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Abstract

Gradient-elasticity and more generally gradient-enhanced continuum models have been

extensively developed since the beginning of the twentieth century. These models

have shown the ability to account for the effect of the underlying material heterogene-

ity at the macroscopic scale of the continuum. Despite of a great theoretical interest,

gradient-enhanced models are usually difficult to interpret physically and even more to

identify experimentally. This paper proposes an attempt to validate and identify from

experimental data, a gradient-elasticity model for a material with a periodic micro-

structure . A set of dedicated experimental and numerical tools are developed for this

purpose: first, the design of an experiment, then two-scale displacement field mea-

surements by digital image correlation with dedicated post-processing techniques and

finally a model updating technique. This paper ends up with the full set of first and

second-order elastic constants of a gradient-elastic model which macroscopic kine-

matic has been validated by investigating the deformation of the unit cells at the mi-

croscopic scale.
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1. Introduction

Gradient-elasticity and more generally gradient-enhanced continuum models have

been extensively developed since the pioneering work by Cosserat et al. (1909); Mindlin

(1964); Toupin (1964) and Eringen and Suhubi (1964). These models have shown

a number of useful properties for e.g. capturing size effects. The main purpose of5

these models is to incorporate the effect of the underlying heterogeneity of mate-

rials at the macroscopic scale of the continuum. Despite of a great theoretical in-

terest, gradient-enhanced models are usually not easy to interpret physically. They

are also difficult to implement numerically because they lead to higher order partial

differential equations that require higher continuity of the displacement description.10

Furthermore, these models involve numerous material constants, the full set of these

constants being almost impossible to obtain experimentally. Among the reasons for

the gradient-enhanced material parameters to be difficult to identify experimentally, is

their localized influence (where intense strain variations occur) and the low amplitude

of their contribution to the global response of a material. To circumvent these exper-15

imental difficulties, a great effort has been made by researchers to develop accurate

homogenization techniques of higher order. Among the proposed methodologies, one

could mention the work by Kouznetsova et al. (2002); Forest (1998) or Gologanu et al.

(1995). However, as evidenced by Forest and Trinh (2011), the hypothesis of these

homogenization techniques concerning the deformation of the control volume is not20

clear and the estimation of effective properties of a heterogeneous material is therefore

subjected to some limitations.

The recent development of full-field displacement measurement techniques by dig-

ital image correlation allowing for a strong coupling between experiments and numeri-

cal simulations, e.g. Besnard et al. (2006); Réthoré et al. (2008, 2013), opens new per-25
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spectives for studying experimentally gradient-enhanced models. Indeed, they allow

for a local investigation of the kinematic field during the experiment and, there is thus a

potential for validating and/or identifying the material constants of gradient-enhanced

models. In Burteau et al. (2012), an attempt to measure the deformation of a cellular

material at the cells’ scale was proposed. However, the deformation parameters are es-30

timated from the analysis of the morphology of the cells before and after deformation,

without quantifying the local deformation of the material at the microscopic scale..

Using full-field measurements, this paper proposes a first attempt to validate and iden-

tify a gradient-elasticity model for a material with a periodic micro-structure. A set of

dedicated experimental and numerical tools are developed for this purpose. First, the35

design of an experiment allowing for activating gradient-related phenomena in a model

material is presented in Section 2. Then, in Section 3, the validation of a strain-based

micro-morphic kinematic is proposed using the displacement fields measured at both

the scale of the material micro-structure and the scale of the analyzed structure. Last,

Section 4 is dedicated to the identification of the macroscopic continuum derived from40

the experimentally validated micro-macro kinematic relationship.

2. Experimental setup

2.1. Sample

To investigate experimentally the variations of the displacement in a heterogeneous

media at different scales, a special setup has been designed. This setup is based on45

a specimen loaded in tension. The loading device is standard but the specimen is

obtained from a 3D printer. As shown in Figure 1, it has a central squared shaped

part with an honeycomb structure (periodic tilling of hexagonal unit cells) whereas the

ends of the sample are made homogeneous in order to be clenched by the grips. The

global coordinate frame ( e−1
, e−2

) is defined in Figure 1 as the horizontal and vertical50
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axis. The honeycomb cell’s edge is 0.68 mm and the cell wall thickness is 0.29 mm.

The overall dimension of the central part of the specimen is 90 mm. Its thickness is

10 mm. The honeycomb structure is thus made of 67×67 cells. A row of 15 cells with

an angle of 30o, with respect to the loading direction ( e−1
), has been removed in the

center of the specimen to create a strongly varying multi-axial strain state.55

2.2. Digital Image Correlation

A black and white speckle pattern has been applied on the specimen surface using

spraid paint. During the test, a digital camera records images of the specimen surface

with a definition of 6576×4384 pixels to allow for displacement field measurements

using digital image correlation. The camera is mounted with a 200 mm lens leading

to a conversion factor from pixel to meter of 19 µm per pixel. Using this setup, the

distance between two unit cell centers along the horizontal axis is 66 pixels. Digital

image correlation is based on the local conservation of the grey levels between two

images f and g:

f (X−p
) = g(X−p

+ d−(X−p
)), (1)

X−p
giving the position of a pixel in the global coordinate system and d− being the

unknown measured displacement. A non-linear least-squares resolution scheme of

this equation is adopted in the following (Besnard et al., 2006). This allows for using,

as in the following, a finite element mesh to define the unknown kinematic. Minor60

modifications in the implementation of the technique compared to what was proposed

by Besnard et al. (2006) have been adopted. Mainly, the image gradient is calculated

using a central finite difference scheme and the sub-pixel grey level interpolation is

cubic-spline. Here, the reference image f , shown in Figure 1, is recorded with zero

force and g is the image recorded just before specimen failure.65

Using this setup, first, the local and global variations of the measured displacement
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field are analyzed in Section 3. Then, the effective properties of the macroscopic

continuum are identified in Section 4.2.

3. Two-scale displacement field analysis

3.1. Theoretical background70

The displacement field of a heterogeneous media is usually considered at two sep-

arate scales. From a material point at the macroscopic scale defined by its coordinates

X−, a local microscopic volume is described through the local coordinates x− = εX−.

This change of scale is defined by the small parameter ε set as the ratio between the

characteristic size of the control volume l and the characteristic size of the macro-scale

L. In this context, the local fluctuations of the displacement at the microscopic scale

u−(X−, x−) are expanded around a given material point X :

u−(X−, x−) = u−0
(X−, x−)+ ε u−1

(X−, x−)+ ε
2 u−2

(X−, x−)+ · · · . (2)

Equation (2) is then transformed following Boutin (1996) to set the local displacement

u− as a combination of local boundary value problems depending on the macroscopic

kinematic variables U−(X−) and its gradients:

u−(X−, x−) = U−(X−)+ εL−1
( x−,∇− X−

U−(X−))+ ε
2 L−2

( x−,∇− X−
∇− X−

U−(X−))+ · · · , (3)

where L−1
,L−2

are localization operators to be defined. These boundary value problems

classically use the macroscopic kinematic variables to prescribe the local displacement

fluctuations on the boundary of the control volume. As the expansion in Equation (2)

has been limited, intentionally, to order 2, a quadratic polynomial (Gologanu et al.,

1995; Forest, 1998, e.g. ) is subsequently used to prescribe the variation

ũ−( x−) = F∼.( x−−X−)+
1
2

D∼−
: (( x−−X−)⊗ ( x−−X−)) (4)
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of u− on the boundary of the control volume V (X−). In this definition, F∼, respectively

D∼−
, are kinematic parameters of the deformation of the unit cell. The operators . and :

define simple and double contraction and⊗ the tensorial product. In practice, Dirichlet

boundary conditions as defined by ũ− reveal too stiff when estimating the effective

properties of the heterogeneous media. Further, in the case of a material obtained by a

periodic tilling of unit cells, a supplementary fluctuation v− is allowed:

(
u−(X−, x−)−U−(X−)

)
∂V (X−)

= ũ−( x−)+ v−( x−). (5)

This additional fluctuation is usually assumed to have a periodic behaviour but it has

been shown by Forest and Trinh (2011) that a non-periodic fluctuation may be ob-

tained in practice. This results were obtained by analyzing full-field finite element

simulations. The aim of this section is to investigate these conditions experimentally.

3.2. Displacement fields75

Two analyses are performed. The first is aimed at measuring the macroscopic

displacement ( d− ≡ U− in Equation (1)) using the mesh defined in Figure 2(a). Each

node of this mesh corresponds to a vertex of the periodic tilling used to generate the

honeycomb structure. In other words, each node corresponds to the center of a unit

cell. The second analysis is aimed at evaluating the kinematic of each individual unit80

cell ( d− ≡ u−) of the central part of the specimen. For this purpose, the mesh for one

unit cell as presented by Figure 2(b) is duplicated using the same periodic tilling as for

generating the honeycomb.

The result of the first analysis is presented in Figure 3(a). As expected, the macro-

scopic displacement U− is discontinuous across the notch in the center of the honey-85

comb structure. The amplitude of this displacement (about 30 pixels) is such that the

signal over noise ratio is about 500, the displacement thus appears extremely smooth.
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This has been made possible thanks to the high definition camera used in the ex-

periment. For comparison purposes, the microscopic displacement fluctuation u− is

presented in Figure 3(b). A good qualitative agreement is obtained between the two90

analyses. A deeper analysis of the unit cells’ kinematic is performed below to assess

the relationship between the displacement measured at the macro scale and the one

measured at the micro scale.

3.3. Microscopic fluctuations analysis

From the displacement field presented in Figure 3(b), the displacement of the

boundary of each unit cell is extracted. First, its mean value is computed and compared

to U− in Figure 3(c). A very good agreement is obtained concerning this zero-order term

of the expansion in Equation (3). This result states as an experimental validation of the

zero-order micro-macro kinematic relation:

U−(X−) = 〈u−( x−)〉V (X−) =
1
V

∫
V (X−)

u−((X−, x−)dV. (6)

The remaining effective displacement u−(X−, x−)− U−(X−) is now projected in a least-95

squares sense onto the quadratic polynomial ũ− defined by Equation (4). Due to the

existence of an additional fluctuation v− that is supposed to be periodic, the projec-

tion is not performed along the entire boundary of the unit cells. It is preferred to

project the difference between the effective displacement u−(X−, x−)−U−(X−) of pairs of

homologous points along half of the unit cells’ boundary. This allows for eliminat-100

ing the additional periodic fluctuation from the analysis. Let us denote w− the periodic

part of the additional fluctuation v−. The residual of the projection gives access to the

remaining non-periodic fluctuation v−−w−. The norm (Euclidean norm of the vector

containing the values of v−−w− along the unit cells’ boundary) of this residual is plot-

ted in Figure 4(b). This Figure assesses for the relevance of second order kinematic105

assumption for the boundary of the unit cells. This assessment is emphasized when the
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results are compared to those obtained using a projection onto a first order kinematic

(considering vanishing D∼−
) as presented in Figure 4(a). The improvement due to second

order is difficult to observe directly from residual maps. However, it is evidenced that

the first order give rise to higer residual in the vicinity of the crack tip and in a lesser110

extent along the left and the right edges of the analyzed zone. A quantitative com-

parison of the residual obtained for the first or the second order polynomial leads to a

decrease of: the average projection residual from 10% to 9%, the maximum residual

from 65% to 44%. To further illustrate these differences, Figure 5 shows, for the unit

cell at the upper crack tip, the comparison of the projection of ũ− and the additional115

fluctuation v− for the first and second order scheme. On the upper plots 5(a), 5(b), it is

shown that, due to the additional fluctuation v−, the projected boundary displacement

ũ− is slightly different from the actual effective displacement u−−U− and also slightly

different between first and second order. The bottom plots show the additional fluctu-

ation v− and its periodic part w− for the two projections. It is observed that for the first120

order compared to the second order, not only the amplitude of v− is higer but also the

amplitude of the residual v−−w−.

From this analysis, the conclusion arises that a second order kinematics is required

for describing the effective displacement at the microscopic scale. For a complete def-

inition of the deformation of the honeycomb material, the comparison of the macro-

scopic displacement gradient and the micro-morphic F∼ is performed. The first com-

ponent F11 of F∼ corresponding to the gradient along e−1
of the displacement along

e−1
is compared in Figure 6 to the same component of the gradient of the measured

macroscopic displacement U1,1. To evaluate the gap between the macroscopic strain

U1,1 in Figure 6(a) and the microscopic tensor component F11 in Figure 6(b), the rel-

ative strain is plotted in Figure 6(c). Except at the close vicinity of the crack tips, the

relative strain is very low (below 0.001 compared to strain level of about 0.01). The
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higher values concentrated at the tips of the crack are difficult to interpert because the

macroscopic strain U1,1 is a piecewise constant element field that is transfered to nodes

to be compared to F11. This transfert leads to an unavoidable loss of information. The

relative strain value remaining to about one tenth of the macroscopic strain, higher

relative strain values migh be considered as not meaningful. Drawn with the appro-

priate precaution, the conclusion arises that the micro-morphic tensor F∼ matches the

macroscopic displacement gradient. This means that the macroscopic continuum can

be considered as a micro-morphic medium with the macroscopic displacement gra-

dient as micro-morphic tensor, or equivalently as a second order continuum. In this

context, the first-order micro-macro kinematic relation

∇− X−
U−(X−) = 〈∇− x−

u−( x−)〉V (X−) =
1
V

∫
V (X−)

∇− x−
u−((X−, x−)dV (7)

is validated.

Based on the results obtained in this Section, it is evidenced that the micro-scale

displacement fluctuation follows a polynomial form (plus additional periodic fluctua-125

tions) of order 2 at least. The analysis of the relative strain leads to the assumption

of second order macroscopic continuum. The kinematic relationships, of order 0 and

1, between the macro-scale displacement and the micro-scale displacement fluctuation

due to the heterogeneity of the material have also been validated experimentally .

4. Gradient-elasticity130

4.1. Macroscopic continuum

To fulfill the requirements established from the two-scale analysis of the displace-

ment, the modeling of the macroscopic continuum describing the behaviour of the

honeycomb material must incorporate strain gradient as a kinematic variable. Within
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the framework proposed by Mindlin (1964), E∼, the symmetric gradient of the displace-

ment U−, and κ∼−
, the gradient of E∼, are chosen as the descriptors of the kinematic of the

continuum:

E∼ =
1
2
(∇− X−

U−+ ∇−
T

X−
U−) κ∼−

= ∇− X−
E∼. (8)

Using index notation, this is rewritten as

Ei j =
1
2
(Ui, j +U j,i) κi jk = Ei j,k =

1
2
(Ui, jk +U j,ik). (9)

The strain energy density Ψ subsequently depends on these two kinematic variables,

Ψ = Ψ(E∼, κ∼−
). The classical Cauchy stress and the hyper-stress are then defined as

ΣΣΣ∼ =
∂Ψ

∂E∼
S∼−
=

∂Ψ

∂ κ∼−
. (10)

Under the assumption that there is no coupling between first and second order term,

the following expression for Ψ is obtained:

Ψ(E∼, κ∼−
) = E∼ : ΣΣΣ∼+ κ∼−

... S∼−
. (11)

The behaviour of such a continuum thus relies on two constitutive linear operators.

The first order elastic tensor C∼∼
which establishes the linear relationship between stress

and strain reads

ΣΣΣ∼ = C∼∼
: E∼, i.e. Σi j =Ci jklEkl, (12)

and the second order elastic tensor A∼∼∼
which plays the same role for the hyper-stress

and the strain gradient:

S∼−
= A∼∼∼

... κ∼−
, i.e. Si jk = Ai jklmnκlmn. (13)

In 2D, due to symmetry considerations, the number of material constants in C∼∼
reduces

to 6 in the fully anisotropic case. In this context, for A∼∼∼
, the maximum number of ma-

terial constants is 21. However, the material analyzed in this paper has the properties
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of a material symmetry of class D6: it is invariant by rotation of 2π

6 plus invariant by
translation along the tilling directions. This induces a physical symmetry for the elas-
tic operators C∼∼

and A∼∼∼
. Following Auffray et al. (2009), the physical symmetry class

for C∼∼
is isotropic which reduces the number of material constants to 2. The physical

symmetry of A∼∼∼
is not isotropic and it requires 5 constants (instead of 4 in isotropic

case). In matrix vector format, Equation (13) is written as


S111

S112

S121

S122

S221

S222


=



b11 0 0 b11−b33−
√

2b35
2 b13 0

b33 +b22−b11 b22−b11 +
b35√

2
0 0 b11−b22 +b13

b33−3b11−2b13 +4b22 0 0 3b11−b33−2b22−
√

2b35

b11 +b33−2b13 b35 0

Sym b33 0

b22





κ111

κ112

κ121

κ122

κ221

κ222


, (14)

where b11,b22,b33,b13 and b35 are the 5 second order intrinsic elastic constants. The

lower triangular part of A∼∼∼
is obtained by symmetry. It has been omitted for concise-

ness.

4.2. Identification strategy135

The identification of the material parameters of C∼∼
and A∼∼∼

is performed by using

a Finite Element Model Updating (FEMU) strategy. The basic principle of this tech-

nique is to compare the result of a finite element simulation with the experimental data

and then to update the parameters of the finite element model in order to minimize

the gap between numerical and experimental data (Kavanagh and Clough, 1971). In

the context of full-field measurements by digital image correlation performed using a

finite element description of the displacement fields, the method is made straightfor-

ward (Réthoré, 2010). FEMU consists of a least squares minimization with respect to

the material parameters (denoted in a generic format as a vector Λ) of the gap between

the measured displacement field and the simulated displacement field:

Λopt = Argmin
Λ

1
mes(Ω)

∫
Ω

‖U−DIC
−U−FE

(Λ)‖2dΩ. (15)

In this equation, Λopt is the set of identified parameters and Ω is the surface cov-

ered by the finite element mesh used for both the digital image correlation and the
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finite element simulations. Note that the measured displacement is used directly as the

prescribed displacement along the mesh boundary submitted to Dirichlet’s boundary

conditions. FEMU strategies have been the subject of significant improvements in the140

past few years, especially concerning the robustness of the identified parameters to

noise measurements (Leclerc et al., 2009; Réthoré, 2010). For the analysis of the data

presented in this paper, the noise affecting the measured displacement is of very low

amplitude. A standard FEMU procedure is thus used in the sequel.

In the previous section, the left and right edges of the honeycomb zone were iden-145

tified as pushing the second order kinematic to its limits. These zones are thus omit-

ted for the identification of the gradient-elasticity constitutive operators. A triangular

mesh, with elements being independent on the underlying unit cells, fitting a zone

of reduced width and describing the crack is adopted. This mesh, presented in Fig-

ure 7 together with the measured displacement field has an element size of 110 pixels150

with mesh refinement to 45 pixels in the vicinity of the crack. Gradient-elasticity sim-

ulations are performed using the C1 triangular elements proposed by Dasgupta and

Sengupta (1990). The use of C1 shape functions allows for establishing a primal weak

form of the local gradient-elasticity balance of momentum. The displacement is thus

the only unknown field. Zero generalized Neumann conditions are adopted along the155

top and bottom edges of the mesh and also along the contour of the crack.

Without using force measurements, the elastic constants are identified to a mul-

tiplicative factor. It is chosen to fix the C1111 coefficient to its initial value. The

parameters related to C∼∼
have an influence on the displacement field of a different

nature than the parameters of A∼∼∼
. Consequently, the minimization of Equation (15) is

achieved using a fixed-point algorithm. While the second order parameters are fixed,

the first order parameters are searched for by using a Newton algorithm. Then, we

proceed in the complimentary way: the second order parameters are searched for

12



while the first order parameters are fixed. Concerning this second step of Newton

search, the sensitivity of the cost function to minimize is significantly different from

one parameter to another. To illustrate this point, an eigen value decomposition of the

search direction is performed. We obtained the following normalized eigen values:

{1,0.017,0.008,0.0007,0.0001}. In practice, this means that a single combination of

the 5 second order elastic constants can be identified properly. Following Gras et al.

(2013), a penalization of the Newton search is adopted. The initial cost function is

supplemented by the quadratic gap between the actual parameters and the initial ones.

The penalty factor is set to 100 compared to the average diagonal component of the

search direction. The convergence criterion for the Newton search is written in term

of the maximum of the parameters’ increment over their initial guess. The stopping

value is set to 10−4. The fixed-point iterations are stopped once a stagnation of the cost

function is obtained: if the reduction of the cost function relative to its initial value is

smaller than 10−2, convergence is considered. The set of initial parameters for both

the first and the second order elastic tensors are obtained by second order periodic ho-

mogenization. The scheme adopted is as proposed in Kouznetsova et al. (2002). The

initial elastic operators obtained using this scheme are:

C∼∼ini
=


241 168 0

168 241 0

0 0 73

MPa (16)
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and

A∼∼∼ini

=



29 0 0 −29 14 0

0 112 −20 0 0 20

0 −20 24 0 0 −25

−29 0 0 29 −15 0

14 0 0 −15 116 0

0 20 −25 0 0 25


MPa.mm2. (17)

The initial values for the five intrinsic constants, b11,b22,b33,b13 and b35 are: 29, 24,

116, 15 and -21 MPa.mm2 respectively.

4.3. Results

After convergence is reached, the elastic operators are

C∼∼opt
=


241 151 0

151 241 0

0 0 90

MPa (18)

and

A∼∼∼opt

=



35 0 0 −8 15 0

0 70 −29 0 0 28

0 −29 9 0 0 5

−8 0 0 22 −16 0

15 0 0 −16 83 0

0 28 5 0 0 22


MPa.mm2. (19)

The final values of the five intrinsic constants, b11,b22,b33,b13 and b35 are: 35, 22,160

83, 15 and -22 MPa.mm2 respectively.

To illustrate the reduction of the cost function, Figure 8 presents the norm of the

gap between the measured displacement and those obtained by a numerical simulation

with: the initial parameters, the parameters after the first Newton search on the first
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order elastic parameters and the optimal parameters. The values of the cost function165

for these three cases are: 0.35, 0.16 and 0.12 pixel2 respectively. The optimization of

the first and the second elastic constants thus leads to a significant reduction of the dis-

tance between the measured and the simulated displacement. To further illustrate this

reduction and to further validate the use of a gradient-elasticity model for describing

the behaviour of the honeycomb material, the optimization is also run for the sole first170

order elasticity (A∼∼∼
≡ 0). The cost function value is then 0.17 pixel2. This value being

slightly higher than the value obtained for gradient-elasticity with the first order opti-

mization and even higher than the value for gradient-elasticity with optimized elastic

operators, the validity of gradient-elasticity is evidenced again.

The main modification of the first-order elastic parameter allows to describe more175

accurately the Poisson’s effect of the structure (its contraction due to the global tensile

loading). A deeper insight in the differences between the displacement field high-

lights this suggestion: the major contribution to the gap between the experimental

displacement and the numerical one, is obtained close to the top and the bottom edges

in Figure 8(a) and it mainly affects the vertical component of the displacement. The180

changes in the second-order constants are more difficult to interpret. However, the ma-

jor changes concern b11 and b33 which are closely related to κ111 and κ221. The link

between these to strain-gradient components is likely to consider as a second-order

Poisson’s effect which was not predicted accurately, mainly due to the imperfection

of the actual honeycomb geometry compared to the model used in effective properties185

estimation by homogenization.

The map of the remaining gap is difficult to interpret. Many reasons could be

invoked to explain the distribution of the distance between the experimental displace-

ment and the solution of the gradient-elasticity simulation with optimized parameters.

One of the first reasons should be the non-linear response of the constitutive material190
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used to print the specimen. Uniaxial tensile tests were performed and a non-linear re-

sponse was observed from 2% strain. Whereas longitudinal strain in Figure 6 is below

2% except in the vicinity of the crack. Higher strain level is most probably experienced

by the material locally at the cell corners. The far distance influence of this localized

phenomena may take the shape of the red to green area in Figure 8(c). To reduce the195

potential effect of these non-linearites, the analysis was repeated for a deformed image

g acquired for a lower load level. No significant difference was obtained neither on

the shape of the residual map nor on the values of the identified parameters. Another

explanation for this remaining gap is that gradient-elasticiy is not rich enougth for cap-

turing the behaviour of the honeycomb at the crack vicinity. This deficiency may also200

have a long distance influence due to structural effects induced by the presence of the

crack. Another point is the crack geometry. In the analyses presented herein, it has

been considered as a notch which shape and dimension match exactly the hole formed

by the removed cells. The effective shape of the crack, in the gradient-elasticity con-

text, is more likely different from the actual one. This might also induce modifications205

of the displacement field around the crack. Yet the geometry of the crack is uncertain,

further, the boundary conditions to applied along its faces in the context of gradient-

elasticity is an even more complex question. Zero generalized Neumann conditions

have been adopted without further validation. This should also induce discrepancy

over the zone surrounding the crack.210

5. Conclusion

Based on an experiment performed on a sample with a honeycomb structure and

a crack, the investigation of gradient-elasticity at the macroscopic scale and the iden-

tification of the constitutive model parameters are carried out. The validation of the

second order continuum is achieved through the analysis of the displacement field215
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measured by digital image correlation at two different scales. The displacement is in-

deed estimated at the macroscopic scale but also at the microscopic scale around each

individual cell of the honeycomb. The displacement field along the cells’ boundary is

post-processed in order to extract the meaningful parameters for the purpose of valida-

tion and comparision with the macroscopic field. The used of gradient-elasticity at the220

macroscopic scale is justified in two steps: first it is shown that a second order kine-

matic is required to capture the deformation of the unit cells; then, the micro-morphic

displacement gradient is found to match the macroscopic strain. The usual kinematic

relations between the micro-scale displacement and the macroscopic one are thus val-

idated. From the analysis of the additional fluctuation of the displacement along the225

cells’ boundary and its periodicity, it is concluded that gradient-elasticity is appropriate

to account for micro-struture effects at the macroscopic level.

After the kinematic of the continuum model has been defined and validated, the

material constants are identified by using a model updating procedure. Through the

minimization of the distance between the experimental displacement and the one ob-230

tained by gradient-elasticity numerical simulations, optimal first and second order elas-

tic operators are obtained. A significant reduction of the cost function is achieved

through the use of gradient-elasticity compared to the first-order elasticity. While sev-

eral open questions still remain, concerning e.g. the effective shape of the crack to

consider within the context of gradient-elasticity or the effectiveness of zero traction235

and zero double-traction assumptions along the crack, the proposed methodology leads

to the validation of a strain-based micro-morphic elastic model and the identification

of the full set of its related material constants from experimental data.
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Figures

e1

e2

1 cm

Figure 1: Image of the sample in the tensile device. The image has a definition of 6576×4384 pixels.
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(a)

(b)

Figure 2: Finite element meshes used to perform DIC analyses. (a) finite element mesh for macroscopic

scale, (b) mesh of a unit cell.
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(a)

(b)

(c)

Figure 3: Horizontal displacement field in pixel for: (a) the macroscopic analysis U−, (b) the analysis

of the microscopic displacement u− and (c) the mean value of the microscopic displacement u− for each

cell. 23



(a)

(b)

Figure 4: Norm of the non-periodic part of projection residual v−− w− of the effective boundary dis-

placement of the unit cells normalized with respect to the norm of the effective displacement u−−U− for:

(a) a first order polynomial, (b) a second order polynomial as defined in Equation (4).
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(a) (b)

(c) (d)

Figure 5: Analysis of boundary kinematics of the unit cell at the crack tip. On the top, the actual

deformation of the unit cell by the effective displacement u−−U− is plotted together with its projection

on a linear (left), quadratic (right) polynomial (in black). On the bottom, the projection residual v−
is plotted with its periodic part w− (in black). The deformation of the unit cell boundary have been

amplified 5 times.
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(a)

(b)

(c)

Figure 6: Component 11 of : (a) the macroscopic displacement gradient U1,1, (b) the micro-morphic

tensor F11 and (c) the relative strain U1,1−F11.
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Figure 7: Horizontal displacement field in pixel obtained with the mesh used for the identification of

the material constants.
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(a)

(b)

(c)

Figure 8: Norm of the gap between the measured displacement and those obtained by a numerical

simulation with: (a) the initial parameters, (b) the parameters after the first Newton search on the first

order elastic parameters and (c) the optimal parameters.28
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