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Abstract
Based on a partnership between IMT Atlantique and the French company Lumiplan, this work
is part of a process of strengthening the Heurès software currently offered by Lumiplan to public
transport operators to support their bus and driver scheduling operations. This work addresses the
frequency setting problem which aims at defining the frequencies of the bus lines of a network for
different time periods of a day. This operation complements a study on line planning with more
accurate estimations of the demand, necessary bus types and passengers behaviors. In this paper,
the operator’s exploitation costs are minimized while respecting service-levels constraints, based
on the predictions of the path choice made by the passengers. The problem is solved by an easily
implementable process and a case study based on a real network is presented to show the efficiency
of our method.
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1 Introduction

Adapting line frequencies to demand is a key element for an efficient network design. Known
as the Frequency Setting Problem, this problem can be executed after redefining the lines
of a network or seasonally to take into account some changes in passenger demand. This
problem can thus be seen as a strategic as well as a tactical problem. According to the
public transportation system first introduced by Ceder and Wilson in 1986 [1], the Frequency
Setting Problem takes place after the Bus Network Design and before the Timetable Design.
It consists in determining, for a given time period, the number of times buses pass on
the lines, to satisfy a range of travelers. This problem is necessary to consider additional
parameters into account such as heterogeneous bus fleet, authorized frequencies and capacity
constraints for the fleet and the network. Regarding the satisfaction of travelers, [8] analyzed
the perception of potential users about existing bus services in Delhi, India, and concluded
most of people avoid using buses due to overloading, excessive travel time compared with a
personal vehicle, the need to make a transfer, and lack of punctuality. The line frequencies
have impact both on the operational costs of the operator and on the service-levels offered
to passengers. Hence, the estimation of waiting times as a function of line frequencies is a
crucial point to model service quality. [9] introduces a distinction between short-headway
lines and long-headway lines with ten minutes as the bound and proposes an expected waiting
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time depending on this distinction. To do this, they propose an expected waiting time for
short-headway lines equal to half the headway interval and an expected waiting time set at
an arbitrary value for long-headway lines.

According to [4], there are two major types of approaches to solve the frequency setting
problem. The first one consists in solving the problem without taking into account the choice
of path made by the passengers according to the line frequencies. Among the relative works,
we retain those of [6] where they assume a fixed demand-line assignment, as well as the work
of [5] who determine the frequency and demand on each line considering discrete frequencies,
non-captive vehicles, limited fleet size and with an objective of minimizing the travel time of
all passengers. The second type of approach is based on a bilevel approach. The first level
sets the bus line frequencies, which impact expected waiting times on passenger paths. At the
second level, passengers decide on which path they prefer to reach their destination. Indeed,
the frequency of a bus line influences the traveler’s perception and choice of whether to use
it or not. Thus, the use of a bilevel model makes it possible to determine line frequencies
while taking into account passenger choice. Among the first papers dealing with a bilevel
approach for the Frequency Setting Problem, we find [2] who define their upper-level as
determining the frequencies which minimize the total expected travel and waiting times while
their lower-level consists in a transit assignment problem.

In this paper, after having previously defined a set of bus lines to operate [3], we focus
on determining the frequency of these bus lines, with the objective of minimizing operating
costs considering service-level constraints and operational constraints. Furthermore, in order
to better model traveler behavior, we introduce constraints that ensure that each traveler
takes his fastest path according to the defined line frequencies. To solve this problem, we
propose a Mixed Integer Linear Program based on a path formulation of passenger paths.
This formulation captures the bilevel problem in a single stage but it has many variables and
constraints. To make this model tractable, we propose a Path Selection Process denoted PSP.
This process integrates several steps which dynamically select the passenger paths that are
integrated in the model. Experiments show that PSP leads to qualitative solutions within a
short solving time.

2 The Frequency Setting Problem

The Frequency Setting Problem (FSP) consists in determining the number of buses of each
possible type on each line for a given operating period, in order to minimize the operating
cost while satisfying passenger demand. In this problem, this demand is modeled by a
time-dependent origin-destination matrix containing the number of passengers willing to
travel from a station to another, for each time period. We study this problem at a tactical
level, where operator expenses are detailed in terms of cumulative kilometric costs and
cumulative driving times.

We consider a transportation network based on a graph G = (V,A,L), composed of
bus lines contained in a set L, running on sequences of road sections represented by arcs
contained in a set A. Each arc (i, j) connects a pair of stations in V . Each of these bus lines
can be associated with different types of buses, all of them contained in a set B. Each bus
type is associated with an operating cost and a capacity. We assume that each arc (i, j) ∈ A

is associated to a distance and a travel time depending on the time period of the day. For
each period, we consider capacity constraints on the overall number of buses of each type
available at that period as well as on the number of buses traveling on each arc. To travel in
the network, passengers use paths defined in a set P. A passenger path is associated with a
single OD pair and consists of a sequence of arcs, each associated to a line, on the network.
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Figure 1 Network example with three bus lines l1 : (A,B,C), l2 : (C,D,E) and l3 : (C,D, F ).

We consider passenger paths with 0 or 1 transfer. An exception is made for travelers who do
not have a path with 0 or 1 transfer. In this case, a path with 2 transfers is proposed. Let
us illustrate this on the small network of Figure (1). On this network, a passenger from B to
D has two paths p and p′ defined as : p = [a2, a3] and p′ = [a2, a4]. The path p takes lines l1
and l2 and the path p′ takes lines l1 and l3.

We define the traveling time of a passenger path as the sum of the riding times on this
path and the expected waiting times induced by boarding at the first stop of the path or at
transfers. To estimate expected waiting times on passenger paths, we follow [9] and propose
a different calculation mode depending on the line frequency: We set an expected waiting
time equal to half the time between two buses for high frequency lines (more than six buses
per hour). For low frequency lines (five buses per hour or less), the expected waiting time is
set to five minutes. This constant expected waiting time for low-frequency lines has been
chosen under two assumptions: (1) when the frequency of a line is low, each passenger selects
carefully its bus departure time and arrives five minutes in advance at the station. (2) The
synchronization of arrival and departure times for connections with a low-frequency line is
usually done in a later step. Thus, setting a maximum expected waiting time of 5 minutes
allows to anticipate this future synchronization. Passengers are supposed to always chose the
path which has the minimum traveling time.

We assume that 100% of the demand must be satisfied. Passenger satisfaction is modeled
with two criteria: (1) traveling time and (2) comfort of the trip. The traveling time criterion
is based on the notion of reference traveling time of a passenger. This reference traveling
time is typically estimated by the operator based on what should be expected by passengers
according to their shortest possible riding time on the network or based on the actual
performance of the existing network. A first service level constraint specify that a passenger
path cannot be longer than a given percentage αmax (> 100%) of the reference traveling
time for the path OD. To model the comfort offered to passengers, we define a maximum
bus filling percentage (τb) that set the operational bus capacity used in the model.

3 Solving the frequency setting problem

3.1 Bilevel model
To model the presented FSP, we propose a MILP which extends the model of [5] on four
major aspects: (1) we consider the sum of operating costs as the objective and not as a
constraint, (2) we integrate capacity constraints for the network and for an heterogeneous
fleet, (3) we use a path-based model to represent the path chosen by passengers on the
network, (4) we introduce a bi-level formulation in order to model the passenger assignment
by enforcing each path assigned to an OD to be a shortest path for this OD in term of
waiting and traveling times. This model is described in details in Appendix (A).

ATMOS 2022



5:4 A Bilevel Model for the Frequency Setting Problem

Table 1 Main notation used.

G = (V,A,L) Graph representing the infrastructure of the network
V Main stations
A Road sections
L Set of bus lines that are operational
B All types of buses being operational
P Set of passenger paths
Lp Set of lines associated to passenger path p ∈ P

L(a) Set of lines passing through the arc a ∈ A

F Set of frequencies authorized to be operated
qτ

[s,t] Quantity of passenger demand from s to t during time period τ

∆(τ) Duration of the time period τ considered
ob Number of operable buses of type b ∈ B
κb Passenger capacity of buses of type b ∈ B
sa,b Arc a saturation threshold for b-type buses
dl Round trip distance of the line l ∈ L
tl Round trip time of the line l ∈ L
tp Time of the passenger path p ∈ P

costb Operational cost per kilometer for buses of type b ∈ B
wage Hourly wage for bus drivers

For passenger paths, we let xp be a binary variable being equal to one if a path p ∈ P is
used. The variable γp is a continuous variable representing the percentage of the OD pair
using path p ∈ P that satisfies xp = 1, while wp models the expected waiting time on path
p ∈ P if it is used. For bus line variables, we let yl,f be a binary variable equal to one if bus
line l ∈ L is assigned to frequency f ∈ F and ψl,b, an integer variable equal to the number
of buses of type b ∈ B on line l ∈ L.

The bilevel problem is modeled with a single level reformulation using the optimal value
function introduced by [7]. In our problem, this results in Constraint (13), called shortest
path constraint. This constraint states that if a path p ∈ P is selected for an OD [s, t], then
it has to be at least as short as any other path from s to t.

3.2 General process

Given the number of paths and constraints to be added to the model, we propose an iterative
method of path selection to accelerate the resolution of the model. Hence, we propose the
Path Selection Process (PSP) summarized in Figure 2a. Step 0 generates an exhaustive set
of passenger paths Ω, all compatible with the targeted service levels. The generation of a
set Ω of passenger paths is based on two steps: a dominance step and the second being a
filtering step. For this purpose, for each passenger path we introduce two notions: minimum
traveling time and maximum traveling time. The minimum traveling time is defined as the
sum of the riding time and the lowest possible expected waiting time at departure and at
each transfer. The maximum traveling time is defined as the sum of the riding time and the
highest possible expected waiting time at departure and at each transfer. The dominance
step test if the minimum traveling time of a path p is lower than the maximum traveling
time of all other paths p′ relying the same origin-destination and with at most the same
number of transfers. The filtering step removes path p whose minimum traveling time is
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(a) Overview of the Path Selection Process (PSP) for solving the FSP.

(b) Zoom on the step 1 of the Path Selection Process (PSP).

strictly greater than αmax× the reference traveling time of the OD pair. Then, the selection
of initial paths among this set Ω to create a set P is performed by selecting for each OD pair,
all direct paths and the path associated with the minimum traveling time. The FSP-milp is
then solved with P by using CPLEX. Step 1 aims at building a feasible solution in which
each OD is assigned to its shortest path. This step ensures that there is no shorter path
that an OD should have taken. This is done by iteratively adding paths from Ω to P when
these paths are shorter than those used in the solution of the FSP-milp. This results in a
dynamic addition of shortest path constraints as soon as a passenger path from Ω is added to
P. Finally, Step 2 consists in solving the FSP-lp, a relaxed version of the FSP-milp, with the
set of passenger paths Ω as input to select additional paths from Ω to be added to P. The
model is then solved again with a warm-start procedure based on the last integer solution
obtained in Step 2. Finally, Step 1 is executed one more time to build a feasible solution,
from the integer solution obtained in step 2, in which each OD can be assigned a path.

ATMOS 2022
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4 Numerical Results

Our experiences are based on a case study of the agglomeration of Poitiers, France, which
has more than 130,000 inhabitants and is itself part of the ”Grand Poitiers” urban area
(200,000 inhabitants). The data has been produced in collaboration with RTP (Régie des
Transports Poitevin) the public transport operator of the ”Grand Poitiers” urban area. To
carry out this study, a graph composed of 78 nodes and 106 edges has been defined, based
on the existing network. Furthermore, based on a study of travelers’ trips conducted by
the RTP operator, we generate 15 one-hour OD matrices covering a typical operating day
from 6am to 9pm. This case study is based on the optimization of the frequency of the 23
bus lines currently operated on four time periods. For each of these time periods we use
PSP and evaluate the quality of the solution obtained compared to upper and lower bounds.
To obtain upper and lower bounds, we run our FSP model for each time period with all
passenger paths in the ω set generated in step 0 and solve it with CPLEX with a time limit
of 10 hours. The models are implemented with Julia and solved by Cplex 20.1 through
the JuMP interface on a DELL R440 1U server with a 2.1 GHz Intel Xeon 6230 CPU and
192GB of RAM. For our experiments, the set of bus line frequencies F is defined from 0 to
12 and the bus filling percentage τb is set to 20% for all type of buses. Furthermore, the
αmax service-level parameter is set to 100%, enforcing each passenger to use a path with a
traveling time at most equal to the reference traveling time for the path OD.

Table 2 The columns show the time period, the number of OD pairs and the number of passengers
considered in the period, the upper and lower bounds and optimality gap obtained when solving
FSP model with all passenger paths and finally the objective value, the gap to the best upper bound
ub∗ found and the solving time with PSP. All solving times are in seconds and (tl) means that the
wall time has reached the maximum solving time.

Instance FSP-milp with all passenger paths PSP
Time # # Up. b. Lower Opt. Solv. Obj Gap to Solv.
period OD Pass. ub∗ bound gap time value ub∗ time

6am-7am 1301 1503 17942 17047 4.99% 36000 (tl) 17942 0% 642
7am-8am 1770 4993 139553 32113 76.99% 36000 (tl) 39079 −72% 12632
8am-9am 1728 3640 172876 22025 87.26% 36000 (tl) 27229 −84% 2147
9am-10am 1526 2337 88922 17003 80.88% 36000 (tl) 18880 −79% 748
10am-11am 1442 1938 137585 15774 88.54% 36000 (tl) 17012 −88% 518
11am-12am 1562 2532 150290 17638 88.26% 36000 (tl) 20372 −86% 993
12am-1pm 1530 2917 143699 22825 84.12% 36000 (tl) 24435 −83% 908
1pm-2pm 1540 3018 113038 21299 81.16% 36000 (tl) 25434 −78% 1029
2pm-3pm 1614 2703 141884 17126 87.93% 36000 (tl) 19010 −87% 1274
3pm-4pm 1705 3392 51539 20362 60.49% 36000 (tl) 25224 −51% 3595
4pm-5pm 1929 4047 118728 22975 80.65% 36000 (tl) 26330 −78% 952
5pm-6pm 1941 5205 167713 25498 84.80% 36000 (tl) 33169 −80% 1812
6pm-7pm 1681 2596 19591 19591 0% 23973 19591 0% 700
7pm-8pm 1078 1123 16112 16112 0% 22217 16112 0% 223
8pm-9pm 818 617 12962 12962 0% 16467 12962 0% 71

From results in Table (2), we make several observations:
Our PSP method stops in less than 1 hour for all time periods except 7am − 8am (3
hours and 30 minutes).
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For all time periods, the objective value obtained with our PSP method is less than or
equal to the best upper bound ub∗ of the FSP-milp found with all passenger paths.

The mean deviation of the objective value obtained with our PSP method from the best
upper bound ub∗ found is equal to −58% and the median deviation is equal to −78%.

For 6pm−7pm, 7pm−8pm and 8pm−9pm time periods, the solution obtained with PSP
method is proven optimal by the resolution of the FSP-milp with all passenger paths.

5 Conclusion

We proposed a model and a heuristic for solving a practical application of the frequency
setting problem. In this model, we minimize the operator cost while respecting service-
levels for passengers. The problem is solved efficiently by a simple path selection process.
Computational results were obtained on a case study and showed the relevance of our heuristic
for public transport companies. These results can be used to refine frequencies on a network
or to produce better cost and fleet estimations in a bus network design perspective.
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A FSP model

min
∑
l∈L

∑
b∈B

ψl,b × cl,b (1)

s.t.
∑
f∈F

yl,f = 1 ∀l ∈ L (2)

∑
b∈B

ψl,b ≥ θf × yl,f ∀l ∈ L, f ∈ F (3)

ψl,b ≤
∑
f∈F

θf × yl,f ∀l ∈ L, b ∈ B (4)

∑
p∈P[s,t]

γp = 1 ∀[s, t] ∈ ODτ (5)

ob ≥
∑
l∈L

tl
∆(τ) × ψl,b ∀b ∈ B (6)

sa,b ≥
∑

l∈L:a∈l

ψl,b ∀a ∈ A, b ∈ B (7)∑
f∈F

θf × yl,f ≥ γp ∀p ∈ P, l ∈ Lp (8)

∑
b∈B

τb × κb × ψl,b ≥
∑

[s,t]∈ODτ

∑
p∈P[s,t]:
l∈Lp(a)

γp × qτ
[s,t] ∀l ∈ L, a ∈ l (9)

xp ≥ γp ∀p ∈ P (10)
rtto(p),d(p) × αmax ≥ tp × xp + wp ∀p ∈ P (11)

wp ≥
∑
l∈Lp

∑
f∈F

waitf × yl,f − (1 − xp) × 5 × |Lp| ∀p ∈ P (12)

tp′ +
∑

l∈Lp′

∑
f∈F

waitf × yl,f ≥ xp × tp + wp ∀[s, t] ∈ ODτ , (p, p′) ∈ P[s,t] (13)

yl,f ∈ {0, 1} ∀l ∈ L, f ∈ F
xp ∈ {0, 1} ∀p ∈ P

γp ∈ [0, 1] ∀p ∈ P

wp ∈ R+ ∀p ∈ P

The objective function (1), is defined as the sum of total operating costs. To do this, cl,b is
defined equal to the sum of cumulative kilometric costs and cumulative driving times. Hence,
cl,b = dl × costb + tl × wage

60 .
Constraint (3) enforces each line to be associated to a exactly one frequency.
Constraints (3) and (4) rely the frequencies of bus lines and the buses operating on them.
Constraint (5) forces the totality of each OD pair demand to be dispatched on passenger paths
satisfying them.
Constraint (6) ensures the number of buses used for operation is available.
Constraint (7) ensures the number of buses of each type driving on a road section during the
period is lower than the saturation limit.
Constraint (8) forces a passenger path used to have each of the associated lines being operated.
Constraint (9) is used to integrate the bus filling percentage service-level parameter.
Constraints (10), (11), (12) are used to integrate the αmax service-level parameter.
Constraint (13) enforces a traveler to take its fastest possible path with chosen frequencies.
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