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Abstract

In this paper, we consider the problem of a Principal aiming at designing a reward function for a

population of heterogeneous agents. We construct an incentive based on the ranking of the agents, so

that a competition among the latter is initiated. We place ourselves in the limit setting of mean-field

type interactions and prove the existence and uniqueness of the equilibrium distribution for a given

reward, for which we can find an explicit representation. Focusing first on the homogeneous setting,

we characterize the optimal reward function using a convex reformulation of the problem and provide

an interpretation of its behaviour. We then show that this characterization still holds for a sub-class

of heterogeneous populations. For the general case, we propose a convergent numerical method which

fully exploits the characterization of the mean-field equilibrium. We develop a case study related to

the French market of Energy Saving Certificates based on the use of realistic data, which shows that

the ranking system allows to achieve the sobriety target imposed by the European commission.

Keywords: Ranking games, Principal-Agent problem, Mean-field games, Energy savings

1 Introduction

1.1 Motivation

In Europe, energy retailers have incentives to generate energy consumption savings at the scale of their

customer portfolio. For example in France, since 2006, power retailers – called Obligés – have a target

of a certain amount of Energy Saving Certificates1 to hold at a predetermined future date (usually 3 or

E. Bayraktar is partially supported by the National Science Foundation under grant DMS-2106556 and by the Susan
M. Smith chair.

1https://www.powernext.com/french-energy-saving-certificates
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4 years). If they fail to obtain this number of certificates, then they face financial penalties. Certificates

can be acquired either by certifying energy savings at the customer or by buying certificates on the

market. If a retailer holds more certificates than its target at the end of the period, the surplus can be

sold on the Energy Saving Certificates market. The pluri-annual energy savings goal is determined by

the government, and is function of the cumulative discounted amount of energy saved (thanks to thermal

renovation for instance)2. Similar mechanisms – called White certificates – have been implemented in

several countries in Europe (Great Britain, Italy or Denmark).

There is evidence from behavioral economics that energy consumption reductions can be motivated

by providing a financial reward and/or information on social norms or comparison to customers, see e.g.

see [AT14] or [DM15]. Especially, in [DM15], the authors find that social norms reduce consumption

by around 6% (0.2 standard deviations). Secondly, they obtain that large financial rewards for targeted

consumption reductions work very well in reducing consumption, with a 8% reduction (0.35 standard

deviations) in energy consumption. For recent years, electricity providers are aware of this lever to make

energy savings, and contracts offering bonus/rewards in compensation of reduction efforts appear, see

e.g. the offers of “SimplyEnergy”3, “Plüm énergie”4 or “OhmConnect”5. The interest of this kind of

solutions is reinforced in the current situation of gas and power shortage where many countries intend to

diminish their global energy consumption6.

1.2 Contributions

In this paper, we design a monetary reward based on the rank of each consumer. In our context, the rank

measures the reduction effort of a consumer compared with the rest of the population (a rank r ∈ [0, 1]

indicates that the consumer is among the r percent of the population with the highest consumption

reduction). This new mechanism initiates a competition between similar consumers to be the best energy

saver and unites the incentive potential of rankings with a financial reward.

We suppose that the interaction between the consumers is of mean-field type, i.e., the number of

consumers is infinite. This choice is motivated by our application, where the game is played across a

country (for e.g. around 30 millions of households in France). Given the reward, the problem reduces to

a mean-field game. Our first main result is to characterize the (unique) mean-field Nash equilibrium of

this game for rewards that linearly depends on the terminal consumption (Theorem 2.4).

We then study the Principal-Agent relation (Stackelberg game) between the provider and the pop-

ulation of consumers. We introduce the bi-level problem solved by the retailer, aiming at maximizing

over reward functions the profit made on the whole time period, taking into account the consumption

distribution achieved at the equilibrium. Our second main result is to derive a semi-explicit formula of

the optimal reward in the homogeneous setting (Theorem 2.8), which follows by solving of a fixed-point

equation. This relies on a convex reformulation of the problem, obtained by transforming the latter into

an optimization over equilibrium distributions, and by expressing the sufficient optimality conditions for

the reformulated problem. We show that the unique optimal reward can be approximated by a bounded

2https://www.ecologie.gouv.fr/dispositif-des-certificats-deconomies-denergie
3https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
4https://plum.fr/cagnotte/
5https://www.ohmconnect.com/
6https://www.politico.eu/article/eu-countries-save-energy-winter/
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function, where the sub-optimality of the latter is controlled and converges to zero for sufficiently large

bounds (Corollary 2.9). In the general setting (heterogeneous population), we show that under uniform

price elasticity and uniform relative volatility, the problem reduces to the previous case (Proposition 2.11).

For the more general case, the reformulation in the distributions space does not apply, and we introduce

a numerical algorithm (Algorithm 1) to optimize the shape of the reward. This black-box optimization

procedure relies on a fast evaluation of the retailer objective function at each iteration, which is done by

exploiting the characterization of the mean-field Nash equilibrium.

We then apply our approach to the French market of Energy Saving Certificates using realistic

data (Section 4). We show that the numerical procedure exhibits a fast convergence, and successfully

finds the optimal reward in the homogeneous setting, and provides significant consumption reduction in

the general setting, while maintaining the satisfaction (utility) of the consumers. We also simulate some

trajectories of consumers by using the reward found in the mean-field context to highlight the energy

reduction capacity of this mechanism. In particular, we show that the ranking system allows to achieve

the sobriety target imposed by the European commission.

Finally, we consider several extensions suitable to our context. First, we show that, for the class of

reward functions considered here, the addition of common-noise in the consumption process only shifts

the equilibrium distribution by a (random) constant. Besides, we focus on time-dependent costs of effort

for the agents, reflecting the collective awareness of agents on the energy reduction’s necessity. We are

also able to provide some invariance results, which show that the use of more sophisticated reward (a

function that jointly depends on the rank and the consumption of the agent) is, at the equilibrium,

equivalent to a reward that belongs to the class of purely rank-based rewards.

1.3 Related Works

Given the reward function provided by the retailer, the competition between agents is modeled by a

mean-field game. These games have been introduced simultaneously by Lasry and Lions [LL06a; LL06b;

LL07] and Huang, Caines and Malhame [HMC06; HCM07]. They refer to the study of differential games

involving a large number of indistinguishable agents which interact through their empirical distribution.

By looking at the limit case where a continuum of agents is involved, each of them asymptotically

negligible, mean-field games provide efficient ways to compute approximations of Nash equilibria for

stochastic games with large number of players (games which are otherwise rarely tractable). Among

various techniques, the problem is often solved by a fixed-point method involving both a Hamilton-

Jacobi-Bellman equation – characterizing the agents best response to a given population distribution –

and a Fokker-Planck equation. Existence and uniqueness of a mean-field equilibrium are then analyzed

through this system of coupled partial differential equations, see e.g. [Car+15; BCS17].

The design of a reward/incentive by the retailer is then modeled as a Principal-Agent problem, see e.g.

the works of Sannikov [San08] and Capponi, Cvitanić and Yolcu [CCY12] in continuous-time settings. In

such problems, the Principal (retailer) aims at designing a monetary reward that is offered to the agent,

depending on the quantity of work achieved by the latter. In energy management, Aı̈d, Possamäı and

Touzi introduces an incentive mechanism to control both the average consumption and the volatility of

the agents consumption. The additional difficulty in our context is the presence of a continuum of agents,

and the interaction between them which is expressed in terms of a mean-field game. Such extensions
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of the Principal-Agent problem have been considered by Elie, Mastolia and Possamäı [EMP19] – where

an explicit contract has been found for a specific class of dynamics (encompassing the linear-quadratic

setting) – and by Carmona and Wang [CW21] – focusing on the linear-quadratic setting and finite-state

spaces. Shrivats, Firoozi and Jaimungal [SFJ21] introduce a Principal-Agent formulation to study the

interaction between a regulator and a field of providers in the market of Renewable Energy Certificate

(REC).

Our study is inspired by several works. We focus on rank-based interactions, previously introduced

in [BZ16], where results of existence and uniqueness of the mean-field Nash equilibrium are provided for

a general class of rewards. Extensions to principal-agent problem are then studied in [BCZ19; BZ21],

deriving explicit expressions of optimal contract for several principal’s objectives (profit/effort/rank-

performance maximization/distribution target). In comparison to these works, we provide new theoretical

results for non purely rank-based reward in the case of a homogeneous population and general convex cost

functions, and extends the latter to a sub-class of heterogeneous population, while keeping explicit char-

acterizations of equilibria and optimal rewards. Finding such explicit expressions is rare in the literature,

and is only possible by imposing a specific dynamics (as in [EMP19] and [CW21]). Another additional

difficulty which arises from the application is to take into account the diversity of the agents: here, we

consider that the overall population is clustered into a finite number of (infinite-size) independent sub-

populations. This heterogeneous context (in absence of uniform elasticity) increases further the difficulty

– both on analytic and numerical aspects – but is necessary on the application side for realism purposes,

see e.g. [SFJ21; SFJ22] for applications of mean-field games to REC markets. In [Cam+21], Campbell et

al. introduce deep learning algorithms to solve principal-agent mean field games under heterogeneity of

agent types. Here, we propose an alternative method, which takes advantage of the specific structure of

the problem (explicit solution of the underlying mean-field game and common rank-based reward across

the sub-populations) to lower the numerical complexity and derive efficient computational methods.

The rest of the paper is organized as follows: in Section 2, we first define the model and characterize

the equilibrium for the mean-field game between the agents. In Section 3, we propose a numerical

approach to solve the problem in the heterogeneous setting, for which the convex reformulation seems

not extendable. In Section 4, we apply the results to the French market of Energy Savings Certificates,

and finally in Section 5, we tackle some extensions that naturally arise in the context of the application.

The proofs of the main results are given in the appendix.

2 Model

2.1 Notation and Assumptions

In the sequel, we denote by P(R) the set of distributions defined on R and by P+(R) the set of distributions

having strictly positive density. Moreover, for any µ ∈ P(R), Fµ refers to the cumulative distribution

function (cdf) of µ, and when it exits, fµ (resp. qµ) refers to the probability density function (pdf) (resp.

the quantile function) of µ. Moreover, we write X ∼ µ when X is distributed according to µ ∈ P(R).

The normal distribution centered in m with standard deviation σ is denoted by N (m,σ) and its pdf is

denoted by x 7→ ϕ(x;m,σ).

Let us successively introduce the different players involved in the Stackelberg game:
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Consumers. We consider a heterogeneous population of consumers, and we suppose that a clustering

algorithm can be applied as a preprocessing step in order to split the population into K sub-populations

(or clusters), each of them composed of similar customers. Each cluster k ∈ [K] := {1, . . . ,K} represents

a proportion ρk of the overall population and corresponds to a given class of customers, categorized for

example according to their usages, their heating system or the household composition. Here, we directly

tackle mean-field interactions between the agents:

Assumption 2.1. We assume that each sub-population is composed of an infinite number of indistin-

guishable agents, represented by a single consumer ( representative agent).

Energy consumption. Let (Ω,F,P) be a complete filtered probability space, which supports a family of

K independent Brownian motions {Wk}1≤k≤K , and A be the set of progressively measurable processes a

satisfying the integrability condition E
∫ T

0 |a(s)|ds <∞. For a given control ak ∈ A, we denote by Xa
k (t)

the forecasted energy consumption of an agent from cluster k (typically an household), forecast made

at time t < T for the time period [0, T ]. The controlled process Xa
k is described through the following

stochastic differential equation: {
dXa

k (t) = ak(t)dt+ σkdWk(t),

Xk(0) = xnom
k .

(1)

Here, we consider an arithmetic Brownian motion in the dynamics, expressing the uncertainty in the elec-

tricity needs. The use of such arithmetic noise (specific to Ornstein-Uhlenbeck processes) has been showed

to be relevant for load modeling, see e.g. [RSM16]. Aı̈d, Possamäı and Touzi considered in [APT22] the

multidimensional version of this dynamics, to the same purpose of representing the electricity consump-

tion. The process ak in Equation (1) is then viewed as the consumer’s effort to reduce his electricity

consumption. Without any effort, customers are expected to have a nominal consumption of xnom
k , and

we define by fnom
k the p.d.f. of Xa

k (T ) under a zero effort (ak is a constant process equals to 0):

fnom
k (x) := ϕ

(
x ; xnom

k , σk
√
T
)
. (2)

Note that we do not explicitly impose bounds on the process Xk – typically non-negativity assumption

– but this will be naturally enforced by the cost of effort and the volatility parameter σk so that the

probability of negative consumption will be negligible.

Retailer. In this model, an electricity provider, incentivised by a regulation agency, aims at designing

a reward function based on the terminal ranking of the agents in order to lower the global consumption of

the customers: considering that the terminal consumption of the agents in the kth population, i.e. Xa
k (T ),

is distributed according to µk, the ranking r of a player consuming the quantity x, is measured by the

fraction of agents consuming less than x, i.e., r = Fµ(x), where Fµ denotes the cumulative distribution

function on µ (so that the worst performer/the highest consumption has rank one and the top performer

has rank 0).

A reward function in our context is then a continuous real-valued function R×[0, 1] 3 (x, r) 7→ R(x, r)

that depends both on the terminal consumption x and the terminal ranking r. We consider only rewards

that are non-increasing in both arguments, to favor low ranks. For any µ ∈ P(R), we write Rµ(x) =
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R(x, Fµ(x)) and when R(x, r) is independent of x, we say that the reward is purely rank-based. In the

sequel, we will consider the following decomposition assumption:

Assumption 2.2. Each sub-population k ∈ [k] receives a reward Rk has the form

Rk (x, r) = Bk(r)− px , (3)

where p ∈ R and Bk ∈ B with B the set of purely rank-based (decreasing) functions. We then call R the

total reward and its rank-dependent part Bk the additional reward (financial “bonus” for the consumer).

In the energy context, the second member “−px” represents the classic invoice of the consumer, where

p is the price to consume one unit of energy (e.g. in e/kWh). Here, this simple pricing strategy can be

viewed as a regulated price (as this is the case in France for example7). The invoice is embedded in the

reward function since it acts as a natural incentive to reduce the consumption. The first member Bk is

then the additional financial reward offered to consumers based on their terminal ranking.

Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Regulator

Imposes to reduce
global consumption

Reward = f (rank)

Competition (Nash) Competition (Nash) Competition (Nash)

Mean-field assumption: Each subpopulation is composed of an infinite number
of indistinguishable consumers

Ranking games : Application to Energy Savings C. Alasseur, E. Bayraktar, R. Dumitrescu, Q. Jacquet 4 / 25

Figure 1: Relation between the Principal (provider) and the sub-populations composed of an infinite
number of Agents (consumers).

In the modeling of energy consumption, a common-noise is often added (it can represent for example

the outdoor temperature). However, we show that the insertion of such a noise only shifts the consumption

distribution (by a random constant). This result was already mentioned for translation invariant functions

(such as purely rank-based rewards), and we extend in Section 5 this property to the more general class

of reward functions satisfying Assumption 2.2.

Assumption 2.3 (Fair reward mechanism).

(i) Each cluster is independent: the rank of an agent of cluster k ∈ [K] is only determined by the

distribution of the cluster k.

(ii) The same unitary bonus is proposed to each cluster, i.e., Bk(r) = xnom
k β(r) for all k ∈ [K].

7“Tarif réglementé de vente” (TRV)
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Assumption 2.3 imposes that the sub-populations evolve separately, but are linked through a common

reward function. This assumption is taken for the sake of a fair reward mechanism: on one hand,

consumers only compete with similar agents, i.e., with agents having the same characteristics (type of

heating, household composition, ...) and on the other hand, the shape of the reward should be identical

for each the sub-population to prevent from favoring one cluster compared to another. The function β is

then the unitary bonus received by every customer (in e/kWh).

Figure 1 outlines the Principal-Agent relation between the retailer and the field of consumers. We

then first focus on the competition among the agents before studying the principal problem.

2.2 Mean-field game between agents

In all this section, let us fix a cluster k ∈ [K], as there is no interaction between clusters. We suppose

here that the reward Rk(x, r) is given.

An agent of k is able to produce an effort ak to reduce its consumption, but has to pay as a counter-

part the quadratic cost ck a
2
k(t) with ck > 0 a given positive constant. The convexity of the effort cost

is natural in the context of our application. In particular, this cost either corresponds to the purchase

of new equipment that is more efficient than the older one (new heating installation, isolation, ...) or

corresponds to a change in the consumption pattern (sobriety). In the latter case, the convexity illustrates

that small efforts (as for e.g. switching off the light when leaving a room) are easy to make while large

consumption reduction (as for e.g. reducing heating or air conditioning ) are more demanding. It is also

possible to consider a more general convex cost, which is in non-quadratic form, since it would still lead

to a tractable agent problem. However, quadratic costs are often considered in order to obtain explicit

expression of the optimum, see e.g. [APT22] in the electricity context. In exchange of the effort, the

consumer receives the reward Rk(x, r), depending on his rank r = Fµk(x) within the sub-population,

where µk is the k-sub-population distribution. His objective is then:

Vk(Rk, µk) := sup
a∈A

E
[
Rk,µk(Xa

k (T ))−
∫ T

0
cka

2
k(t)dt

]
. (P cons)

The quantity Vk(Rk, µk) represents the optimal expected utility of an agent of class k, for a given provider’s

reward and population distribution.

We present below some results which will be used throughout the paper. The first theorem gives the

explicit solution of the agent’s best response to a population distribution µ̃k:

Theorem 2.1 (Characterization of the best response). Given a bounded total reward function Rk satis-

fying Assumption 2.2 and µ̃k ∈ P(R), let

γk(µ̃) =

∫
R
fnom
k (x) exp

(
Rk,µ̃(x)

2ckσ
2
k

)
dx (<∞) . (4)

Then, the optimal terminal distribution µ∗k of a player from cluster k admits a pdf defined as

fµ∗k(x) =
1

γ(µ̃k)
fnom
k (x) exp

(
Rk,µ̃k(x)

2ckσ
2
k

)
, (5)
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and the optimal value is then Vk(Rk, µ̃k) = 2ckσ
2
k ln γk(µ̃k) .

The above result corresponds to [BZ21, Proposition 2.1] and is obtained using the Schrödinger bridge

approach, see [CGP15] for connections with optimal transport theory. The consumption process Xk

under the optimal effort then satisfies the equation

dXk(t) = ak(t,Xk(t);µ
∗
k)dt+ σkdWk(t),

where the optimal effort ak(·, ·;µ∗k) is defined as

ak(t, x, µ) = σ2
k∂x lnuk(t, x, µ), uk(t, x, µ) = E

[
exp

(
1

2ckσ
2
k

Rk,µ(x+ σk
√
T − tZ

)]
, Z ∼ N (0, 1) .

(6)

We now introduce the notion of mean-field Nash equilibrium.

Definition 2.2 (Mean-field Nash equilibrium). We say that µk ∈ P(R) is an equilibrium (terminal

distribution) if it is a fixed-point of the mapping Φk : µ̃k 7→ µ∗k, with µ∗k given by the solution of the

equation (5).

The existence of such an equilibrium has been proved in the general setting using Schauder’s fixed

point theorem (see [BZ16]). We give below a characterization of this equilibrium distribution, as well as

an explicit expression for purely rank-based rewards:

Theorem 2.3 (Characterization of the equilibrium distribution). Given a bounded total reward function

Rk : R×[0, 1]→ R, the distribution µk ∈ P(R) is an equilibrium terminal distribution for cluster k if and

only if its quantile function qµk satisfies

N

(
qµk(r)− xnom

k

σk
√
T

)
=

∫ r
0 exp

(
−Rk,µk (qµk (z))

2ckσ
2
k

)
dz∫ 1

0 exp
(
−Rk,µk (qµk (z))

2ckσ
2
k

)
dz

, (7)

where N is the standard normal c.d.f. In the specific case of a purely rank-based reward, we obtain that

the equilibrium νk is unique and the quantile is given by

qνk(r) = xnom
k + σk

√
TN−1

∫ r0 exp
(
−Bk(z)

2ckσ
2
k

)
dz∫ 1

0 exp
(
−Bk(z)

2ckσ
2
k

)
dz

 . (8)

The mean consumption at the equilibrium is then mµk =
∫ 1

0 qµk(r)dr.

The above result is provided in [BZ21, Theorem 3.2], and below we extend the explicit characterization

to the more general case of reward maps R, which not only depend on the rank, but also have a linear

dependence on x.

Theorem 2.4 (Explicit characterization for non purely rank-based rewards). Suppose the reward is of

the form defined in Assumption 2.2. Then, the equilibrium µk is unique, and it satisfies

qµk(r) = qνk(r)− pT

2ck
, (9)
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where νk is the (unique) equilibrium distribution for the specific case p = 0 (purely rank-based reward),

defined in (8).

Theorem 2.4 shows that the addition of a linear part in the consumption acts as a shift on the

probability density function. We emphasize that our uniqueness result of the equilibrium µ generalizes

the one established in [BZ21], the latter being obtained under the additional assumptions that the map

r 7→ Rk(x, r) is convex and r 7→ ∂xRk(x, r) is non decreasing. Instead, we assume a linear dependence

on the consumption for the reward, but no convexity requirement is made on its purely rank-based

component B.

Corollary 2.5 (Equilibrium without additional reward). For Rk(x, r) = −px, the equilibrium follows

the normal distribution N
(
xpi
k , σk

√
T
)

, where xpi
k = xnom

k − pT
2ck

is the consumption under the natural

incentive associated with the price p. Moreover, the optimal consumer’s utility is

Vk(R,µk) = V pi
k := −pxpi

k −
p2T

4ck
. (10)

Proof. For Bk ≡ 0, Eq. (8) gives us qνk(r) = xnom
k + σk

√
TN−1(r), therefore νk ∼ N (xnom, σk

√
T ). We

then obtain by Theorem 2.4 the definition of the equilibrium µk. Finally, using Lemma A.1, we get

2ckσ
2
k ln γk(µ̃k) = ln

(∫
R
fnom
k (x) exp

(
−px

2ckσ
2
k

)
dx

)
= −pxnom

k +
p2T

4ck
.

Corollary 2.5 shows that the price of electricity constitutes a natural incentive, as the consumer

already makes an effort to reduce his consumption from xnom to xpi. However, it induces a disutility for

consumers (V pi ≤ 0). An increase of the price would lead to a supplementary consumption reduction but

would decrease further the utility of the agents, and is therefore a non-desirable energy saving strategy.

2.3 The Principal’s problem

In this section, we suppose that Assumption 2.2 is satisfied. Therefore, the equilibrium distribution is

unique and is defined by (9). For a mean-field equilibrium (µk)k∈[K], the mean consumption of the overall

population is then mµ =
∑

k∈[K] ρkmµk .

For a given k, we denote by εk the mapping which associates to the total reward function the corre-

sponding equilibrium distribution, i.e. εk(Rk) = µk, where µk satisfies (9). The problem of the retailer

can then be written as

π∗ := max
β∈B

pmµ − κ(mµ)−
∑
k∈[K]

ρkx
nom
k

∫ 1

0
β(r)dr

∣∣∣∣∣∣∣∣
Rk(x, r) = xnom

k β(r)− px
µk = εk(Rk)

Vk(Rk, µk) ≥ V pi
k + τxnom

k

 (P ret)

where κ(·) denotes the mean selling cost function and mµ is the mean consumption at the equilibrium µ.

The optimal objective π∗ then corresponds to the profit per agent (mean over the population) made on

the interval [0, T ] (in e). The inequality constraint on the utility ensures that consumers “play the game”,
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as it procures a strictly better utility than without additional reward. Classically, τ = 0, meaning that

the effort achieved by consumers in order to save energy is compensated (in mean) by the reward offered

by the retailer. Observe that with τ = 0, some agents may have a negative reward, which is not always

desirable. Therefore, for practical issue and acceptability, we allow for a positive tau to take into account

switching costs that appear when it comes to subscribing to a reward mechanism, see e.g. [MMV23].

Assumption 2.4. The function κ : R → R is increasing, convex and differentiable. Moreover, κ′(0) <

p < κ′(xpi).

Assumption 2.4 is natural in the context of our application. In practice, the selling cost function is

defined as κ : m 7→ cp(m) + s(m) , where

� s(·) denotes the penalty imposed by the regulator to favor a reduction in consumption,

� and cp(·) denotes the cost function, induced by the production of energy.

We assume here that the marginal cost κ′(·) is lower than the marginal price p at 0 – meaning that it is

always profitable to sell a positive quantity of energy – and conversely we assume that the marginal cost

κ′(·) is greater than the marginal price p at xpi – meaning that it is not profitable to sell more electricity

with the additional reward than without. The penalty function s is increasing and convex, since the

regulator aims at encouraging consumption reduction by strongly penalizing huge consumption levels.

Moreover, the retailer’s aggregated cost function is often considered as increasing and convex, due to a

decreasing return to scale, see e.g. [Ale+19; ABM20]: the mechanism of day-ahead markets favors the

“cheapest” (lowest marginal cost) power plants as the cheapest resource will participate to the electricity

generation first, followed by the second cheapest option, and so on, until the demand is satisfied. In the

case of non-convex aggregated cost, the convex hull of the aggregated cost function is often considered,

see e.g. [Sch+16].

In the case of a homogeneous population and linear dependence of the objective function with respect

to the equilibrium distribution, the results are obtained in [BZ21]. We extend them here to the more

general case of convex nonlinear dependencies.

2.3.1 Homogeneous population

We consider in this section the specific case where there is a unique cluster of customers (homogeneous

population). Therefore, we omit the dependence in k. Using Lemma A.2 (given in the Appendix),

Problem (P ret) can be reformulated as a constrained maximization problem on the distribution space:

Proposition 2.6. Let us consider the following minimization problem

min
µ∈P+(R)

κ

(∫
R
yfµ(y)dy

)
+ 2cσ2

∫
R

ln

(
fµ(y)

fnom(y)

)
fµ(y)dy

s.t.

∫
R
fµ(y)dy = 1

y 7→ ln

(
fµ(y)

fnom(y)

)
+

p

2cσ2
y decreasing

. (11)

10



Then, the reward Bµ∗ ∈ B, constructed from an optimal distribution µ∗ ∈ P+(R) of (11) as

Bµ∗(r) = V pi + τxnom + 2cσ2 ln

(
fµ∗(qµ∗(r))

fnom(qµ∗(r))

)
+ pqµ∗(r) (12)

is optimal for problem (P ret).

Proof. From Lemma A.2, Bµ defined in (12) is the reward that achieves a given equilibrium distribution

µ with the lowest cost while satisfying the utility condition in (P ret) (since V (R,µ) = (1 + τ)V pi for

any attainable equilibrium µ and R(x, r) = Bµ(r) − px). The objective function is then rewritten as a

function of the pdf fµ using the expression of the reward.

We now relax (11) by ignoring the decreasingness of the additional reward in (11):

min
f :R→R

{
κ

(∫
R
yf(y)dy

)
+ 2cσ2

∫
R

ln

(
f(y)

fnom(y)

)
f(y)dy

∣∣∣∣ ∫
R
f(y)dy = 1 and f(x) ≥ 0, x ∈ R

}
.

(P̃ ret)

The discussion about the relation between the initial problem (11) and the relaxed one (P̃ ret) is provided

further. The optimal solution of this relaxed problem is then characterized by the following lemma:

Lemma 2.7 (Characterization of the optimal distribution for the relaxed problem). Let Assump-

tion 2.4 holds. Then, (P̃ ret) defines a convex problem. Moreover, if µ∗ admits a density fµ∗ which

minimizes (P̃ ret), then it satisfies the following optimality conditions: for µ∗-almost every x in R,

fµ∗(x) =
1

α(µ∗)
fnom(x) exp

(
−xκ

′(mµ∗)

2cσ2

)
(13)

where

α(µ) =

∫
R
fnom(y) exp

(
−yκ

′(mµ)

2cσ2

)
dy .

Proof. The convexity of the objective functional with respect to f comes from the convexity of κ (see As-

sumption 2.4) and the convexity of x 7→ x ln(x). The first-order conditions for (P̃ ret) are detailed in Ap-

pendix A. Furthermore, they are sufficient for this convex problem, see e.g. [LBD22, Theorem 3.3].

In contrast with [BZ21], the optimal distribution is not explicit anymore due to the general function

κ(·). Instead, the optimal distribution is implicitly known through the fixed-point equation (13). We

simplify this condition in the following theorem to end up with one-dimension fixed-point equation on

the mean consumption.

Theorem 2.8. Let Assumption 2.4 holds, and let δ : R→ R be a function given by

δ(m) = p− κ′(m) .

Then, the distribution µ∗ = N (m∗, σ
√
T ), where m∗ satisfies the fixed-point equation

m− xpi =
T

2c
δ(m) , (14)

11



is optimal for the problem (P̃ ret). Moreover, the associated reward Bµ∗ is

Bµ∗(r) = τxnom +
c

T

[
(xpi)2 − (m∗)2

]
+ qµ∗(r)δ(m

∗) , (15)

and the associated retailer gain is

π∗ = m∗κ′(m∗)− κ(m∗) +

(
m∗ + xpi

2

)
δ(m∗)− τxnom . (16)

Corollary 2.9. Let Assumption 2.4 holds. Then, the fixed-point equation (14) admits a unique solution

m∗ ∈]0, xpi]. Moreover, the (unique) reward function is decreasing.

Proof. The increasingness of κ′(·) suffices to ensure that (14) admits a unique solution. Moreover, as

δ(0) ≥ 0 ≥ δ(xpi), the root of the equation T
2cδ(m)−m+xpi = 0 must belong to ]0, xpi]. As a consequence,

δ(m∗) ≤ 0 and the reward function Bµ∗ is decreasing.

The existence and uniqueness of a solution for (14) entails the existence and uniqueness of an optimal

reward for (P̃ ret). The knowledge of the bounds for m∗ along with the decreasingness of δ(·) allows to use

for instance a binary search algorithm to numerically find the optimal mean consumption in logarithmic

time.

Remark. For quadratic function s : m 7→ α2m
2 +α1m+α0, the fixed point of (14) is analytically known:

m∗ =
(
1 + α2T

c

)−1
(
xnom − (α1+cp)T

2c

)
.

The function δ(·) is here interpreted as the reduction desire of the provider, as consumption reduction

xpi − m∗ is proportional to |δ(m∗)|, see (14). It expresses the marginal benefit coming from selling

electricity (including the penalty function s provided by the regulator).

In the relaxed problem, we neglect that the reward is decreasing. However, this is directly ensured

by Corollary 2.9: the reward provided in Theorem 2.8 is decreasing if and only if δ is negative at the

optimum. Therefore, it is also optimal for the original retailer problem (P ret).

The optimal reward obtained in Eq. (15) is defined through the quantile of µ∗ and is therefore

unbounded. From the application viewpoint (it is not realistic to give unbounded rewards to consumers)

and for numerical issues, we now look at truncated reward. To this purpose, let us define for any M > 0

the truncated optimal equilibrium distribution µM through its p.d.f:

fµM (x) ∝ hM (x) := fnom(x) exp

(−yκ′(mµ∗) ∧M ∨ (−M)

2cσ2

)
. (17)

Theorem 2.10 (Bounded reward). The total reward which leads to equilibrium µM and gives to agents

the utility V pi + τxnom is bounded for every consumption level and is defined as

∀x ∈ R, RµM (x) = V pi + τxnom − 2cσ2 ln

∫
R
hM (y)dy + xκ′(mµ∗) ∧M ∨ (−M) . (18)

12



Moreover, the mean consumption converges to the optimal one :

mµM = mµ∗ +O
(
e−

M
2cσ2

)
.

Proof. From Lemma A.2., the total reward associated to µM isRµM = V pi+τxnom+2cσ2 ln (fµM (y)/fnom(y))

and satisfies the utility constraint by construction. The result is then obtained using the definition

of fµM . Besides, one can show (see [BZ21, Theorem 5.4]) that
∫
R hMdx = α(µ∗) + O

(
e−

M
2cσ2

)
and∫

R xhM (x)dx = α(µ∗)mµ∗ +O
(
e−

M
2cσ2

)
. As a consequence, mµM = mµ∗ +O

(
e−

M
2cσ2

)
.

As the optimal (unbounded) total reward, its truncated analog obtained in (18) is linear in the terminal

consumption (inside the bounds [−M,M ]). This means that the consumers are rewarded proportionally

to their consumption reduction. Moreover, for both the theoretical bonus (15) and the bounded one (18),

τ only acts as a shift on the function in order to uplift or lower the bonus received by each agent.

Consequently, it is possible to a posteriori choose τ in such a way that the bonus of a given ranking

corresponds to a certain amount.

2.3.2 Heterogeneous population

We consider here the more general setting of a heterogeneous population, not studied yet in the ranking

games literature, which consists in a finite number of clusters K > 1. The transformation which leads

to (11) still applies, but the additional constraint Assumption 2.3 has to be imposed to ensure the unitary

reward is identical for every sub-population8.

As it will be seen below, we can recover explicitly solvable problems for a subclass of heterogeneous

populations for which all agents of the overall population are similar up to a scaling factor.

Proposition 2.11 (Explicit characterization for a sub-class of heterogeneous population). Let suppose

that the following statement holds:

∀k ∈ [K],
xnom
k

xnom
1

=
σk
σ1

=
c1

ck
(:= θk) . (19)

Then, any µ1, . . . , µK equilibrium distributions associated to a common unitary reward β solution of (P ret)

satisfies fµk(y) = 1
θk
fµ1

(
y
θk

)
for all k ∈ [K]. Moreover, the retailer’s profit problem simplifies to

π∗ := θ̄max
β∈B

pmµ1 − κ̃(mµ1)− xnom
1

∫ 1

0
β(r)dr

∣∣∣∣∣∣∣∣
R1(x, r) = xnom

1 β(r)− px
µ1 = ε1(R1)

V1(R1, µ1) ≥ V pi
1 + τxnom

1

 , (20)

with κ̃(m) = θ̄−1κ(θ̄m) and θ̄ =
∑

k∈[K] ρkθk.

Proof. Using the characterization of the equilibrium in (9), qµk(r) = θkqµ1(r). Therefore, Fµk(y) =

8Using Lemma A.2, there exists a common unitary reward leading to equilibrium µ1, . . . , µK if and only if there exists

for all k ∈ [K] a constant Ck such that
ckσ

2
1

xnom
k

ln
(
fµk (x)

fnom
k

(x)

)
=

c1σ
2
1

xnom1
ln

(
fµ1 (x)

fnom1 (x)

)
+ Ck for all x ∈ R.
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Fµ1

(
y
θk

)
and fµk(y) = 1

θk
fµ1

(
y
θk

)
. Moreover,

γ(µk) =

∫
R
fnom
k (x) exp

(
xnom
k β(Fµk(x))− px

2ckσ
2
k

)
dx

=

∫
R

1
θk
fnom

1

(
x
θk

)
exp

xnom
1 β

(
Fµ1

(
x
θk

))
− p xθk

2c1σ2
1

 dx = γ(µ1) .

Therefore, Vk(Rk, µk) = θkV1(R1, µ1). As V pi
k = θkV

pi
1 , the utility constraint is satisfied for every sub-

population.

Proposition 2.11 shows that in this specific case of heterogeneous population, the problem boils down

to the homogeneous framework, up to a re-scaling of the cost function κ. Therefore, Theorems 2.8 and 2.10

and Corollary 2.9 still apply, and in particular, the optimal distribution is µ∗1 = N (m∗1, σ1

√
T ) where µ∗1

is uniquely determined by the equation m∗1 − xpi
1 = T

2c1
(p − κ̃′(m∗1)). The condition (19) corresponds to

the case where (i) the volatility of the noise is proportional to the nominal consumption and where (ii)

the price elasticity is identical for all sub-populations (see Section 4.1 and (25) for the link between the

cost of effort ck and the elasticity). The second statement (ii) may be more debatable, as the elasticity

of a consumer intuitively depends on the equipment of the housing (for instance the type of heating).

3 Numerical resolution in the non-uniform heterogeneous case

To deal with the general case of a heterogeneous population, we develop a numerical algorithm to compute

the optimal reward from the original problem P ret. For a given N ∈ N, we denote by ΣN the uniform

discretization of the interval [0, 1] by N points, such that ΣN := {0 = η1 < η2 < . . . < ηN = 1}. Let

M ∈ R+, then we define the class of bounded piecewise linear rewards adapted to ΣN as

B̂NM :=

{
r ∈ [0, 1] 7→

N−1∑
i=1

1r∈[ηi,ηi+1[

[
bi +

bi+1 − bi
ηi+1 − ηi

(r − ηi)
] ∣∣∣∣∣ b ∈ [−M,M ]N

b1 ≥ . . . ≥ bN

}
.

The reward function obtained as a linear interpolation of a non-increasing vector b is denoted by β̂[b].

For this special class of reward, the computation of some integrals can be simplified. The integral that

appears in the equilibrium characterization (8) becomes

∫ 1

0
exp

(
−x

nom
k β̂[b](r)

2ckσ
2
k

)
dr = 2ckσ

2
k(x

nom
k )−1

N−1∑
i=1

ηi+1 − ηi
bi+1 − bi

[
exp

(
−x

nom
k bi+1

2ckσ
2
k

)
− exp

(
−x

nom
k bi

2ckσ
2
k

)]

and the integral of the bonus simplifies into

∫ 1

0
β̂[b](r)dr =

N−1∑
i=1

(ηi+1 − ηi)
(
bi+1 + bi

2

)
.
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Box maximization. We define the following transformation:

φNM : [−1, 1]N → [−M,M ]N

z 7→ b
where

b1 = Mz1

bi = 1
2(bi−1 −M) + 1

2(bi−1 +M)zi, i > 1
. (21)

For any M ∈ R+ and N ∈ N, the function φNM is invertible and
(
φNM
)−1

is defined as:

(
φNM
)−1

(b) =


z1 =

1

M
b1

zi =
2bi − bi−1 +M

bi−1 +M
, i > 1

As an example, Figure 2 displays (ηi, zi)i∈[N ] and the corresponding bonus function β̂[φNM (z)].

We denote by πλ : B → R the Lagrangian function of (P ret), defined as

πλ(β) :=


pmµ − κ(mµ)−

∑
k∈[K]

ρkx
nom
k

∫ 1

0
β(r)dr

−λ
∑
k∈[K]

ρk

(
V pi
k + τxnom

k − Vk(Rk, µk)
)+

∣∣∣∣∣∣∣∣∣∣
Rk(x, r) = xnom

k β(r)− px
µk = εk(Rk)

 , (22)

where (·)+ := max(0, ·). For fixed Lagrangian multiplier λ > 0, πλ constitutes a relaxed version of the

initial problem (P ret), where violations of the utility condition are not fully forbidden but rather strongly

penalized in the objective for large values of λ.

Proposition 3.1 (Maximization with box constraints).

max
z∈[−1,1]N

πλ(β̂[φNM (z)]) = max
β∈BNM

πλ(β) . (23)

Proof. By definition of BNM , maxz∈[−1,1]N πλ(β̂[φNM (z)]) ≤ maxβ∈BNM
πλ(β). As the map φNM is invertible,

for any reward β ∈ B̂NM , there exists z ∈ [−1, 1]N such that β = β̂[φNM (z)], hence the reverse inequality.

Optimizing on B̂NM is then equivalent to optimize on [−1, 1]N via the transformation φNM .

Algorithm 1 aims at maximizing the function πλ. To this end, we do not directly search the optimal

reward but, as described previously, we use the invertible map φMN to search in the space [−1, 1]N ,

see Proposition 3.1. From a computational viewpoint, the search space is now independent of M , and

the decreasingness of the bonus function is directly encoded in the transformation. Therefore, the only

remaining constraints are the ones ensuring that the solution belongs to the unit box. The search is

then achieved by black-box optimization, since the evaluation of πλ can be explicitly done using (8)-(9)).

In the numerical results, we use CMA-ES ([Han06]) as optimization solver through the C++ interface

([Fab13]). Convergence properties are analyzed in [HO97], and we display in Section 4 the numerical

convergence of the objective along the iterations.

Remark. (i) The evaluation of πλ linearly depends on the number of sub-populations (i.e., K) since,

given a reward, the problem boils down to the computation of the equilibrium distributions for the

K sub-populations.
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Figure 2: Example of transformation using function φNM for M = 4 and N = 10

(ii) The reward function found by Algorithm 1 is bounded and decreasing, but might violate the utility

constraint “Vk(R,µk) ≥ V pi
k + τxnom

k ” for small penalization values of λ. Note that if the optimizer

for the discrete problem on a sufficiently precise grid is a global optimizer, then we get an ε-solution

of the initial problem, see Theorem 2.10.

Algorithm 1 Optimization of the reward

Require: M , N , λ, ΣN , solver Π, initial point z0,
Construct Θ as

Θ : z ∈]−1, 1]N 7→ πλ

(
β̂[φNM (z)]

)
(24)

Apply Π to maximize Θ (starting from z0) and get the final state zΠ.
return βΠ = β̂[φNM (zΠ)].

4 Application to Energy Savings

In this section, we develop a case study related to the French market of Energy Saving Certificates based

on the use of realistic data. We compare the results with existing reward mechanisms, and analyze them

in terms of consumption reduction (relatively to the target imposed by the European commission).

4.1 Instances

Consumers. We consider the case where the retailer aims at designing a reward for 4 types of con-

sumers, listed in Table 1. Data on the average annual consumption correspond to the French case. The

consumers are here distinguished according to the surface of the housing and the type of heating, which

can represent up to 90% of the annual consumption. A more elaborated clustering might also take into

account the location of the housing or the age of the occupants, but we focus here on the two main factors

affecting the consumption. We suppose for simplicity that the overall population is composed of these

four sub-populations, representing a total of 33 millions of households (current number of households in
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Distribution Housing Heating Nb occupants Consumption
(mean/year)

Sub-pop. 1 26% House 70 m2 Electric 3 9.9 MWh
Sub-pop. 2 49% House 70 m2 Non-electric 3 1.5 MWh
Sub-pop. 3 9% House 150 m2 Electric 4 20 MWh
Sub-pop. 4 16% House 150 m2 Non-electric 4 2.2 MWh

Table 1: Annual electricity consumption by type of usage.
The consumption data are extracted from “Agence France Electricité”9.

France). The distribution of the sub-populations is then computed by considering that there are thrice

as many 70m2-houses as 150m2-houses (the mean surface in France10 in around 90m2) and that a 35%11

of the French households is equipped with electric heating. This gives us a mean annual consumption of

5.46MWh, or a total annual consumption of 180TWh. In comparison, the French annual consumption

for residential households is around 155TWh. This slight over-estimation is due to the fact that we only

consider here houses with three or four occupants.

We suppose that the consumption levels displayed in Table 1 corresponds to customers having sub-

scribed to a regulated offer, corresponding to a fixed price of electricity p. As showed in Corollary 2.5,

nominal consumption (xnom) and consumption under price p (xpi) are linked by the relation xpi = xnom− p
2c

(we consider annual consumption in Table 1, i.e., T = 1).

In [NYK20], the authors used several utility concave utility function to model the price elasticity of

the electricity demand. In particular, they studied a quadratic utility function similar to the cost of effort

we consider: with T = 1 and constant effort, V pi
k = maxx∈R{−px− c(x− xnom)2} . This corresponds to

the welfare maximization with quadratic utility, defined as U(x, xnom) = −c(x− xnom)2. For this type of

utility function, the elasticity is defined as η = 1 − xnom

xpi
, see e.g. [NYK20, Eq. 19]). As a consequence,

using the relation between xpi and xnom and the definition of the elasticity, one can obtain the following

relations:

c =
−p

2ηxpi
, xnom = xpi(1− η) . (25)

Several values of price elasticity are reported in [NYK20; Cse20], and we use here η = −0.32, which

corresponds to the estimation of the long-run residential price elasticity made by [Bön+15] on the EPEX

spot market between 2012 and 2014. Price elasticity is always studied at the scale of a country (or even

broader), and therefore we take an estimate which is identical for all the agents (uniform elasticity). In

the numerical results, we will analyze the influence of a non-uniform elasticity, see Section 4.

Regarding the volatility, in the Low Carbon London pricing study, Carmichael et al. [Car+14] reported

a deviation of ±200 Watt for a demand of 1000 Watt. We take here a deviation σ
√
T equals to 10% of

the total consumption XT under zero effort for each of the four sub-populations. Finally, we consider

here for p the price of the regulated offer (“Tarif Bleu”) in 2019, that is 145 e/MWh12.

10https://www.lamaisonsaintgobain.fr/blog/insolites/metre-carre-et-confort-connaissez-vous-la-moyenne-

francaise
11https://www.voltalis.com/comprendre-electricite/les-types-de-chauffage-preferes-des-foyers-francais-

1772
11https://www.agence-france-electricite.fr/consommation-electrique/moyenne-par-jour/
12https://prix-elec.com/tarifs/evolution/2019
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ck (e/MWh2) σk (MWh)

Sub-pop. 1 24 0.57
Sub-pop. 2 156 0.09
Sub-pop. 3 12 4.15
Sub-pop. 4 107 0.13

Table 2: Cost of effort and volatility parameters.

Retailer cost. We consider here the year 2019 (just before the energy crisis). We display in Table 3

the marginal cost and the annual production for each type of power plants.

Power plant Marginal cost
(e/MWh)

Production
(TWh)

Hydro/Wind/Solar 0 to 15 115
Nuclear 30 380

Gas 70 30
Coal 86 7
Fuel 162 5

Table 3: Marginal price and annual production. Source: RTE Bilan électrique 2019 and Ademe

By aggregating the production capacities by increasing cost (as in merit order curves for day-ahead

markets), we can obtain an estimate of the supply cost according the production, see Figure 3. The total

cost is then obtained by dividing the supply cost by 0.35 as this approximately corresponds to the weight

of supply in the total cost13. To fit with our situation where we only look at the residential part of the

consumption, we shift the cost curve so that a residential consumption of 180TWh is “cleared” by a gas

power plant (as it is often the case in the day-ahead market) and we regularize it to be differentiable.
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Figure 3: Estimation of supply cost through marginal costs

13https://www.ecologie.gouv.fr/commercialisation-lelectricite
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Valuation of energy savings. Electricity retailers are obliged by the French government14 to reduce

the global consumption of their customers, in the context of energy efficiency and sobriety. From 2024

to 2030, the European regulation will impose a reduction target of 1.49% of the annual consumption,

and aspire to reach 1.9% by the end of 2030. If a retailer does not succeed in gathering a sufficient

amount of Energy Saving Certificates, a penalty of 15e/MWh is applied (for “classic” certificates)15. In

addition, each provider can buy (resp. sell) on a market a certain quantity of certificates if the quantity

of energy consumption overshoots (resp. undershoots) the target. In 2023, the price of certificates is

around 7.5e/MWh16. We consider here a target of 5% of consumption reduction over 3 years (T = 3),

corresponding to a mean consumption of 15.6MWh for the three years. The valuation function is then

defined as sθ(m) = softplusθ(15(m − 15.6)), where softplusθ = θ−1 log(1 + exp(θx)). Figure 4 shows the

two extreme cases : a purely liquid market (θ = 0) and the absence of exchange (θ = ∞). We choose

here θ = 0.3 to represent an intermediate case.
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Figure 4: Penalty function s(·) given by the regulator.

4.2 Numerical Results

We use N = 20 discretization points for the bonus description and M = 0.1p. This means that the

maximal unitary bonus given to an agent cannot exceed 10% of the electricity price. We take z0 ≡ 1

as initial guess. The main advantage of this initial guess is that it satisfies the utility constraint (if

τ < M). The initial standard deviation parameter of CMA-ES17 was set to 5%. The numerical results18

– parallelized on 10 threads – were obtained on a laptop i7-1065G7 CPU@1.30GHz.

14Loi POPE, 2005 : https://www.ecologie.gouv.fr/dispositif-des-certificats-deconomies-denergie
15https://www.calculcee.fr/les-primes-cee.php
16https://c2emarket.com/
17We use the C++ implementation of CMA-ES, available at https://github.com/CMA-ES/libcmaes.

Practical hints are provided for the choice of the parameters.
18The whole code is available on the GitHub repository: https://github.com/jacquq/rk_games_electricity.
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Uniform elasticity. Figure 5 shows the results for the test case described in Section 4.1, where the

price elasticity is identical for all the sub-populations. As a consequence, Proposition 2.11 applies and we

can analyze in this setting the performance of the numerical solving procedure: in Figure 5a, the reward

found by Algorithm 1 is very close to the (theoretical) optimal reward, showing that the solver successfully

finds the global optimum. About the computational cost, the algorithm converged in approximately 3000

iterations (around 400 seconds), but succeeded in reducing the optimality gap to less than 0.5% in 100

iterations.
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(a) Analytic optimal reward in red, compared to the
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Figure 5: Numerical results for the four populations described in Tables 1 and 2 (scalable case).

We depict in Figure 5 the distribution of the terminal consumption for the four sub-populations with

and without the bonus. As shown in Corollary 2.5, the distribution without reward is a Gaussian process

centered in xpi (which corresponds to three times the annual consumption displayed in Table 1). The ter-

minal distribution with the optimal reward is then a shift of this normal distribution – see Proposition 2.11.

We observe that, as expected, the terminal distribution is also identical for the four sub-populations, up

to a scaling (fµ∗k(x) = θ−1k fµ∗1(θ−1k x)). Here, the mean pluri-annual consumption on the whole population

decreased from 16.38MWh to 15.7MWh, giving a saving ratio of 4.1%. This has to be compared with the

initial objective of the regulator (a reduction of 5% of the pluri-annual consumption): the retailer found
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a compromise between the penalty imposed by the regulator, the cost to propose a reward mechanism

and its natural willing to sell electricity.

The optimal bonus offered to customers takes negative values for the 1% consuming the most (we

choose τ a posteriori in this sense) and goes up to more than 4e per MWh, which corresponds to a bonus

of 66e in average over the three years. This should be compared for instance with the “Bonus Conso”

proposed by TotalEnergies19, where 30e are proposed for a reduction of 5% over one year.

The N-players game. We now numerically illustrate the behavior of several individual consumers

incentivized by the optimal bonus found in Figure 5a. The simulation of the trajectories is done using a

Euler-Maruyama scheme, see e.g. [NT15] for details on the discretization, as for convergence rates.
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Figure 6: Deviation of the consumption from the no-bonus case
Trajectories for 20 consumers from sub-population 1.

Figure 6 displays the evolution of the forecasted consumption X
a∗1
1 , from which we subtracted the

deviation coming from price in order to clearly distinguish the supplementary effort made through the

influence of the bonus. This corresponds to the quantity

Y1(t) = X
a∗1
1 (t) +

p(t− T )

2c1
,

where a∗1 is the optimal effort in the presence of the bonus. We observe the same consumption decrease

as in Figure 5c, and this reduction has a linear behavior. Indeed, we showed in (18) that the optimal

total reward is linear in x, and for any reward Rk,µ = α0 − α1x, the corresponding effort is a∗k(t) = − α1
2ck

– see (6) – and the consumption reduction is then α1
2ck
t. This has a strong implication on the behavior of

the model: the effort made at time 0 ≤ t ≤ T by a consumer is independent from his current situation,

i.e., is not influenced by the hazard Wt. This means that a consumer will not stop/reduce his effort even

if he is undergoing an adverse hazard.

19https://www.totalenergies.fr/bonus-conso
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Non-uniform price elasticity. We now slightly change the previous test case by considering that the

price elasticity is not constant across the population, but rather depends on the characteristics of each

agent. In particular, we consider here that the price elasticity of a consumer with electric heating is

greater than someone with another heating technology. This greater specific adaptability is for instance

exploited by some energy providers20. To see the influence of non uniform elasticity, we divide by two

the elasticity of sub-populations 2 and 4 – as they do not have electric heating – and multiply by 1.5 the

elasticity of sub-populations 1 and 3. In this setting, the scaling condition (19) is no longer satisfied, and

so, contrary to the previous case, we are not able to find the theoretical optimal bonus function, but only

able to perform a numerical optimization using Algorithm 1.

Figure 7 shows the results for the test case with modified elasticity parameters. We use here N = 40

discretization points and let the algorithm runs up to 5000 iterations. The convergence of Algorithm 1

is still fast since the gap between the solution at iteration 100 was already close to the final solution to

less than 1%. About the terminal consumption distribution, we observe that the mean consumption for

sub-populations 1 and 3 is reduced by 5.3% whereas the mean consumption for sub-populations 2 and 4

is reduced by 2.3%. Indeed, it reflects the increase (resp. decrease) of price-elasticity for 1 and 3 (resp.

2 and 4). This should be compared with the uniform consumption reduction of 4.1% in the previous

setting.

The unitary bonus found by Algorithm 1 is lower than in Figure 5: for example, in the uniform-

elasticity case, every agent with a ranking lower than 0.6 received a unitary bonus greater than 2e per

MWh, while in the non-uniform case, only consumers with ranking lower than 0.2 can claim this level

of reward. This highlights the fact that the retailers does not need to propose a reward as huge as in

the previous case since the reduction effort is mostly endorsed by users with electric heating, now more

compliant to lower their consumption.

5 Extensions

We propose in this section several extensions to fit with more general settings.

Energy consumption with common-noise. The add of common-noise is not rare in the modeling

of electricity consumption. But in this present case, it does not impact the retailer problem. Intuitively,

as the reward is determined by the ranking of the agents, an identical perturbation of the consumption

will not modify the rankings, and so the effort made by the agents is independent of the common-noise.

Let us prove this intuitive behavior. To this purpose, we fix a sub-population k ∈ [K], and suppose

that the dynamics is now described as:

dXa
k (t) = ak(t)dt+ σkdWk(t) + σ0dW 0(t), Xk(0) = xnom

k . (26)

Proposition 5.1 (Translation invariance of the effort). Let Rk be the total reward for sub-population k

(satisfying Assumption 2.2) and µk be the equilibrium distribution under Rk and without common-noise

20https://www.sowee.fr/
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(c) Terminal consumption distribution for the four sub-populations

Figure 7: Numerical results for the four populations with different price elasticity.

(given by (8)-(9)). Then

µ0
k := x 7→ µk(x− σ0W 0(T )) (27)

is a (random) equilibrium distribution under Rk and dynamics (26).

Proof. For all x, q ∈ R and µ ∈ P(R), we have:

Rk,µk(x+ q) = Bk(Fµk(x+ q))− p(x+ q) = Bk(Fµk(·+q)(x))− p(x+ q) = Rk,µk(·+q)(x)− pq .

Therefore, according to the expression of the optimal effort in (6)

uk(t, x+ q, µ) = q−1uk(t, x, µ(·+ q))

and ak(t, x + q;µk) = ak(t, x;µ(· + q)). Therefore, the drift is translation invariant, and the results

of [LW15] apply: µ0 defined in (27) is an equilibrium distribution for the dynamics with common-

noise.
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In contrast with the purely rank-based case, total rewards satisfying Assumption 2.2 are not transla-

tion invariant. Nonetheless, the drift obtained through the optimal effort is translation invariant, enabling

to use the results of [LW15]. For a common-noise W 0 such that E[W 0(·)] = 0, maximizing the (expected

version of the) profit, defined in (P ret), will boil down to the same problem, and so will lead to the same

optimal unitary reward.

General reward R(x, r). We consider here a more general form of reward, coupling the terminal

consumption and the ranking. Therefore, Assumption 2.2 is no longer satisfied and the equilibrium

cannot be explicitly computed with Theorem 2.8. Instead, one can used fixed-point resolution techniques

to compute the equilibrium.To this purpose, let us denote by W1(f1, f2) the 1-Wasserstein metric for

distribution f1, f2 ∈ P1(R) = {µ ∈ P(R) :
∫
R |x|dµ(x) < ∞}. Algorithm 2 follows the standard way to

numerically compute mean-field Nash equilibria – see [AL20] – by iteratively updating the distribution

using the best response operator. Here, the operator is explicitly given by (5), which still applies for

general forms of reward function, see [BZ21].

Algorithm 2 Fixed-point Resolution

Require:
- initial p.d.f. f

µ
(0)
k

of cluster k,

- error tolerance ε,

- iteration maximum nmax,

- sequence of damping coefficients {li}i∈N.
d, i← 2ε, 0
while d ≥ ε or n ≤ nmax do

f
µ
(i+1/2)
k

← Φk(fµ(i)k
) . Best-response map defined in Definition 2.2

f
µ
(i+1)
k

← lifµ(i+1/2)
k

+ (1− li)fµ(i)k . damping li

d←W1

(
f
µ
(i)
k

, f
µ
(i+1)
k

)
. distance between two iterates

i← i+ 1
end while

Instead of Picard iterates (li = 1), a decreasing damping li =
(

1
i+1

)p
, p ∈ N can be used. The latter

sequence of inertial parameters defines iterates of Krasnoselskii-Mann type, which has been proved to

converge for pseudo-contractive map in Hilbert space, see [Raf07]. Such a damping has been used for

example to solve Linear-Quadratic mean-field control problems in [Gra+16].

We then show that the uniqueness of the reward function is no longer true in the general setting,

and there exists a family of equivalent reward function, going from purely rank-based rewards to purely

consumption-based reward ones:

Proposition 5.2 (Invariance). Let R∗(x, r) be an optimal reward function for the following problem

max
R(x,r)

{
−κ(mµ)−

∫
R
Rµ(x)fµ(x)dx

∣∣∣∣∣ µ = ε(R)

V (R,µ) ≥ V pi

}
(28)

This equilibrium distribution obtained with R∗ is denoted by µ∗. Then,
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(i) the purely rank-based reward function B̂ : r 7→ R∗(qµ∗(r), r) is also an optimal reward,

(ii) the reward function R̂ : x 7→ R∗(x, Fµ∗(x)) is also an optimal reward.

Proof. By definition, the two reward functions B̂ and R̂ also satisfy the characterization of the equilib-

rium (7) with µk = µ∗. Therefore, under these rewards, agents reach the same equilibrium as with R,

and their utility is identical. Morover, the objective in (28).

In practice, Proposition 5.2 has very useful implications. It states that complicated reward policies

simplify into simple rules. The first item shows that we can construct a purely competitive game in the

sense that the consumers receives incentives only through their rank. The second item shows that we

can construct a decentralized reward since the incentive of each customer only depends on their own

consumption. Note that this notion of invariance applies at the equilibrium, and the equivalence of the

reward is no longer true outside the equilibrium.

Time-dependent effort cost. In the context of the ecological transition, the consumers are more

willing to contribute to the energy reduction, and therefore the effort cost c can be viewed as a time

dependent parameter, modeling the change of customers’ behavior.

In this case, with a cost profile ck(t), t ∈ [0, T ] for each cluster k, the consumer’s problem becomes

Vk(R,µk) := sup
a

E
[
Rµk(Xa

k (T ))−
∫ T

0
ck(t)a

2
k(t)dt

]
. (29)

As a direct extension of [BZ16], we have the following existence result:

Theorem 5.3. Assume that the cost profiles are bounded such that there exist (ck, ck) verifying for all

t ≤ T
0 < ck ≤ ck(t) ≤ ck .

Then, there exists at least one equilibrium.

Nonetheless, there is no more explicit formula (even for the best response of the agents) in presence

of time-varying cost of effort, as the Schrödinger bridge method requires a quadratic cost of effort that

is constant over time. To illustrate the behavior of the agents with a time-dependent cost of effort, we

draw in Figure 8 the trajectories of the same 20 consumers as in Figure 6 obtained with the incentive

depicted in Figure 5a and a cost of effort ck(t) = 24 − 1.5t e/MWh. As expected, the energy savings

are greater than the previous case (the terminal consumption is now around 27.6MWh whereas it was

around 28.5MWh with ck(t) = 24e/MWh.

6 Conclusion

In this work, we study a Principal-Agent mean-field game where the incentive designed by the principal

is based on the ranking of each agent, initiating a competition between them. This specific framework

allows us to derive explicit formula for the (unique) mean-field Nash equilibrium for the agents’ problem.

Incorporating this characterization in the principal profit maximization problem, we prove in the homoge-

neous setting that the optimal reward can be obtained by solving a convex reformulation of the problem
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Figure 8: Deviation of the consumption from the no-bnous case.
Trajectories of 20 consumers from sub-population 1 obtained with the optimal control from the

mean-field approximation and a time-dependent cost of effort.

in the distribution space. We exploit the optimality conditions of the latter to then get the optimal

reward through a fixed-point equation. In the general case, we show that the problem can be recast as a

finite-dimensional maximization over a box, which can be efficiently solved by numerical algorithms.

We apply the results to electricity markets where a provider aims at designing a reward for its

consumers portfolio in order to incentivise them to energy sobriety. We construct realistic instances for

the French market of Energy Saving Certificates, and numerically observe that the rank-based rewards

can constitute efficient mechanisms to make substantial energy reduction, while staying sufficiently simple

to be easily grasped by the consumers.
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A Proofs

In this section, we collect several results and proofs.

Lemma A.1.

fnom
k (x) exp (τx) = exp

(
τxnom

k +
1

2
τ2σ2

kT

)
ϕ
(
x;xnom

k + τσ2
kT, σk

√
T
)
. (30)

Proof.

fnom(x) exp (τx) =
1

σ
√
T
√

2π
exp

(
−(x− xnom)2 − 2τσ2Tx

2σ2T

)
=

1

σ
√
T
√

2π
exp

(
−(x− [xnom + τσ2T ])2

2σ2T
+ τxnom +

1

2
τ2σ2T

)

Lemma A.2 (Set of attainable equilibria). (i) For a given cluster k, the set of equilibria attainable by

an additional reward function B is given by

Ek = {µ ∈ P+(R) : 2ckσ
2
k ln ζk,µk(qµk(r)) + pqµk(r) is bounded and decreasing} ,

with ζk,µ := fµ/f
nom
k .

(ii) If µk ∈ Ek, then

ε−1
k (µk) =

{
2ckσ

2
k ln ζk,µk(qµk(r)) + pqµk(r) + Ck : Ck ∈ R

}
(iii) Suppose that additional reservation “utility” constraint Vk(R,µk) ≥ V pi

k + τxnom
k and budget con-

straint
∫ 1

0 B(r)dr ≤ K, then the constant Ck in (ii) is restricted to

V pi
k + τxnom

k ≤ Ck ≤ K − 2ckσ
2
k

∫ 1

0
ln ζk,µk(qµk(r))dr − pmµk .
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In particular, such a Ck exists if and only if

2ckσ
2
k

∫ 1

0
ln ζk,µk(qµk(r))dr − pmµk ≤ K − V pi

k − τxnom
k .

Proof. Items (i) and (iii) directly comes from [BZ21]. For (ii), the condition of Theorem 2.3 is verified:∫ r

0
exp

(
−Rµ(qµ(z))

2cσ2

)
dz =

∫ r

0
(ζµ(qµ(r)))−1 dz =

∫ qµ(r)

−∞
fnom(z)dz .

As the uniqueness is concerned, suppose that B and B′ lead to the same distribution µ with p 6= 0. Then,

B and B′ lead to the same distribution ν with p = 0, see Theorem 2.4. Therefore, as shown in [BZ21], B

and B′ are equal up to a constant.

Proof of Theorem 2.4

We give here the proof for a given class and, for simplicity, we omit the dependence in k.

Characterization of an equilibrium. First, suppose that ν is an equilibrium distribution for the case

p = 0. Let γ ∈ R whose value will be determined later. By definition of fν (see (5)), we get∫ r

0
exp

(
−B(z)− p(qν(z) + γ)

2cσ2

)
dz =

∫ qν(r)
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dx.

Using (30) with τ = p
2cσ2 and the change of variables u =

x−(xnom+ pT
2c

)

σ
√
T

, we deduce

∫ r

0
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.

Therefore, taking γ = −pT
2c , we end up with

N


[
qν(r)− pT

2c

]
− xnom

σ
√
T

 =

∫ r
0 exp

(
−B(z)−p[qν(z)− pT

2c ]
2cσ2

)
dz

∫ 1
0 exp

(
−B(z)−p[qν(z)− pT

2c ]
2cσ2

)
dz

.

By setting qµ(r) = qν(r)− pT
2c , we recover the characterization of an equilibrium (see Theorem 2.3).
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Conversely, suppose now that µ is the equilibrium for p ∈ R. Then, following the same steps,

N


[
qµ(r) + pT

2c

]
− xnom

σ
√
T

 =

∫ r
0 exp

(
−B(z)

2cσ2

)
dz∫ 1

0 exp
(
−B(z)

2cσ2

)
dz

.

The distribution ν defined as qν(r) = qµ(r) + pT
2c is a valid equilibrium.

Uniqueness of the equilibrium. Suppose that there exist two distinct equilibrium distributions µ and

µ′ such that qµ 6= qµ′ . Then by the above proof, we derive the existence of two distinct equilibrium

distributions ν and ν ′ for the case p = 0 satisfying qν 6= qν′ . We get a contradiction by the uniqueness of

the equilibrium for purely rank-based rewards.

Proof of Lemma 2.7

We apply the KKT conditions on (P̃ ret) (relaxing the positivity assumption on f): for µ∗-almost every x

in R, 
0 = xκ′(mµ∗) + 2cσ2 ln

(
fµ∗(x)

fnom(x)

)
+ λ,∫ +∞

−∞
fµ∗(y)dy = 1

, λ ∈ R

From which we can deduce that fµ∗(x) = fnom(x) exp
(
−xκ′(mµ∗ )+λ

2cσ2

)
, which is positive for all x. The

Lagrange multiplier λ is then computed using the normalization condition on fµ∗ .

Proof of Theorem 2.8

Integrating (13) gives us

mµ =

∫ +∞

−∞
yfµ(y)dy =

1

α(µ)

∫ +∞

−∞
yfnom(y) exp

(
−yκ

′(mµ)

2cσ2

)
dy

=

∫ +∞

−∞
yφ

(
y;xnom − Tκ′(mµ)

2c
, σ
√
T

)
dy
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2c
= xpi +

T

2c
δ(mµ) ,

where we use Lemma A.1 between the two first lines in order to recover a gaussian process.

We can now recover the reward:

B∗(r) = V pi + τxnom + 2cσ2 ln (ζµ∗(qµ∗(r))) + pqµ∗(r)

= V pi + τxnom + qµ∗(r)
[
p− κ′(mµ∗)

]
− 2cσ2 ln
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)
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+ qµ∗(r)δ(mµ∗) ,
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where we use Lemma A.1 to get the value of the integral. From the definition of the provider objective,

π = pm− κ(m)−
∫ 1

0
B∗(r)dr

= pm− κ(m)− c

T

[
(xpi)2 −m2

]
−m
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p− κ′(m)

]
− τxnom

= mκ′(m)− κ(m) +
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2

)
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T

(
m− xpi

)
− τxnom

= mκ′(m)− κ(m) +

(
xpi +m

2

)
δ(m)− τxnom .

Proof of Proposition 5.2

(i) By construction, the reward B̃ is also bounded and decreasing. Then, the cost induced by the

additional reward is the same with R∗ and B̂:∫ +∞

−∞
R∗µ∗(x)fµ∗(x)dx =

∫ 1

0
B̂(r)dr .

Finally, µ∗ is also an equilibrium for the reward B̂:

1

γ̂(µ∗)
fnom(x) exp

(
B̂(Fµ∗(x))

2cσ2

)
=

1

γ∗(µ∗)
fnom(x) exp

(
R∗µ∗(x)

2cσ2

)
= fµ∗ ,

where γ̂ and γ∗ are computed respectively with B̂ and R∗. The last equality comes from the

characterization of an equilibrium. Therefore, the reward function B̂ satisfies the constraints and

produces the same objective value as R∗. It is also optimal.

(ii) The proof follows the same ideas as at the previous item.
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