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Bat. Jacquard, 27 Avenue Jean Capelle, F-69621 Villeurbanne, Cedex, France

Abstract

This paper proposes a fracture mechanics model for the analysis of crack propaga-

tion in periodic honeycomb materials. The model is based on gradient-elasticity what

enables to account for the effect of the material structure at the macroscopic scale.

For simulating the propagation of cracks along an arbitrary path, the numerical imple-

mentation is elaborated based on an extended finite element method with the required

level of continuity. The two main features captured by the model are directionality and

size effect. The numerical predictions are consistent with experimental results on hon-

eycomb materials but also with results reported in the literature for microstructurally

short cracks in metals.

Keywords: crack propagation, gradient-elasticity, digital image correlation,

identification

1. Introduction

Since the pioneering works in (1), (2), (3), (4) and many others, Linear Elastic

Fracture Mechanics (LEFM) has been extensively and successfully used for analyzing

crack propagation in brittle materials. Recent advances in numerical simulations, espe-

cially the eXtended Finite Element Method (X-FEM) (5; 6), allow one for simulating5
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the propagation of 3D cracks of arbitrary geometry through out a complex structure

under complex loading. However, some situations remain difficult to model theoreti-

cally and numerically. This is the case for example of microstructurally short cracks.

Whereas, this situation has been also extensively studied especially under cyclic load-

ing, the strong influence of the material microstructure on the propagation of the crack10

is difficult to account for. Unless using recent 3D imaging technique it has been pos-

sible to obtain rich 3D data sets (7; 8), modelling such complex situation is still a

difficult problem.

One may emphasize that two main phenomena are involved in these regime when

the crack has strong interactions with the surrounding structure of the material. First,15

a directionality effect has to be considered. It results from the fact that the material

structure does not allow the crack to grow in any direction. At the scale of the mate-

rial structure, preferential crack orientations such as defined by slip systems or weak

crystallographic planes exist. They define a few angles that the crack is allowed to

follow. This has recently been accounted for within the context of a phase field model20

by introducing a penalization of the driving fracture energy within a predefined set of

plane orientation (9). In (10), the directionality effect is inherited from the constitu-

tive model, namely crystal plasticity. The second effect is called a size effect latter

on. The strong interactions between a crack and the surrounding material structure are

expected to be predominant while the crack length is of the same order of magnitude25

as the typical size of the material structure heterogeneity. Increasing the size of the

crack then gives rise to an autonomous singular strain/stress field at the crack front

which becomes the predominant driving mechanism of crack propagation. As soon as

the autonomous nature of the crack tip field is established and the non-linear process

zone remains confined, LEFM is the model suitable for describing crack propagation30

even in cases when, as mentioned before, crack shape, structure geometry and loading
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are complex. The modelling scale in the approaches proposed in (9) and (10), is the

scale of the material heterogeneity. This choice makes these models able to account

for the influence of the material structure on crack propagation during the early stages

of growth. However, these models are limited to small samples due to the numerical35

cost inherent from the modelling of material at such a small scale. Consequently, the

situation when LEFM is appropriate will never be met with these models.

In this paper, the case of honeycomb materials is considered as a model case for

analyzing the interactions between a crack and the material structure. Based on the

experimental analysis of the displacement of such materials, it was proposed in a pre-40

vious paper to use gradient-elasticity (11) as a continuum model. Due to its second

order energy term, internal lengths arise from this formulation and they play an impor-

tant role for capturing the effects of the micro-structure. Using this model and taking

benefit of its internal lengths, it is possible to start with small cracks being under the in-

fluence of the material structure and then to have them gaining their autonomous nature45

when increasing their lengths. It will thus be possible to capture the aforementioned

size effect using gradient-elasticity. Concerning directionality, it should be possible to

introduce a fracture energy that depends on the local crack orientation (12). Herein,

it is preferred to transfer the macroscopic kinematic variables at the crack tip to the

microscopic scale. At this scale a representative volume element is considered and the50

crack propagation angle is estimated from the mechanical state of this volume under a

loading inherited from the macroscopic kinematic variables. First, in Section 2, some

experimental results of crack propagation in honeycomb materials are presented. In

Section 3, the gradient-elasticity framework and its numerical implementation for in-

troducing cracks is detailed. The failure criterion from which directionality arises is55

described in Section 4. Then, in Section 5, results obtained with the proposed frame-

work are presented. It is demonstrated that directionality and size effects are captured
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and that numerical results compare well with experiments performed on model archi-

tectured materials.

2. Experimental observation60

Failure experiments on honeycomb materials have been performed. The specimen

geometry is defined in Figure 1. The left arms of the specimen are fixed in the grips

of a standard tensile device and submitted to a constant vertical displacement speed of

0.1mm/min. The specimens were obtained by a 3D printer. They are made from photo-

sensitive ABS-type polymer powder. The bulk material obtained from this process is65

isotropic. Its elastic behaviour is defined by a Young’s modulus of 1.4 GPa and a

Poisson’s ratio of 0.4. A pre-crack has been designed by simply not printing some

cells along the symmetry plane of the specimen. The results presented in this paper

are based on the analysis of a material generated by a periodic tilling of the D2 cell

presented in Figure 2. This cell is invariant by rotation of 2π/2. It is also invariant70

by symmetry with respect to horizontal and vertical planes. The edges are 140 µm

thick and 1100 µm long. The material is therefore orthotropic for first order elasticity.

For this unit cell geometry, experiments until rupture have been carried out. Two

orientations (0o and 90o) of the material structure with respect to the specimen axis are

tested. The crack paths are shown in Figure 3 and they clearly show how the material75

orientation can influence failure in such material. A closer view of the broken cells

is presented in Figure 4. From these experimental observations, it appears that, at the

microscopic scale, failure occurs at the corners of the unit cells. This observation holds

for all the unit cell geometries tested experimentally. Consequently, it is mandatory to

incorporate the topology of the unit cell in the crack angle criterion.80
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3. Gradient-elasticity: theoretical background and numerical elaboration

3.1. Formulation

To fulfill the requirements established from the experimental analysis in (11), the

modeling of the macroscopic continuum describing the behaviour of the honeycomb

material must incorporate strain gradient as a kinematic variable. Within the frame-

work proposed in (13), E∼, the symmetric gradient of the displacement U−, and κ∼−
, the

gradient of E∼, are chosen as the descriptors of the kinematic of the continuum:

E∼ =
1
2
(∇− X−

U−+ ∇−
T

X−
U−) = ∇−

s

X−
U− κ∼−

= ∇− X−
E∼. (1)

Using index notation, this is rewritten as

Ei j =
1
2
(Ui, j +U j,i) κi jk = Ei j,k =

1
2
(Ui, jk +U j,ik). (2)

The strain energy density Ψ subsequently depends on these two kinematic variables,

Ψ = Ψ(E∼, κ∼−
). The classical Cauchy stress and the hyper-stress are then defined as

ΣΣΣ∼ =
∂Ψ

∂E∼
S∼−
=

∂Ψ

∂ κ∼−
. (3)

Under the assumption that there is no coupling between first and second order terms

and no energy associated to the rotation, the following expression for Ψ is obtained:

Ψ(E∼, κ∼−
) =

1
2

E∼ : ΣΣΣ∼+
1
2

κ∼−
... S∼−

. (4)

The behaviour of such a continuum thus relies on two constitutive linear operators.

The first order elastic tensor C∼∼
which establishes the linear relationship between stress

and strain reads

ΣΣΣ∼ = C∼∼
: E∼, i.e. Σi j =Ci jklEkl, (5)
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and the second order elastic tensor A∼∼∼
which plays the same role for the hyper-stress

and the strain gradient:

S∼−
= A∼∼∼

... κ∼−
, i.e. Si jk = Ai jklmnκlmn. (6)

In 2D, due to symmetry considerations, the number of material constants in C∼∼
reduces

to 6 in the fully anisotropic case. In this context, for A∼∼∼
, the maximum number of

material constants is 21. In a simplified version, it is proposed in (14) to use only one85

additional parameter. Due to the anisotropy of the material considered hereafter, while

the proposition by (15) could have been adopted, it is preferred to keep the general

form of these relations. Based on the analysis of the material symmetry as proposed

in (16), the class of anisoptropy of the constitutive operators can be derived and their

intrinsic form is established with the lowest number of parameters. In (16), it is also90

proposed to estimate numerically the first and second order elastic tensors. However,

the homogenization technique used in the latter is purely kinematic which is known to

lead to overestimated stiffness. Herein, we chose the periodic homogenization scheme

proposed in (17) to derived the macroscopic elastic tensors C∼∼
and A∼∼∼

as described in

the next section.95

3.2. Effective properties

The second order computational homogenization scheme proposed in (17) is used

to estimate the effective first order and second order elastic behaviour of the honey-

comb materials. The first ingredient of the scheme consists in the boundary conditions

applied to the unit cell. The microscopic displacement u− is supposed to be the sum of

the displacement inherited from the macroscopic scale plus an unknown additionnal

fluctuation w− that is further assumed to be periodic:

u−( x−) = E∼. x−+
1
2

x−.κ∼−
. x−+w−( x−). (7)
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In this equation, E∼ is the macroscopic strain, κ∼−
its gradient and x− the position of

any point in the unit cell calculated in the local unit cell coordinates system. Let us

define xA− and xB− as the location of two homologous points along the unit cell boundary

in the unit cell coordinates system. As periodicity is assumed (w−(xA− ) = w−(xB− )), the

following relationship is established:

u−(xA− )− u−(xB− ) = E∼.(xA− −xB− )+
1
2

xA− .κ∼−
.xA− −

1
2

xB− .κ∼−
.xB− (8)

As shown in (17), the equality between the macroscopic strain E∼ and the average of

the microscopic strain is fulfilled intrinsically. Conversely, one has to further constrain

the displacement along the unit cell boundary in order to ensure that this equality

holds between the macroscopic strain gradient κ∼−
and its microscopic average. For

this purpose, it is prescribed that the average microscopic periodic fluctuation w− along

each edge C of the unit cell vanishes:∫
A∈C

w−(xA− )ds = 0−. (9)

This additional constraint is prescribed for only half of the edges of the unit cell, the

constraint being automatically satisfied for the homologous edges due to periodicity.

Using the mesh presented in Figure 5, elastic simulations of the unit cell under this

boundary condition for 9 independent elementary loading are performed (3 for each

component of E∼ and 6 for each component of κ∼−
). From the results of these simula-

tions, the average of the microscopic stress σσσ∼ and its first moment are computed over

the unit cell surface S :

< σσσ∼ >=
1

meas(S)

∫∫
S

σσσ∼dS < σσσ∼ x− >=
1

meas(S)

∫∫
S

σσσ∼ x−dS. (10)

Then using the generalization of the Hill-Mandel theorem, the effective first and sec-

ond order elastic tensors are estimated. For the material analyzed herein which is sup-

posed to be isotropic at the microscopic scale with the elastic parameters as defined in
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Section 2, the following results are obtained:
Σ11

Σ22

Σ12

=


420 40 0

40 180 0

0 0 30




E11

E22

E12

 (11)

and 

S111

S221

S122

S222

S112

S122


=



2 1 −9 0 0 0

1 79 −3 0 0 0

−9 −3 31 0 0 0

0 0 0 75 22 −21

0 0 0 22 225 −6

0 0 0 −21 −6 6





κ111

κ221

κ122

κ222

κ112

κ122


. (12)

These results are given in the unit cell coordinates system for a unit cell orientation as

in Figures 2 and 3(a). The unit are MPa for first order (Equation (11)) and MPa.mm2

for second order (Equation (12)).

3.3. Discretization100

In order to incorporate the crack into the macroscopic numerical model, a dis-

cretization scheme based on X-FEM (18) is developed. It is chosen here to use the

displacement field as the only unknown field for the discrete problem. It subsequently

implies that the discretization has C1 continuity. The C1 triangular element proposed

in (19) is used for this purpose. In this element, each node holds 6 shape functions

which corresponding unknowns are the discrete field, its two first order derivatives and

its three second order derivatives at the nodal position as detailed in the Appendix of

the paper. Each component i of the displacement is approximated as follows:

Ui(X−) = ∑
n∈N

∑
k=1..6

φ
k
n(X−)ūink. (13)
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In this equation, N is the set of nodes in the triangulation of the discretized domain

Ω, (φk
n)k=1..6 the shape functions for each node and (ūink)k=1..6 the corresponding un-

knowns for the ith component of the displacement. For introducing an enrichment to

the approximation space that captures the influence of the crack, we use the shifted

Heaviside enrichment from (20). This discontinuous enrichment allows to maintain

the same degree of continuity as for the shape functions supporting the enrichment

over the so-called blending elements (elements that have not all their nodes enriched).

Compared to the original discontinuous enrichment proposed in (5), the shifted enrich-

ment does not change the solution, it leads to a different implementation of the method.

Concerning the asymptotic singular enrichment originally used in the X-FEM, it is

required that the order of the singularity at the crack tip is known. In the gradient-

elasticity framework, there is no general solution for the asymptotic fields except in a

few specific cases (21; 22). We thus make use of the discontinuous enrichment only.

The enriched approximation is then written as:

Ui(X−) = ∑
n∈N

∑
k=1..6

φ
k
n(X−)ūink + ∑

n∈Nd

∑
k=1..6

φ
k
n(X−)(H (X−)−H (Xn− ))ũink, (14)

where Nd is the set of enriched nodes, those which support is cut by the crack, and H

the Heaviside jump function which value jumps from 0 below to 1 above the crack.

This discontinuous enrichment is shifted by the value of the Heaviside function at the

corresponding nodal position Xn− . (ũink)k=1..6 are the additional degrees of freedom.

From the strain energy density defined in Equation (4) and the approximation de-105

fined by Equation (14), the discretized weak form of the balance equations is elab-

orated. It recasts as a linear system of equations. The numerical integration is per-

formed using usual Gauss quadrature for the standard elements and a quadrature rule

using non-conforming sub-cells for the enriched elements.
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4. Failure criteria110

4.1. Crack angle criterion

From the experimental observations presented in Section 2, it is concluded that

the crack cannot follow an arbitrary path in periodic honeycomb materials. Only a

finite number of crack directions is allowed depending on the symmetry class of the

material. This set of possible crack orientations is the analogous of the slip systems

used in the crystal plasticity theory. When going through a cell, the crack can only go

from one nucleation point to one of its homologous points (these points being at the

position of that nucleation point in the neighboring cells). As the material structure is

periodic, it is though that failure also obeys this periodicity. So any orientation that

is not defined by joining two homologous points of the unit cell is not admissible.

For the considered unit cell geometry, the possible crack orientations are plotted using

red lines in Figure 2. In the spirit of the homogenization theory, a unit cell supposed

to be located just in front of the crack tip is loaded using the macroscopic kinematic

variables. Macroscopic average estimates of the first and second derivatives of the

displacement are transferred to the microscopic scale as Dirichlet conditions along the

boundary of the unit cell. Each component of the microscopic displacement ui is thus

derived along the unit cell boundary using the following equation:

ui = Ūi, j x j +
1
2

Ūi, jk x j xk. (15)

In this equation, Ūi, j are the average tip estimates of first order macroscopic displace-

ment derivatives, Ūi, jk the average tip estimates of its second order derivatives and x j

the coordinates of the points along the unit cell boundary in the local microscopic co-

ordinates system. Note that due to the second order term in the energy, the strain singu-115

larity should vanish at the crack tip. Further, the average estimates of the displacement

derivatives which are used to tranfert the kinematic variables from the macroscopic
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scale to the unit cell, are not supposed to be infinite. This will be detailled and illus-

trated in Section 4.2.

An elastic FE simulation of the unit cell under this loading inherited from the

macroscopic scale is performed using the mesh depicted in Figure 5. From the results

of this simulation, the generalized stress intensity factors BI and BII at the v-notches

of the cell corners are computed using a path independent integral (23; 24). A brief

overview of the technique is presented in the Appendix of the paper. The integration

contours for this integral are the boundary of the refined zone around each corner as

presented in Figure 5. Considering mode I and mode II, the corner submitted to the

maximum value of an equivalent generalized stress intensity factor

Beq =
√

B2
I +B2

II (16)

is searched for. Once the most loaded corner is detected the nucleation point is set.120

Then the crack orientation is defined by the line going from the nucleation point to its

homologous point having the highest equivalent generalized stress intensity factor Beq.

4.2. Tip Averaging

The procedure described above requires the evaluation of reliable estimates of the

first and second derivatives of the displacement at the crack tip. At the macroscopic125

scale, these quantities may have a singular behaviour. A non-local estimate is thus

required. The average value of these quantities over a disc centered at the crack tip is

adopted in the sequel. The size of the averaging domain is equal to the unit cell size lc.

For the evaluation of fracture criteria, non-local estimates of the stress tensor have

been extensively used in the simulation of the crack propagation using X-FEM (25).130

This technique does not provide a reliable estimate of the stress amplitude at the crack

tip and a calibration procedure of the critical nucleation stress is to be considered for
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a given mesh size. However, the crack angle is correctly predicted as all the stress

components are affected by the same approximation.

For using this kind of non-local tip averaging, a new challenge arises in the con-135

text of gradient elasticity. Indeed, it is known that the second order term in the en-

ergy density has the effect of cancelling the singularity of the strain field at the crack

tip (21; 22). Further, for transferring to the microscopic scale reliable boundary condi-

tions based on estimates of the displacement derivatives (see Equation (15)), the actual

weighting between strain (vanishing at the crack tip) and strain gradient (singular) over140

the averaging domain must be captured accurately. This is not possible using standard

non-local field estimates which reveal all the more so inconvenient that the averaging

domain size (fixed to the size of the unit cell) may ideally be lower or of the order of

the finite element mesh size.

The idea we develop is based on a homogeneous decomposition of the displace-

ment field. Each component of U− is written as:

Ui = f (r)g(θ), (17)

(r,θ) being the local polar coordinates and f , g scalar functions. Note that the asymp-145

totic solutions given in (21) for a fully isotropic material have this property. Consid-

ering a circular domain around the crack tip, one can easily obtain f , respectively g,

by averaging Ui with respect to θ, respectively r. This is illustrated in Figure 6. The

other assumption is that f is a power law, βirαi , which exponent is obtained by linear

regression of f in log-log scale. βi is then obtained so that the average value of Ui150

equals the average value of βirαig(θ). The domain average of the first and second dis-

placement derivatives are transformed into contour integrals, by using the divergence

theorem, invoking the displacement and its first derivative. The latter are computed

from the semi-analytic formula (17). Thanks to this semi-analytical formula, reliable
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non-local estimates of the displacement derivatives are obtained even for small aver-155

aging domain size compared to the finite element mesh size, the estimation of f and g

being performed on circular domain larger than lc. For illustration purposes, the value

of the average value Ūy,y and Ūy,yx of Uy,y and Uy,yx are plotted as functions of the av-

eraging domain size in Figure 7. The typical asymptotic behaviour is retrieved in this

case when the exponent of the power law is higher than 1.160

5. Examples

5.1. Numerical setup

A rectangular specimen of 60× 120 mm is considered. An initial crack of length

a = 60 mm is defined. It is horizontal and it cuts the specimen along its symmetry

axis. The initial crack tip position is right in the center of the specimen. The top and165

bottom left corners have their vertical displacement prescribed so that opening of the

crack occurs. The value of the prescribed displacement amplitude is arbitrary, only the

crack path being tracked for. In this configuration, for an homogeneous elastic mate-

rial, the crack grows straight through the specimen. The mesh used for the numerical

simulation is shown in Figure 8. The element size h is about 0.03 times the initial170

crack length a. The domain size for estimating f and g (see Section 4.2) is equal to h

whereas the averaging domain size is fixed to the unit cell size lc. The latter is set to the

radius of the circle passing through the inner corners of the unit cell which geometry

was defined in Secion 2. Between two successive time steps, the crack is supposed to

grow by an increment da = h.175

Some of the results we obtained are first described before the anisotropy to failure

and size effects are analyzed in more details.
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5.2. Results

The normalized vertical displacement field at the end of the computations is shown

in Figure 9(b). The case considered in this Figure is the D2 material rotated by α = π

2180

(see Figure 3(b)). It is observed that the enrichment allows to capture the discontinuity

and that the crack path is not smooth. Due to the interactions between the crack and

the surrounding micro-structure the crack orientation oscillates leading to zig-zag pat-

terns. Note that it has been checked that this is not an effect of the finite crack length

increment da, the steps in the crack path presented in Figure 9(b) being longer than185

da.

To illustrate the two-scale criterion for the crack angle, the deformed unit cell at the

crack tip is depicted in Figure 10 for the first step of the analyses with an amplification

factor of 100. The L2 norm of the strain field is plotted in this Figure.

5.3. Anisotropy & Size effects190

First, the influence of the unit cell orientation α is analyzed. The crack paths ob-

tained for α varying in the range defined above are shown in Figure 11. The effect

of α is not smooth. Due to the discrete nature of the crack angle criterion (only a

finite number of orientation being admissible), it appears that the crack selects a path

among a limited number of admissible orientations. This is especially pronounced in195

Figure 11 where only four paths are followed by the crack. This demonstrates the abil-

ity of the proposed failure criterion to account for the directionality effect due to the

influence of the micro-structure at the macroscopic scale. However, this results from

a competition of the discrete crack angle criterion and the gradient-elasticity macro-

scopic model. To further analyze this competition, the unit cell size is decreased by a200

factor of 10. The ratio between the unit cell size lc and the initial crack length a is sub-

sequently decreasing from 0.013 to 0.0013. The results are presented in Figures 9(c)
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and 12. The crack paths are almost rectilinear and it is now observed that the overall

crack orientation varies continuously with the unit cell orientation α (see Figure 12).

The contribution of the second order term in the strain energy density being 100 times205

lower, the anisotropy to failure only lies on the anisotropy of the first order elastic ten-

sor and on the discrete nature of the crack angle criterion. Indeed, only two opposite

orientations are allowed for this unit cell geometry (see Figure 4) but they change con-

tinuously with the variation of the unit cell orientation α. For this unit cell size, the

crack is driven by the singularity of the strain field has shown in Figure 13(b). This210

singularity has an autonomous character and it is not influenced by structural effects.

For a fixed orientation of α = π

2 , the unit cell size is now varied within a larger

range. A 10 times larger unit cell is considered as well as an infinitely small unit cell.

This configuration is obtained by cancelling the contribution of the second order en-

ergy term (A∼∼∼
= 0). The results are presented in Figure 14. Decreasing the unit cell size215

(lc/a = 0.0013), the crack paths is similar to the result obtained for the infinitely small

unit cell (lc/a = 0). This demonstrate how the gradient-elasticity model progressively

decreases the influence of the material structure at the macroscopic scale for smaller

and smaller cells until the results become identical to the result of classical first order

elasticity.] As shown in Figure 13(a), the strain field for large cells loses its singular220

nature. This means that the strain and gradient of strain used to load the unit cell at the

crack tip with the proposed failure criterion arises from a displacement field having an

exponent n larger than 1. Such a displacement field is more influenced by structural

effects than when n ≤ 1. This results in a global orientation of the crack (horizontal

in the present case as shown in Figures 14 and 9(a) for lc/a = 0.13) that is inherited225

from the geometry of the specimen and its boundary conditions. Because this crack

orientation is not allowed by the unit cell symmetry, a zig-zag pattern is obtained. The

proposed model is thus capable of capturing the influence of the material structure at
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the macroscopic scale: directionality and size effect are obtained. The first effect re-

sults from the discrete nature of the crack angle criterion and from the anisotropy of230

the elastic behaviour of the material. The size effect is induced by gradient-elasticity

that changes the mechanical fields around the crack tip.

6. Conclusion

In this paper, a fracture mechanics gradient-elasticity framework is elaborated. An

original contribution of the paper is that an X-FEM numerical framework is proposed235

for gradient-elasticity. Then, a crack angle criterion is proposed based on a trans-

fer of non-local tip estimates of the macroscopic kinematic variables to the micro-

scopic scale. The proposed criterion accounts for the existence of only a few possible

crack orientations by analogy to crystal plasticity. The discrete character of the crite-

rion allows for capturing a directionality effect as observed experimentally. Gradient-240

elasticity introduces a length scale which balances the effect of the material structure

heterogeneity at the macroscopic scale. By increasing the size of the unit cell of the

material, or by decreasing the size of the initial crack, the contribution of second or-

der terms strongly modifies the mechanical fields. As a consequence, the crack path is

also affected by this size effect. Zig-zag crack patterns as observed in actual monocrys-245

talline alloys are reproduced.

The framework is validated using experiments performed on model architectured

materials but, there is no limitation to use the proposed model for more complex mate-

rial structures.It may thus have the ability to capture the strong interactions between a

crack and the material structure in cases when the material structure is polycrystalline,250

the problem is 3D and the crack geometry is a complex 3D surface. The proposed

methodology opens a new way for handling the complex question of the propagation

of short cracks. Further, the model is based on a macroscopic continuum model what
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a priori makes possible the analysis of structural components.
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7. APPENDIX A: Generalized Stress Intensity Factors estimation

The methodology used for the estimation of generalized stress intensity factors

BI,II is proposed in (24). The domain of interest D for the analysis is located at the

vicinity of a notch of angle ω as defined in Figure 15. Following (24), the displacement

around the notch as a function of the distance to the notch tip r and the angle θ with

respect to the symmetry axis of the notch e1− is supposed to write

u−(r,θ) = ∑
i∈[I,II]

Birαi(H1(αi)ψ1− (θ,αi)+H2(αi)ψ2− (θ,αi). (18)

In this equation, H1,H2 are geometry functions, ψ1− ,ψ2− elementary solutions and (αi)i∈[I,II]>

1 the solutions of the characteristic equations

sin(αIω)−αI sin(ω) = 0 (19)

and

sin(αIIω)+αII sin(ω) = 0 (20)

defining the two modes. H1,H2 are given by:

H1(α) = (α−1)sin
(
(α+1)ω

)
− (α+1)sin

(
(α−1)ω

)
(21)

and

H2(α) =−(α+1)
[

cos
(
(α+1)ω

)
− cos

(
(α−1)ω

)]
. (22)
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The elementary solutions are defined as follows:

ψ1− (α,θ) =

(λ+µ)αcos((α−2)θ)−
(
(λ+µ)(α+2)+2µ

)
cos(αθ)

−(λ+µ)αsin((α−2)θ)−
(
(λ+µ

)
α−2µ)sin(αθ)

 (23)

ψ2− (α,θ) =

(λ+µ)αsin((α−2)θ)−
(
(λ+µ)(α+2)+2µ

)
sin(αθ)

(λ+µ)αcos((α−2)θ)−
(
(λ+µ)α−2µ

)
cos(αθ)

 (24)

where λ,µ are the Lamé coefficients of the homogeneous isotropic material in the260

considered domain D .

Then, Betty’s theorem is used over a domain DR
r0

defined by {(r,θ)|r0 ≤ r≤ R,0≤

θ≤ω}. If ũ− denotes an auxiliary displacement field satisfying the balance of momen-

tum equation, then the following equality holds:∫
DR

r0

(
ΣΣΣ∼(u−) : E∼( ũ−)− ΣΣΣ∼( ũ−) : E∼(u−)

)
dx =

∫
Γr0∪ΓR

(
ΣΣΣ∼(u−).n−. ũ−− ΣΣΣ∼( ũ−).n−.u−

)
ds = 0

(25)

If (αi)i∈[I,II] are the solution of the characteristic equations 19 and 20, then (−αi)i∈[I,II]

are also solutions of these equations. The solutions for these values of α have a non

physical behaviour as the strain energy density is singular. However, these solutions

fulfill the conditions for being used in the Betty’s theorem and they allow to extract

from a given displacement field the corresponding Bi. Indeed, for a given mode, if ũ−
equals r−αi(H1(−αi)ψ1− (θ,−αi)+H2(−αi)ψ2− (θ,−αi) = r−αi ṽ− and u− is assumed to

decompose as in Equation (18) then taking the limit when r0 vanishes, Betty’s theorem

leads to the following relationship:

A(αi)Bi =
∫

ΓR

(
ΣΣΣ∼(u−).n−. ũ−− ΣΣΣ∼( ũ−).n−.u−

)
ds (26)

where

A(α) =
∫

ω

0

{[(
γ1Ẽ11 + γ2Ẽ22

)
cos(θ)+2µẼ12 sin(θ)

]
ṽ1+[

2µẼ12 cos(θ)+
(
γ1Ẽ22 + γ2Ẽ11

)
sin(θ)

]
ṽ2

}
dθ

(27)
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and

γ1 = 2µ
( 1

λ+2µ
+1
)
, γ2 =

2µ
λ+2µ

. (28)

In these equations, Ẽi j are such that

Ei j(rαi(H1(αi)ψ1− (θ,αi)+H2(αi)ψ2− (θ,αi)) = rαi−1Ẽi j (29)

The Bi coefficients are thus computed by evaluating a contour integral involving the

actual displacement field and an auxiliary displacement and the integral of analytical

functions A(α).

8. APPENDIX B: C1 shape functions for triangular elements265

In this Appendix, the equations for computing the C1 shape functions for a 3-node

triangular element as given in (19) are detailed. Each node of the triangle holds 6 shape

functions which corresponding degrees of freedom are the discretized field and its first

and second derivatives. As usual for triangular 3-node elements, the expressions for

the shape functions use the area coordinates Li which are related to the rectangular

coordinates of the evaluation point x,y and those of each nodes of the triangle xi,yi, for

i between 1 and 3. The following relationships hold:

Li =
ai +bix+ ciy

2∆
, (30)

x = L1x1 +L2x2 +L3x3 (31)

and

L1 +L2 +L3 = 1. (32)

In the first equation, ∆ is the area of the element and ai,bi,ci constant parameters given

by

ai = x jyk− xky j, bi = y j− yk, ci = xk− x j, (33)

19



i, j,k being the cyclic permutation of 1,2 and 3. Then, the 6 shape functions for node i

are:

N1 = L5
1 +5L4

1L2 +5L4
1L3 +10L3

1L2
2 +10L3

1L2
3 +20L3

1L2L3 +30r21L2
1L2L2

3 +30r31L2
1L3L2

2

N2 = c3L4
1L2− c2L4

1L3 +4c3L3
1L2

2−4c2L3
1L2

3 +4(c3− c2)L3
1L2L3− (3c1 +15r21c2)L2

1L2L2
3 +(3c1 +15r31c3)L2

1L3L2
2

N3 =−b3L4
1L2 +b2L4

1L3−4b3L3
1L2

2 +4b2L3
1L2

3 +4(b2−b3)L3
1L2L3 +(3b1 +15r21b2)L2

1L2L2
3− (3b1 +15r31b3)L2

1L3L2
2

N4 = 0.5c2
3L3

1L2
2 +0.5c2

2L3
1L2

3− c2c3L3
1L2L3 +(c1c2 +5/2r21c2

2)L2L2
3L2

1 +(c1c3 +5/2r31c2
3)L3L2

2L2
1

N5 =−b3c3L3
1L2

2−b2c2L3
1L2

3 +(b2c3 +b3c2)L3
1L2L3− (b1c2 +b2c1 +5r21b2c2)L2L2

3L2
1− (b1c3 +b3c1 +5r31b3c3)L3L2

2L2
1

N6 = 0.5b2
3L3

1L2
2 +0.5b2

2L3
1L2

3−b2b3L3
1L2L3 +(b1b2 +5/2r21b2

2)L2L2
3L2

1 +(b1b3 +5/2r31)b2
3L3L2

2L2
1

(34)

where ri j =
bib j+cic j

b2
i +c2

i
. One obtains the shape functions for the other two nodes by

cyclic permutation of the indices of a,b,c,L and r
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Pre-crack

Figure 1: Specimen geomtry for the failure experiments.
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Figure 2: Admissible crack angles for the unit cell geometry.
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(a)

(b)

Figure 3: Experimental crack paths for two orientation of the material architecture: (a) 0◦, (b) 90◦.

27



(a) (b)

Figure 4: Close view of the failure mechanisms in the analyzed architectured materials.
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Figure 5: Mesh of the unit cell.
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Figure 6: Illustration of the decomposition of the displacement around the crack tip as proposed in

Equation (17). On the left, respectively right plot, the color lines correspond to the displacement field as

function of θ, respectively r, for different values of r, respectively θ. The thick black line corresponds

to g, respectively f . 30
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Figure 7: Variation of the average tip displacement derivative Ūy,y and its gradient along the crack

direction Ūy,yx as functions of the averaging domain size r normalized by the unit cell size lc.
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Figure 8: Mesh and boundary conditions of the sample for numerical simulations.
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(a)

(b)

(c)

Figure 9: Normalized vertical displacement field at the end of crack propagation for the case: D2,α =

π/2. Figures (a), (b) and (c) shows the results for lc
a = 0.13, lc

a = 0.013 and lc
a = 0.0013 respectively.33



Figure 10: L2 norm of the normalized strain field in the unit cell at crack initiation for the case D2,α =

π/2.
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Figure 11: Comparison of the crack paths obtained for different orientation α of the unit cell for lc
a =

0.013.
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Figure 12: Comparison of the crack paths obtained for different orientation α of the unit cell with

lc
a = 0.0013.
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(a)

(b)

Figure 13: Comparison of the vertical component of the strain field Eyy for (a) lc
a = 0.0013 and (b)

lc
a = 0.13.
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Figure 14: Comparison of the crack paths obtained with α = π/2 and for different ratio between the

unit cell size lc and the crack length a. The results for the case when lc goes to 0 (vanishing the second

order term in the strain energy density) are also plotted with black crosses.
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Figure 15: Definition of the domain around a notch for generalized stress intensity factors estimation.
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