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Learning Better Registration to Learn Better
Few-Shot Medical Image Segmentation:
Authenticity, Diversity, and Robustness

Yuting He™, Rongjun Ge, Xiaoming Qi*~, Yang Chen
Jean-Louis Coatrieux
and Shuo Li

Abstract—In this work, we address the task of few-shot
medical image segmentation (MIS) with a novel proposed frame-
work based on the learning registration to learn segmenta-
tion (LRLS) paradigm. To cope with the limitations of lack
of authenticity, diversity, and robustness in the existing LRLS
frameworks, we propose the better registration better segmen-
tation (BRBS) framework with three main contributions that
are experimentally shown to have substantial practical merit.
First, we improve the authenticity in the registration-based
generation program and propose the knowledge consistency
constraint strategy that constrains the registration network to
learn according to the domain knowledge. It brings the semantic-
aligned and topology-preserved registration, thus allowing the
generation program to output new data with great space and style
authenticity. Second, we deeply studied the diversity of the gen-
eration process and propose the space-style sampling program,
which introduces the modeling of the transformation path of style
and space change between few atlases and numerous unlabeled
images into the generation program. Therefore, the sampling on
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the transformation paths provides much more diverse space and
style features to the generated data effectively improving the
diversity. Third, we first highlight the robustness in the learning
of segmentation in the LRLS paradigm and propose the mix
misalignment regularization, which simulates the misalignment
distortion and constrains the network to reduce the fitting degree
of misaligned regions. Therefore, it builds regularization for
these regions improving the robustness of segmentation learning.
Without any bells and whistles, our approach achieves a new
state-of-the-art performance in few-shot MIS on two challenging
tasks that outperform the existing LRLS-based few-shot methods.
We believe that this novel and effective framework will provide
a powerful few-shot benchmark for the field of medical image
and efficiently reduce the costs of medical image research. All of
our code will be made publicly available online.

Index Terms— Atlas, deep learning (DL), few-shot learning,
generation, medical image registration (MIR), medical image
segmentation (MIS).

I. INTRODUCTION

EARNING registration to learn segmentation (LRLS,

Fig.1) [1]-[6], as an effective paradigm of few-shot med-
ical image segmentation (MIS), is creating its great popularity
recently. It has pushed the label efficiency and accuracy of
MIS models to soaring heights on a broad array of high-
challenging few-shot medical segmentation scenes [2]-[4], [6]
where the LRLS only needs nearly one label for delivered
strikingly powerful performance. It has three steps (Fig. 1):
Step 1. Learning a registration network (unsupervised) via a
large unlabeled dataset to provide a basic unit in the generation
program. Step 2. Generating a large (pseudo-) labeled dataset
with the trained registration network via aligning a small atlas
dataset and a large unlabeled dataset. Step 3. Learning the
segmentation network (supervised) via the generated dataset
for a powerful MIS ability. These three steps construct an
unsupervised labeled data generation and a supervised learning
process, driving the few-shot MIS.

However, three inherent limitations [Fig. 2(a)-(c)] of the
LRLS paradigm bring large bottlenecks to the LRLS-based
few-shot MIS models.

1) Lack of authenticity in the generated pseudo-labeled

data [1], [2], [5] caused by registration error provides
inaccurate information. Two kinds of distortion in the
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Advantages: 1. fewer labels; 2. higher segmentation accuracy.
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Fig. 1. Paradigm of LRLS for few-shot MIS.

generated data will transmit the error to the segmentation
learning. Alignment distortion [3] makes the misaligned
regions between the pseudo labels and images, bringing
inaccurate supervision in generated data. Deformation
distortion [7] makes inaccurate deformation such as
the fold of regions in the registration, destroying the
real topological structures in deformed images [1], [5].
Therefore, the large registration will make the segmen-
tation network learn inaccurate representation.

2) Lack of diversity in the generation process [2], [4] limits
the generalization ability of the segmentation network.
Due to the limited amount of unlabeled images, the
generation process, which directly couples and aligns the
atlases and unlabeled images [1] or transforms space and
style of atlases to unlabeled images [2], is only able to
enlarge the training dataset to the size of the unlabeled
dataset, generating images from a discrete distribution.
If the distribution of the unlabeled dataset is very small
and sparse, the generated data will be still in a small
and sparse distribution, limiting the generalization of the
segmentation network for more images.

3) Lack of robustness in segmentation learning makes the
fitting of inaccurate information. The existing LRLS
works [1]-[4], [6] are unable to resist the interfer-
ence from the registration error. Their direct learning
of pseudo-labeled datasets will make the segmentation
model fit inaccurate feature representation and lose its
robustness against registration errors such as the inaccu-
rate labels in misaligned regions.

Motivation: To break through the bottleneck of the
LRLS paradigm and achieve accurate MIS models from
only extremely few labels, a novel LRLS framework, bet-
ter registration better segmentation (BRBS), is proposed
for powerful few-shot segmentation learning. It addresses
the limitations [Fig. 2(a)—(c)] of authenticity, diversity, and
robustness in the LRLS paradigm via our proposed three
key innovations [Fig. 2(d)-(f)] that effectively generate
high-authenticity image—label pairs requiring only few labels,
stimulate the diversity of registration-based generation, and
explicitly improve the robustness in the segmentation learning
with inaccurate data.

1) Knowledge Consistency Constraint Strategy for Authen-
ticity: Our knowledge consistency constraint strategy (KCC)
[Fig. 2(d)] constrains the learning of the registration network
according to two kinds of domain knowledge, reducing the
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registration error and improving the authenticity of generated
data. Knowledge 1 for alignment distortion. Aligned images
have aligned semantic regions [4], [8], so we present semantic
consistency (SeC) constraint for semantic-aligned registration.
It utilizes the segmentation network in the training process
to extract semantic regions and constrains the corresponding
regions to align to improve the alignment accuracy between
images. Knowledge 2 for deformation distortion. A topology-
preserved deformation is invertible and smooth [9], [10], so we
fuse bidirectional consistency (BiC) constraint for topology-
preserved registration. It constrains the network to learn
both forward and reverse smooth deformation interimages
for invertibility and smoothness [11], thus preserving the
authenticity of structures in generated images.

2) Space-Style Sampling Program for Diversity: Our space-
style sampling program (S3P) [Fig. 2(e)] densely samples data
during the transformation process from atlases to unlabeled
images, generating data in a dense distribution and improving
the diversity. It builds continuous distributions between the
atlases and unlabeled images via modeling their transformation
process of style and space and densely samples data in
these continuous distributions for the generated data with
better diversity. For style, it builds a style transformation path
between the atlas and an unlabeled image and samples the
displacement degree on this path for new style features. For
space, it builds a space transformation path between the atlas
and another unlabeled image and samples the deformation
degree on this path for new space features. The style and space
features are fused into the atlas to generate a new pseudo-
labeled image. With the dense sampling on the transformation
paths (continuous distribution), diverse space and style features
will be extracted to improve the diversity in our generation.

3) Mix Misalignment Regularization for Robustness: Our
mix misalignment regularization (MMR) [Fig. 2(f)] simulates
the misalignment and constrains the network to reduce the
fitting degree of these misaligned regions, making a regulariza-
tion for inaccurate information and improving the robustness
of segmentation learning. It mixes two images to simulate
the misalignment distortion and mixes their segmented maps
to discover the misaligned regions. Then, it constrains the
segmentation network to perceive these misaligned regions
to improve the fit function’s linearity of these regions, thus
reducing the fitting degree of this inaccurate information.
Therefore, the learned segmentation network will fit a simpler
function and be more robust to misalignment in generated
images [12], further improving the MIS performance.

Specifically, our contributions also include the following.

1) For the first time, we propose an efficient LRLS-based
few-shot MIS framework, BRBS, which provides a pow-
erful few-shot benchmark for medical image field and
efficiently reduces the costs of medical image research.

2) We propose a domain-knowledge-driven registration
learning strategy, KCC, which effectively reduces the
registration error for better authenticity in the generation,
being more in line with the real-world image generation.

3) We propose a novel data generation program, S3P,
which densely samples data on continuous distributions
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Fig. 2. Limitations of the existing LRLS frameworks and the advantages of our BRBS framework that break through the bottleneck of the LRLS paradigm
and achieve accurate MIS models from only extremely few labels. From S1 to S3, they are the detailed steps of the LRLS paradigm, from (a) to (c), they
are the limitations of the existing LRLS frameworks (DataAug [2] as an example), and from (d) to (f), they are the solutions and advantages of our BRBS,
respectively. (a) Existing method directly learns registration. (b) Existing method generates data in the end of transformation. (c) Existing method fits inaccurate
labels. (d) Our KCC constrains registration learning. (e) Our S3P generates data in a continuous transformation process. (f) Our MMR reduces the fitting

degree of inaccurate labels.

between the atlases and unlabeled images for the gener-
ation with better diversity.

4) We propose a powerful data-driven regularization
method, MMR, which constrains the segmentation net-
work to reduce the fitting degree of misaligned regions
in a data-driven way, so that the segmentation network
will be more robust to learn with inaccurate labels.

Overall, our BRBS framework has three key advantages:

a) Fewer labels: Compared with the full supervised meth-
ods [13]-[16], our framework is able to drive the whole
training process with only nearly one label for a reliable MIS
network, which effectively reduces the labeling costs in MIS
tasks. b) Higher accuracy: Compared with other LRLS meth-
ods [1]-[4], [6], our advancements in the authenticity, diver-
sity, and robustness of the LRLS paradigm bring a significant
improvement in MIS performance, and our BRBS has achieved
the state-of-the-art results on multiple challenging MIS tasks.
¢) Great simplicity: In the testing process, our framework
only uses a single segmentation network for inference without
any additional parts. We have implemented the proposed meth-
ods by the PyTorch [17] framework. We share our code and
models at a companion website https://github.com/YutingHe-
list/BRBS.

II. RELATED WORKS
A. Few-Shot Learning

Few-shot learning targets learning methods from a limited
number of examples with supervised information [18]-[21],
effectively improving the label efficiency. Recently, it has
achieved success in numerous tasks, such as the image classi-
fication [21], video classification [19], and neural architecture
search [20]. Due to the high cost of annotation and the scarcity
of medical data [22], the few-shot learning is urgent in medical
image analysis and has achieved success in many medical
image tasks [2]-[4], [6], [23]. However, as pointed out by
Wang et al. [18], the core issue of few-shot learning is the
unreliable optimization direction in learning (empirical risk
minimizer). When the labeled training dataset is very small,

empirical risk will be far from being a reliable approximation
of the expected risk, bringing overfitted optimization direction
from the few examples. Therefore, it is challenging for reliable
learning in a few-shot situation. Although the above existing
methods have introduced preliminary solutions to improve the
reliability of optimization in a few-shot situation including the
LRLS paradigm [1]-[6] in this article, it is still a bottleneck
in few-shot learning.

1) Medical Image Registration and Segmentation: In the
previous decade, medical image registration (MIR) [11] and
MIS [24] are two key dense prediction tasks in medical
image analysis. The MIR [4], [11], [25], [26] aligns the
anatomical structures in medical images to the same spatial
coordinate system, and the MIS [16], [24], [27] densely labels
the semantics of the anatomical regions. With the development
of deep learning (DL) [28], the DL-combined MIR and MIS
models are being deeply studied and have achieved numer-
ous remarkable results [4], [11], [24], [29]. However, large
challenges are limiting these models. The unsupervised MIR
models [11], [26] lack region perception ability, so they are
always limited by the alignment accuracy on the regions of
interest. The supervised MIS models [16], [24] have large
label requirements resulting in large labeling costs. If only
a few labels are available, the data-hungry nature of DL will
bring serious overfitting risks.

2) Atlas-Based Segmentation: Based on the registration,
a widely studied few-shot MIS paradigm is the atlas-based
segmentation [5], [30]-[35]. It takes the key idea that uses
the relationship between segmentation labels and images
(i.e., atlas) in image—label pairs and registers the labeled
images to unlabeled images, thus indirectly constructing the
mapping from labels to unlabeled images for segmenta-
tion results [33]. In recent years, due to the powerful fea-
ture representation ability and high speed of the DL, some
works [1]-[5], [30]-[32] have been devoted to combining
the DL with atlas-based segmentation frameworks, achiev-
ing promising segmentation results with few labeling costs.
An intuitive method [5], [31] is to use deep networks to learn
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unsupervised registration models [11] for a faster and more
accurate alignment between atlases and unlabeled images.
However, it is limited by the similarity between atlases and
unlabeled images, if the atlases are extremely different from
the target images, it will bring poor results. Although some
works [26], [36] use the constraint from segmentation labels
for a better alignment, they also bring the limitation of label
amount.

3) Learning Registration to Learn Segmentation: Recently,
based on the research of the complementarity [3] between the
DL registration and segmentation models, an effective few-
shot MIS paradigm, LRLS [1]-[4], [6], is creating its great
popularity. This paradigm takes the registration model to align
the atlas and unlabeled images, thus generating numerous
pseudo-labeled images to drive the learning of the DL seg-
mentation model with few labels. The DataAug [2] used this
paradigm and further introduced an appearance transforma-
tion that improves the diversity of generated data. However,
the distortion in inaccurate registration brings interference in
segmentation learning. Ding et al. [6] further advanced the
diversity of DataAug and trained a variational autoencoder
(VAE) to generate pseudo-labeled images from continuous
latent space. However, it only works in the one-shot situation,
which limits the scalability, and the distortion caused by the
inaccurate registration is still limiting the final segmentation
learning. The DeepRS [3], PC-Reg-RT [4], and DeepAtlas [1]
took the complementarity of registration and segmentation
tasks. They used the segmentation model to constrain the
registration purposefully align target regions and bring more
accurate alignment, reducing the distortion for higher quality
generated data. However, these works did not consider the
deformation distortion and the diversity of the generated
data, so the segmentation model will still have the risk of
interference in training and be challenging to generalize to
more images. What is more, these works [1]-[6] lack further
research on how to learn segmentation networks more robustly
in the registration-based generated data.

4) Discussion for Related Works: The authenticity [5], [7],
[37], diversity [6], [20], and robustness [38], [39] are the three
key aspects of the LRLS paradigm on few-shot MIS tasks. Bet-
ter authenticity of the generated image—label pairs will reduce
the error information caused by registration and make the seg-
mentation model learn a more reliable representation. Better
diversity of the generated data will provide the segmentation
network with more knowledge, achieving the efficient repre-
sentation for better generalization ability. Better robustness of
the segmentation learning will improve the ability to resist
interference from inaccurate data, achieving accurate feature
representation and reliable optimization. Therefore, the LRLS
paradigm desiderates to advance its authenticity, diversity, and
robustness, learning better registration to learn better few-shot
MIS. Although some works have made preliminary studies
on diversity [2], [3], [6] and authenticity [1], [3], [4], there
is no deep and complete research on all of these three key
aspects in the LRLS paradigm. In this article, our KCC, S3P,
and MMR simultaneously improve the authenticity, diversity,
and robustness, thus further advancing the LRLS paradigm to
more powerful performance.
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Fig. 3. Complementary learning process of segmentation (S) and registration
(R). Throughout the whole training process, the registration and segmentation
networks are trained cyclically, so their complementary constraints are trans-
mitted in the cycling process, achieving mutual improvement.

III. BETTER REGISTRATION BETTER SEGMENTATION

The proposed BRBS framework (Fig. 2) learns the
semantic-aligned and topology-preserved registration for the
generation with better authenticity (KCC, see Section III-A),
densely samples data on the transformation paths for the
generation with better diversity (S3P, see Section III-B), and
learns misalignment-preserved segmentation for better robust-
ness of inaccurate information in generated data (MMR, see
Section III-C), thus achieving effective few-shot MIS. Our
BRBS takes the complementary learning process [3] (Fig. 3),
which trains registration and segmentation networks iteratively
and alternately for complementary constraints throughout the
training process.

A. Knowledge Consistency Constraint Strategy Improves
Authenticity

Our KCC (Figs. 2(d) and 4) utilizes two kinds of domain
knowledge to constrain the registration learning, generating
pseudo-labeled data in line with the domain knowledge,
greatly improving the authenticity. We denote the images
sampled from our training dataset D as M and F to introduce
this strategy. It has two key components.

1) Bidirectional Consistency: It constrains the registration
network to learn a topology-preserved registration for anatom-
ical structure, improving the structure’s authenticity in gen-
erated images. It constrains invertibility and smoothness for
topology preservation. For invertibility, it not only constrains
forward deformation which deforms image M to image F via
the forward deformation field ¢ like [11] but also constrains
inverse deformation to deform image F to image M via the
inverse deformation field ¢!

¢ =RM,F), ¢~ =R(F,M). (1)

The forward and inverse deformation fields are also con-
strained mutual inversion via an inverse loss £;

Li(po7") =2, I8 —1(67)IP
If¢™) = —1xT(¢™".¢7) )

where p is the position of the voxels in ¢, T is a differentiable
spatial transformation operation [11], which deforms the input
via the deformation field, and I is an inverse transformation
process for the deformation field. This loss has two steps.
First, I(¢~") aligns the inverse deformation field ¢! to the
space of the forward deformation field ¢ and negates it.
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Therefore, the vectors in the inverse deformation field will
have the same directions and space positions as their cor-
responding vectors in the forward deformable field. Then,
L1(¢, ¢~ ") is used to calculate the difference between the
aligned inverse and forward deformation fields to optimize
the network to perform invertible deformation, improving the
topology-perversion ability. We simultaneously calculate the
similarity L, between the deformed image M? and target
image F pair, and the similarity between the deformed image
F*"' and target image M pair. Therefore, the deformation will
obtain a better invertibility, bringing authenticity to topological
structures. We take a popular normalized cross correlation
loss [11] as Lgim

Lim (F, M?)
(2, (F 0 =B ) (M) = 31 ()

v (X, (F(p) — F(p))’) (zp,. (M (p) —W* (p))z)
3

where Q is the space of the images and F(p) (I\A/I(z)(p)) is the
local mean intensity images: F(p) = (1/n°) Zp,- F(p)). pi
iterates over a n° volume around p. For smoothness, it further
takes a gradient loss [11] Lgmeom to constrain the gradient
of the forward and inverse deformation fields to be small
simultaneously, weakening local exaggerated distortion

Lamoon(@) = D 1V¢(p)II° )

PEP

where p is the position of the voxels in ¢ and V¢(p) is
the gradient of the pth position on the deformation field ¢.
Therefore, our BiC loss Lgic is

[/BiC(F’ M’ ¢9 ¢71)
= £sim (Fa T(Ma ¢)) + ﬁsim (M, T(Fa ¢_l))
+ 4o (»Csmoolh(¢) + L:smooth (¢71)) + /IIL:I (¢» ¢71) (5)

where Jyp and 1, are the weights of the losses in Lgic.
Following [11], we set 4o = 1, and following [40], we set 1| =
0.1 for better topology-preservation ability. Together with our
SeC (below), our BiC achieves better topological preservation
than [11] and a smaller risk of semantic misalignment caused
by the excessive smoothing in [40].

2) Semantic Consistency: It constrains the registration net-
work to learn the alignment ability of corresponding semantic
regions between two images, improving the accuracy of style
displacement for semantic authenticity in generated images.
It segments the semantic regions on two original images
(M, F) via our fixed segmentation network (S) and constrains
their corresponding semantic regions to align according to the
spatial correspondence in the forward and inverse deforma-
tions (qﬁ,qﬁ’l) via our SeC loss Ls.c. We take a multiclass
Dice coefficient [1] loss Lgice as the metric

[/SeC (F’ M, ¢’ ¢71)
= Laice(S(F), TEM), $)) + Laice (SM), T(S(F), ¢7')).
(6)

Bidirectional consistency (BiC) for
topology-preserved registration

Semantic consistency (SeC) for

Sampled images semantic-aligned registration

Deformation field ¢"'  Deformed image ¥*' Image M

Image F

Semantic region.

Semantic regions F

Fig. 4. Our KCC constrains the registration network to learn topology-
preserved and semantic-aligned registration via our BiC and SeC, generating
space and style transformation maps in line with the domain knowledge and
improving the authenticity of generated data.

This loss will optimize the registration network to output
the deformation with a great alignment of semantic regions.
Therefore, the style displacement map calculated from finely
aligned regions will improve the style authenticity.

In general, the learning process is formulated as minimizing
an expected loss function Lg(-, -, -)

R = argﬂgnin[E(F,M)Np[ﬁR(F, M, R(F, M), R(M, F))1] (7)

where F and M are the images sampled from our training
dataset D. The complete loss is

Lr(F, M, R(F, M), R(M, F))
= Laic(F.M, ¢, ¢7") + 22Lsec (F, M, ¢, ¢7")  (8)

where 4, is the weights of the loss Lgec.

Discussion of the Innovation: Our KCC proposes a novel
registration framework with high semantic alignment and
topological preservation ability. It utilizes the complementary
between the segmentation and registration for the semantic
alignment and the cyclic consistency for the topology preser-
vation. Therefore, it has effectively improved the registration
accuracy to cope with the limitation of authenticity in the
LRLS paradigm.

B. S3P Improves Diversity

Our S3P (Fig. 5) densely samples data on the transformation
paths between atlases and unlabeled images in a registration-
based generation program, generating image—label pairs with
great diversity from few atlases. We consider the transforma-
tion of the space and style features in the medical images
following [2]. We build an unlabeled set ¢/, which consists
of numerous (M) unlabeled images for the varied space and
style features, and an atlas set .4, which consists of extremely
few (N, N « M) labeled images for the basic anatomical
structures. Therefore, it builds our training dataset D in the
training

D = {{(A, ", (UM}N < M). )

It first randomly samples (image-level) two images U; and
Ui from our unlabeled set U for their new spaces and styles
and one image—label pair (A;,y;) from our atlas set A for its
basic space and style in D: {(A;,y;), U;, Uy} ~ D.
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Fig. 5. Our S3P builds a registration-based probabilistic generation program
with three levels that sample numerous space and style transformation
maps throughout their transformation paths, generating more space and style
features and improving the diversity.

For the sampling of space features (space level), one unla-
beled image U; and the atlas image A; are put into the
registration network R for a deformation field [see (10)]. The
deformation field ¢;»; realizes the transformation of space
features from the atlas image to the unlabeled image Uj;.
Then, our S3P generates a random value a € [0, 1] to
sample the deformation degree for new space features in the
transformation process

binj = R(Ai,Uj)a¢flzj = a¢izj.

For the sampling of style feature (style level), the other
unlabeled image U is deformed to the atlas image A; via
the registration network for a deformed unlabeled image
Ui = T(Uy, R(Uyg, A)))). Then, the style displacement map
wior 1s calculated between the aligned images (Ui, A;) via
pixelwise subtraction [see (11)], realizing the transformation
of style features from the atlas image to the unlabeled image
Uy. Then, our S3P generates a random value f to sample
the style displacement degree for new style features in the
transformation process

(10)

(1)

Finally, the sampled style displacement map y/,fZi is added
to the atlas image for new style features, and the sampled
space deformation map ¢ ; is used to warp the style displaced
atlas image and the atlas label, generating image—label pairs

({Xfﬁ, yi;}) with new style and space features

viok = Urai — Ay, V/kﬁz,- = Byiai.

Xiﬁ = T(Ai + Wi/;k’ ?Zj)’y?j = T(y;> ;ZZj)'

If p is O, the generated image is the space deformed atlas
image Af‘j without new style features, and if the a is 0O, the

12)

generated image is the style displaced atlas image Aﬁ{ without
new space features. Therefore, with the dense sampling of
style and space features in our generation program, our S3C
achieves denser generated data distribution via sampling data
on the transformation paths.

In general, compared with the other typical registration-
based generation methods [1]-[4] (Table I), our BRBS has
three levels, including the image, space, and style levels,
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TABLE I

PROBABILISTIC GENERATION PROGRAMS OF DIFFERENT TYPICAL LRLS
METHODS SHOW THAT OUR BRBS HAS HIGHER RANDOMNESS,
WHICH WILL GENERATE MORE DIVERSE IMAGES FOR
FURTHER TRAINING

Method Probabilistic program
DeepAtlas [1] p((As,y,))p(Uj)
PC-Reg-RT [4] p(¢i2;|R, Ay, Uj)p((Ai,y;))p(Uy)
DataAug [2] p((Ai,¥;))p(U;)p(Uk)
DeepRS [3] p(@)p(¢iz; IR, Ai, Us)p((Ai,y;))p(U;)
Our BRBS  p(B)p(¢i2k|R, Ai, U )p(a)p(dio; R, Ai, Uj)p((Ai, y,;))p(U;)p(Uk)

constructing a three-level probabilistic generation program that
provides a more diverse generation for further training. It uses
three kinds of randomness including the randomness in the
kinds of space and style (DataAug, p((A;,y;))p(U;)p(Uy)),
the randomness in the training process of the registration
network (DeepRS, PC-Reg-RT, p(¢i»;|R, A;, U;)), and the
diversity in the style (p(f)) and space (DeepRS, p(a)) trans-
formation paths, further improving the diversity of generation.

Discussion of the Innovation: Our S3P proposes a novel
registration-based data generation program with higher diver-
sity and without additional training. It models the space
and style transformations and densely samples their degree
for more diverse space and style features. Therefore, it has
effectively improved the diversity in the generated dataset
to cope with the limitation of the diversity in the LRLS
paradigm.

C. MMR Improves Robustness

Our segmentation network is trained by the generated
image—label pair (ng/’;(,y?j) and constrained by our MMR
strategy, avoiding the interference caused by misalignment
distortion and achieving robust learning of MIS (Fig. 7).

Our MMR constrains our segmentation network better lin-
earity for the misaligned regions to reduce the fitting degree of
misalignment distortion. Because this process does not require
labels, we denote the images sampled from our training dataset
D as X4 and Xp to introduce this strategy. A random value
y € [0, 1] is used to mix two images X4, Xp for a mixed
image X 45 via weighted summation: X 5 = y Xa+(1—y)X3,
simulating the misalignment distortion in the generated image.
Then, our segmentation S(-) infers the two original images
X4, Xp and the mixed image X,p for their segmented maps
¥4 =SXa), ¥z = S(Xp) and segmented mixed map ¥, =
S(X4p). The segmented maps §,,¥5 are also mixed with
the random value y via weighted summation for the mixed
segmented map y, 5, which has a high response for aligned
regions and low response for misaligned regions. Finally, the
segmented mixed map ¥, is constrained to be similar to
the mixed segmented map y,; via the mix loss Ly, thus
guiding the segmentation network to perceive the aligned and
misaligned regions for the robustness of the misalignment
distortion caused by registration

Lotix (9495 Fa5) =1l 754+ A —=9)§5 = Fap 7. (13)

In the view of the optimization process [Fig. 6(a)], our
MMR constrains our segmentation network to fit a function
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Fig. 6. Our MMR improves the robustness of segmentation training. In the
view of optimization, it mixes two images to simulate the misalignment
distortion and constrains the function of the DL model better linearity in the
misaligned regions, thus reducing the fitting of this inaccurate information.
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Fig. 7. Segmentation network learns the MIS via the constraints of our MMR
Lyix and the optimization of a segmentation loss Lgeg.

with better linearity on misaligned regions, thus reducing
the risk of fitting for the inaccurate information. The mis-
aligned regions of two images and their segmented maps
(X4,¥4), (B,¥5) are two points (gray) on the function of our
segmentation network S(-). Mixing these regions from two
images and their segmented maps via weighted summation
achieves sampling on the line connecting these two points
for a mixed image and mixed segmented map [red point,
(X4a5,Y45)]. Due to the different classes of the misaligned
regions in the two images, the response of these regions will be
lower than the aligned regions. Therefore, our MMR constrains
the segmented mixed map ¥, and the mixed segmented map
¥4 to be consistent, resulting in the function’s range between
two points (X4, ¥4), (X5, §5) better linearity. This process is

S(yXa+ 1 —7y)Xp) & ySXa) + (1 —y)SXp). (14)

In our experiment, the random value y is sampled from a
Beta distribution Beta(a, b) whose two parameters are all 0.3.
If the mixed regions are aligned, their segmented maps will
have the same value, and thus, the aligned regions in the
mixed segmented map will be similar to their original value,
which does not influence the fitting of such aligned regions.
Therefore, the final fit function of the segmentation network
will be simpler to reduce the fitting degree of inaccurate
labels so that the trained segmentation network will have better
performance.

The segmentation network is also optimized by a segmen-
tation loss Ly, via the generated image—label pairs (X;ﬁ, y?j).
As shown in Fig. 7, the segmentation loss L., evaluates the
similarity between the segmented generated map §7; and the
generated label y;; to optimize the model for segmentation.

In this article, we take the multiclass Dice coefficient [1] as
the matric for the segmentation loss.
In general, the learning process is formulated as minimizing

S = argSmin [E((Ai ¥:1),U;,Ue. X4, Xp)~D

X[‘aS(yg"Y?jayABayAayB)]]' (15)
The complete loss for our segmentation network is
Ls (yija Yij» Yag:Yas BA’B) = o Lwmix (5’/4» Vg, yAB)
+ Loeg (5%, ¥%) (16)

where g is the weight of the mix loss in complete loss.

Discussion of the Innovation: Our MMR proposes a novel
data-driven regularization method without any labels. It con-
strains the segmentation network to reduce the fitting degree of
misaligned regions in the generated data in a data-driven way.
Therefore, it makes regularization for inaccurate information,
coping with the limitation of robustness in the segmentation
learning of the LRLS paradigm.

IV. EXPERIMENTS CONFIGURATIONS
A. Datasets

We evaluate the excellent few-shot MIS performance of
our BRBS framework on two important tasks with different
imaging modalities and characteristics.

1) Few-shot cardiac structures segmentation [41] evaluates
our framework on seven big cardiac structures on com-
puted tomography (CT) images. Three public available
datasets are introduced into our evaluation, including
the MM-WHS [41], which has 20 images with cardiac
structures’ labels and 40 unlabeled images, ASOCA
[42], which has 60 unlabeled images, and CATO0S8 [43],
which has 32 images with cardiac structures’ labels
from.! Totally, 52 labeled and 100 unlabeled images are
used in our evaluation. We crop the cardiac regions and
resample them to 144 x 144 x 128. For our five-shot
evaluation, we randomly select five labeled images as
our atlas set and the remaining 47 labeled images as
our testing set. For our one-shot evaluation, we randomly
select one labeled image as our atlas and the remaining
51 labeled images as our testing set. We put the 100
unlabeled images as the unlabeled set.

2) Few-shot brain tissues segmentation [44] evaluates our
framework on 28 small brain tissues on T1 magnetic res-
onance (MR) images. The CANDI dataset [45], which
has 103 T1 brain MR images with brain tissues’ labels,
is used to evaluate our BRBS. Following [6], we crop
a 160 x 160 x 128 volume from the center of the
original images and split 20, 82, and one images as
the test, unlabeled, and atlas sets in one-shot evalua-
tion, respectively. For a five-shot evaluation, we resplit
20, 78, and five images as the test, unlabeled, and
atlas sets, respectively. We perform the rotation in
[—20°,20°] and scaling in [0.75, 1.25] times for all
training processes as data augmentation.

Thttp://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
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1) Comparison Settings: To demonstrate the superiority of
our proposed framework, we compare our BRBS framework
with 16 widely used frameworks in the one- and five-shot
situations.

1) Direct learning segmentation (LS) frameworks
(3-D U-Net (2016) [13], SegNet (2017) [14], U-Net++
(2019) [15], and DBN (2020) [16]) are evaluated to
give a basic performance of supervised MIS models in
our few-shot situation.

2) Semisupervised LS (SLS) frameworks (UA-MT (2019)
[46], MASSL (2019) [47], DPA-DBN (2020) [16], and
CPS (2021) [48]) are compared to show the limitation
of semisupervised methods due to the lack of domain
knowledge in the few-shot situation.

3) Atlas-based medical image segmentation (ABS) frame-
works with voting fusion (VoxelMorph (VM, 2018) [11],
label-constrained VM (LC-VM, 2019) [26], and LT-Net
(2020) [5]) are compared to show the limitation caused
by the dissimilarity between the atlases and targeted
images.

4) State-of-the-art LRLS-based methods (DeepAtlas (2019)
[1], DataAug (2019) [2], DeepRS (2020) [3], PC-Reg-
RT (2021) [4], and VAEAug (2021) [6]) are compared
to demonstrate our excellent performance. Except for
the LS, we use the same backbone, 3-D U-Net [13], for
all methods to avoid the interference caused by network
architecture.

2) Implementation Details: Our BRBS framework is imple-
mented by PyTorch [17] on NVIDIA GeForce RTX 3090
GPUs with 24-GB memory. We set the values a, £, and y
to be sampled from a Beta distribution Beta(a,b) whose
two parameters are all 0.3 so that the probability distribution
will be closer to 0 and 1 for a smaller distortion risk.
We set 1o = 1 (following [26]), 2; = 0.1 (following [40]),
and 1, = 100 (following Section V-D) for our registration
network to achieve a semantic-aligned and topology-preserved
registration. We further set wy = 0.1 (following Section V-D)
to balance the training of our segmentation network. Follow-
ing [4], we take the Adam whose learning rate is 1 x 107*
to optimize our framework for fast convergence, and the
batch size = 1 to save the memory for large 3-D images.
Following [26], we perform an affine transformation on these
images via AntsPy? to normalize the spatial position.

3) Evaluation Metrics: We evaluate our segmentation per-
formance in two aspects [49]: a) The area-based metric: We
take the Dice coefficient (DSC)[%] to evaluate the area-based
overlap index. The higher DSC means the better region coin-
cidence. b) The distance-based metric: We take the average
Hausdorf distances (AVDs) to evaluate the coincidence of the
surface. The lower AVD means the better surface coincidence.
For further evaluation of our registration in our analysis,
we calculate the percent of the Jacobian matrix <0 on each
deformed voxel J; < O to evaluate the distortion degree of
deformation (the lower, the better) and calculate the DSC and
AVD to evaluate the accuracy of deformation.

Zhttps://github.com/ANTsX/ANTsPy
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V. RESULTS AND ANALYSIS

A. Quantitative Evaluation for Metric Superiority

The LRLS-based methods demonstrate their great supe-
riority in few-shot MIS tasks (Table II). Three interesting
observations can be found in Table II. 1) SLS-based methods
generally yield lower performance than the supervised LS-
based methods. This is because the extremely few labels only
provide little supervision, thus making extremely unreliable
supervision information in their semisupervised setting and
resulting in UA-MT’s 17.9% DSC decrease compared with
3-D U-Net in the five-shot task (a). Although the CPS achieves
the 3.1% DSC improvement in the five-shot task (a), it almost
has no segmentation ability (25.3% and 37.1% DSC) on task
(b) whose structures are really small. 2) ABS methods have
stable performance for small structures due to the consistency
of the anatomical basic structures in medical images, so the
VM achieves the third highest 83.1% DSC in the five-shot task
(b). However, they are limited by the similarity between the
atlas image and the test images, and the VM only has 81.0%
DSC in the five-shot task (b) showing their bottleneck. 3) The
LRLS-based methods achieve general improvement over LS-
and SLS-based methods due to their great representation
ability of DL and the generated large amount of training data.
Therefore, they have all achieved over 80% DSC and over
70% DSC in the five-shot tasks (a) and (b).

Compared with other LRLS-based models, our BRBS
demonstrates its powerful MIS performance and large superi-
ority in the few-shot situation in two aspects: 1) Our BRBS
has great MIS ability on both large [task (a)] and small
structures [task (b)]. In the five-shot situation, it achieves the
highest DSC (91.1%, 87.2%), and the lowest AVD (0.93 mm,
0.43 mm) on two tasks due to the great diversity and authentic-
ity of generated images. The PC-Reg-RT achieves similar per-
formance to our framework on large structures [task (a)], but it
has very poor performance in small structures (task (b), more
than 10% DSC lower than ours). This is because its serious
mis-segmentation on small structures enlarges the alignment
distortion in registration, making further degradation of seg-
mentation in turn. The DataAug performs competitive perfor-
mance on small structures (task (b), only 4.4% and 3.3% DSC
lower than ours), but it is extremely limited on large structures
[task (a)] due to the lack of semantic-alignment constraints
and the alignment distortion caused by its poor registration
making poor performance. 2) Our BRBS has the best MIS
ability in both one- and five-shot situations, illustrating our
great robustness on label amounts. In task (a), the DeepRS
has 87.0% DSC, which is only 4.1% lower than ours in the
five-shot task (a), but this gap is enlarged to 15.8% in the one-
shot task (a) due to the adversarial training, which enlarges the
instability of data amount. The PC-Reg-RT has 88.5% DSC
in the five-shot situation, which is only 2.6% DSC lower than
ours, but in the one-shot situation, the gap is enlarged to 3.7%
DSC. This is because the segmentation network in PC-Reg-
RT extremely interferes with the registration network, so when
the labeled images are extremely reduced, the degeneration of
segmentation will bring bigger registration errors in generated
data, further interfering with the segmentation learning.
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TABLE II

QUANTITATIVE EVALUATION DEMONSTRATES THE ADVANTAGES OF OUR BRBS ON OUR TwO FEW-SHOT MIS TASKS IN THE ONE- AND FIVE-
SHOT SITUATIONS. OUR BRBS ACHIEVES THE BEST PERFORMANCE BOTH ON LARGE (CARDIAC STRUCTURES) AND SMALL (BRAIN TISSUES)
STRUCTURES COMPARED WITH 14 POPULAR METHODS. THE “UNABLE” MEANS THAT THE EXTREMELY POOR SEGMENTED RESULTS
MAKE THE AVD UNABLE TO BE CALCULATED

(@)

(b)

Method Type 1-shot4 g¢q 5-shot4 14 1-shot4 s¢g 5-shot4 s¢q
DSC% 1 AVDmm | DSC%1T AVDmm ] DSC%1T AVDmm ] DSC% 1T AVDmm |
3D U-Net [13] LS 63.8416.3  6.13+3.46 84341956 24341214 5444108 2944123 69.518.8 1.5940.84
SegNet [14] LS 5754174  701t453 7881105  2.6811.72 523449 3.18+0.37 62.7+7.0 1.98+0.72
U-Net++ [15] LS 4294205 9.184+3.78 84.0+8.6 2514226 5124106 2.3311.06 66.4112.7 2.0241 .62
DBN [16] LS 4881165 10701410 789+t12.0 3901312 2351159 13831726 802156 0.9210.30
UA-MT [46] SLS 5481170 9441477 6641162  4.6940.027 36.7+8.4 8.6942.29 755+3.4 1.3110.95
CPS [48] SLS 70.749.4 4.01+1.73 87.445.4 1.404+0.76 25341.2 unable 37.1+1.8 unable
MASSL [47] SLS 57.2i12,5 l3.86i3,16 77~4i8.7 9.07i3,11 74.0i341 1.32io_35 80.5i3.1 0~92i0.43
DPA-DBN [16]  SLS  49.0414.4 10471381 68.0t145  5.75+3.89 281176 7.75+1.78 68.748.2 3.9042.39
VM [11] ABS 77.616.0 2.49+0.73 81.0+6.1 2.1310.78 78.7+1.8 0.731+0.07 83.141.8 0.56+0.08
LC-VM [26] ABS - - 81.7+6.0 2.04+0.77 - - 83.041.8 0.56+0.07
LT-Net [5] ABS 672165 3.55+0.90 77.847.8 2.25410.05 769415 0.7540.51 82.641.2 0.57+0.05
DeepAtlas [1] LRLS 85.4i4A5 1-59i0.56 87.9i4A3 1.30i0,57 7340i2.4 1.02i0A10 79~3i2.6 0.74i()‘12
DataAug [2] LRLS 814452 2.234+0.67 82.245.2 2.0440.73 81.311.4 0.69+0.06 83.941.2 0.55+0.06
DeepRS [3] LRLS 7344123 3.4041.92 87.0+5.0 1.60+0.90 5594120 1.81+0.01 73.0+5.9 0.9310.25
PC-Reg-RT [4] LRLS 855147 1.554+0.63 88.544.9 1.2310.72 66.913.6 1.3810.19 731431 1.0940.17
VAEAug [6] LRLS 75.5+11.0 429492 19 - - T4.8412.2 1.7142.71 - -
Our BRBS LRLS 892434 1.244¢.50 911139 0.9340.57 85.7+1.0 0.4940.04 87.241.0 0.4310.05
TABLE III

ABLATION STUDIES ON THE FIVE-SHOT CARDIAC STRUCTURES SEGMENTATION TASK DEMONSTRATE THE GREAT CONTRIBUTIONS OF OUR
INNOVATIONS. WE EVALUATE THE SEGMENTATION AND REGISTRATION PERFORMANCE SIMULTANEOUSLY

KCC S3pP MMR Segmentation Registration
SeC BiC Image Space Style DSC% 1T AVDmm | DSC%1T AVDmm | |Ju| <0% |
843196 2434214 - - -
v 80.7+9.6 2524152  72.6113.8  2.89+1.18 33107
v v 837+8.0 2331203 7324138  2.84411.17 32407
v v v 88.1+47 1254063  73.01139  2.87+1.20 3.510.8
v v v 84.4416.5 1.854+0.80  73.5+13.8 2.8411.18 37+0.8
v v v v 90.0+38  1.04+049 8594135 1331067 6.241.2
v v v v v 904134  1.00+0.44  86.0+135 1311064 25411
v v v v v v 911439 0.9310.57 86.7113.6 12210 62 17408

B. Qualitative Evaluation for Visual Superiority

We show the results of five LRLS-based methods on five-
shot cardiac structures and brain tissue segmentation tasks
(Fig. 8). Our BRBS has high accuracy on the boundaries
of large structures and fine segmentation quality on small
structures. 1) For large cardiac structures, our BRBS shows
better segmentation accuracy on boundaries. As shown in the
enlarged part of the first row, our BRBS and the DeepAtlas are
able to finely segment the boundaries between two structures
(yellow arrow), but the DataAug has a mis-segmentation in
this region. This is because the DataAug has no semantic-
alignment constraints in the registration, thus bringing too
much alignment distortion on the boundaries when generating
pseudo-labeled images via deformation. Although the DeepRS
and the PC-Reg-RT have semantic-alignment constraints when
training registration models, the interference of the adversarial
process and the too much dependence on segmentation make
their registration easy to distort on detail regions, resulting
in poor segmentation accuracy on boundaries. 2) For small
brain tissues, our BRBS shows finer segmentation quality.
The enlarged part in the last row has multiple adjacent small

structures. Our BRBS has excellent integrity and consistency
for these regions compared with other LRLS-based methods,
due to our great authenticity of generated images. The PC-Reg-
RT, DeepAtlas, and DeepRS seriously lose some small struc-
tures as pointed by the yellow arrow because their generation
process did not consider authenticity, which is important for
small structures. Once distorted, these tiny structures are easily
disturbed by erroneous information, resulting in poor perfor-
mance. DataAug performs better than the other three methods
on small structures due to its three independent training stages
that weaken the interference of mis-segmentation on registra-
tion, but it is still extremely limited by the misalignment.

C. Ablation Studies Show Improvements of Innovations

The ablation studies on the five-shot cardiac structures
segmentation task demonstrate the great improvement of our
innovations (Table IIT). The 3-D U-Net (first line, our baseline)
only has 84.3% and 2.43 mm on DSC and AVD, respectively.
When adding our S3P and only performing the image-level
sampling, the large deformation distortion in the generated
images reduces 3.6% DSC of 3-D U-Net. Our space-level
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Large cardiac structures

Small brain tissues

Fig. 8. Qualitative evaluation shows the visual superiority of our BRBS on
our two few (five)-shot MIS tasks compared with four typical LRLS-based
methods.

sampling brings more diverse space features for 3.0% DSC
improvement, but the distortion is still interfering with the
segmentation learning, thus still only having 83.7% DSC. The
style-level sampling makes 88.1% and 1.25 mm on DSC and
AVD, respectively, which shows its large significance. This
is because the variation of the style features caused by the
different scanning protocols is a bottleneck for MIS and our
style-level sampling provides more diverse style features for
segmentation learning. When only adding our MMR (without
style-level sampling), its regularization ability brings 0.7%
DSC improvement. However, compared with the style-level
sampling, it still lacks the directed supervision from the
generated data with more style information, so it is still lower
than the style-level sampling with 3.7% DSC. Our KCC brings
semantic-aligned and topology-preserved registration for better
authenticity in the generation. Our SeC constrains the reg-
istration network to produce better alignment on the same
semantic regions, thus achieving 13.3% DSC improvement
of registration and further having 1.9% DSC improvement of
segmentation. However, |J4| < 0 is enlarged to 6.2% due to
the large deformation in the semantic field, distorting the topo-
logical structures. Our BiC further constrains the registration
network to produce smoother and more invertible deformation
so that it performs fewer folds and achieves 2.5% |Jy| < O,
which makes a 3.7% reduction. Due to the improvement of
authenticity and diversity, our framework achieves 6.1% DSC
improvement on segmentation than the 3-D U-Net. Our MMR
provides the regularization for misaligned regions in generated
pseudo-labeled images, further improving the robustness of the
segmentation learning process. Therefore, our BRBS finally
achieves 91.1% and 0.93 mm on DSC and AVD, respectively,
with all our innovations, showing our powerful few-shot MIS
performance.

D. Framework Analysis

1) Analysis of Hyperparameters: The analysis of three
hyperparameters demonstrates the nature of our innovations
(Fig. 9). a) Our MMR significantly improves the robust-
ness of segmentation learning in DataAug [2] achieving
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Fig. 9. Hyperparameters analysis on the five-shot cardiac structures segmen-
tation task. Three hyperparameters are analyzed: (a) weight for our Mix loss
o in our MMR, (b) weight for our SeC loss 1, and (c) size of the unlabeled
dataset M.

higher performance, but when its weight is bigger than 0.1,
it will reduce the performance. We evaluate our MMR on
the DataAug model, which was extremely interfered with
by the alignment distortion, to remove the interference of
other innovations and evaluate our MMR clearly. When the
weight o is 0.1, the DataAug model achieves the highest
and significant improvement because our MMR performs a
regularization, which reduces the fitting degree of inaccurate
information. When enlarging the weight wy to 100, our MMR
extremely weakens the model’s performance (even lower than
the original DataAug). This is because the too powerful regu-
larization makes the network difficult to fit the data, resulting
in underfitting. b) Our SeC loss simultaneously improves
the segmentation and the registration performance with the
enlarging of its weight 1, (we set wy = 0.1). This is because
the better alignment of semantic regions in the registration,
the more authenticity in the generated data will be available.
Therefore, the segmentation network trained by more authentic
data will have better performance. ¢) With the enlarging of
the unlabeled datasets’ size, the MIS performance of our
framework is rapidly improved with 20% of the unlabeled
dataset and then slows down with more unlabeled data. This
is because our S3P greatly improves the diversity of the
generated data, and a small number of unlabeled images are
able to generate the data with a large number of features.
Therefore, it also illustrates that our framework is robust to
the unlabeled data amount.

2) Analysis of Registration Performance: Compared with
the registration models in other frameworks on the five-
shot cardiac structures segmentation task, our BRBS has
higher registration accuracy and low distortion owing to our
KCC (Table 1V). Two traditional (Trad) registration models
(BSpline [50] and SyN [7]), two DL registration models
(VM [11] and LC-VM [26]), and the registration part of
three LRLS-based models (DeepAtlas [1], PC-Reg-RT [4], and
DeepRS [3]) are compared in this section. The BSpline has
77.0%, 2.61 mm, and 8.4% on DSC, AVD, and |J4| < O,
respectively, showing the basic registration performance on
this task. The SyN is designed for diffeomorphic registration,
thus achieving 0% |Js| < O and its registration accuracy
is improved to 79.2% DSC. The VM learns the registration
via DL, but due to the lack of semantic perception ability,
it only has 72.7% DSC, which is even lower than BSpline.
The LC-VM trains VM only with additional five labels for
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TABLE IV

COMPARED WITH THE REGISTRATION MODELS ON THE FIVE-SHOT CAR-
DIAC STRUCTURES SEGMENTATION TASK, OUR BRBS HAS HIGHER
REGISTRATION ACCURACY (DSC, AVD) AND LOWER DISTORTION
(|Jp] < 0) DUE TO OUR KCC. THE “TRAD” IS THE
TRADITIONAL METHOD AND “DL” IS THE DEEP
LEARNING METHOD

Method Type DSC% T AVDmm ) |Jy| <0% ]
Initial 62.148.7 4371134 -
BSpline [50] Trad 77.0411.2 2.6141.57 84497
SyN [7] Trad 79.248.9 2.3340.92 0
VM [11] DL 7274139  2.8941.20 35407
LC-VM [26] DL 73.0+13.9 2.85+1.19 3.140.6
DeepAtlas [1] DL 79.7413.6 2.10+0.96 25406
PC-Reg-RT [4] DL 80.8+13.6 1.9410.091 0.540.3
DeepRS [3] DL 769+133  2.39+0.99 53413
LT-Net [5] DL 68.2113.9 3.2641.29 2.540.3
Our BRBS DL 86.7+13.6 1.224 0,62 1.740.8

better semantic-alignment ability, achieving slight improve-
ment (0.3% DSC) due to the too few labels. DeepAtlas takes
a segmentation network for alignment of semantic regions,
thus achieving a great 79.7% DSC on registration. PC-Reg-RT
only performs deformation on the regions of interest, avoid-
ing the potential distortion on large background, so it has
0.5% |Jg| < 0 showing great topology-preserving ability and
having the second-highest performance. However, it has no
deformation on the background regions, which lacks the align-
ment accuracy on some unlabeled but task-dependent regions.
Our BRBS achieves the highest DSC (86.7%), lowest AVD
(1.22 mm), and relatively low |Jg| < 0 (1.7%), demonstrating
the powerful topology-preservation and semantic-alignment
ability from our KCC. Such high alignment accuracy and the
few deformation distortions in the registration will generate
the data with great authenticity, training the segmentation with
higher accuracy.

3) Analysis of Our KCC: Our KCC utilizes our BiC
and SeC constraints and optimizes our registration net-
work for topology-preserved and semantic-aligned registra-
tion (Fig. 10), reducing the registration error. Therefore, the
generated images will have better authenticity, significantly
improving the further learning of our MIS task. a) The
VM has numerous folds and poor semantic alignment when
deforming (Fig. 10), due to the lack of topology-preserved and
semantic-aligned constraints. Therefore, as shown in Table IV,
it has high |Jy] < 0 (3.5%) and low accuracy (72.7%).
b) Our BiC utilizes the knowledge that a topology-preserved
deformation performs an invertible and smooth mapping and
bidirectional registration and smoothness constraints. There-
fore, it achieves fewer folds in Fig. 10 and lower |Jg| < 0
(1.7%) in Table III. ¢) Our SeC utilizes the knowledge that two
aligned images have aligned semantic regions and constrains
the corresponding semantic regions in two images aligned
via our segmentation network. Therefore, it achieves better
alignment for semantics in Fig. 10 and higher DSC (86.7%)
of registration in Table IV.

4) Analysis of the Authenticity of Generated Data: The
generated images in our BRBS have great authenticity due

Moving Fixed Our BRBS VM VM+BiC+SeC

Better alignment of

semantic regions

Fewer folds show better
topological preservation

Fig. 10.  Our KCC utilizes our BiC and SeC constraints, optimizing our
registration network for great topological preservation (fewer folds) and
semantic-alignment ability in registration.

Alas image

Unlabeled image 1 Unlabeled image 2
' it

Generated images in our BRBS
2 =04 "a=0.6 8 o=
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w/o BiC

e !/ ! 7 / 7 DalaAug pc -Reg-RT
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g
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Fig. 11. Generated images of our BRBS have great diversity and authenticity.
Left: our S3P densely samples images from the space and style transformation
paths so that the features of the generated images will cover the transformation
process for better diversity. Right: from (a) to (c), they are the images from
the real world, the images from our S3P, and the images from other LRLS
methods.

to our BiC and SeC constraints [Fig. 11 (right)]. a) Compared
with the images from the other LRLS-based methods [2]-[4],
our BiC and SeC effectively improve the authenticity of our
generated images. The DataAug has no constraints for seman-
tic alignment and topological preservation, so the generated
image has a large distortion and artifact on the boundaries. The
PC-Reg-RT and DeepRS have targeted constraints for semantic
alignment, but they make large distortions of topological struc-
tures due to the lack of constraints for topology preservation.
Our KCC constrains the registration learning via two kinds
of domain knowledge (BiC and SeC) for topology-preserved
and semantic-aligned registration, thus generating the images
with great authenticity. b) Compared with the images from
the real world [Fig. 11(a)], the images generated from our
BRBS have great authenticity with great semantic alignment
and topological preservation so that the segmentation network
trained with our generated data will learn a representation that
matches real data. Therefore, the segmentation network will
achieve great generalization for the testing data from the real
world.
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Fig. 12.  Features from the bottleneck layer of the segmentation network
(compressed to two values by PCA) show that our S3P provides much more
diverse generated data for segmentation learning. (a) Without our S3P [1],
only sparse generated data are available extremely limiting the diversity.
(b) With our S3P, our BRBS has diverse and dense generated data for effective
segmentation learning.

Fig. 13.  Our MMR constrains the segmentation network to perceive the
misaligned regions. (a) It mixes two images to simulate the misaligned regions
in mixed images. (b) Without our MMR, the 3-D U-Net is unable to perceive
the misaligned regions, fitting this inaccurate information. (c) With our MMR,
our BRBS perceives the misaligned regions, thus reducing the fitting degree
of such regions for better robustness.

5) Analysis of the Diversity in Generated Data: Our S3P
provides much more diverse generated data for segmentation
learning due to the dense sampling of the space and style
transformation paths (Fig. 12). We demonstrate the distribution
of the generated images via extracting their features from
the bottleneck layer of a trained segmentation network and
compressing these features to two values via the principal
component analysis (PCA). a) Without our S3P [1], the
generated images only have sparse feature distribution lacking
the diversity of the image for segmentation training, and this
is because the generation program directly samples data from
sparse and discrete distribution from the unlabeled dataset so
that the generated distribution is sparse and discrete limiting
the diversity. b) Our S3P builds continuous distributions and
densely samples the diverse space and style transformation
maps in their transformation process, thus generating numer-
ous images with diverse space and style features. There-
fore, the feature distribution of the generated images from
our S3P is dense and diverse, thus effectively improving
the generalization of the segmentation network. ¢) Visually,
the space and style features of the generated images cover the
transformation process [Fig. 11 (left)]. With the enlarging of
o and S, the space and style of the atlas image are gradually
transformed into the two unlabeled images. Therefore, the
features of the generated images will cover the transformation
from the atlas images to the unlabeled images, for more diverse
features in the generated dataset.

6) Analysis of the Regularization in Our MMR: Our MMR
simulates the distortion of misalignment and constrains the
network to perceive these regions to reduce the fitting degree
of this inaccurate information (Fig. 13), thus achieving a
regularization process. The images X4 and X are mixed via
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Bétween®
lungs

Fig. 14. Failure case study: the case whose structures and position are broken
by the surgery made our BRBS that has failed segmentation between the LV
and RV. (a) Regular case has regular chamber structures whose position is
between lungs, having a very fine segmentation result. (b) However, the case
after surgery has deformed chamber and is moved to ribs, resulting in distorted
structures and context features in the image and making failed segmentation.

weighted summation so that the regions near the boundaries
are misaligned (blue and yellow arrows) in mixed images that
have distorted semantics, simulating the alignment distortion
in our style-level sampling. Our MMR constrains the model to
predict mixed segmentation maps and make a lower response
on misaligned regions (c), thus improving the linearity of the
function on these regions and achieving the robustness for
such distortion in the generated images. The 3-D U-Net is
unable to perceive the misaligned regions (b), so it has fit the
inaccurate information and performs excessive confidence for
the inaccurate segmentation of misaligned regions.

VI. CONCLUSION AND DISCUSSION

Our proposed BRBS framework provides a powerful few-
shot benchmark for the field of MIS and efficiently reduces
the costs of medical image research. It effectively advances
the LRLS paradigm in diversity, authenticity, and robustness,
strongly breaking through the large bottleneck of this para-
digm. The proposed KCC further constrains the registration
network to learn semantic-aligned and topology-preserved
registration, thus allowing the generation program to output
new data with great space and style authenticity. Our S3P
introduces the modeling of the transformation paths of style
and space changes between few atlases and numerous unla-
beled images into the generation program, thus sampling for
much more diverse space and style features in generated data.
Our MMR finally simulates the misalignment distortion and
constrains the network to reduce the fitting degree of the
misaligned regions, thus improving the robustness of segmen-
tation learning. Without any bells and whistles, the extensive
experiments with state-of-the-art results on two challenging
tasks reveal our powerful few-shot MIS performance and large
application value. We also want to use BRBS on MindSpore,?
which is a new DL computing framework. These problems
are left for future work. All of our code will be made publicly
available at https://github.com/YutingHe-list/BRBS.

A. Discussion of One Failure Cases and Our Potential
Limitation

The failure case in our experiment demonstrates one of the
potential limitations.

Failure Case Study: As shown in Fig. 14, the case after
surgery made our BRBS has failed segmentation between the

3MindSpore: https://www.mindspore.cn/
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LV and RA. Compared with the regular case [Fig. 14(a)] which
has regular chamber structures and whose position is between
lungs, the surgery makes the heart [Fig. 14(b)] have deformed
chamber and be moved to ribs. Therefore, the features of this
case are beyond the generalization range of the model trained
for the images on regular cases.

Discussion of Limitation: Our framework is limited on
the cases whose regular structures and position are broken
manually, like the case in Fig. 14(b) whose structures and
position are broken by the surgery. Our BRBS that is trained
for the regular cases (never operated by surgery) will be unable
to segment these broken cases whose structures and context
features are out of the regular distribution. Fortunately, these
broken cases are easy to be distinguished, and it is easy to
overcome this limitation via only few simple doctor-assisted
manual adjustments to the segmentation results. Our future
work will also be devoted to promoting the solution of this
limitation.

B. Discussion of Our Future Work

Our BRBS has demonstrated great superiority in medical
images, and in the future, it also has great potential for further
exploration. Therefore, our future works are mainly on two
aspects.

1) Explore more registration-based efficient learning tasks
in medical images. The registration utilizes the prior of
anatomical consistency, which widely exists in numerous
regular structured medical images (i.e., CT and MR),
providing an effective way for the efficient learning
of these images. Therefore, we will future study the
paradigms that learning registration to learn other tasks
such as quantification [51].

2) Explore the LRLS paradigm in domain adaptation [52].
The registration model is able to align the medical
images with different styles (i.e., cross-modal registra-
tion [25]), having the ability to construct the relationship
between different data domains. Once this cross-domain
capability is integrated, the LRLS paradigm will have
great potential for domain adaptation tasks. Therefore,
we will further study the cross-domain capability in the
LRLS paradigm, thus exploring it in domain adaptation
tasks.
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