of Phantom (B) in the presence of a background for ν = 66°. Left: needles with background. Right: needles map. From top to bottom: FBP, TV, DTV.