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Abstract

We consider a problem where a Principal aims to design a reward function to a field of heterogeneous

agents. In our setting, the agents compete with each other through their rank within the population

in order to obtain the best reward. We first explicit the equilibrium for the mean-field game played by

the agents, and then characterize the optimal reward in the homogeneous setting. For the general case

of a heterogeneous population, we develop a numerical approach, which is then applied to the specific

case study of the market of Energy Saving Certificates.

Keywords: Ranking games, Principal-Agent problem, Mean-field games, Energy savings

1 Introduction

1.1 Motivation

Energy retailer has incentives to generate energy consumption saving at the scale of its customer portfolio.

For example in France, since 2006, power retailers – called Obligés – have a target of a certain amount

of Energy Saving Certificates1 to hold at a predetermined future date (usually 3 or 4 years). If they

fail to obtain this number of certificates, then they face financial penalties. Certificates can be acquired

either by certifying energy savings at the customer or by buying certificates on the market. If a retailer

holds more certificates than its target at the end of the period, the surplus can be sold on the Energy

Saving Certificates market. The pluri-annual energy savings goal is determined by the government, and is

function of the cumulative discounted amount of energy saved (thanks to thermal renovation for instance).

E. Bayraktar is partially supported by the National Science Foundation under grant DMS-2106556 and by the Susan
M. Smith chair.

1https://www.powernext.com/french-energy-saving-certificates
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Similar mechanisms – called White certificates – have been implemented in several countries in Europe

(Great Britain, Italy or Denmark). We refer to [1] for a recent report on the French case.

There is evidence from behavioral economy that energy consumption reductions can be motivated by

providing a financial reward and/or information on social norms or comparison to customers, see e.g. see

Alcott and Todd [2] or Dolan and Metcafe [3]. Especially, in [3], the authors find that social norms reduce

consumption by around 6% (0.2 standard deviations). Secondly, they obtain that large financial rewards

for targeted consumption reductions work very well in reducing consumption, with a 8% reduction (0.35

standard deviations) in energy consumption. For recent years, electricity providers are aware of this

lever to make energy savings, and contracts offering bonus/rewards in compensation of reduction efforts

appear, see e.g. the offers of “SimplyEnergy”2, “Plüm énergie”3 or “OhmConnect”4. The interest of this

kind of solutions is reinforced in the current situation of gas and power shortage where many countries

intend to diminish their global energy consumption5 .

1.2 Related Works and Contributions

In this paper, we analyze games with large populations of agents (consumers) interacting through their

empirical distribution. We focus on interactions based on the rank of each players: in our context,

the rank measures the reduction effort of a consumer compared with the rest of the population, and is

computed as the cumulative probability associated with his consumption. A rank r ∈ [0, 1] indicates that

the consumer is among the r percent of the population with the highest consumption reduction. The

retailer will then design a rank-based reward function to incentive agents to reduce their consumption.

We directly study the mean-field limit of the model, considering a continuum of consumers. Mean-

field games have been introduced simultaneously by Lasry and Lions [4, 5, 6] and Huang, Caines and

Malhamé [7, 8]. In particular, they provide efficient ways to compute an approximation of the equilibrium

for games with large number of players, which are rarely tractable. In the specific case of rank-based

interactions, Bayraktar and Zhang [9] provide results of existence and uniqueness of the equilibrium for

a general class of reward function, which enables the study of complex games [10, 11]. The design of

reward function is then modeled as a Principal-Agent problem, see e.g. the work of Sannikov [12] in

continuous-time settings. In such problems, the Principal (retailer) aims to design a monetary reward

that is offered to the agent, depending on the quantity of work achieved by the latter. The additional

difficulty in this context is the presence of a continuum of agents, and the interaction between each of

them through the mean-field game. Such extension of the Principal-Agent problem have been considered

by Carmona and Wang [13] and Elie, Mastrolia and Possamäı [14]. Shrivats, Firoozi and Jaimungal [15]

apply this theory to the market of Renewable Energy Certificate (REC). As we do here, the overall

population is clustered into a finite number of (infinite-size) independent sub-populations, each of them

composed of indistinguishable agents. This heterogeneous context has been less regarded as it increases

further the difficulty, both on analytic and numerical aspects. In contrast to our work, Shrivats et al.

consider the interaction between a regulator and a field of providers, whereas we focus here on the the

interaction between a provider and a field of consumers.

2https://www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
3https://plum.fr/cagnotte/
4https://www.ohmconnect.com/
5https://www.politico.eu/article/eu-countries-save-energy-winter/
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For purely rank-based reward function and homogeneous population, the optimal behavior of the prin-

cipal has been studied by Bayraktar and Zhang [11]. In particular, they provide analytic characterization

of the (unique) equilibrium for the mean-field game at the lower level, and look at the Principal-Agent

problem – also called in this context tournament design – for several principal objective functions.

In this paper, we first extend the theoretical results provided in [11] to rewards that not only depend

on the rank, but also linearly depends on the process value (consumption). Figure 1 represents the

different assumptions that are considered in [9], [11] and in this paper. We then propose a formulation

of the Principal-Agent problem in the context of Energy Savings. We show that the problem can be

converted to a problem of targeting an equilibrium distribution. We further provide an analytic solution

for the homogeneous case and, in the more general setting, we develop an algorithm to optimize the shape

of the reward. This algorithm is based on a black-box solver and we use here the solver CMA-ES [16].

We show the efficiency of the approach on homogeneous population, and present results on the general

case. We then provide a detailed interpretation of the numerical results. In particular, getting back to

the N -players game setting, we show that the use of rank-based reward function can induce a substantial

consumption reduction for the agent. Finally, we consider several extensions suitable to our context. In

particular, we focus on time-dependent costs of effort for the agents, reflecting the collective awareness

of agents on the energy reduction’s necessity. We are also able to provide some invariance results, which

show that the use of more sophisticated reward (a function that jointly depends on the rank and the

consumption of the agent) is, at the equilibrium, equivalent to a reward that belongs to the class we are

studying.

Purely ranked�� ��E
�� ��U

�� ��C

R(x, r)�� ��E

Assumption 2.1�� ��E
�� ��U

�� ��C
Monotonicity�� ��E

�� ��U

Figure 1: Classification of the results on mean-field equilibrium
The labels “E” (resp. “U”, “C”) stands for “Existence” (resp. “Uniqueness”, “Characterization”)

The rest of the paper is organized as follows: in Section 2, we first define the model and characterize

the solution to the agents’ problem. In Section 3 and 4, we propose a numerical approach to solve the

problem in the heterogeneous setting, where no analytic solution is known. Finally, we tackle some

extensions that naturally raise when considering applications to Energy Savings. The proofs of the main

results are given in the appendix.

2 Model

We consider a heterogeneous population which can be divided beforehand into K clusters of indistinguish-

able consumers. Each cluster k ∈ [K] : {1, . . . ,K} represents a proportion ρk of the overall population.
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Let (Ω,F,P) be a complete filtered probability space, which supports a family of K independent

Brownian motions {Wk}1≤k≤K . Let A be the set of progressively measurable processes a satisfying

the integrability condition E
∫ T

0 |a(s)|ds < ∞. For ak ∈ A, we denote by Xk(t) the forecasted energy

consumption of a customer of cluster k (typically an household), forecast made at time t for consumption

a time T > t. Assume that Xa
k follows the dynamics:

Xa
k (t) = Xk(0) +

∫ t

0
ak(s)ds+ σk

∫ t

0
dWk(s), Xk(0) = xnom

k . (1)

Here, the process ak is then viewed as the consumer’s effort to reduce his electricity consumption. Without

any effort, customers are expected to have a nominal consumption of xnom
k . In this model, we suppose

that there is no common noise between the different clusters. Note that we do not explicitly impose

bounds on the process Xk – typically non-negativity assumption, but this is naturally enforced by the

cost of effort and the volatility parameter σk.

Let R×[0, 1] 3 (x, r) 7→ R(x, r) ∈ R be a continuous bounded function that is non-increasing in both

arguments. The set of such reward functions is denoted by Rb. For any probability measure µ on R, we

write Rµ(x) = R(x, Fµ(x)) where Fµ denotes the cumulative distribution function on µ. When R(x, r)

is independent of x, we say that the reward is purely ranked-based. In the sequel, we will consider the

following decomposition assumption:

Assumption 2.1. The reward R has the form

R (x, r) = B(r)− px , (2)

where p ∈ R and B ∈ Rrb with Rrb the set of purely ranked-based (decreasing) bounded functions. We then

call R the total reward and its rank-dependent part B the additional reward.

In the energy context, the second member −px represents the natural incentive to reduce the consump-

tion, coming from the price p to consume one unit of energy, whereas the first member is the additional

financial reward offered to consumers based on their rank. In the N -players game setting, each cluster k

contains Nk players, and the ranking of a player i from this cluster, consuming Xi
k(T ), is measured by the

fraction 1
Nk

∑Nk
j=1 1Xj

k(T )≤Xi
k(T )

of players having equal or best performance (so that the worst performer

(the highest consumption) has rank one and the top performer has rank 1/Nk).

Assumption 2.2. (i) Each cluster is independent: the rank of an agent of cluster k ∈ [K] is only

determined by the distribution of the cluster k.

(ii) The same total reward is proposed to each cluster, i.e., the price of electricity p and the additional

reward B are common to all the clusters.

Assumption 2.2 means that the clusters evolve separately, but are linked through a common reward

function. We finally define fnom
k as

fnom
k (x) := ϕ

(
x ; xnom

k , σk
√
T
)
, (3)
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where ϕ( · ;µ, σ) is the pdf for N (µ, σ). The function fnom
k corresponds to p.d.f. of Xa

k (T ) under a zero

effort (ak is a constant process equals to 0), and is called nominal pdf.

2.1 Mean-field game between consumers

In all this section, we suppose the reward R(x, r) known, and Assumption 2.2 verified. Let us fix a cluster

k ∈ [K], as there is no interaction between clusters.

An agent of k is able to produces the effort ak to reduce its consumption, but has to pay the quadratic

cost ck a
2
k(t) with ck > 0 a given positive constant. In our context, this cost corresponds to the purchase

of new equipment, more efficient than old one (new heating installation, isolation, ...). In exchange,

the consumer receives the monetary reward B(r), depending on his rank r = Fµk(x) within the sub-

population, where µk is the k-subpopulation’s distribution. Its objective is then:

Vk(R,µk) := sup
a

E
[
Rµk(Xa

k (T ))−
∫ T

0
cka

2
k(t)dt

]
. (P cons)

The quantity Vk(R,µk) is then the optimal utility of an agent of class k, knowing the provider’s reward

and the population distribution.

2.1.1 Previous results

We recall here some results which will be used throughout the paper. The first theorem gives the explicit

solution of the agent’s best response to a population distribution µk:

Theorem 2.1 ([11],Proposition 2.1). Given R ∈ R and µ̃k ∈ P(R), let

βk(µ̃) =

∫
R
fnom
k (x) exp

(
Rµ̃(x)

2ckσ
2
k

)
dx (<∞) . (4)

Then, the optimal terminal distribution µ∗k of the player of cluster k has p.d.f.

fµ∗k(x) =
1

β(µ̃k)
fnom
k (x) exp

(
Rµ̃k(x)

2ckσ
2
k

)
, (5)

and the optimal value is then Vk(R, µ̃k) = 2ckσ
2
k lnβk(µ̃k) .

This result is obtained using the Schrödinger bridge approach, see [17] for connections with optimal

transport theory. We give below the definition of an equilibrium.

Definition 2.2. We say that µk ∈ P(R) is an equilibrium (terminal distribution) if it is a fixed-point of

the mapping Φk : µk 7→ µ∗k, with µ∗k given by the solution of the equation (5).

This equilibrium has been first studied using abstract tools to obtain existence in a very general

setting. We recall here the result:

Theorem 2.3 ([9], Theorem 3.2). The mapping Φk has a fixed-point, i.e., there exists at least one

equilibrium.
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We give below a characterization of an equilibrium distribution. This characterization gives analytic

expression of the quantile when the reward is purely ranked-based:

Theorem 2.4 ([11], Theorem 3.2). Given R ∈ Rb, the distribution µk ∈ P(R) is an equilibrium terminal

distribution for cluster k if and only if its quantile function qµk satisfies

N

(
qµk(r)− xnom

k

σk
√
T

)
=

∫ r
0 exp

(
−Rµk (qµk (z))

2ckσ
2
k

)
dz∫ 1

0 exp
(
−Rµk (qµk (z))

2ckσ
2
k

)
dz

,

where N is the standard normal c.d.f. In the specific case of a purely ranked-based reward, we obtain that

the equilibrium νk is unique and the quantile is given by

qνk(r) = xnom
k + σk

√
TN−1

∫ r0 exp
(
− B(z)

2ckσ
2
k

)
dz∫ 1

0 exp
(
− B(z)

2ckσ
2
k

)
dz

 . (6)

The mean consumption at the equilibrium is then mµk =
∫ 1

0 qµk(r)dr.

2.1.2 New results

We provide here an extension of Theorem 2.4 to the case when the reward map R can also depend on x

(note that all results given in [11] are provided in the case of purely ranked rewards). The next theorem

makes explicit the equilibrium for this more general form of reward R, that naturally arises in our case

study.

Theorem 2.5. Suppose the reward is of the form defined in Assumption 2.1. Then, the equilibrium µk

is unique, and it satisfies

qµk(r) = qνk(r)− pT

2ck
, (7)

where νk is the (unique) equilibrium distribution for the specific case p = 0 (purely ranked-based reward),

defined in (6).

Theorem 2.5 shows that the add of a linear part in “x” acts as a shift on the probability density

function. Our uniqueness result of the equilibrium µ generalizes the one obtained in [11], under the

additional assumptions that the map r 7→ R(x, r) is convex and r 7→ Rx(x, r) is non decreasing. We

prove that, with the special structure of the reward (linear part in x), no convexity condition is required

for purely-ranked part B.

Corollary 2.6. In the particular case when the provider does not offer additional reward B, i.e. the

total reward R only has a linear dependence on x, we have the following characterization: the equilibrium

follows the normal distribution N
(
xpi
k , σk

√
T
)

, where xpi
k = xnom

k − pT
2ck

is the consumption under the

natural incentive associated with the price p. Moreover, the optimal consumer’s utility is

Vk(R,µk) = V pi
k := −pxnom

k +
p2T

4ck
. (8)
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Corollary 2.6 shows that the electricity price induces a natural incentive to reduce the consumption.

Therefore, without supplementary reward, the consumer already makes an effort.

2.2 Retailer’s problem

In this section, we suppose that Assumption 2.1 is satisfied. Therefore, the equilibrium distribution is

unique and is defined by (6). For a mean-field equilibrium (µk)k∈[K], the mean consumption of the overall

population is then m =
∑

k∈[K] ρkmµk .

We denote the mapping from the pure-ranked part of the reward functions and the corresponding

equilibrium distribution by

εk : Rrb 7→ P(R) .

We also define ζk,µ := fµ/f
nom
k the normalized distribution. The problem of the retailer can then be

written as

max
B∈Rrb

s
∑
k∈[K]

ρkmµk

+ (p− cr)
∑
k∈[K]

ρkmµk −
∫ 1

0
B(r)dr

∣∣∣∣∣ µk = εk(B)

Vk(B) ≥ V pi
k

 (P ret)

where

� s(·) denotes the valuation of the energy savings,

� cr denotes the cost of production of energy,

� and mµ is the mean consumption at the equilibrium µ.

The constraint on the utility ensures that consumers play the game, as it procures a better utility than

without additional reward. In the sequel, we denote by g(·) the function defined as

g : m 7→ s(m)− crm .

Note that in [11] the results are obtained in the case of linear dependence of the gain functional

with respect to the equilibrium distribution. We extend here the results to the case of concave nonlinear

dependence. We make the following assumption on the function s.

Assumption 2.3. The function s : R → R is supposed to be decreasing, concave and differentiable and

such that s′ : R→ R is bounded.

2.2.1 Homogeneous population

We consider in this section the specific case where there is a unique cluster of customers. Therefore,

we omit the dependence in k. Using Theorem A.2 (developed in Appendix), the problem (P ret) can be
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reformulated as a constrained maximization problem on the distribution space:

(P ret) ⇐⇒



max
µ

g

(∫ +∞

−∞
yfµ(y)dy

)
− V pi − 2cσ2

∫ +∞

−∞
ln

(
fµ(y)

fnom(y)

)
fµ(y)dy

s.t.

∫ +∞

−∞
fµ(y)dy = 1

y 7→ ln

(
fµ(y)

fnom(y)

)
+

p

2cσ2
y bounded and decreasing

(9)

Knowing the optimal equilibrium distribution µ∗ of (9), the corresponding reward is

B∗(r) = V pi + 2cσ2 ln (ζµ∗(qµ∗(r))) + pqµ∗(r) .

One can verify that (µ∗, B∗) satisfies the characterization of an equilibrium given in Theorem 2.4. Note

also that, by construction, the utility condition V (B) ≥ V pi is automatically verified.

Consider the following relaxed optimization problem

max
µ

g

(∫ +∞

−∞
yfµ(y)dy

)
− V pi − 2cσ2

∫ +∞

−∞
ln

(
fµ(y)

fnom(y)

)
fµ(y)dy

s.t.

∫ +∞

−∞
fµ(y)dy = 1

(P̃ ret)

The discussion about the relation between the initial problem (9) and the relaxed one (P̃ ret) is provided

further. The optimal solution of this relaxed problem is then characterized by the following lemma:

Lemma 2.7. Let Assumption 2.3 holds and let δ : R→ R be a function given by

δ(m) = p− cr + s′(m) .

The optimal distribution µ∗ satisfies the following equation:

fµ(y) =
1

α(µ)
fnom(y) exp

(
y
g′(mµ)

2cσ2

)
α(µ) =

∫ +∞

−∞
fnom(y) exp

(
y
g′(mµ)

2cσ2

)
dy

(10)

This result is obtained using Karush-Kuhn-Tucker conditions, which are sufficient for this convex

problem, see Appendix A. In contrast with [11], the optimal distribution is not explicit anymore due to

the more general gain function g(·). The optimal distribution is implicitly known through a fixed-point

equation, which is given in the following theorem.

Theorem 2.8. Let Assumption 2.3 holds. Then, the distribution µ∗ ↪→ N (m∗, σ
√
T ) where m∗ satisfies

the fixed-point equation

m− xpi =
T

2c
δ(m) , (11)
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is optimal for the problem (P̃ ret). Moreover, the associated reward B∗ is

B∗(r) =
c

T

[
(xpi)2 − (m∗)2

]
+ qµ∗(r)δ(m

∗) , (12)

and the associated retailer gain is

π = s(m∗)−m∗s′(m∗) +

(
m∗ + xpi

2

)
δ(m∗) . (13)

The function δ(·) could be interpreted as the reduction desire of the provider. The decreasing condition

on B is then equivalent to δ(m) < 0. It shows that the additional reward is decreasing iff the saving

function s must be sufficiently important compared to the retailer marginal benefit p− cr. In this case,

an optimal solution for the relaxed optimization problem (P̃ ret) is an ε-optimal solution for the initial

optimization problem (9). The proof follows by similar arguments as the ones provided in Theorem 5.4.

in [11], but the ε is different, also depending on the bounds of g′.

Remark. For quadratic function s : m 7→ α2m
2 +α1m+α0, the fixed point of (11) is analytically known:

m∗ =
xnom + (α1−cr)T

2c

1− α2T
c

.

2.3 Heterogeneous population

We now consider that there exists a finite number of clusters k > 1. The transformation which leads

to (9) still applies, but there is an additional constraint given by the equality of the reward for all the

clusters. The constrained optimization problem reads as follows

max
µ1,...,µK

g

∑
k∈[K]

ρk

∫ +∞

−∞
yfµk(y)dy

− ∑
k∈[K]

ρk

[
V pi
k + 2ckσ

2
k

∫ +∞

−∞
ln

(
fµk(y)

fnom
k (y)

)
fµk(y)dy

]

s.t.

∫ +∞

−∞
fµk(y)dy = 1, ∀k ∈ [K]

y 7→ ln

(
fµk(y)

fnom
k (y)

)
+

p

2ckσ
2
k

y bounded and decreasing

V pi
1 + 2c1σ

2
1 ln

(
fµ1(y)

fnom
1 (y)

)
= . . . = V pi

K + 2cKσ
2
K ln

(
fµK (y)

fnom
K (y)

)
, ∀y ∈ R

(14)

Even if we relax the problem as in the homogeneous case by removing the constraint of boundedness and

monotonicity, the KKT conditions are still not sufficient to ensure optimality, due to the nonlinearity of

the last set of equality constraints. In fact, this set of constraints represents the coupling condition of

having the same reward function for all the cluster (Assumption 2.2). The next section is dedicated to

numerical algorithm which can be used for heterogeneous population.
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3 Reward optimization

3.1 Restriction to piecewise linear reward

For a given N ∈ N, we denote by ΣN a range of rank values such that ΣN := {0 = η1 < η2 < . . . < ηN =

1}. Let M ∈ R+, then we define the class of bounded piecewise linear rewards adapted to ΣN as

R̂NM :=

{
r ∈ [0, 1] 7→

N−1∑
i=1

1r∈[ηi,ηi+1[

[
bi +

bi+1 − bi
ηi+1 − ηi

(r − ηi)
] ∣∣∣∣∣ b ∈ [−M,M ]N

b1 ≥ . . . ≥ bN

}
.

The reward function obtained as a linear interpolation of a non-increasing vector b is denoted by RNM (b).

For this special class of reward, the computation of some integrals can be simplified. The integral that

appears in the equilibrium characterization (6) becomes

∫ 1

0
exp

(
− B(z)

2ckσ
2
k

)
dz = 2cσ2

N−1∑
i=1

ηi+1 − ηi
bi+1 − bi

[
exp

(
− bi+1

2cσ2

)
− exp

(
− bi

2cσ2

)]

and the integral of the reward simplifies into

∫ r

0
B(z)dz =

N−1∑
i=1

(ηi+1 − ηi)
(
bi+1 + bi

2

)
.

We define the following transformation:

φNM : ]−1, 1]N → R̂NM
z 7→ RNM (b)

where

b1 = Mz1

bi = 1
2(bi−1 −M) + 1

2(bi−1 +M)zi, i > 1
(15)

Note that, for any M ∈ R+ and N ∈ N, the function φNM is invertible and
(
φNM
)−1

is defined as:

(
φNM
)−1

(b) =


z1 =

1

M
b1

zi =
2bi − bi−1 +M

bi−1 +M
, i > 1

As the map φNM is invertible, exploring the space [−1, 1]N is sufficient to cover the space R̂NM . Optimizing

on R̂NM is then equivalent to optimize on [−1, 1]N via the transformation φNM . As an example, Figure 2

displays a reward function in both spaces.

3.2 Description of the algorithm

We denote by πλ : Rrb → R the Lagrangian function of (P ret), defined as

πλ(B) := g

∑
k∈[K]

ρkmµk

+ p
∑
k∈[K]

ρkmµk −
∫ 1

0
B(r)dr + λ

∑
k∈[K]

ρk max(V pi
k − Vk(B)), (16)
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Figure 2: Example of transformation using function φM for M = 4 and N = 10

where the equilibrium distribution µk = εk(B) is computed with closed-form formula given in Theo-

rem 2.5. For fixed Lagrangian multiplier λ, this function constitutes a relaxed version of the initial

problem (P ret). Algorithm 1 aims to maximize the function πλ. To this end, we do not directly search

the optimal reward but, as described previously, we use the invertible map φMN to search in the space

[−1, 1]N . The search is then achieved by an off-the-shelf solver (it can be evolutionary methods for

instance as the evaluation of πλ is relatively cheap).

Algorithm 1 Optimization of the reward

Require:
- M , N , λ, ΣN ,

- solver Π,

- initial point z0,
Construct Θ as

Θ : z ∈]−1, 1]N 7→ (πλ ◦RNM )(z) (17)

Apply Π to maximize Θ (starting from z0) and get the final state zΠ.
return BΠ = (RNM )(zΠ).

Remark. The reward function found by Algorithm 1 is bounded and decreasing, but might violate the

utility constraint Vk(B) ≥ V pi
k for small penalization values of λ. Note that if the optimizer for the

discrete problem on a sufficiently precise grid is a global optimizer, then we get an ε-solution of the initial

problem.

4 Numerical results

We implement Algorithm 1, using CMA-ES [16] as optimization solver through the C++ interface [18].

We use 20 discretization points / optimization variables. We always take z0 ≡ 1 as initial guess. This

initial guess has the main advantage to satisfy the utility constraint (otherwise the problem is infeasible).

The σ parameter of CMA is fixed to 0.05. The numerical results were obtained on a laptop i7-1065G7

11



CPU@1.30GHz.

We use in this toy model the following parameters:

Parameter Segment 1 Segment 2 Unit

T 3 years

p 0.17 e/kWh

cr 0.15 e/kWh

X(0) 18 12 MWh

σ 0.6 0.3 MWh

c 2.5 5 e [MWh]−2 [years]2

s m 7→ 0.1m2 e
ρ 0.5 0.5 -

Table 1: Parameters of the instance

The price which is considered here corresponds to the price of electricity in French regulated offers,

and the initial forecasted consumption is around the french mean consumption over 3 years6 Note that

this duration corresponds to the canonical duration of a period in the Energy Saving Certificates market.

The two segments we design differ by their consumption, their volatility and their cost of effort.

Indeed, as the second cluster already consumes less than the first one, he has more difficulty to reduce

the energy consumed, as it may be already reserved to necessary usages.

4.1 Homogeneous population
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(a) Analytic optimal reward in red,
compared to the reward function found by CMA
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Figure 3: Optimization in the homogeneous case

Figure 3a shows the reward found by Algorithm 1. As a comparison, the optimal reward (computed

with (12)) is also drawn. The two reward are very close, meaning that the algorithm has converged to

the global optimum. Figure 3b depicts three cumulative distribution function. The nominal one has a

mean value of 18, the one with the price as unique incentive has a mean value around 17, and the cdf

6https://www.cre.fr/en/Electricity/retail-electricity-market
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obtained with the optimal reward has a mean value around 15. As expected, the additional reward has

induced a higher effort in the population, and so a higher energy reduction.

Note that the consumers has an average bill of pxpi = 2 890e (for T = 3 years) and the additional

reward takes values in [−500, 1 000]e . Therefore, the additional reward is, in this toy model, important

in comparison to the original bill.

The N-players game. We now illustrate numerically the behavior of several agents at the ε-Nash

equilibrium, with the optimal reward, which is obtained from the limit equilibrium (see Theorem 3.8 in

[9]). The simulation of the trajectories is done using a Euler-Maruyama scheme. We refer to [19] for

details on the discretization, as for convergence rates.
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(a) Trajectories without additional reward
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(b) Trajectories with optimal control from mean-field
approximation

Figure 4: Trajectories for 20 consumers (homogeneous case)

Figure 4 displays the evolution of the forecasted consumption. At time t = T = 3, we then have

the true consumption on the horizon of each agent. In the graph, the values goes from 15 to 19.5. In

both subfigures, the solid lines represents the mean consumption over the large (finite) set of consumers

(typically, we average on 1000 curves). Note that the hazard realization is the same in the two graphs, so

that each realization can be compared. Once again, we observe that the consumption reduction is greater

with the additional reward.

For completeness, Figure 5 shows the optimal cost of effort of each agent, i.e., t 7→
∫ t

0 ca
2(s)ds. We

observe that each agent is facing almost the same cost, but three curves seems to diverge. In fact, they

corresponds to three agents that have undergone the most extreme Brownian realization. The pink agent

has to maintain a high effort to keep the best ranking whereas for the grey and purple agents, the effort

they need to do be better ranked is so important (as they are already badly ranked) that they prefer to

make a small effort and stay in the same position.

4.2 Heterogeneous population

Figure 6 displays the optimal reward found bu the algorithm. In addition, we also draw the optimal

reward that we would have obtained if the population was only composed of the first (resp. second)
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Figure 5: Optimal cost of effort for 20 consumers (homogeneous case)

cluster. We cannot guarantee the optimality of this reward, but the solution seems to be very reasonable,

as it is a compromise of the two (homogeneous) optima. One can observe that the consumption reduction

is less important with this reward (Figure 6b) than in the previous case (Figure 3b). In Fig. 6c we display

the retailer’s objective value for each reward (B1 resp. B2 denotes the optimal reward associated with

the objective criteria π1 resp. π2, for the subpopulation 1 resp. 2). On both cluster, we can observe the

gap coming from the heterogeneity of the population: the retailer cannot perfectly design a reward to

each cluster. We also show the value of the utility constraint. We observe that the inequality constraint

in not saturated when using B∗. This means that the first cluster has a strictly greater utility with this

reward compared to the case without additional reward.

The N-players game. As for the homogeneous case, we illustrate numerically the behaviour of the

consumption of several agents in Figure 7.

5 Extensions

In this section, we propose several extensions to more general settings. In this context, the equilibrium

is not analytically known anymore. Therefore, we propose a numerical algorithm based on a fixed point

method to compute an equilibrium.

We denote by W1(f1, f2) the 1-Wasserstein metric for distribution f1, f2 ∈ P1(R) = {µ ∈ P(R) :∫
R |x|dµ(x) <∞}. We provide an algorithm based on the best response characterization given by equation

(5). The algorithm is detailed in Algorithm 2. Several sequences of damping coefficients have been tested

on this problem:

� Iteration-independent damping li = 1/2,

� Decreasing damping li =
(

1
i+1

)p
, p ∈ N .

The convergence with the damping li = 1/(i + 1) is slow but guaranteed (as the sequence converges to

zero) whereas the other damping may not converge.
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Figure 6: Optimization in the heterogeneous case

General reward R(x, r). We consider first general form of reward coupling between x and r, such that

Assumption 2.1 does not hold anymore.

Theorem 5.1 (Invariance). Let R∗(x, r) be an optimal bounded and decreasing reward function for the

following problem

max
R(x,r)

{
g (mµ)−

∫ +∞

−∞
Rµ(x)dx

∣∣∣∣∣ µ = ε(B)

V (B) ≥ V pi

}
(18)

This equilibrium distribution obtained with R∗ is denoted by µ∗. Then,

(i) the purely ranked reward function B̂ : r 7→ R∗(qµ∗(r), r) is also an optimal reward,

(ii) the reward function R̂ : x 7→ R∗(x, Fµ∗(x)) is also an optimal reward.

In practice, Theorem 5.1 has very useful implications. It states that complicated reward policies
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Figure 7: Trajectories for 20 consumers (heterogeneous case)

Algorithm 2 Fixed-point Resolution

Require:
- initial p.d.f. f

µ
(0)
k

of cluster k,

- error tolerance ε,

- iteration maximum nmax,

- sequence of damping coefficients {li}i∈N.
d, i← 2ε, 0
while d ≥ ε or n ≤ nmax do

f
µ
(i+1/2)
k

← Φk(fµ(i)k
)

f
µ
(i+1)
k

← lifµ(i+1/2)
k

+ (1− li)fµ(i)k . damping li

d←W1

(
f
µ
(i)
k

, f
µ
(i+1)
k

)
. distance between two iterates

i← i+ 1
end while
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simplify into simple rules. The first item shows that we can construct a purely competitive game in the

sense that the consumers receives incentives only through their rank. The second item shows that we

can construct a decentralized reward since the incentive of each customer only depends on their own

consumption. Note that this notion of invariance applies at the equilibrium, and the equivalence of the

reward is no longer true outside the equilibrium.

Numerical experiments. In order to illustrate the invariance theorem, we show an example of optimiza-

tion with R(x, r) = B(r) + C(x), where C(x) is taken as a quadratic function. During the optimization,

we use Algorithm 2 with a linear decreasing damping (1/(i + 1). The optimal reward we obtained is

depicted in Figure 8.
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Figure 8: Example of equivalent optimal reward with non-linear function of the terminal value

Note that the optimal distribution induced by this reward is not depicted. In fact, as shown in The-

orem 5.1, the same optimal equilibrium as in Figure 3b.

Time-dependent effort cost In the context of ecological transition, the consumers are more willing

to contribute to the energy reduction, and therefore the effort cost c can be viewed as a time dependent

parameter, modeling the change of customers’ behaviour.

In this case, with a cost profile ck(t), t ∈ [0, T ] for each cluster k, the consumer’s problem becomes

Vk(R,µk) := sup
a

E
[
Rµk(Xa

k (T ))−
∫ T

0
ck(t)a

2
k(t)dt

]
. (19)

Theorem 5.2. Assume that the cost profiles are bounded such that there exist (ck, ck) verifying for all

t ≤ T
0 < ck ≤ ck(t) ≤ ck .

Then, Theorem 2.3 still applies, i.e., for any reward function R(x, r), there exists at least one equilibrium

distribution.
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Numerical experiments. We now consider a cost decreasing with the time: c(t) = 5.5− 1.5t. Figure 9

draws the same 20 consumers as in the previous cases for the optimal reward obtained in Figure 3a.
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Figure 9: Trajectories with decreasing cost of effort

6 Conclusion

In this work, we study a specific type of incentive – based on the rank of each agent – in order to reduce

the global consumption of a population. This reward introduces a competition between the agents, and

we are able to give the equilibrium distribution in the mean-field context. The optimal design of the

retailer is then analyzed, both theoretically and analytically. We then study the behavior of the model

on example inspired by real application case. We numerically observe that ranked-based reward function

can be efficient mechanisms to make substantial energy reduction.
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[10] Erhan Bayraktar, Jakša Cvitanić, and Yuchong Zhang. “Large tournament games”. In: The Annals of Applied

Probability 29.6 (Dec. 2019). url: https://doi.org/10.1214%2F19-aap1490.

[11] Erhan Bayraktar and Yuchong Zhang. “Terminal Ranking Games”. In: Mathematics of Operations Research

46.4 (Nov. 2021), pp. 1349–1365. url: https://doi.org/10.1287%2Fmoor.2020.1107.

[12] Yuliy Sannikov. “A Continuous-Time Version of the Principal–Agent Problem”. In: Review of Economic

Studies 75.3 (July 2008), pp. 957–984. url: https://doi.org/10.1111/j.1467-937x.2008.00486.x.
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A Appendix

In this section, we collect several results and proofs.

Theorem A.1.

fnom
k (x) exp (τx) = exp

(
τxnom

k +
1

2
τ2σ2

kT

)
ϕ
(
x;xnom

k + τσ2
kT, σk

√
T
)
. (20)
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Proof.

fnom(x) exp (τx) =
1

σ
√
T
√

2π
exp

(
−(x− xnom)2 − 2τσ2Tx

2σ2T

)
=

1

σ
√
T
√

2π
exp

(
−(x− [xnom + τσ2T ])2

2σ2T
+ τxnom +

1

2
τ2σ2T

)

Theorem A.2. (i) For a given cluster k, the set of equilibria attainable by a reward function B is

given by

εk(Rrb) = {µ ∈ P+(R) : 2ckσ
2
k ln ζk,µk(qµk(r)) + pqµk(r) is bounded and decreasing}

(ii) If µk ∈ εk(Rrb), then

ε−1
k (µk) =

{
2ckσ

2
k ln ζk,µk(qµk(r)) + pqµk(r) + C : C ∈ R

}
(iii) Suppose that additional reservation “utility” constraint Vk(B) ≥ V pi

k and budget constraint
∫ 1

0 B(r)dr ≤
K, then the constant Ck in (ii) is restricted to

V pi
k ≤ Ck ≤ K − 2ckσ

2
k

∫ 1

0
ln ζk,µk(qµk(r))dr − pmµk .

In particular, such a Ck exists if and only if

2ckσ
2
k

∫ 1

0
ln ζk,µk(qµk(r))dr − pmµk ≤ K − V pi

k .

Proof. (ii) The condition of Theorem 2.4 is verified:∫ r

0
exp

(
−Rµ(qµ(z))

2cσ2

)
dz =

∫ r

0
(ζµ(qµ(r)))−1 dz =

∫ qµ(r)

−∞
fnom(z)dz .

As the uniqueness is concerned, suppose that B and B′ lead to the same distribution µ with p 6= 0. Then,

B and B′ lead to the same distribution ν with p = 0, see Theorem 2.5. Therefore, as shown in [11], B

and B′ are equal up to a constant.

Proof of Theorem 2.5

We give here the proof for a given class and, for simplicity, we omit the dependence in k.

Characterization of an equilibrium. First, suppose that ν is an equilibrium distribution for the case
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p = 0. Let γ ∈ R whose value will be determined later. By definition of fν (see (5)), we get∫ r

0
exp

(
−B(z)− p(qν(z) + γ)

2cσ2

)
dz =

∫ qν(r)

−∞
exp

(
−B(Fν(x))

2cσ2
+

p

2cσ2
(x+ γ)

)
fν(x)dx

=
e

p

2cσ2
γ

β(ν)

∫ qν(r)

−∞
exp

(
−B(Fν(x))

2cσ2
+

p

2cσ2
x

)
fnom(x) exp

(
B(Fν(x))

2cσ2

)
dx.

Using (20) with τ = p
2cσ2 and the change of variables u =

x−(xnom+ pT
2c

)

σ
√
T

, we deduce

∫ r

0
exp

(
−B(z)− p(qν(z) + γ)

2cσ2

)
dz =

1

β(ν)
e

1
2cσ2

(
γ+pxnom+Tp2

4c

) ∫ qν(r)

−∞
ϕ

(
x;xnom +

pT

2c
, σ
√
T

)
dx

=
1

β(ν)
√

2π
e

1
2cσ2

(
γ+pxnom+Tp2

4c

) ∫ qν (r)−(xnom+
pT
2c )

σ
√
T

−∞
exp

(
−u

2

2

)
du

=
1

β(ν)
e

1
2cσ2

(
γ+pxnom+Tp2

4c

)
N

(
qν(r)− (xnom + pT

2c )

σ
√
T

)
.

Therefore, taking γ = −pT
2c , we end up with

N


[
qν(r)− pT

2c

]
− xnom

σ
√
T

 =

∫ r
0 exp

(
−B(z)−p[qν(z)− pT

2c ]
2cσ2

)
dz

∫ 1
0 exp

(
−B(z)−p[qν(z)− pT

2c ]
2cσ2

)
dz

.

By setting qµ(r) = qν(r)− pT
2c , we recover the characterization of an equilibrium (see Theorem 2.4).

Conversely, suppose now that µ is the equilibrium for p ∈ R. Then, following the same steps,

N


[
qµ(r) + pT

2c

]
− xnom

σ
√
T

 =

∫ r
0 exp

(
−B(z)

2cσ2

)
dz∫ 1

0 exp
(
−B(z)

2cσ2

)
dz

.

The distribution ν defined as qν(r) = qµ(r) + pT
2c is a valid equilibrium.

Uniqueness of the equilibrium. Suppose that there exist two distinct equilibrium distributions µ and

µ′ such that qµ 6= qµ′ . Then by the above proof, we derive the existence of two distinct equilibrium

distributions ν and ν ′ for the case p = 0 satisfying qν 6= qν′ . We get a contradiction by the uniqueness of

the equilibrium for purely ranked-based rewards.
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Proof of Lemma 2.7

We apply the KKT conditions on (P̃ ret):
0 = yg′(mµ)− 2cσ2 ln

(
fµ(y)

fnom(y)

)
+ λ, ∀y ∈ R∫ +∞

−∞
fµ(y)dy = 1

, λ ∈ R

From which we can deduce:

∀y ∈ R, fµ(y) =
1

α(µ)
fnom(y) exp

(
y
g′(mµ)

2cσ2

)
α(µ) =

∫ +∞

−∞
fnom(y) exp

(
y
g′(mµ)

2cσ2

)
dy

Then, as the objective function is concave in fµ (from 2.3), and the equality constraint is affine, the

optimality condition is sufficient.

Proof of Lemma 2.7

Integrating (10) gives us

mµ =

∫ +∞

−∞
yfµ(y)dy =

1

α(µ)

∫ +∞

−∞
fnom(y) exp

(
y
g′(mµ)

2cσ2

)
dy

=

∫ +∞

−∞
yφ

(
y;xnom +

Tg′(mµ)

2c
, σ
√
T

)
dy

= xnom +
Tg′(mµ)

2c
= xpi +

T

2c
δ(mµ) .

We can now recover the reward:

B∗(r) = V pi + 2cσ2 ln (ζµ∗(qµ∗(r))) + pqµ∗(r)

= V pi + qµ∗(r)
[
p− cr + s′(mµ∗)

]
− 2cσ2 ln

(∫ +∞

−∞
fnom(y) exp

(
y
g′(mµ∗)

2cσ2

)
dy

)
= V pi +

c

T

[
(xnom)2 −m2

]
+ qµ∗(r)δ(mµ∗)

=
c

T

[
(xpi)2 −m2

]
+ qµ∗(r)δ(mµ∗) .

From the definition of the provider objective,

π = g(m) + pm−
∫ 1

0
B∗(r)dr

= s(m)− crm+ pm− c

T

[
(xpi)2 −m2

]
−m

[
p− cr + s′(m)

]
= s(m)−ms′(m) +

(
xpi +m

2

)
2c

T

(
m− xpi

)
= s(m)−ms′(m) +

(
xpi +m

2

)
δ(m) .
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Proof of Theorem 5.1

(i) By construction, the reward B̃ is also bounded and decreasing. Then, the cost induced by the

additional reward is the same with R∗ and B̂:∫ +∞

−∞
R∗µ∗(x)fµ∗(x)dx =

∫ 1

0
B̂(r)dr .

Finaly, µ∗ is also an equilibrium for the reward B̂:

1

β̂(µ∗)
fnom(x) exp

(
B̂(Fµ∗(x))

2cσ2

)
=

1

β∗(µ∗)
fnom(x) exp

(
R∗µ∗(x)

2cσ2

)
= fµ∗ ,

where β̂ and β∗ are computed respectively with B̂ and R∗. The last equality comes from the

characterization of an equilibrium. Therefore, the reward function B̂ satisfies the constraints and

produces the same objective value as R∗. It is also optimal.

(ii) The proof follows the same ideas as at the previous item.
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