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A B S T R A C T

Rotating machines are often subjected to fluctuating torques, leading to vibrations of the
rotor and finally to premature fatigue and noise pollution. This work addresses a new design
of centrifugal pendulum vibration absorbers (CPVAs), used to reduce the vibrations in an
automotive transmission line. These passive devices, composed of several masses oscillating
along a trajectory relative to the rotor, are here tuned at a subharmonic of the targeted harmonic
torque frequency. Thanks to the inherent non-linearities, a CPVA with two masses oscillating
in phase opposition is able to efficiently counteract the input torque, with particular features
such as saturation phenomena. This work particularly extends previous works to a new class
of CPVA, whose peculiarity is that masses admit a significant rotation motion relative to the
rotor, thus adding the benefit of their rotatory inertia. Results on the system’s subharmonic
response and its stability are obtained thanks to an analytical perturbation method, and design
guidelines are proposed. The validity of those results is also confirmed through comparisons
with numerical solutions and the performance of this subharmonic system is compared to that
of a classical CPVA tuned at the torque frequency.

1. Introduction

In the frame of reducing polluting emissions and fuel consumption of vehicles using thermal engines, automotive manufacturers
try to reduce the cylinder capacity and engine speed of rotation. These evolutions lead to a significant increase of rotation
irregularities called ‘‘acyclisms’’, mainly due to higher combustion pressure. One of the main characteristics of these reciprocating
engines is the linear dependence of the acyclism frequency to the mean engine speed of rotation. The coefficient of proportionality
is called the engine order and only depends on the architecture of the engine. For four strokes engines, the engine order is half the
number of cylinders. During an acceleration phase, the engine sweeps a wide frequency range containing some driveline torsional
modes. This situation may lead to significant noise and vibration levels into the passenger compartment and premature wear of the
driveline components. Centrifugal pendulum vibration absorbers (CPVAs) have been used for many years to minimise acyclisms of
automotive powertrains at the engine order [1–3]. These passive devices consist of oscillating masses (pendulums) moving along
particular paths relative to a primary inertia (rotor) as shown in Fig. 1. Because the pendulums are driven by the centrifugal
acceleration field resulting from the rotation of the CPVA, their natural frequency is proportional to the mean engine speed of
rotation. The coefficient of proportionality is the pendulums’ tuning order, which can be chosen to filter out vibrations at the
engine order.
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The classical way of choosing the pendulums’ tuning order, used in industrial solutions, is to tune the pendulums at the engine
order. Similarly to usual dynamic vibration absorbers [4], this tuning generates an antiresonance of the rotor at the engine order,
allowing for significant vibration reduction. However, CPVAs are non-linear systems that include geometric and inertial non-
linearities. At large excitation amplitudes, this can lead to jumps of the response [5], localisation of the pendulums’ response [6–17],
a shift of the antiresonance [18] and the generation of higher rotor harmonics [19–24].

Another tuning possibility is to set the pendulums’ tuning order to half the engine order. To our knowledge, this was first
mentioned in [25], but studies on this topic were led by S. Shaw et al. [19,26–30]. With such a tuning, the pendulums oscillate
at half the engine order so that the solution is a subharmonic of order 2. The study of subharmonic oscillations has many fields of
application, such as energy harvesting [31,32], the creation of models for the design of pedestrian structures [33], and, of interest
here, vibration reduction [28]. In two degree-of-freedom systems with quadratic non-linearities, solutions with one mode oscillating
at half the frequency of the other one can lead to a saturation phenomenon where the amplitude of the higher mode becomes
independent of the forcing amplitude [34]. This phenomenon, due to a 2:1 internal resonance, can be an efficient way to reduce
vibrations. It is for instance used in [35,36] to reduce the vibrations of a beam through a nonlinear piezoelectric shunt. In the case
of a CPVA with two pendulums, quadratic non-linearity exists through Coriolis effects and the pendulums’ phase-opposition mode
is in a 2:1 resonance relation with respect to the excitation [29]. This allows a pair of pendulums oscillating in phase-opposition
at half the engine frequency to generate a saturation of the rotor’s response [28]. The stability of that response and the effects of
pendulums mistuning are addressed in [29]. If the CPVA comprises 𝑁 pendulums (with 𝑁 even), the desired behaviour is that where
two groups of 𝑁∕2 in phase pendulums are moving in phase-opposition, so that each group acts as an equivalent pendulum. Such
a system is subject to additional instabilities [30]. Contrarily to the classical tuning, the subharmonic one does not generate higher
rotor harmonics [19], which is a significant advantage. In addition, the subharmonic tuning allows for a saturation of the rotor’s
response while in classical CPVAs the rotor’s amplitude increases with the torque amplitude. Another benefit of subharmonic CPVAs
is that tuning pendulums at lower orders results in wider trajectories that require less demanding manufacturing tolerances [37].

Studies dealing with subharmonic CPVAs are restricted to the case of translated pendulums, i.e. pendulums that do not rotate
relatively to the rotor. This is probably due to the fact that early works recommended the use of purely translated pendulums [38].
However, A. Renault [39–41] and M. A. Acar [42] recently showed that adding a rotational mobility of the pendulums leads to a
significant increase of mitigation performances. This increase in performance was also observed in [43] and the effect of rotation
is a current topic of research [15–17,44–47]. The motivation of this paper is to investigate the subharmonic response of CPVAs
with two pendulums that are allowed to rotate relatively to the rotor. Two tools aiming at helping designing subharmonic CPVAs
are introduced. They allow to visualise the evolution of the torque capacity1 and the efficiency of the absorption as a function of
the linear and non-linear tunings. Additionally, a new design guideline intended to improve the efficiency of the filtration is given.
Finally, to the author’s knowledge, this paper presents the first comparison between the classical and subharmonic tunings.

This paper is organised as follows. Section 2 describes the modelling of the CPVA and a linear analysis is led in Section 3. The
basic mechanisms of the subharmonic filtration are exposed in Section 4. The construction of the analytical model starts in Section 5
with the simplification of the equations of motion and their expansion on the modal basis. The modal and physical solutions along
with their stability are derived in Section 6. Case studies and design guidelines are presented in Section 7 and the subharmonic
filtration is compared to the classical one in Section 8.

2. Modelling

The system studied is shown in Fig. 1. A rotor of inertia 𝐽𝑟 rotates about its centre 𝑂. Its total angular position is 𝜗(𝑡) = 𝛺𝑡+ 𝜃(𝑡)
where 𝑡 is the time, 𝛺 is the mean rotation velocity and 𝜃 corresponds to the fluctuating part of the rotation. A torque 𝑇 (𝜗) = 𝑇0+𝑇𝜃(𝜗)
is applied to the rotor where 𝑇0 is its constant part and 𝑇𝜃(𝜗) is periodic. The constant torque balances the damping, thus setting
the mean rotational speed 𝛺 such that 𝑇0 = 𝑏𝑟𝛺, where 𝑏𝑟 is the linear viscous damping coefficient of the rotor. 𝑁 pendulums of
mass 𝑚𝑖 and inertia 𝐼𝑖 (about their centre of mass) oscillate on their trajectory 𝒞𝑖. Their position on these trajectories is given by
the curvilinear abscissa 𝑆𝑖 and their distance from 𝑂 is 𝑅𝑖(𝑆𝑖). The characteristic dimension 𝑅0𝑖 = 𝑅𝑖(𝑆𝑖 = 0) represents the position
of the pendulums at rest (when 𝑇𝜃 = 0 such that they are perfectly centrifugated). In addition to the traditional translation motion,
the present study considers that the pendulums rotate about their centre of mass according to the angle 𝛼𝑖(𝑆𝑖). This function can be
chosen by the designer, just like the trajectory 𝒞𝑖. As for the rotor, an equivalent linear viscous damping coefficient 𝑏𝑖 is used to
model the damping between the rotor and the ith pendulum. In the later, pendulums and their associated trajectory and rotation
functions will be considered identical so that subscript ‘‘𝑖’’ will be dropped when addressing pendulums’ parameters.

In order to write the equations of motion in a non-dimensional form, the following parameters and variables are introduced:

𝑠𝑖 =
𝑆𝑖
𝑅0

, 𝑦 = �̇�
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𝑚𝑅2
0

, 𝜇 =
𝑁𝑚𝑅2

0
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𝑚𝛺

, �̄�𝑟 =
𝑏𝑟

(𝐽𝑟 +𝑁𝐼)𝛺
, �̄� (𝜗) = �̄�0 + �̄�𝜃(𝜗) =

𝑇 (𝜗)
(𝐽𝑟 +𝑁𝐼)𝛺2

,

(1)

where ̇(∙) = 𝜕(∙)∕𝜕𝑡. The 𝑠𝑖 and 𝑦 are the 𝑁 + 1 degree-of-freedom of the system. They correspond to the relative position of the
pendulums and the non-dimensional rotation velocity of the rotor, respectively. 𝜂 is the ratio of the pendulums’ inertia about their

1 The torque capacity is the maximum level of torque applied on the rotor for which the system can operate as desired.



Fig. 1. Representation of the system studied. It is made of 𝑁 = 2 pendulums.

centre of mass over their geometric inertia about 𝑂. 𝜇 is the ratio of all the pendulums’ geometric inertias about 𝑂 over the rotatory
inertia of the whole system about 𝑂. 𝑥(𝑠𝑖) and 𝑧(𝑠𝑖) are trajectory functions while 𝛼(𝑠𝑖) and 𝛾(𝑠𝑖) are rotation functions. In this paper,
𝑥(𝑠𝑖) and 𝛼(𝑠𝑖) are written as polynomials in the curvilinear abscissa 𝑠𝑖 such that

𝑥(𝑠𝑖) = 1 − 𝑛2𝑡 𝑠
2
𝑖 +

∞
∑

𝑘=3
𝑥[𝑘]𝑠

𝑘
𝑖 , 𝛼(𝑠𝑖) =

∞
∑

𝑘=0
𝛼[𝑘]𝑠

𝑘
𝑖 , (2)

where 𝑛𝑡 is the order of the pendulums’ trajectory (called geometric tuning order in [45]) and 𝑥[𝑘], 𝛼[𝑘] are trajectory and rotation
coefficients. Note that in the case 𝑥[𝑘] = 0,∀𝑘, the pendulums’ trajectories are epicycloids, which corresponds to the tautochronic
trajectory for 𝜃 = 0 [25]. �̄� and �̄�𝑟 are non-dimensional damping constants and �̄� (𝜗) is the non-dimensional torque applied on the
rotor.

In order to give �̄� (𝜗) the meaning of an external forcing term, we replace the independent variable 𝑡 by the rotor’s position
𝜗 [48], which can be seen as a non-dimensional time. Using the chain rule, one can show that

̇(∙) = 𝛺𝑦(∙)′, ̈(∙) = 𝛺2𝑦𝑦′(∙)′ +𝛺2𝑦2(∙)′′, (3)

where (∙)′ = 𝜕(∙)∕𝜕𝜗 (computation details are given in Appendix A). Hence, the non-dimensional rotor’s acceleration is now
�̈�∕𝛺2 = �̇�∕𝛺 = 𝑦𝑦′. Using the non-dimensional quantities (1) and the chain rule (3), one can write the equations of motion as

1
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[
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2
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𝑑𝑠𝑖

𝑦 + �̄�𝑠′𝑖 = 0, 𝑖 = 1,… , 𝑁. (4b)

Computation details are given in Appendix B. Eq. (4a) governs the motion of the rotor while the 𝑁 Eqs. (4b) govern the motion of
the pendulums. These equations are difficult to interpret at this stage as one cannot distinguish the linear and non-linear terms that
are hidden in functions 𝑥(𝑠𝑖), 𝑧(𝑠𝑖) and 𝛾(𝑠𝑖) and in variable 𝑦.

From now on, it is assumed that the fluctuating torque applied to the rotor contains only one harmonic whose non-dimensional
form is �̄�1 cos(𝑛𝜗) where 𝑛 is the engine order. For a car engine, 𝑛 corresponds to the number of strikes per revolution of the
crankshaft.

3. Linear analysis of the system

In this section, a linear analysis of the system with 𝑁 = 2 pendulums is led. First of all, one can use Eq. (3) to show that, at first
order,

1 + 𝜃′ ≈ 𝑦, 𝜃′′ ≈ 𝑦𝑦′ ≈ 𝑦′. (5)

The demonstration is provided in Appendix C. Relations (5) allow to represent the motion of the rotor with position 𝜃 instead of
velocity 𝑦. This way, all the degree-of-freedom of the system are positions, which facilitates the representation of the mode shapes.



In addition, the balance between the constant torque and the mean rotational velocity (cf. Section 2) can be written in terms of the
non-dimensional variables such that

�̄�0 = �̄�𝑟. (6)

Using relations (5) and (6), one can linearise Eqs. (4a) and (4b) to obtain

(1 + 𝜇)𝜃′′ +
𝜇𝛬𝑐
𝑁

𝑁
∑

𝑖=1
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′ = �̄�𝜃(𝜗), (7a)
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′′
𝑖 + 𝑛2𝑡 𝑠𝑖 + �̄�𝑠′𝑖 = 0, (7b)

where 𝛬𝑚 and 𝛬𝑐 are constants representing the equivalent mass of a pendulum due to the effect of the rotatory inertia and the
linear coupling term between a pendulum and the rotor, respectively. They are given by

𝛬𝑚 = 1 + 𝜂𝛼2[1], 𝛬𝑐 = 1 + 𝜂𝛼[1], (8)

where 𝛼[1] is the linear rotation coefficient (cf. Eq. (2)). The eigenorders and mode shapes of the conservative system are
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−
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, 1, 1
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The eigenorders can be seen as non-dimensional eigenfrequencies and the three components of the eigenvectors correspond to 𝜃, 𝑠1
and 𝑠2, respectively. 𝑛𝑝 is the pendulums’ tuning order, which is related to the trajectory order 𝑛𝑡 such that

𝑛𝑝 =
𝑛𝑡

√

𝛬𝑚
, (10)

and it corresponds to the eigenorder of the pendulums when they are uncoupled from the rotor. Superscript ‘‘𝑇 ’’ denotes the
transpose.

𝝓𝟎𝟎 is a rigid-body mode for which only the rotor is excited. 𝝓𝟏𝟎 represents a phase-opposition motion of the pendulums with
an immobile rotor. As the rotor is a node of 𝝓𝟏𝟎, this mode does not respond in the linear regime. 𝝓𝟐𝟎 describes a mode for which
pendulums move in unison but in phase-opposition with respect to the rotor. Modes associated to 𝝓𝟎𝟎, 𝝓𝟏𝟎 and 𝝓𝟐𝟎 will be called
mode 0, 1 and 2, respectively.

When a fluctuating torque is applied, the pendulums respond on mode 2 and generate an antiresonance on the rotor at order
𝑛𝑝 (in the conservative case). Thus, for a fluctuating torque of order 𝑛, one typically chooses 𝑛𝑝 ≈ 𝑛 to minimise the vibrations of
the rotor. Note that 𝑛𝑝 is not strictly equal to 𝑛 as mistuning is usually desired to increase the torque range of the system and/or
to prevent the apparition of instabilities [8,10,17]. In the case of a real automotive driveline (a simple model of which consists in
successive rotors linked through torsional springs [49]), the CPVA should be placed as close as possible from the source of excitation
(i.e. the engine). Doing so, the antiresonance generated by the pendulums exists on every driveline components located after the
CPVA [50], which allows to isolate the whole driveline from the torque fluctuations.

Although classical CPVAs are currently the only ones used by the industry, there exists another mean of reducing the rotor’s
vibrations using a non-linear subharmonic response of the pendulums [28]. This is explained in the next section.

4. Basis of the subharmonic filtration

4.1. Filtration principle

The aim here is to show that there exists a solution to filter out the vibrations of the rotor other than the classical one with 𝑛𝑝 ≈ 𝑛
and pendulums oscillating in unison. To do so, the simple case of a CPVA with two undamped pendulums following epicycloidal
trajectories and with a linear rotation law is considered. Moreover, the solution sought is that of perfect filtration so that the rotor
spins at a constant speed (i.e. 𝑦 = 1, 𝑦′ = 0).

One can see that if the pendulums are in phase-opposition (i.e. 𝑠1 = 𝑠 = −𝑠2), most of the non-linearities they generate on the
rotor will balance each other as 𝑥(𝑠) = 𝑥(−𝑠), 𝑧(𝑠) = 𝑧(−𝑠) and 𝛾(𝑠) = 𝛾(−𝑠). Thus, Eqs. (4a) and (4b) simplify to

−2𝜇𝑛2𝑡 𝑠𝑠
′ = �̄�1 cos(𝑛𝜗), (11a)

𝑠′′ − 𝑛2𝑝𝑠 = 0. (11b)

These equations have an exact solution, given by
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𝑛𝑡

√

�̄�1
𝜇𝑛𝑝

cos(𝑛𝑝𝜗 + 𝜑), 𝑛𝑝 = 𝑛∕2, 𝜑 = 𝜋
4

or 𝜋
4
+ 𝜋. (12)



Fig. 2. Representation of the Coriolis forces and torques generated by two pendulums in phase-opposition. The projection of the Coriolis forces on vectors 𝒖𝟏
and 𝒖𝟐 is also given, as it indicates the sign of the torque produced.

Eq. (12) represents a motion of the pendulums (we remind that 𝑠1 = 𝑠 = −𝑠2) such that they perfectly counterbalance the external
torque to eliminate the vibrations of the rotor. The fact that 𝑛𝑝 = 𝑛∕2 shows that the desired pendulums’ response is a subharmonic
of order 2 as they oscillate at half the excitation order. The reason why a subharmonic oscillation of order 2 is needed is that the
term balancing the external torque in Eq. (11a) is quadratic. Thus, if 𝑠 is harmonic and oscillating at 𝑛∕2, 𝑠𝑠′ will generate a purely
harmonic torque oscillating at 𝑛 that can cancel the external torque. The fact that 𝑠𝑠′ is purely harmonic implies that the pendulums
counterbalance the external torque without producing higher rotor harmonics, contrarily to the classical tuning (this was already
pointed out in [19]).

It is interesting to see how the pendulums can generate a torque on the rotor even though they are in phase-opposition. In
Eq. (11a), the term balancing the external torque arises from Coriolis effects. One can compute the Coriolis acceleration of the 𝑖th
pendulum and the associated force 𝑭 𝒄𝒊 to find

𝑭 𝒄𝒊 = −2�̇�𝑚�̇�𝑖𝒏𝒊, (13)

where 𝒏𝒊 is the normal to the 𝑖th pendulum’s trajectory at abscissa 𝑆𝑖. The torque produced by 𝑭 𝒄𝒊 on the rotor is given by
𝑪𝒄𝒊 = −𝑅𝑖𝒗𝒊 × 𝑭 𝒄𝒊 where 𝒗𝒊 is a unitary vector pointing from the 𝑖th pendulum’s centre of mass to the rotor’s. Using geometric
relations, one can show that the Coriolis torque arising from the 𝑖th pendulum is given by

𝑪𝒄𝒊 = −�̇�𝑚�̇�𝑖
𝑑𝑋(𝑆𝑖)
𝑑𝑆𝑖

𝒛𝟎, (14)

where 𝑋(𝑆𝑖) = 𝑅2
0𝑥(𝑆𝑖∕𝑅0) is a dimensional trajectory function and 𝒛𝟎 is such that (𝒖𝒊, 𝒗𝒊, 𝒛𝟎) forms a right-handed orthonormal basis

(cf. Fig. 2). Assuming 𝑋(𝑆𝑖) is even (it is the case in practice due to design constraints), the Coriolis torques produced by the two
pendulums add up even though they are in phase-opposition. This is illustrated in Fig. 2.

4.2. Typical response of a subharmonic CPVA

A typical response of a subharmonic CPVA is depicted in Fig. 3. It corresponds to approximate analytical solutions of Eqs. (4a)
and (4b) (cf. Sections 5 and 6.3). Fig. 3 represents the fundamental harmonic of the rotor’s acceleration in (a) and (b) and the
subharmonic motion of the pendulums in (c) and (d). An order response of the CPVA is shown in (a) and (c) while a torque response
is shown in (b) and (d). Green curves represent the system’s response for immobile pendulums while blue curves correspond to the
pendulums’ subharmonic solution and the associated rotor’s response. Dashed lines indicate unstable solutions.

Fig. 3(a) shows the non-linear antiresonance generated by the pendulums on the rotor. In Fig. 3(b), one can see that the amplitude
at the antiresonance is independent from the forcing amplitude, thus leading to a saturation phenomenon. This saturation is effective



Fig. 3. Typical order (left) and torque (right) responses of a CPVA. Pendulums’ responses are shown in (c) and (d) while rotor’s responses are shown in (a) and
(b). (a) and (c) are order responses for �̄�1 = 0.03 while (b) and (d) are torque responses for 𝑛 = 2𝑛𝑝 = 3. Green curves represent the system’s response for immobile
pendulums while blue curves correspond to the pendulums’ subharmonic solution and the associated rotor’s response. Dashed lines indicate unstable solutions.
Black squares with code names ‘‘PD’’ indicate period doubling bifurcations. PD+ and PD-correspond to supercritical and subcritical bifurcations, respectively.
𝑛𝑝 = 1.5, 𝜇 = 0.1, �̄� = 0.002, 𝜂 = 𝛼[𝑘] = 𝑥[𝑘] = 0,∀𝑘.

starting from a threshold torque amplitude and up to a maximum torque. This upper torque limit exists because the pendulums’
trajectory has a cusp that pendulums cannot overpass.

Fig. 3 depicts some essential features of the subharmonic filtration, but considers only purely translated pendulums following an
epicycloidal trajectory. In the following, an analytical model allowing for the study of more general CPVAs is developed. It takes
into account the rotation of the pendulums and perturbations of the epicycloidal trajectory.

5. Simplified modal equations

Following Chao et al. [29], the first step in the construction of an analytical model is to scale the parameters. This allows
to simplify the equations of motion such that the dynamics of the pendulums becomes uncoupled from that of the rotor. These
simplified equations of motion will then be projected on a modal basis to obtain modal equations.

Since the displacement of the pendulums will be considered small (cf. Section 5.2), higher orders of 𝑥(𝑠𝑖) and 𝛼(𝑠𝑖) have a
negligible effect. Thus, it is relevant to keep only their first non-linear contributions such that

𝑥(𝑠𝑖) = 1 − 𝑛2𝑡 𝑠
2
𝑖 + 𝑥[4]𝑠

4
𝑖 , 𝛼(𝑠𝑖) = 𝛼[1]𝑠𝑖 + 𝛼[3]𝑠

3
𝑖 . (15)

These functions are taken to be symmetric (respectively anti-symmetric) about 𝑠𝑖 = 0 as it is the case in practice due to design
constraints [40,41]. Like what was done previously for the torque, the non-dimensional rotor’s velocity can be split into a constant
term 1 and fluctuating component 𝑦𝜃(𝜗) such that

𝑦(𝜗) = 1 + 𝑦𝜃(𝜗). (16)

5.1. Scaling

In this subsection, the aim is to scale the weight of some parameters and variables so as to capture the desired physical
phenomena. The following remarks will govern the scaling:



• The optimum system configuration is that with small damping. In Section 4, it was shown that the absence of damping could
lead to a perfect filtration.

• The fluctuating torque 𝑇𝜃 is small compared to the rotor’s kinetic energy (which is 𝐽𝑟𝛺2∕2 at equilibrium). This implies that
�̄�1 is small.

• The total pendulums’ geometric inertia about point 𝑂, 𝑁𝑚𝑅2
0, is considered small compared to the total inertia of the rotating

system about 𝑂, 𝐽𝑟 +𝑁𝐼 , such that 𝜇 is small.
• The rotor’s inertia being significant, the fluctuating rotational speed 𝑦𝜃 is small against 1. This means that 𝜃′ is small as, at

first order, 𝑦𝜃 ≈ 𝜃′ (cf. Appendix C).
• The trajectory and rotation functions chosen (cf. Eq. (15)) are an epicycloid perturbed by 𝑥[4] and a linear law perturbed by
𝛼[3], respectively. Considering those perturbations are small, 𝑥[4] and 𝛼[3] are small.

In accordance with those remarks and introducing the small parameter 𝜖, the following scaled parameters are introduced:

�̄� = 𝜖�̃�, �̄�𝑟 = 𝜖�̃�𝑟, �̄�1 = 𝜖�̃�1, 𝜇 = 𝜖�̃�, 𝑦𝜃 = 𝜖�̃�𝜃 , 𝜃′ = 𝜖𝜃′, 𝑥[4] = 𝜖�̃�[4], 𝛼[3] = 𝜖�̃�[3]. (17)

In order to give a physical meaning to 𝜖, one can choose to set 𝜖 = 𝜇 [8]. Moreover, in the following, only first order terms will
be retained in the rotor’s equation (cf. Section 5.2). Hence, one can use the first order approximations (5) to express the rotor’s
dynamics using the scaled position 𝜃 instead of the scaled rotational velocity �̃�𝜃 . Approximations (5) can be written in terms of
those scaled variables, leading to

�̃�𝜃 ≈ 𝜃′, �̃�′𝜃 ≈ 𝜃′′. (18)

5.2. Simplified physical equations

The aim here is to obtain an equation governing the rotor’s dynamics as a function of the pendulums’ motion and the external
torque while uncoupling the pendulums’ dynamics from the rotor’s. Introducing Eqs. (15), (16) and (17) in the equations of motion
(4a) and (4b) and using Taylor series for 𝑧(𝑠𝑖), one obtains

𝜃′′ =
�̃�
𝑁

[ 𝑁
∑

𝑖=1
𝑛2𝑝𝛬𝑐𝑠𝑖 + 2𝑛2𝑡 𝑠𝑖𝑠

′
𝑖 + 𝑛2𝑡 (1 + 𝑛2𝑡 )

(

𝑠𝑖𝑠
′
𝑖
2 −

𝑛2𝑝
2
𝑠3𝑖

)]

+ �̃�1 cos(𝑛𝜃), (19a)

𝑠′′𝑖 + 𝑛2𝑝𝑠𝑖 = −𝜖𝛬−1
𝑚

{

𝛬2
𝑐 �̃�
𝑁

𝑁
∑

𝑗=1
𝑛2𝑝𝑠𝑗 + �̃�𝑠′𝑖 +

�̃�𝑛2𝑡𝛬𝑐

𝑁

[ 𝑁
∑

𝑗=1
𝑠𝑗 (2𝑠′𝑗 + 𝑠′𝑖)

]

+
�̃�𝑛2𝑡
𝑁

[ 𝑁
∑

𝑗=1
(1 + 𝑛2𝑡 )𝛬𝑐

(

𝑠𝑗𝑠
′
𝑗
2 −

𝑛2𝑝
2
(𝑠3𝑗 + 𝑠𝑗𝑠

2
𝑖 )

)

+2𝛬𝑚𝑠𝑗𝑠′𝑗𝑠
′
𝑖

]

+6𝜂𝛼[1]�̃�[3](𝑠𝑖𝑠′𝑖
2 + 𝑠2𝑖 𝑠

′′
𝑖 ) − 2�̃�[4]𝑠3𝑖 +

(

𝛬𝑐 + 𝛬𝑚𝑠′𝑖 −
𝑛2𝑡 (1 + 𝑛2𝑡 )

2
𝑠2𝑖

)

�̃�1 cos(𝑛𝜗)

}

+𝐻𝑂𝑇 ,

𝑖 = 1,… , 𝑁.

(19b)

Eq. (19a) expresses the rotor’s acceleration as a function of the pendulums’ motion. It makes use of the pendulums’ equation at first
order 𝑠′′𝑖 = −𝑛2𝑝𝑠𝑖. The rotor’s acceleration contains linear, quadratic and cubic terms. As seen in Section 4, the quadratic term is the
one responsible of the subharmonic filtration.

The 𝑁 coupled Eqs. (19b) govern the pendulums’ motion. They are uncoupled from the rotor’s dynamics and contain the effect
of the external torque, the damping, the coupling between pendulums (both linear and non-linear) through the sums over 𝑁 , and
the perturbations of the trajectory and rotation functions (i.e. �̃�[4] and �̃�[3]). These 𝑁 equations are weakly non-linear because the
trajectory and rotation functions chosen (cf. Eq. (15)) are close to an epicycloid and a linear rotation, which render a quasi-linear
behaviour for small fluctuations of the rotational speed. The external torque appears under three different forms in Eqs. (19b).
�̃�1 cos(𝑛𝜗) alone has the meaning of a direct forcing while 𝑠′𝑖 �̃�1 cos(𝑛𝜗) is a parametric forcing, which can be interpreted as a variable
damping. The torque also appears as a non-linear term through 𝑠2𝑖 �̃�1 cos(𝑛𝜗).

As stated previously, Taylor series of 𝑧(𝑠𝑖) were used to obtain the simplified equations. This is relevant as the trajectory has a
cusp that pendulums cannot overpass, so their motions 𝑠𝑖 are restricted to be small. In the special case of the epicycloid (i.e. 𝑥[4] = 0),
the amplitude at the cusp is

𝑠cusp = 1
√

𝑛2𝑡 (1 + 𝑛2𝑡 )
. (20)

5.3. Modal equations

The aim here is to derive the modal equations. From now on, we consider that the system is made of 𝑁 = 2 pendulums. Eqs. (19a)
and (19b) can be written in matrix form using the vector of unknowns

𝒒 = [𝜃, 𝑠1, 𝑠2]𝑇 =
2
∑

𝑘=0
𝜁𝑘𝝓𝒌𝟎, (21)

where 𝜁0, 𝜁1 and 𝜁2 are the modal coordinates associated to modes 0, 1 and 2, respectively. The matrix equation obtained can then
be projected on the modes of the system, leading to the following three modal equations:

𝜁 ′′0 = 𝑓0(𝜁1, 𝜁2, 𝜗), (22a)



𝜁 ′′1 + 𝑛2𝑝𝜁1 = 𝑓1(𝜁1, 𝜁2, 𝜗),

𝜁 ′′2 + 𝑛2𝑝𝜁2 = 𝑓2(𝜁1, 𝜁2, 𝜗).

 (22b)

(22c)

The full form of functions 𝑓0, 𝑓1 and 𝑓2 is given in Appendix D. It is of importance to note that only 𝜁1 and 𝜁2 appear in Eqs. (22b)
and (22c). This means that modes 1 and 2 are uncoupled from mode 0. The reason for this is that those two modes are due to the
presence of the pendulums, whose equations were uncoupled from the rotor’s dynamics (cf. Section 5.2).

We remind that the desired situation for the subharmonic filtration is that with pendulums oscillating in phase-opposition, which
corresponds to 𝜁1 ≠ 0, 𝜁2 = 0. In that case, Eqs. (22a) and (22b) become

𝜁 ′′0 = 2�̃�𝑛2𝑡 𝜁1𝜁
′
1 + �̃�1 cos(𝑛𝜗), (23a)

𝜁 ′′1 + 𝑛2𝑝𝜁1 = −𝜖𝛬−1
𝑚

[

𝛬𝑚𝜁 ′1�̃�1 cos(𝑛𝜗) + 2�̃�𝑛2𝑡𝛬𝑚𝜁1𝜁 ′1
2 + 6𝜂𝛼[1]�̃�[3](𝜁1𝜁 ′1

2 + 𝜁21 𝜁
′′
1 ) − 2�̃�[4]𝜁31 + �̃�𝜁 ′1

]

, (23b)

and mode 0 exactly corresponds to the rotor’s motion as 𝜁 ′′0 = 𝜃′′. It is clear from Eq. (23a) that there is an energy transfer
between the rigid-body mode (i.e. the rotor) and the phase-opposition mode (i.e. the pendulums). In Eq. (23b), 𝑓1 captures the
parametric excitation, the damping and cubic non-linearities arising from Coriolis effects and perturbations of the trajectory and
rotation functions.

6. Modal and physical solutions

6.1. Application of the method of multiple scales

The method of multiple scales [51] is now used to solve Eqs. (22b) and (22c). Two rotation scales are introduced, 𝜗0 = 𝜗 and
𝜗1 = 𝜖𝜗. Modal coordinates are expanded such that

𝜁1(𝜗) = 𝜁11(𝜗0, 𝜗1) + 𝜖𝜁12(𝜗0, 𝜗1), (24a)

𝜁2(𝜗) = 𝜁21(𝜗0, 𝜗1) + 𝜖𝜁22(𝜗0, 𝜗1). (24b)

Because the solution sought is a subharmonic of order 2, it is convenient to introduce the detuning term 𝜎 such that

𝑛 = 2𝑛𝑝 + 𝜖𝜎. (25)

𝜎 > 0 and 𝜎 < 0 correspond to under-tuned and over-tuned pendulums, respectively. Applying the method of multiple scales yields
first order solutions of the form

𝜁11(𝜗0, 𝜗1) = 𝑢1(𝜗1) cos
(

𝑛𝜗0 − 𝛽1(𝜗1)
2

)

, (26a)

𝜁21(𝜗0, 𝜗1) = 𝑢2(𝜗1) cos
(

𝑛𝜗0 − 𝛽2(𝜗1)
2

)

. (26b)

Amplitudes 𝑢1, 𝑢2 and phases 𝛽1, 𝛽2 are governed by the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷1𝑢1 = 𝑓𝑢1 (𝒖, 𝜷), (a)
𝑢1𝐷1𝛽1 = 𝑓𝛽1 (𝒖, 𝜷), (b)
𝐷1𝑢2 = 𝑓𝑢2 (𝒖, 𝜷), (c)
𝑢2𝐷1𝛽2 = 𝑓𝛽2 (𝒖, 𝜷), (d)

(27)

where 𝐷1(∙) = 𝜕(∙)∕𝜕𝜗1 and 𝒖, 𝜷 are vectors containing 𝑢1, 𝑢2 and 𝛽1, 𝛽2, respectively. Functions 𝑓𝑢1 , 𝑓𝛽1 , 𝑓𝑢2 and 𝑓𝛽2 are given in
Appendix E.

The solutions sought are those at steady-state, meaning that the amplitudes and phases are invariant with 𝜗 such that

𝐷1𝑢1 = 𝐷1𝑢2 = 𝐷1𝛽1 = 𝐷1𝛽2 = 0. (28)

Four types of solutions are possible for system (27):

• (𝑢1 = 𝑢2 = 0) corresponds to the trivial solution for which pendulums are immobile.
• (𝑢1 ≠ 0, 𝑢2 = 0) corresponds to the desired behaviour as pendulums respond only on mode 1. This solution will be called ‘‘SH1’’

where ‘‘SH’’ stands for ‘‘subharmonic’’.
• (𝑢1 = 0, 𝑢2 ≠ 0) corresponds to a solution with in phase pendulums and will be called ‘‘SH2’’.
• (𝑢1 ≠ 0, 𝑢2 ≠ 0) corresponds to coupled-mode solutions that will be called ‘‘SH12’’.

6.2. Stability of the trivial solution

The trivial solution simply corresponds to immobile pendulums. It is interesting to assess its stability as bifurcations will lead to
one of the non-linear solutions. As the equations of system (27) are singular when either 𝑢1 or 𝑢2 is zero, it is convenient to use a



Fig. 4. Arnold tongues representing the range of excitation parameters for which the trivial solution bifurcates to SH1 or SH2. Dashed lines represent the limit
of the tongues in the absence of damping. Parameters used are those given in Table 1, except for �̄� = 0.005.

change from polar to Cartesian coordinates [29]. To this aim, the new variables

𝑝1 = 𝑢1 cos
(

𝛽1
2

)

, 𝑞1 = 𝑢1 sin
(

𝛽1
2

)

, 𝑝2 = 𝑢2 cos
(

𝛽2
2

)

, 𝑞2 = 𝑢2 sin
(

𝛽2
2

)

(29)

are defined and system (27) is rewritten under the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷1𝑝1 = 𝑓𝑝1 (𝒑, 𝒒), (a)
𝐷1𝑞1 = 𝑓𝑞1 (𝒑, 𝒒), (b)
𝐷1𝑝2 = 𝑓𝑝2 (𝒑, 𝒒), (c)
𝐷1𝑞2 = 𝑓𝑞2 (𝒑, 𝒒). (d)

(30)

𝒑 and 𝒒 are vectors containing 𝑝1, 𝑝2 and 𝑞1, 𝑞2, respectively. 𝑓𝑝1 , 𝑓𝑞1 , 𝑓𝑝2 and 𝑓𝑞2 are functions given in Appendix G. The Jacobian
of system (30) evaluated on the trivial response has the special form

𝑱 =
[

𝑨 𝟎
𝟎 𝑩

]

, 𝑨 =
⎡

⎢

⎢

⎣

𝜕𝑓𝑝1
𝜕𝑝1

𝜕𝑓𝑝1
𝜕𝑞1

𝜕𝑓𝑞1
𝜕𝑝1

𝜕𝑓𝑞1
𝜕𝑞1

⎤

⎥

⎥

⎦

, 𝑩 =
⎡

⎢

⎢

⎣

𝜕𝑓𝑝2
𝜕𝑝2

𝜕𝑓𝑝2
𝜕𝑞2

𝜕𝑓𝑞2
𝜕𝑝2

𝜕𝑓𝑞2
𝜕𝑞2

⎤

⎥

⎥

⎦

, (31)

so that the eigenvalues of 𝑱 are the eigenvalues of 𝑨 and 𝑩. 𝑨 and 𝑩 represent the effect of a perturbation of modes 1 and 2 on
the system, respectively. Thus, if the real part of one of the eigenvalues of 𝑨 (𝑩) becomes positive, the system’s response bifurcates
to SH1 (SH2). The eigenvalues of 𝑨 and 𝑩 are given by

𝜆1,2 = −
2�̃� ± 𝛬𝑚

√

�̃� 2
1 − 4𝜎2

4𝛬𝑚
, (32a)

𝜆3,4 = −
2�̃� ±

√

�̃� 2
1 𝛬

2
𝑚 − 4(𝛬𝑚𝜎 − 𝛬2

𝑐𝑛𝑝�̃�)2

4𝛬𝑚
, (32b)

respectively. From Eq. (32), one can conclude that the trivial solution is unstable if

�̃� 2
1 − 4�̃�2

𝛬2
𝑚

− 4𝜎2 > 0, or (33a)

�̃� 2
1 − 4�̃�2

𝛬2
𝑚

− 4

(

𝜎 − 𝑛𝑝�̃�
𝛬2
𝑐

𝛬𝑚

)2

> 0. (33b)

Conditions (33a) and (33b) are associated to a pitchfork bifurcation2 towards SH1 and SH2, respectively. The bifurcation sets of the
trivial solution are shown in Fig. 4.

2 It is a pitchfork bifurcation of the slow scale system (30), which corresponds to a period doubling bifurcation of the initial dynamical system, since a
harmonic 1 response bifurcates to a harmonic 1/2 response. (cf. Appendix F).



6.3. Solution on the phase-opposition mode

Pendulums in phase-opposition is the desired behaviour of the system. Using Eqs. (27a) and (27b) with 𝑢2 = 0, one can find that
SH1 is given by

𝑢21 = 𝑛𝑝
2𝛬𝑚𝜎 ±

√

𝛬2
𝑚�̃�

2
1 − 4�̃�2

𝑐𝑐 − 𝑐𝑝
, (34a)

tan 𝛽1 = ∓

√

𝛬2
𝑚�̃�

2
1

4�̃�2
− 1. (34b)

𝑐𝑐 and 𝑐𝑝 are non-linear coefficients related to Coriolis effects and to the perturbations of the trajectory and rotation functions,
respectively. They are defined as

𝑐𝑐 = �̃�𝑛4𝑡 , 𝑐𝑝 = 3(�̃�[4] + 2𝑛2𝑝𝜂𝛼[1]�̃�[3]). (35)

The backbone curve of SH1 is

𝑛(𝑆𝐻)
1 = 2𝑛𝑝 + 𝜖

𝑐𝑐 − 𝑐𝑝
2𝑛𝑝𝛬𝑚

𝑢21, (36)

so that for reasonable values of 𝑐𝑝, mode 1 is hardening.
SH1 is not defined for every parameter as 𝑢1 must be real. Evaluating Eq. (34a) for 𝑢1 = 0, one finds that the torque or order at

the bifurcation are

�̃� ∗2
1 = 4𝜎2 + 4�̃�2

𝛬2
𝑚
, 𝑛∗1,2 = 2𝑛𝑝 ±

1
2

√

�̄� 2
1 − 4�̄�2

𝛬2
𝑚
. (37)

Superscript ∗ indicates that the quantity is that at the bifurcation. Eq. (37) corresponds to the limit of condition (33a), thus
confirming that this condition is associated to SH1. One typically wants �̃� ∗

1 to be as small as possible for SH1 to exist at small
torque amplitudes. This would correspond to a configuration with small damping, small mistuning and maximum equivalent mass.

The stability information of SH1 is given by the eigenvalues of the Jacobian of system (30) evaluated on SH1. It has the same
form as shown in Eq. (31), but matrices 𝑨 and 𝑩 have a slightly different meaning. As 𝑱 is evaluated on SH1, 𝑨 represents the
effect of a perturbation of mode 1 on itself. Thus, stability changes computed from 𝑨 indicate saddle–node bifurcations, leading to
a jump of the response. 𝑩 represents the effect of a perturbation of mode 2 on mode 1. Hence, stability changes computed from 𝑩
indicate pitchfork bifurcations leading to SH12. The eigenvalues of 𝑨 and 𝑩 are given by

𝜆1,2 = −
𝑛𝑝�̃� ±

√

2𝑛𝑝𝛬𝑚(𝑐𝑐 − 𝑐𝑝)𝜎𝑢21 + 𝑛2𝑝 �̃�2 − (𝑐𝑐 − 𝑐𝑝)2𝑢41
2𝑛𝑝𝛬𝑚

, (38a)

𝜆3,4 = − 1
2𝛬𝑚𝑛𝑝

[

𝑛𝑝�̃� ±
√

(

𝛬2
𝑐𝑛2𝑝�̃� − (𝑐𝑝 + 3𝑐𝑡∕2)𝑢21

)(

2𝛬𝑚𝑛𝑝𝜎 − 𝛬2
𝑐𝑛2𝑝�̃� + (𝑐𝑝 + 𝑐𝑡∕2)𝑢21

)

+ 𝑛2𝑝 �̃�2
]

, (38b)

respectively. Instabilities occur when the real part of at least one of the eigenvalues becomes positive. The limit case ℜ[𝜆2] = 0
corresponds exactly to the backbone of SH1 (cf. Eq. (36)), while ℜ[𝜆4] = 0 leads to

𝑢21𝑎 =
𝑛2𝑝�̃�𝛬

2
𝑐 − 2𝑛𝑝𝛬𝑚𝜎

𝑐𝑝 + 𝑐𝑡∕2
, (39a)

𝑢21𝑏 =
𝑛2𝑝�̃�𝛬

2
𝑐

𝑐𝑝 + 3𝑐𝑡∕2
. (39b)

Eqs. (39a) and (39b) correspond to the limit of stability regions and will be called ‘‘bifurcation curves’’. Each crossing between one
of those curves and SH1 leads to a change of stability. This is illustrated in Fig. 5, where the order response of SH1 and its stability
are presented. 𝑢1𝑎 is shown in black in Fig. 5 while 𝑢1𝑏 does not exist for the set of parameters used. The crossings between the
black curve and SH1 lead to pitchfork bifurcations, indicated by code names PF. The instability zones are the coloured red (for the
bifurcations to SH12) and blue (for the saddle–node bifurcations) areas. The purple area corresponds to the superposition of the two
instabilities. Unstable parts of the response are shown as dashed-lines. The trivial solution is represented in green. SH2 is not shown
in this figure. Note that the part of the response above 𝑠cusp can help understanding the solution but is not physically relevant as
it exists only because of approximations (cf. Section 5.2). A numerical response, obtained with the MANLAB3 software [52,53], is
shown as thin blue lines with dot markers. It is almost superimposed with the analytical computations, which exhibits the accuracy
of the model. The pitchfork bifurcation obtained numerically (red star) is not exactly the same as that predicted analytically (PF),
but it is close.

3 MANLAB is a path-following and bifurcation analysis software.



Fig. 5. Order response of mode 1 and its stability. Dashed lines indicate an unstable response. The black line represents one of the bifurcation curves. Coloured
areas correspond to the instability zones. Numerical solutions are represented as thin blue lines with dot markers. PF indicates a pitchfork bifurcation. �̄�1 = 0.02,
and other parameters are given in Table 1.

Table 1
Parameters of the CPVA presented in this section. These parameters are chosen to favour the apparition of instabilities.
𝑁 𝑛𝑝 𝜂 𝜇 𝑥[4] 𝛼[1] 𝛼[3] �̄� �̄�𝑟
2 1.5 1 0.025 −0.2 −0.1 0.1 0.002 0.002

6.4. Solution on the unison mode

Solution SH2 is now analysed. Using Eqs. (27c) and (27d) with 𝑢1 = 0, one can find that SH2 is given by

𝑢22 = 𝑛𝑝
2𝛬𝑚𝜎 − 2𝑛𝑝�̃�𝛬2

𝑐 ±
√

𝛬2
𝑚�̃�

2
1 − 4�̃�2

𝑐𝑐 − 𝑐𝑝 − 2𝑐𝑡
, (40a)

tan 𝛽2 = ∓

√

𝛬2
𝑚�̃�

2
1

4�̃�2
− 1. (40b)

𝑐𝑡 is a non-linear coefficient related to large pendulums displacements along their trajectories. It is defined as

𝑐𝑡 =
𝛬𝑐
2
�̃�𝑛2𝑝𝑛

2
𝑡 (1 + 𝑛2𝑡 ). (41)

The backbone curve of SH2 is

𝑛(𝑆𝐻)
2 = 2𝑛𝑝 + 𝜖𝑛𝑝�̃�

𝛬2
𝑐

𝛬𝑚
+ 𝜖

𝑐𝑐 − 𝑐𝑝 − 2𝑐𝑡
2𝑛𝑝𝛬𝑚

𝑢22. (42)

Because of the term −2𝑐𝑡, mode 2 is more softening than mode 1 (provided 𝛬𝑐 > 0, which is the case for reasonable parameters).
Like SH1, SH2 is not defined for every parameter as 𝑢2 must be real. Evaluating Eq. (40a) for 𝑢2 = 0, one finds that the torque

or order at the bifurcation are

�̃� ∗2
1 = 4

(

𝜎 − 𝑛𝑝�̃�
𝛬2
𝑐

𝛬𝑚

)2

+ 4�̃�2

𝛬2
𝑚
, 𝑛∗1,2 = 𝑛(𝑆𝐻)

2
|

|

|

𝑢2=0 ±
1
2

√

�̄� 2
1 − 4�̄�2

𝛬2
𝑚
. (43)

Eq. (43) corresponds to the limit of condition (33b), thus confirming that this condition is associated to SH2. Comparing Eqs. (37)
and (43), one can see that there is a difference on �̃� ∗

1 between SH1 and SH2. This difference is due to the presence of 𝑛𝑝�̃�𝛬2
𝑐∕𝛬𝑚,

which is directly related to the fact that the linear resonance of mode 2 is higher than that of mode 1 (cf. Eq. (9)). For small
mistunings, this difference implies that the system will bifurcate to SH1 before SH2, thus achieving the desired behaviour. Levels
of mistuning for which the system would bifurcate to SH2 before SH1 are relatively large. Corresponding orders must be greater



Fig. 6. Order response of mode 2 and its stability. Dashed lines indicate an unstable response. Bifurcation curves are shown in grey. Coloured areas correspond
the instability zones. Numerical solutions are represented as thin orange lines with dot markers. PF indicates a pitchfork bifurcation. �̄�1 = 0.02, and other
parameters are given in Table 1.

than the critical order 𝑛𝑐𝑟, given by

𝑛𝑐𝑟 = 𝑛𝑝

(

2 + 𝜇
𝛬2
𝑐

2𝛬𝑚

)

≈ 𝑛10 + 𝑛20. (44)

The stability of SH2 is determined in the same way as that of SH1. The eigenvalues of the Jacobian of system (30) evaluated on
SH2 are

𝜆1,2 = − 1
2𝛬𝑚𝑛𝑝

[

𝑛𝑝�̃� ±
√

−
(

𝛬2
𝑐𝑛2𝑝�̃� +

(

𝑐1 + 𝑐𝑡∕2
)

𝑢22
)(

2𝛬𝑚𝑛𝑝𝜎 − 𝛬2
𝑐𝑛2𝑝�̃� +

(

𝑐𝑝 + 3𝑐𝑡∕2
)

𝑢22
)

+ 𝑛2𝑝 �̃�2
]

, (45a)

𝜆3,4 = − 1
2𝛬𝑚𝑛𝑝

[

𝑛𝑝�̃� ±
√

2𝑛𝑝𝛬𝑚(𝜎 − 𝑛𝑝�̃�𝛬2
𝑐∕𝛬𝑚)(𝑐𝑐 − 𝑐𝑝 − 2𝑐𝑡)𝑢22 − (𝑐𝑐 − 𝑐𝑝 − 2𝑐𝑡)2𝑢42 + 𝑛2𝑝 �̃�2

]

. (45b)

ℜ[𝜆2] is related to a bifurcation towards SH12 while ℜ[𝜆4] is related to jumps of the response. The limit case ℜ[𝜆4] = 0 corresponds
exactly to the backbone of SH2 (cf. Eq. (42)), while ℜ[𝜆2] = 0 leads to the bifurcation curves defined as

𝑢22𝑎 =
𝑛2𝑝�̃�𝛬

2
𝑐 − 2𝑛𝑝𝛬𝑚𝜎

𝑐𝑝 + 3𝑐𝑡∕2
, (46a)

𝑢22𝑏 = −
𝑛2𝑝�̃�𝛬

2
𝑐

𝑐𝑝 + 𝑐𝑡∕2
. (46b)

This is illustrated in Fig. 6, where the bifurcation curves are shown as grey lines and the instability zones are indicated with the same
colour code as in Fig. 5. Crossings between the grey curves and SH2 lead to pitchfork bifurcations. Unstable parts of the response
are shown as dashed-lines. The trivial solution is represented in green. SH1 is not shown in this figure. A numerical response is
shown as thin orange lines with dot markers. As for SH1, it is almost superimposed with the analytical computations. The pitchfork
bifurcations obtained numerically (red stars) are close to those predicted analytically (PF).

6.5. Coupled mode solution

The coupled-mode solutions are now investigated. The forced solutions cannot be computed analytically without additional
assumptions. Chao et al. [29] computed them for pendulums that do not rotate relatively to the rotor and assuming a special phase
relation between modes 1 and 2. In this paper, the backbones of the SH12 solutions are computed.

Using system (27) with �̃� = �̃�1 = 0, one can find two free responses for SH12. The first one, called ‘‘SH12a’’, corresponds to the
case where modes 1 and 2 are in phase-quadrature. It is given by

𝑢21 =
2𝛬𝑚𝑛𝑝𝜎 + (𝑐𝑝 + 𝑐𝑡 + 𝑐𝑐)𝑢22

𝑐𝑐 − 𝑐𝑝
, (47a)



Fig. 7. Free responses of SH1 (blue), SH2 (orange), SH12a (pink) and SH12b (brown). Bifurcation curves associated to SH1 and SH2 are shown in black and
grey, respectively. Dashed lines indicate unstable responses. PF indicates a pitchfork bifurcation. Parameters are given in Table 1.

sin(𝛽1 − 𝛽2) = 0, cos(𝛽1 − 𝛽2) = −1, (47b)

𝑢22 = 2𝑛𝑝
𝑛𝑝�̃�𝛬2

𝑐 (𝑐𝑐 − 𝑐𝑝) − 𝛬𝑚𝜎(2𝑐𝑐 + 𝑐𝑡)

4𝑐𝑝𝑐𝑐 + 𝑐2𝑡 + 4𝑐𝑐𝑐𝑡
. (47c)

The second solution, called ‘‘SH12b’’, corresponds to the case where modes 1 and 2 are in phase or in phase-opposition. Whether
these modes are in phase or in phase-opposition will not change the pendulums’ response. SH12b is given by

𝑢21 =
2𝛬𝑚𝑛𝑝𝜎 + (3𝑐𝑝 + 3𝑐𝑡 − 𝑐𝑐)𝑢22

𝑐𝑐 − 𝑐𝑝
, (48a)

sin(𝛽1 − 𝛽2) = 0, cos(𝛽1 − 𝛽2) = 1, (48b)

𝑢22 = 2𝑛𝑝
𝑛𝑝�̃�𝛬2

𝑐 (𝑐𝑐 − 𝑐𝑝) − 𝛬𝑚𝜎(2𝑐𝑝 + 3𝑐𝑡)

8𝑐2𝑝 + 16𝑐𝑝𝑐𝑡 − 4𝑐𝑝𝑐𝑐 + 9𝑐2𝑡 − 4𝑐𝑡𝑐𝑐
. (48c)

SH12a and SH12b can arise through pitchfork bifurcations either from SH1 or SH2, as shown in Fig. 7 for free responses.

6.6. Physical solutions

Trivial solution. As stated earlier, the trivial solution at first order corresponds to immobile pendulums, i.e. 𝑠(1∕2)1 = 𝑠(1∕2)2 = 0, where
superscripts in brackets indicate the number of the harmonic considered. Using Eq. (19a), one simply finds

|

|

|

𝜃(1)
′′
|

|

|

= �̃�1. (49)

It is interesting to note that if one goes up to the second order in the multiple scales developments, the trivial solution corresponds
to pendulums responding linearly to the excitation (this is shown in Appendix F). In that case, they act as amplifiers and will slightly
increase the amplitude of 𝜃(1). This was also observed in [28].

Phase-opposition solution. If pendulums respond on SH1, then 𝑠(1∕2)1 = 𝜁1 = −𝑠(1∕2)2 , leading to

|

|

|

𝜃(1)
′′
|

|

|

2
= �̃� 2

1 + �̃�2𝑛4𝑡
𝑛2𝑢41
4

+ �̃�1�̃�𝑛
2
𝑡 𝑛𝑢

2
1 sin 𝛽1. (50)

Replacing 𝑢1 and 𝛽1 with their expressions in the case of perfect tuning (i.e. 𝜎 = 𝑐𝑝 = 0, cf. Section 7.1), Eq. (50) reduces to

|

|

|

𝜃(1)
′′
|

|

|

= 2�̃�
𝛬𝑚

. (51)

This corresponds to a saturation of the rotor’s response as it is independent of the forcing amplitude. The saturation level is desired
to be as small as possible, which corresponds to a configuration with small damping and maximum equivalent mass. As damping is
difficult to control in practice, designers should aim at maximising the equivalent mass, which implies to maximise the pendulums’
inertia and their linear rotation rate (cf. Eq. (8)). Note that it does not matter whether this linear rotation rate is positive or negative.



Table 2
Parameters of the hardened-CPVA.
𝑛𝑝 𝜂 𝜇 𝑥[4] 𝛼[1] 𝛼[3] �̄� �̄�𝑟
1.5 1 0.1 −0.2 −0.1 0.1 0.002 0.002

In phase solution. If pendulums respond on SH2, then 𝑠(1∕2)1 = 𝜁2 = 𝑠(1∕2)2 , leading to

|

|

|

𝜃(1∕2)
′′
|

|

|

= �̃�

(

𝑛2𝑝𝛬𝑐 +
(𝑛2 − 6𝑛2𝑝)𝑛

2
𝑡 (1 + 𝑛2𝑡 )

16
𝑢22

)

𝑢2, (52a)

|

|

|

𝜃(1)
′′
|

|

|

2
= �̃� 2

1 + �̃�2𝑛4𝑡
𝑛2𝑢42
4

+ �̃�1�̃�𝑛
2
𝑡 𝑛𝑢

2
2 sin 𝛽2, (52b)

|

|

|

𝜃(3∕2)
𝑃 𝑟𝑖𝑚𝑒|

|

|

=
�̃�𝑛2𝑡 (1 + 𝑛2𝑡 )(2𝑛

2
𝑝 + 𝑛2)𝑢32

16
. (52c)

From Eq. (52), one can see that pendulums generate 1/2 and 3/2 rotor harmonics whose amplitudes do not seem negligible,
especially at high orders. This is problematic as pendulums will, at best, shift the vibration issues to orders 𝑛∕2 and 3𝑛∕2. Moreover,
there is no set of parameters 𝜎 and 𝑐𝑝 for which |

|

|

𝜃(1)′′ ||
|

perfectly saturates. For those reasons, pendulums responding on mode 2 is
undesired.

Coupled solution. If the two pendulums respond on SH12a, then their free responses are given by

𝑎1 = 𝑎2 =
√

𝑢21 + 𝑢22. (53)

Thus, SH12a corresponds to a solution for which the pendulums oscillate with the same amplitudes. If the pendulums respond on
SH12b, their free responses are

𝑎1 = 𝑢1 + 𝑢2, 𝑎2 = |𝑢1 − 𝑢2|, (54)

respectively. Thus, SH12b leads to a response localised on one of the pendulums.

7. Case studies and design guidelines

7.1. Effect of linear and non-linear mistunings

As explained in Section 3, 𝑛𝑝 is the tuning order of the pendulums and the linear eigenorder of mode 1, so it can be seen as
the linear tuning parameter of the CPVA. Moreover, Eq. (36) shows that the subharmonic response of mode 1 is hardening but can
be hardened even more or softened a little using 𝑐𝑝. Hence, 𝑐𝑝 can be seen as the non-linear tuning parameter, and 𝑐𝑝 < 0 and
𝑐𝑝 > 0 correspond to hardened and softened tunings, respectively. The special case 𝑛𝑝 = 𝑛∕2 and 𝑐𝑝 = 0 is called the ‘‘perfectly-tuned
case’’. In practice, one can choose the value of the trajectory order 𝑛𝑡 and the linear rotation coefficient 𝛼[1] to set 𝑛𝑝 (cf. Eq. (10)).
Similarly, 𝑐𝑝 is set by choosing the value of the perturbation coefficients of the trajectory and the rotation functions, that is 𝑥[4] and
𝛼[3], respectively (cf. Eq. (35)).

The former developments are now applied to a CPVA whose parameters are given in Table 2. It has a hardened behaviour
as 𝑐𝑝 < 0. That CPVA will be compared to a reference-CPVA corresponding to the perfectly-tuned case. The parameters of that
perfectly-tuned CPVA are the same except for 𝑥[4] = 0.045, which renders 𝑐𝑝 = 0.

Fig. 8 shows an order response of the two CPVAs for three torque amplitudes. In practice, the excitation order is a constant, but
varying it is an efficient way to study the pendulums’ linear mistuning, provided that all pendulums are equally mistuned [14]. The
subharmonic and trivial responses are depicted as blue and green lines, respectively. The darker the line the higher the associated
torque amplitude. Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations.



Fig. 8. Order response of the hardened- and reference-CPVA for three torque amplitudes. The associated pendulums’ response are shown in (a) and (b) and the
associated rotor’s response are given in (c) and (d), respectively. The subharmonic and trivial responses are depicted as blue and green lines, respectively. The
darker the line the higher the associated torque amplitude. Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations.
Only one trivial response is shown in (a) and (b) as it overlaps with the other ones (only the unstable part is different). 𝑛𝐴𝑅 is the order at the non-linear
antiresonance. �̄�1 = {0.01, 0.025, 0.04}.

As remarked in [29], Figs. 8(a) and (b) confirm that one can use the non-linear mistuning to increase the torque capacity of
the CPVA. Indeed, the pendulums’ amplitude is always smaller in Fig. 8(b) than in Fig. 8(a), so that the hardened-pendulums will
hit their cusp for a larger torque level. Moreover, a linear over-tuning (which corresponds to 𝑛 < 3) allows for a decrease in the
pendulums’ amplitude and thus an increase in the torque capacity.

The evolution of the rotors’ response is given in Figs. 8(c) and (d). For the reference-CPVA, the response at the three torque
levels overlaps so that min ||

|

𝜃(1)′′ ||
|

is fixed both in order (at 𝑛𝐴𝑅) and in amplitude. This is the saturation phenomenon as increasing
the forcing does not change the amplitude’s response. A small linear mistuning still leads to a saturation,4 but at a larger amplitude.
This can be seen looking at Fig. 8(c) at 𝑛 = 2.99 for instance. The rotor’s behaviour is significantly different for the hardened-CPVA
shown in Fig. 8(d). Indeed, increasing the torque level shifts the antiresonance order to the right. Because of this shifting, the rotor’s
amplitude at a given order will evolve with the torque level instead of saturating. This can be seen looking at Fig. 8(d) at 𝑛 = 3
for instance. An interesting point is that the rotor’s amplitude at the antiresonance does not change, only 𝑛𝐴𝑅 is shifted. Hence,
the CPVA remains efficient in reducing vibrations but its maximum efficiency is shifted to higher orders. This feature will be used
for the design guideline proposed in Section 7.2. As min ||

|

𝜃(1)′′ ||
|

is tuning-independent, the recommendations on �̃� and 𝛬𝑚 proposed
earlier in the case of perfect tuning (cf. Section 6.6) also apply in the presence of mistunings.

In the case of a CPVA with a softened behaviour (i.e. 𝑐𝑝 > 0), the rotor’s response would not shift to the right but to the left,
leading to similar qualitative results as those of the hardened-CPVA. However, the amplitude of softened pendulums is larger than
that of perfectly-tuned ones, so that their torque range is reduced. Those two remarks are illustrated in Appendix H.

The pros and cons of intentional mistuning have now been exposed, and the results are in accordance with [29], where pendulums
with a purely translational motion were considered. However, to our knowledge, no directions were given regarding how to choose
those mistunings efficiently. This is discussed in the next section.

4 Actually, the saturation is not perfect in that case. Zooming on Fig. 8(c) around 𝑛 = 2.997, one would see that there is a small difference on |

|

|

𝜃(1)′′ ||
|

between
the three torque levels. However, this difference seems negligible.



Fig. 9. Torque response of cases 1, 2 and 3. Pendulums and rotor’s responses are shown in (a) and (b), respectively. Cases 1, 2 and 3 are represented as light,
regular and dark blue lines, respectively. The trivial solution for cases 1 and 3 is depicted in green. That of case 2 is not shown as it overlaps the others (only
the unstable part is different). Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations. Numerical solutions are
shown as thin lines with dot markers. Dashed black lines indicate the cusp amplitudes for CPVAs that minimise the rotor’s vibrations at �̄�1 = 0.03 using relation
(55). A, B and C indicate the rotor’s amplitude at cusp point corresponding to cases 1, 2 and 3, respectively. 𝑛 = 3 and other parameters are given in Table 2
except for 𝑛𝑝, 𝑥[4] and 𝛼[3]. 𝑛𝑝 = {1.498, 1.5, 1.502}, 𝑥[4] = {−0.037, 0, 0.0556} and 𝛼[3] = {0.02, 0, 0.02} in cases 1, 2 and 3, respectively.

7.2. Control of the detuning

It is interesting to study how |

|

|

𝜃(1)′′ ||
|

evolves in the presence of mistuning. It reaches a minimum (corresponding to the non-linear
antiresonance) equal to the perfectly-tuned case (cf. Eq. (51)) for a specific value of 𝜎, given by

𝜎𝐴𝑅 = −
𝑐𝑝
𝑐𝑐

√

√

√

√

�̃� 2
1
4

− �̃�2

𝛬2
𝑚
. (55)

Eq. (55) is an interesting relation as it allows one to select 𝜎 and 𝑐𝑝 to minimise the rotor’s vibrations at a given torque level. Of
course, it is possible to choose 𝜎 = 𝑐𝑝 = 0 for the rotor to perfectly saturate, but this choice cannot be achieved exactly in practice
due to manufacturing tolerances, and it can lead to instabilities when the system is made of more than two pendulums [30].

Relation (55) is illustrated in Fig. 9 with three different cases, all aiming to minimise the rotor’s amplitude at �̄�1 = 0.03. Those
cases correspond to CPVAs whose parameters are the same as those of Table 2, except for the values of 𝑛𝑝, 𝑥[4] and 𝛼[3]. Here are
the characteristics of the three cases considered:

• case 1: 𝑛𝑝 < 𝑛∕2, 𝑐𝑝 < 0, where 𝑛 = 3 is the order corresponding to the torque response depicted in Fig. 9. This is the
under-tuned, hardened case.

• case 2: 𝑛𝑝 = 𝑛∕2, 𝑐𝑝 = 0. This is the perfectly-tuned case.
• case 3: 𝑛𝑝 > 𝑛∕2, 𝑐𝑝 > 0. This is the over-tuned, softened case.

Fig. 9(b) clearly shows that it is possible to minimise the rotor’s amplitude for a desired torque, and that minimum corresponds to
the perfectly-tuned case. It is interesting to note that the amplitude of the pendulums at �̄�1 = 0.03 is the same in all three cases.
Before and after that �̄�1 value, the filtration is not optimal as the excitation order does not coincide with the antiresonance order
(cf. Fig. 8). This being said, the overall rotor’s amplitude in case 1 is not too far from the perfectly-tuned case, thus allowing for a
good filtration over the whole torque range.

Fig. 9(a) shows that the pendulums hit their cusp point at different values, thus changing the torque range. This is also observed
in Fig. 9(b) where the cusp amplitude of cases 1, 2 and 3 is represented by points A, B and C, respectively. The torque range of case
1 is larger than for the two other cases, which is an advantage. This is discussed in details in Section 7.3.



Fig. 10. Representation of the torque capacity as a function of tuning parameters for 𝑛 = 3. The torque capacity is compared to the maximum torque of
perfectly-tuned pendulums, called �̄�1ref

. The hatched regions describe undesirable sets of parameters. The three coloured curves in (c) correspond to the use of
relation (55) for three different �̄�1. The blue dots along the purple curve represent the cases shown in Fig. 9. The three zones delimited by red lines in (d)
represent parameter sets that are a priori not undesirable. System parameters that are not varied are given in Table 2.

7.3. Torque capacity

It is important to have an information on the torque capacity of pendulums responding on SH1. The maximum torque is limited
either by pendulums reaching their cusp or by SH1 becoming unstable. A good approximation of the torque driving the pendulums
to their cusp is obtained by equating the amplitude on SH1 (cf. Eq. (34a)) with the cusp point of an epicycloid (cf. Eq. (20)), leading
to

�̃� 2
1cusp

=
(

2𝜎 −
𝑐𝑐 − 𝑐𝑝
2𝑐𝑡

𝑛𝑝�̃�
𝛬𝑐
𝛬𝑚

)2
+ 4�̃�2

𝛬2
𝑚
. (56)

The torque at which SH1 bifurcates to SH12 is obtained by equating the amplitude on SH1 with one of the bifurcation curves given
by Eqs. (39a) and (39b). In the case where those bifurcation curves exist and cross SH1, the torques leading to a bifurcation towards
SH12a and SH12b are given by

�̃� 2
1𝑎

=

(

2𝜎 −
𝑐𝑐 − 𝑐𝑝
𝑐𝑝 + 𝑐𝑡∕2

(

𝑛𝑝�̃�
𝛬2
𝑐

𝛬𝑚
− 2𝜎

))2

+ 4�̃�2

𝛬2
𝑚
, (57a)

�̃� 2
1𝑏

=

(

2𝜎 −
𝑐𝑐 − 𝑐𝑝

𝑐𝑝 + 3𝑐𝑡∕2
𝑛𝑝�̃�

𝛬2
𝑐

𝛬𝑚

)2

+ 4�̃�2

𝛬2
𝑚
, (57b)

respectively. The torque capacity is �̄�1max = min
[

�̄�1cusp , �̄�1𝑎 , �̄�1𝑏
]

, and from Eqs. (56) and (57) it is clear that �̄�1max is affected by the
tuning parameters 𝜎 and 𝑐𝑝.



The torque capacity is shown in Fig. 10 for an excitation order 𝑛 = 3 and as a function of the tuning parameters 𝑛𝑝 and 𝑐𝑝. 𝑐𝑝 is
the unscaled equivalent of 𝑐𝑝, i.e.

𝑐𝑝 = 𝜖𝑐𝑝 = 3(𝑥[4] + 2𝑛2𝑝𝜂𝛼[1]𝛼[3]). (58)

It is compared to a reference torque �̄�1ref , which simply corresponds to the torque capacity for perfectly-tuned pendulums (i.e. �̄�1ref =
�̄�1max

|

|

|𝜎=𝑐𝑝=0
). Fig. 10 contains four maps representing the torque capacity and additional information. On every of those maps,

the areas coloured in red represent sets of tuning parameters that increase the torque capacity in comparison to perfectly-tuned
pendulums. On the contrary, blue areas represent sets of parameters that diminish the torque capacity.

In Fig. 10(a), the hatched area corresponds to undesirable values of 𝑛𝑝 for which the trivial solution will bifurcate to SH2 instead
of SH1. The limit value of 𝑛𝑝 is given in Appendix I.

In Fig. 10(b), the hatched areas correspond to sets (𝑛𝑝, 𝑐𝑝) for which the torque at bifurcation is larger than the maximum torque.
This highly undesirable situation occurs when pendulums are subject to a large jump at the bifurcation point. In those cases, the
pendulums directly hit their cusp point or respond on SH12 when the trivial solution becomes unstable (cf. Fig. I.14). The limits
of the hatched regions are obtained by equating Eqs. (56) or (57) with Eq. (37) (more details are given in Appendix I). Note that
the issue discussed here deals only with under-tuned pendulums if SH1 has a hardening behaviour, which is the case for reasonable
parameters.

In Fig. 10(c), the hatched areas correspond to parameters that prevent the minimisation of ||
|

𝜃(1)′′ ||
|

at a given torque amplitude
using relation (55). Those hatched regions are not as undesirable as those depicted in Figs. 10(a) and (b) as they do not prevent
the system from responding on SH1 (this is why those regions are represented in grey rather than black). However, it was shown
in Fig. 9 that relation (55) can come very useful in minimising the rotor’s vibrations over the whole torque range. Three coloured
curves are shown in Fig. 10(c). Each of them corresponds to sets (𝑛𝑝, 𝑐𝑝) that minimise the rotor’s vibrations for three different
torque amplitudes. The purple curve represents situations where the torque at minimum is smaller than �̄�1max . Three such examples
were depicted in Fig. 9 and are shown here as light, regular and dark blue dots along the purple curve. The orange (green) curve
corresponds to situations where the torque minimising the rotor’s vibrations is equal to (larger than) the torque capacity of perfectly-
tuned pendulums. This means that the minimum seen at �̄�1 = 0.03 in Fig. 9 would be shifted to �̄�1 = 0.046 (�̄�1 = 0.062). These
situations do not allow for a good use of the minimisation of ||

|

𝜃(1)′′ ||
|

as the torque at minimum is close to or larger than the torque
capacity.

Finally, the undesirable areas described in Figs. 10(a), (b) and (c) are superimposed in Fig. 10(d). This reduces the parameters
choice to the three zones delimited by thick red lines. Zone 3 does not seem to be a good choice as it reduces the torque capacity.
The red part of zone 2 might seem acceptable but it was explained previously that it does not allow for a good use of relation (55).
This makes zone 1 the most suitable one, so that under-tuned, hardened pendulums should be preferred to other configurations.

7.4. Global vibration reduction

Section 7.3 introduced several guidelines about how to choose the tuning parameters for optimal performance. Different criteria
were considered, including the possibility to use relation (55) because it is assumed from the observations of Fig. 9 that this relation
can reduce the overall vibrations of the rotor. The aim of the present section is to validate this assumption.

Computing the area below |

|

|

𝜃(1)′′ ||
|

between �̄� ∗
1
|

|

|𝜎=𝑐𝑝=0
and �̄�1max is a good indicator of the overall vibration level. Small areas should

indicate a small overall vibration. However, one also needs to take into account the size of the torque range in the assessment of the
overall vibration as small torque ranges will necessarily lead to a small area below the curve. Thus, the global vibration reduction
indicator 𝐺 is defined as

𝐺 =

(

�̄�1ref − �̄� ∗
1
|

|

|𝜎=0

)2

𝐴ref
×

⎧

⎪

⎨

⎪

⎩

𝐴
(

�̄�1max− �̄� ∗
1
|

|

|𝜎=0

)2 if �̄�1max > �̄� ∗
1

𝐴
(

�̄� ∗
1 − �̄� ∗

1
|

|

|𝜎=0

)2 if �̄�1max < �̄� ∗
1

(59)

𝐴 is the area below |

|

|

𝜃(1)′′ ||
|

2
between �̄� ∗

1
|

|

|𝜎=0
and �̄�1max or �̄� ∗

1 . If two stable solutions exist simultaneously on a part of that interval,
the average area is considered. Finally, 𝐴ref is just 𝐴 for perfectly-tuned pendulums.

𝐺 is represented in Fig. 11 as a function of the tuning parameters. The smaller 𝐺, the better the filtration. The hatched areas,
their limits and the three zones of Fig. 10 are also shown, together with the purple curve of Fig. 10(c). It is interesting to see that the
smallest values of 𝐺 are located along this purple curve. This confirms that relation (55) is useful in reducing the rotor’s vibrations
over the whole torque range. Moreover, Fig. 11 indicates that designs from zone 1 (which were recommended in Section 7.3) are
efficient in reducing the overall vibrations.

Figs. 10 and 11 form a powerful design tool that helps choosing wisely the tuning parameters of a CPVA to maximise the torque
range while keeping the overall vibrations of the rotor as small as possible.

7.5. Avoidance of the SH12 solutions

As stated in Section 7.3, bifurcations from SH1 to SH12a or SH12b should be avoided in order to increase the torque range. The
aim of this section is to provide guidelines regarding the choice of the tuning parameters in order to avoid those bifurcations.



Fig. 11. Representation of indicator 𝐺 as a function of tuning parameters for 𝑛 = 3. Values 𝐺 ≥ 100 are represented with the same colour. The hatched regions
describe undesirable sets of parameters. The purple curve corresponds to the use of relation (55) for �̄�1 = 0.03. The three zones delimited by thick black lines
represent parameter sets that are a priori not undesirable. System parameters that are not varied are given in Table 2.

Avoidance of SH12a. Using the definition of 𝜎 (25), the bifurcation curve (39a) can be rearranged such that

𝑛1𝑎 = 2𝑛𝑝 + 𝜇𝑛𝑝
𝛬2
𝑐

2𝛬𝑚
− 𝜖

𝑐𝑝 + 𝑐𝑡∕2
2𝛬𝑚𝑛𝑝

𝑢21. (60)

To avoid bifurcations, one should have 𝑛 < 𝑛1𝑎 over the whole torque range, that is up to 𝑢1 = 𝑠cusp. This is satisfied if

𝑛𝑝 > 𝑛

(

2 + 𝜇
𝛬2
𝑐

2𝛬𝑚

)−1

and (61a)

𝑐𝑝 < −2𝛬𝑚𝑛𝑝𝑛
2
𝑡 (1 + 𝑛2𝑡 )𝜎 +

(

2𝛬𝑐 −
1
2

)

𝑐𝑡. (61b)

Note that condition (61a) was already mandatory to prevent the trivial solution from bifurcating to SH2 instead of SH1 (see Eq. (44)).

Avoidance of SH12b. As the bifurcation curve (39b) is independent of 𝜎, it is easier to treat. This curve should either not exist
(i.e. be imaginary) or be above 𝑠cusp. This is satisfied if

𝑐𝑝 <
(

−3
2
+ 2𝛬𝑐

)

𝑐𝑡. (62)

If conditions (61) and (62) are fulfilled, one ensures that the SH1 solution will not bifurcate to one of the SH12 solutions before
it reaches its cusp.

8. Comparison of the subharmonic filtration with a standard filtration

The subharmonic filtration is now compared to the classical one that uses 𝑛𝑝 ≈ 𝑛. To this aim, two different CPVAs are considered.
Their parameters are given in Table 3. The subharmonic CPVA corresponds to the case 1 shown in Fig. 9, while the classical CPVA
is slightly over-tuned to avoid pendulums’ localisation [17].

Fig. 12 shows a torque response of the two CPVAs for 𝑛 = 3, computed with MANLAB [52,53]. Solutions related to the
subharmonic and classical CPVAs are shown as lines with dot and cross markers, respectively. Harmonics 1/2, 1, 2 and 3 are
depicted in red, blue, orange and pink, respectively. Dashed lines represent unstable responses.



Table 3
Parameters of the subharmonic and classical CPVAs.

𝑛𝑝 𝜂 𝜇 𝑥[4] 𝛼[1] 𝛼[3] �̄� �̄�𝑟
Subharmonic CPVA 1.498 1 0.1 −0.037 −0.1 0.02 0.002 0.002
Classical CPVA 3.02 1 0.1 0 −0.1 0 0.002 0.002

Fig. 12. Comparison of a torque response at 𝑛 = 3 between a subharmonic CPVA (lines with dot markers) and a classical one (lines with cross markers).
Pendulums’ and rotors’ responses are shown in (a) and (b), respectively. The trivial subharmonic solution is shown in green. Horizontal blue and red dashed
lines represent the cusp point of the pendulums in the classical and subharmonic case, respectively. Parameters are given in Table 3.

From Fig. 12(a), one can see that the classical pendulums reach their cusp at a much larger torque than the subharmonic ones (the
cusp point of the classical pendulums is not visible in Fig. 12(a), it is around �̄�1 = 0.192). This is the main drawback of subharmonic
CPVAs, as it means that their torque range is smaller than that of classical ones. It is possible to use more than one pair of pendulums
to increase the torque range, but one has to be careful about the additional instabilities that might appear [30].

In Fig. 12(b), one can see that pendulums with a classical tuning generate higher order rotor harmonics (only higher harmonics
2 and 3 are shown here). This is a known issue [19] that limits the efficiency of the system as it generates vibration problems at
higher orders. On the contrary, pendulums with a subharmonic tuning do not generate higher order harmonics, which is a clear
advantage. In addition, the zoom in Fig. 12(b) shows that above �̄�1 = 0.026, the subharmonic CPVA allows for a better filtration of
𝜃(1)′′ than the classical one. However, for small torque amplitudes, the filtration from the classical CPVA is superior.

Another advantage of the subharmonic CPVA over the classical one is that lower tuning orders require less demanding
manufacturing tolerances [37].

9. Conclusion

The study presented in this paper deals with the subharmonic response of CPVAs made of two pendulums allowing a rotational
mobility. First, the physical origin of the subharmonic filtration was explained. Next, an analytical model allowing for the prediction
of this non-linear response and its stability was build using a scaling of the parameters, a modal decomposition and the method of
multiple scales. The validity of the model was verified numerically and design guidelines were presented. First, it was advised to
maximise the inertia and linear rotation of the pendulums to minimise the vibrations of the rotor. Then, a special relation between
the pendulums’ tuning parameters was introduced. It allows to minimise the rotor’s amplitude for a desired torque amplitude.
This relation increases the robustness of the CPVA as perfect tuning is impossible to achieve due to manufacturing tolerances.
Moreover, it can be used to increase the torque range. Then, two design tools were introduced. They take the form of maps where
two performance criteria and additional information are shown as a function of the tuning parameters. These two criteria represent
the torque range and the global vibration level of the rotor over that torque range. The additional information are related to the
proper operation of the CPVA. From the design tools it was observed that under-tuned pendulums with a hardened behaviour
provide the best compromise between a large torque range and a satisfying vibration reduction. Additional guidelines were given
regarding the choice of the tuning parameters so that the subharmonic solution remains stable over the whole operating range of



the CPVA. Finally, it was shown that the subharmonic tuning can provide a better filtration than the classical tuning for medium
torque amplitudes, but at the cost of a reduced torque range. This enhanced filtration is rendered possible by the saturation of the
rotor’s first harmonic and the non-generation of higher nor lower rotor harmonics.
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Appendix A. Chain rule for a change of variable from 𝒕 to 𝝑

Using the chain rule, one can write
𝜕(∙)
𝜕𝑡

= 𝜕𝜗
𝜕𝑡

𝜕(∙)
𝜕𝜗

. (A.1)

Computing the second derivative with respect to time leads to

𝜕2(∙)
𝜕𝑡2

= 𝜕
𝜕𝑡

(
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+
( 𝜕𝜗
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)2 𝜕2(∙)
𝜕𝜗2

.

(A.2)

Using the definition of 𝑦 (1) and the notations ̇(∙) = 𝜕(∙)∕𝜕𝑡, (∙)′ = 𝜕(∙)∕𝜕𝜗, Eqs. (A.1) and (A.2) can be written as Eq. (3).

Appendix B. Details on the computation of the equations of motion

The kinetic energy of the system represented in Fig. 1 is

 = 1
2
𝐽𝑟�̇�

2 + 1
2

𝑁
∑

𝑖=1

[

𝑚𝑖�̇�
2
𝑖 + 𝑚𝑖𝑋𝑖(𝑆𝑖)�̇�2 + 2𝑚𝑖�̇��̇�𝑖𝑍𝑖(𝑆𝑖) + 𝐼𝑖(�̇� + �̇�𝑖(𝑆𝑖))2

]

(B.1)

and the potential energy  is neglected as the gravitational acceleration is assumed negligible in front of the centrifugal acceleration.
Hence, the Lagrangian is  =  . There are three external loads applied on the system:

∙ A torque 𝑇 (𝜗)𝒛𝟎 is applied on the rotor, where 𝒛𝟎 is the out-of-plane unit vector (cf. Fig. 2). It is the external forcing.
∙ A resistive torque −𝑏𝑟�̇�𝒛𝟎 is applied on the rotor. It represents the damping between the rotor and the ground.
∙ A resistive force −𝑏𝑖�̇�𝑖𝒕𝒊 is applied on the centre of mass of the 𝑖th pendulum, where 𝒕𝒊 is the vector tangent to the trajectory
𝑖 at abscissa 𝑆𝑖. It represents the damping between the rotor and the 𝑖th pendulum.

Using the Euler–Lagrange equations together with the principle of virtual power, one obtains the equations of motion
[
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𝑁
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+ 𝑏𝑟�̇� = 𝑇 (𝜗), (B.2a)
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�̇�2 + 𝑏𝑖�̇�𝑖 = 0, 𝑖 = 1,… , 𝑁. (B.2b)

Eq. (B.2a) governs the motion of the rotor while the 𝑁 Eqs. (B.2b) govern the motion of the pendulums. Those equations can be
written in a non-dimensional form using the non-dimensional parameters and variables (1) and the chain rule (3). In addition, if
the pendulums are assumed identical, one obtains Eqs. (4a) and (4b).

Appendix C. Relations between coordinates 𝒚 and 𝜽

From Section 2, we have

𝑦 = �̇�
𝛺

= 1
𝛺

𝜕(𝛺𝑡 + 𝜃)
𝜕𝑡

= 1 + �̇�
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, (C.1a)

𝑦𝑦′ = �̈�
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= 1
𝛺2

𝜕2(𝛺𝑡 + 𝜃)
𝜕𝑡2

= �̈�
𝛺2

. (C.1b)



Using Eq. (3) at first order, we can write

�̇�
𝛺

= 𝑦𝜃′ ≈ 𝜃′, (C.2a)

�̈�
𝛺2

= 𝑦𝑦′𝜃′ + 𝑦2𝜃′′ ≈ 𝜃′′. (C.2b)

From Eqs. (C.1) and (C.2), we have the first order relations

𝜃′ = 𝑦 − 1, (C.3a)

𝜃′′ = 𝑦𝑦′. (C.3b)

Appendix D. Expression of the simplified modal equations

The system of modal Eqs. (22) uses functions 𝑓0, 𝑓1 and 𝑓2, which are given by
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′
1𝜁

′
2 + 𝜁2𝜁

′
1
2 + 𝜁2𝜁

′
2
2) + 6𝜂𝛼[1]�̃�[3](2𝜁1𝜁 ′1𝜁

′
2 + 𝜁2𝜁

′
1
2 + 𝜁2𝜁

′
2
2

+ 2𝜁1𝜁 ′′1 𝜁2 + 𝜁 ′′2 𝜁
2
1 + 𝜁 ′′2 𝜁

2
2 ) − 2�̃�[4](3𝜁21 𝜁2 + 𝜁32 ) + �̃�𝜁 ′2

]

. (D.3)

Appendix E. System obtained through the method of multiple scales

The system of equations obtained through the application of the method of multiple scales is given by Eq. (27) where functions
𝑓𝑢1 , 𝑓𝛽1 , 𝑓𝑢2 and 𝑓𝛽2 are

𝑓𝑢1 (𝒖, 𝜷) =
[

(𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)𝑢1𝑢22 sin(𝛽1 − 𝛽2) + 𝑛𝑝𝛬𝑚𝑢1�̃�1 cos(𝛽1) − 2𝑛𝑝�̃�𝑢1
]

[4𝑛𝑝𝛬𝑚]−1, (E.1)

𝑓𝛽1 (𝒖, 𝜷) = 𝑢1𝜎 − 2
[

−(𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)𝑢1𝑢22 cos(𝛽1 − 𝛽2) − (𝑐𝑝 − 𝑐𝑐 )𝑢31 − 2(𝑐𝑝 + 𝑐𝑡)𝑢1𝑢22 + 𝑛𝑝𝛬𝑚𝑢1�̃�1 sin(𝛽1)
]

[4𝑛𝑝𝛬𝑚]−1, (E.2)

𝑓𝑢2 (𝒖, 𝜷) =
[

(𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)𝑢21𝑢2 sin(𝛽2 − 𝛽1) + 𝑛𝑝𝛬𝑚𝑢2�̃�1 cos(𝛽2) − 2𝑛𝑝�̃�𝑢2
]

[4𝑛𝑝𝛬𝑚]−1, (E.3)

𝑓𝛽2 (𝒖, 𝜷) = 𝑢2𝜎 − 2
[

−(𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)𝑢21𝑢2 cos(𝛽2 − 𝛽1) − (𝑐𝑝 − 𝑐𝑐 + 2𝑐𝑡)𝑢32 − 2(𝑐𝑝 + 𝑐𝑡)𝑢21𝑢2 + 𝑛𝑝𝛬𝑚𝑢2�̃�1 sin(𝛽2) + 2𝑛2𝑝�̃�𝛬
2
𝑐𝑢2

]

[4𝑛𝑝𝛬𝑚]−1.

(E.4)

Constants 𝑐𝑝, 𝑐𝑐 and 𝑐𝑡 are defined in Eqs. (35) and (41).

Appendix F. Details on the trivial solution

The application of the method of multiple scales to Eqs. (22b) and (22c) yields two equations of order 1, governing 𝜁11 and 𝜁21,
and two equations of order 𝜖, governing 𝜁12 and 𝜁22. The trivial solution at second order is given by 𝜁22 and 𝜁12. Introducing the
expansion (24a) in the modal Eqs. (22b) and (22c) and evaluating this on the trivial solution (i.e. for 𝜁11 = 𝜁21 = 0), one finds that

𝜁12 = 0, (F.1a)

𝜁22 =
𝛬𝑐

3𝛬𝑚𝑛2𝑝
�̃�1 cos 𝑛𝜗. (F.1b)

The associated pendulums’ motion is

𝑠1 = 𝑠2 = 𝜖𝜁22 =
𝛬𝑐

3𝛬𝑚𝑛2𝑝
�̄�1 cos 𝑛𝜗. (F.2)



Solving the linear system (7), one can show that Eq. (F.2) corresponds to the linear solution at 𝑛 = 2𝑛𝑝 when the contributions of 𝜇
and the damping are neglected. Hence, the trivial solution at second order is an approximation of the pendulums’ linear response.

It is possible to determine the trivial response of the rotor at order 2 by introducing the pendulums’ solution (F.2) in the simplified
rotor’s Eq. (19a). Neglecting terms of order higher than 𝜖 and the damping, one finds

𝜃′′ =

(

1 + 𝜇
𝛬2
𝑐

3𝛬𝑚

)

�̃�1 cos 𝑛𝜗. (F.3)

This indicates that pendulums generate a torque on the rotor that adds up with the external torque, so that they do not act as
absorbers but as amplifiers. Hence, they slightly increase the rotor’s amplitude compared to the case of immobile pendulums.
Eq. (F.3) corresponds to the results found in [28] if one considers purely translated pendulums and neglects higher order terms
in 𝜇. Note that the amplification effect of the pendulums diminishes as 𝛬𝑐 diminishes, so that the use of negative linear rotation
rates limits the amplification effect (cf. Eq. (8)). This makes sense as 𝛬𝑐 is related to the linear coupling between the pendulums
and the rotor, so reducing this coupling diminishes the action of the pendulums on the rotor.

Appendix G. System from the method of multiple scales with Cartesian coordinates

The Cartesian form of the system obtained from the method of multiple scales is given by Eq. (30) where functions 𝑓𝑝1 , 𝑓𝑞1 , 𝑓𝑝2
and 𝑓𝑞2 are

𝑓𝑝1 (𝒑, 𝒒) =
[

−2𝑛𝑝�̃�𝑝1 − (𝑐𝑝 − 𝑐𝑐 )(𝑝21 + 𝑞21 )𝑞1 − 2(𝑐𝑝 + 𝑐𝑡)(𝑝22 + 𝑞22 )𝑞1 + (𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)
(

𝑞1(𝑝22 − 𝑞22 ) − 2𝑝1𝑝2𝑞2
)

+𝑛𝑝𝛬𝑚�̃�1𝑝1 − 2𝑛𝑝𝛬𝑚𝜎𝑞1
]

[4𝑛𝑝𝛬𝑚]−1, (G.1)

𝑓𝑞1 (𝒑, 𝒒) =
[

−2𝑛𝑝�̃�𝑞1 + (𝑐𝑝 − 𝑐𝑐 )(𝑝21 + 𝑞21 )𝑝1 + 2(𝑐𝑝 + 𝑐𝑡)(𝑝22 + 𝑞22 )𝑝1 + (𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)
(

𝑝1(𝑝22 − 𝑞22 ) + 2𝑞1𝑝2𝑞2
)

−𝑛𝑝𝛬𝑚�̃�1𝑞1 + 2𝑛𝑝𝛬𝑚𝜎𝑝1
]

[4𝑛𝑝𝛬𝑚]−1, (G.2)

𝑓𝑝2 (𝒑, 𝒒) =
[

−2𝑛𝑝�̃�𝑝2 − (𝑐𝑝 − 𝑐𝑐 + 2𝑐𝑡)(𝑝22 + 𝑞22 )𝑞2 − 2(𝑐𝑝 + 𝑐𝑡)(𝑝21 + 𝑞21 )𝑞2 + 2𝑛2𝑝�̃�𝛬
2
𝑐𝑞2 − (𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)

(

2𝑝1𝑞1𝑝2 − 𝑞2(𝑝21 − 𝑞21 )
)

+𝑛𝑝𝛬𝑚�̃�1𝑝2 − 2𝑛𝑝𝛬𝑚𝜎𝑞2
]

[4𝑛𝑝𝛬𝑚]−1, (G.3)

𝑓𝑞2 (𝒑, 𝒒) =
[

−2𝑛𝑝�̃�𝑞2 + (𝑐𝑝 − 𝑐𝑐 + 2𝑐𝑡)(𝑝22 + 𝑞22 )𝑝2 + 2(𝑐𝑝 + 𝑐𝑡)(𝑝21 + 𝑞21 )𝑝2 − 2𝑛2𝑝�̃�𝛬
2
𝑐𝑝2 + (𝑐𝑝 − 𝑐𝑐 + 𝑐𝑡)

(

2𝑝1𝑞1𝑞2 + 𝑝2(𝑝21 − 𝑞21 )
)

−𝑛𝑝𝛬𝑚�̃�1𝑞2 + 2𝑛𝑝𝛬𝑚𝜎𝑝2
]

[4𝑛𝑝𝛬𝑚]−1. (G.4)

Appendix H. Effect of a softened behaviour on SH1

Fig. H.13 represents the order response of a perfectly-tuned CPVA (left) and a softened-CPVA (right). The parameters of the two
CPVAs are the same as in Section 7.1, except for the softened-CPVA for which 𝑥[4] = 0.1, leading to 𝑐𝑝 > 0.

From (a) and (b), one can see that the pendulums’ amplitude at a given torque and order is always larger for the softened-CPVA.
Hence, it has a smaller torque capacity compared to the perfectly-tuned CPVA. The other important feature, visible in (d), is that the
antiresonance shift to the left as the torque amplitude is increased. This is opposite to hardened-CPVAs for which the antiresonance
shifts to the right (cf. Fig. 8).

Appendix I. Additional information regarding the torque capacity

As explained in Section 7.3, there are some sets of parameters that are undesired as they do not allow for a desired operation
of the CPVA.

In Fig. 10(a), the hatched area corresponds to values of 𝑛𝑝 for which the trivial solution bifurcates to SH2 instead of SH1. The
corresponding limit value of 𝑛𝑝, computed using Eq. (44), is

𝑛𝑝 = 𝑛

(

2 + 𝜇
𝛬2
𝑐

2𝛬𝑚

)−1

. (I.1)

In Fig. 10(b), the hatched areas correspond to cases where �̄�1max < �̄� ∗
1 . An example of this situation is depicted in Fig. I.14. The

solutions of �̄�1max = �̄� ∗
1 are

𝑐𝑝 = 𝑐𝑐 , (I.2a)

𝑐𝑝 = 𝑐𝑐 −
8𝜎𝑐𝑡𝛬𝑚
�̃�𝑛𝑝𝛬𝑐

if �̄�1max = �̄�1cusp , (I.2b)

𝑐𝑝 =

[

−2𝜎𝑐𝑡 + 𝑐𝑐

(

𝑛𝑝�̃�𝛬2
𝑐

𝛬𝑚
− 2𝜎

)](

2𝜎 +
𝑛𝑝�̃�𝛬2

𝑐

𝛬𝑚

)−1

if �̄�1max = �̄�1𝑎 ,

(I.2c)



Fig. H.13. Order response of the softened- and reference-CPVA for three torque amplitudes. The associated pendulums’ response are shown in (a) and (b) and
the associated rotor’s response are given in (c) and (d), respectively. The subharmonic and trivial responses are depicted as blue and green lines, respectively. The
darker the line the higher the associated torque amplitude. Dashed lines indicate unstable responses and stars with code names PF indicate pitchfork bifurcations.
Only one trivial response is shown in (a) and (b) as it overlaps with the other ones (only the unstable part is different). 𝑛𝐴𝑅 is the order at the non-linear
antiresonance. �̄�1 = {0.01, 0.025, 0.04}.

Fig. I.14. Torque response of the pendulums for 𝑛 = 3. Blue and green curves correspond to SH1 and the trivial solution, respectively. Dashed lines indicate
unstable solutions. The star with code name ‘‘PF’’ indicates a pitchfork bifurcation. Parameters: 𝑛𝑝 = 1.4925, 𝜇 = 0.1, 𝜂 = 1, 𝛼[1] = −0.1, 𝑐𝑝 = 0, �̄� = 0.002.

𝑐𝑝 =

[

−6𝜎𝑐𝑡 + 𝑐𝑐
𝑛𝑝�̃�𝛬2

𝑐

𝛬𝑚

](

4𝜎 +
𝑛𝑝�̃�𝛬2

𝑐

𝛬𝑚

)−1

if �̄�1max = �̄�1𝑏 , (I.2d)



𝑛𝑝 = 𝑛

(

2 + 𝜇
𝛬2
𝑐

2𝛬𝑚

)−1

if �̄�1max = �̄�1𝑎 . (I.2e)

Note that condition (I.2a) corresponds to SH1 being neither hardening nor softening (cf. Eq. (36)). In that case, the backbone curve
of SH1 is a vertical line and when the trivial solution bifurcates to SH1, the pendulums’ amplitude tends to infinity.
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