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Abstract

Motivation: Inferring chemical reaction networks (CRN) from time series data is a chal-
lenge encouraged by the growing availability of quantitative temporal data at the cellular level.
This motivates the design of algorithms to infer the preponderant reactions between the molecu-
lar species observed in a given biochemical process, and help to build CRN model structure and
kinetics. Existing ODE-based inference methods such as SINDy resort to least square regression
combined with sparsity-enforcing penalization, such as Lasso. However, when the input time
series are only available in wild type conditions in which all reactions are present, we observe
that current methods fail to learn sparse models.
Results: We present Reactmine, a CRN learning algorithm which enforces sparsity by inferring
reactions in a sequential fashion within a search tree of bounded depth, ranking the inferred re-
action candidates according to the variance of their kinetics, and re-optimizing the CRN kinetic
parameters on the whole trace in a final pass to rank the inferred CRN candidates. We first
evaluate its performance on simulation data from a benchmark of hidden CRNs, together with
algorithmic hyperparameter sensitivity analyses, and then on two sets of real experimental data:
one from protein fluorescence videomicroscopy of cell cycle and circadian clock markers, and one
from biomedical measurements of systemic circadian biomarkers possibly acting on clock gene
expression in peripheral organs. We show that Reactmine succeeds both on simulation data by
retrieving hidden CRNs where SINDy fails, and on the two real datasets by inferring reactions
in agreement with previous studies.
Availability: https://gitlab.inria.fr/julmarti/crninf/
Contact: francois.fages@inria.fr
Supplementary information: S1: detailed results of Reactmine and SINDy

1 Introduction

With the automation of biological experiments and the increase of quality of cell measurements,
automating the building of mechanistic models from data becomes conceivable and a necessity for
many new applications. The structure of such models, e.g. gene regulatory networks (GRN) or
chemical reaction networks (CRN), is classically built from an extensive review and compilation
of the literature by the modeler. More recently, efforts have been made to develop model
learning algorithms to assist modelers in order to partly automate the model building process,
in particular when time series measurements are available.
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Extensive literature is available in the context of GRN inference or unsupervised learning,
partly motivated by knowledge discovery problems, such as presented in the DREAM series
of challenges (Stolovitzky et al., 2007), or experiment design (King et al., 2004). A GRN
consists in a directed graph G = (W,E) of genes and edges Eij between genes, whenever a
gene transcription factor Wi binds to the promoter region of target gene Wj . GRN inference
algorithms feature a wide range of machine learning methods, e.g. Decision Trees (Huynh-Thu
and Geurts, 2018), Information Theory (Zoppoli et al., 2010) or Gaussian Processes (Aalto et al.,
2020).

Less work concerns CRN inference, i.e. the problem of inferring both the structure and
kinetics of chemical reactions between some molecular species observed with time series data
about their concentrations. The structure of a CRN can be represented by a bipartite directed
graph with edges from molecular species vertices to reaction vertices, representing the reactants
of a reaction, and edges from reaction vertices to species representing their product. Of note,
the indegree and outdegree of a reaction node can be above one, which allows for bimolecular
reactions like complexations, e.g. A+B → C, or catalyzed transformations, e.g. A+B → A+C.
Each reaction of a CRN is given with its kinetics, using reaction rate functions such as mass
action law, Michaelis-Menten or Hill kinetics. The rate function of each reaction appears as a
term in the ordinary differential equations (ODE) that govern the time evolution of the products
and reactants of the reaction. Overall, both the difference of structure and the importance of the
kinetics make the above GRN inference methods hardly applicable to CRN inference problems.

CRN inference may thus rely on the ODE semantics of a CRN to apply ODE inference
methods from time series data, such as the state-of-the-art tool SINDy (Sparse Identification
of Nonlinear Dynamics, Brunton et al. (2016)) with an appropriate library of kinetic functions.
The main assumption is that the dynamics of each variable can be expressed using only a few
functions of the observed variables, without introducing hidden variables, so that techniques
like sparse regression can be used to determine the optimal members of the library for a given
problem. Selecting the ground truth sparse set of predictors is however a task best achieved
provided two hypotheses are satisfied: low correlations between the true predictors and the
spurious ones, and low partial correlations among the set of true predictors (Zhao and Yu,
2006). These conditions can reasonably be met in datasets composed of multiple initial states
with various combinations of absent and present species, possibly obtained by silencing genes of
interest (i.e. knockout experiments) or exposure to targeted inhibitors. Such datasets containing
time series in multiple conditions indeed allow the different reactions to be witnessed in an
independent manner (Carcano et al., 2017). However, this is not always possible, and in many
situations, like in the context of experimental time series data obtained from protein fluorescence
microscopy Feillet et al. (2014), one has to work only with traces obtained in a wild type setting
in which those hypotheses are not satisfied.

In this paper which extends (Martinelli et al., 2019), we present Reactmine, a bounded-
depth tree search algorithm to infer CRNs from time series data, without any low correlation
assumption. Sparsity is enforced by inferring reactions with their kinetics in a sequential fashion,
with the depth of the search tree bounding the number of inferred reactions. At each node,
the reaction candidates are ranked according to the variance of the kinetics inferred on their
transition support, and the best candidates are used as choice points at that node. At each
successor node, one selected reaction is added and its effect is subtracted from the trace. Each
leaf in the search tree represents a CRN candidate. In a final pass, the kinetic parameters of the
leaf CRNs are globally re-optimized on the whole trace transitions, and the CRN candidates
are ranked according to the quadratic loss between the predicted and experimentally-observed
temporal variations. As an example, Figure 1 shows the recovery by Reactmine of the chain
CRN A −→ B −→ C −→ D −→ E with mass action law kinetics and rate constants equal to one,
from a single simulation trace of A,B,C,D and E with A initially present.

On a benchmark of synthetic data obtained by simulation from a hidden CRN with standard
initial conditions, we show the capability of Reactmine to recover either the hidden CRN, or a
variant CRN capable of reproducing the simulation data in the same range of initial conditions,
whereas SINDy fails to infer sparse ODE systems and even to reproduce the time series data
on different initial conditions. In these examples, we analyze the sensitivity of the results to
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D → E C → D B → C A → B

Figure 1: Example of a single simulation trace sufficient for Reactmine to recover the
hidden chain CRN: A → B, B → C, C → D, D → E, with mass action law kinetics and rate
constants equal to one. The inferred reactions are given in learning order with colors used to indicate
their support on the trace. Reactions are inferred sequentially with their kinetics, after subtracting
the effect of the previous reaction on the trace at each step.

the number of time points and to the four hyperparameters of our algorithm: γ, the maxi-
mum number of reactions inferred (i.e. maximum depth of the search tree), β, the maximum
number of reaction candidates (i.e. maximum branching factor of the search tree), δmax, the
velocity similarity threshold between species taking part in a given reaction and α, the variation
coefficient acceptance threshold about the inferred kinetics on the supporting transitions.

Then, we apply Reactmine on two sets of real experimental data: one from protein fluores-
cence videomicroscopy of cell cycle and circadian clock markers in mammalian fibroblasts, and
one from biomedical measurements of systemic circadian biomarkers possibly acting on clock
gene expression in peripheral organs. We show that Reactmine succeeds in inferring meaningful
interactions, interestingly in accordance with the main conclusions drawn from previous anal-
yses of these datasets though ODE models built, respectively, using a temporal logic approach
in Traynard et al. (2016), and a different model learning approach in Martinelli et al. (2021).

The rest of the article is organized as follows. In the Methods section, we present our CRN
inference algorithm, its theoretical complexity and comparison to related work. In the Results
section, we first evaluate its performance on synthetic data obtained by simulation of some
hidden CRNs, and perform the above-mentioned sensitivity analyses. Then we show the results
obtained with simulation data from the MAPK signaling CRN studied in Qiao et al. (2007). In
all those instances, our results are shown to compare favorably to SINDy. Then, we present our
results on the two real-world biological datasets of this study, and compare them to the previous
models developed from those data. Finally, we conclude on the merits of this approach and its
current limitations.
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2 System and methods

2.1 Notations

Bold lower (resp. upper) case letters denote vectors (resp. matrices). Unless stated otherwise,
sets are represented with capital letters. For a matrix M, Ml,• (resp. M•,i) stands for its lth

row (resp. ith column).
We observe a system y describing the evolution of m biological species at n discrete time

points {tl}16l6n. We focus on the case of a single trace, containing observations for all species
at a finite set of time points represented by a data matrix of the form:

Y =


y1,1 y1,2 · · · y1,m
y2,1 y2,2 · · · y2,m

...
...

. . .
...

yn,1 yn,2 · · · yn,m


The matrix of observed velocities, V = (vl,i) 16l6n

16i6m
∈ Rn×m can be estimated from original data

and has the same number of rows as Y. The extension to multiple traces is straightforward by
concatenation of the data and velocity matrices.

2.2 Chemical Reaction Networks

A chemical reaction is formally defined as a triple (R,P, f), where R (resp. P ) is a multiset of
reactant (resp. product) species and f : Rn+ → R+ is a rate function over molecular concentra-
tions specifying the reaction kinetics. A reaction catalyst is a species in R ∩ P . A chemical
reaction network (CRN) is a finite set of reactions.

For the sake of simplicity in this article, we shall restrict ourselves to reactions with 0/1
stoichiometry only, and shall consider the stoichiometry vector of a reaction, s ∈ {−1, 0, 1}m
where ∀i ∈ J1,mK, si = 1 if i ∈ P \R,−1 if i ∈ R \ P, 0 otherwise. This excludes autocatalysis
reactions for instance, although such reaction schemas could be accommodated as well.

We consider three types of kinetics for the reactions: mass action law, Michaelis-Menten and
Hill kinetics. For a reaction with mass action law kinetics, the reaction rate is the product of
the reactant species concentrations multiplied by some rate constant k. Such a reaction will be

written R
k→ P .

2.3 Reactmine algorithm

Reactmine is a bounded-depth tree search algorithm which, at each node of the search tree,

1. infers new reaction candidates composed of reactants and products with highest and similar
changes on some observed transitions called their support,

2. ranks them according to the variance of the ratio between observed and inferred velocities
on their supports,

3. and selects the β best reaction candidates to add as successors in the search tree, with
appropriate updates of the velocity matrix.

At the end, a global re-optimization of the kinetic parameters of the inferred CRNs at the
leaves of the search tree is performed on the whole trace, in order to select the inferred CRN
that minimizes the quadratic loss between the inferred and experimentally observed species
velocities on the data. Reactmine thus uses four hyperparameters:

• γ, the depth bound on the search tree, i.e. the maximum number of inferred reactions
along a branch,

• δmax, the velocity similarity threshold between the reactants and products of one reaction
candidate in one observed transition,

• α, the kinetics variance threshold of one reaction candidate on its supporting transitions,
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• β, the maximal number of reaction candidates selected at a node.

The different phases of the algorithm are detailed below.

2.3.1 Generation of reaction skeletons

Let us denote by r = (R,P ) a reaction skeleton, i.e. a reaction without rate function. Let us
consider V̂l,•, the velocity of the system for an arbitrary time point tl. For any 1 ≤ l ≤ n, 1 ≤
i ≤ m, let

ṽl,i =
v̂l,i

max
1≤l≤n

|v̂l,i|
(1)

be the velocity of species i at time l normalized to its maximum velocity measured on the whole
trace. Let

imax = argmax
i

|ṽl,i| (2)

Species imax has the highest normalized velocity at time tl. For that reason, that species is
assumed to undergo the primary change that should be explained by one preponderant reaction
at that time point. To determine the other components of the reaction, the following sets of
reactants and products are computed:

Rδ(tl) =

{
i ∈ {1, . . . ,m}, v̂l,i < 0,

∣∣∣∣ v̂l,imax

v̂l,i

∣∣∣∣ 6 δ

}
(3)

Pδ(tl) =

{
i ∈ {1, . . . ,m}, v̂l,i > 0,

∣∣∣∣ v̂l,imax

v̂l,i

∣∣∣∣ 6 δ

}
(4)

Let rδ(tl) = (Rδ(tl), Pδ(tl)) be the corresponding candidate reaction skeleton. Elements belong-
ing to Rδ(tl) or Pδ(tl) have similar absolute variations compared to species imax, the magnitude
of similarity being specified by δ > 1. Note that species imax belongs to one of these sets. In the
particular configuration rδ(tl) = (∅, {imax}), a synthesis reaction ∅ → imax is obtained. Likewise
rδ(tl) = ({imax}, ∅) leads to a degradation reaction imax → ∅.

For a fixed time point tl, we compute rδ(tl) with δ ranging in a sequence such as {1, 1.1, . . . , δmax−
0.1, δmax}. This setting allows us to witness multiple reactions, e.g. for δ′ > δ one could have
rδ(tl) = ({A}, {imax}) and rδ′(tl) = ({A,B}, {imax}). The upper bound of this sequence of δ
values is the hyperparameter δmax of the algorithm. Equation 4 shows that it stands for the
maximum absolute fold change allowed between the variations of species involved in a reaction.
A value significantly above 1 accounts for the fact that v̂l,imax might not be completely explained
by only one reaction. The computation of rδ(tl) is therefore performed for various δ values as
well as for all time points {tl}16l6n.

Now, let us defined the support T (r) of a reaction skeleton r = (R,P ), as the set of time
points indices where it has been witnessed, e.g. in Figure 1:

T (r) = {l ∈ {1, . . . , n}, ∃δ ∈ [1, δmax], rδ(tl) = (R,P )} (5)

2.3.2 Inference of reaction kinetics

The next step consists in assigning a rate function to the reaction skeleton, to completely define
one reaction. (R,P, f) follows the law of mass action with parameter k if ∀j ∈ R ∪ P, ∀l ∈
{1, . . . , n}

vl,j = sjf(Yl,•) = sjk
∏
u∈R

yl,u (6)

where we recall that sj is the stoichiometry of species j in the reaction. Using the finite
differences estimate V̂ as well as the support set T (r) for the current reaction candidate r =
(R,P ), one can provide an estimator of k ∀j ∈ R ∪ P :
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k̂j =
sj

#T (r)

∑
l∈T (r)

v̂l,j∏
u∈R yl,u

(7)

This estimator is designed to realize an equality in mean across the support between observed
kinetics and inferred kinetics. The former is represented by the numerator, the latter by the
denominator times k̂j .

Reactmine is also compatible with other forms of kinetics, provided that a measure of quality
of reaction parameters can be computed, such as the coefficient of variation. A single-reactant
reaction (R,P, f) follows Michaelis Menten kinetics if ∀j ∈ R ∪ P, ∀l ∈ {1, . . . , n}

vl,j = sjf(Yl,•) = sjνmax
yl,u

yl,u +Km
(8)

where νmax and Km are parameters, and R = {u}.
As yu → +∞, |vj | → νmax. Besides, |vj | being an increasing function of yu, an estimator

of νmax can be obtained as the highest observed velocity vl,j on the whole transitions: for all
j ∈ R ∪ P

ν̃max,j = max
l∈{1,...,n}

|v̂l,j | (9)

Then, Km is defined as the value of reactant concentration for which the associated velocity is
equal to νmax

2
. Since measurements are only available at discrete time points, one has

K̂m,j = yl∗,u with l∗ = argmin
l∈{1,...,n}

∣∣∣∣|v̂l,j | − ν̃max,j

2

∣∣∣∣ (10)

Once an estimator for Km has been provided, we apply the same principle as in Equation 7 to
obtain a new estimator of νmax ∀j ∈ R ∪ P

ν̂max,j =
sj

#T (r)

∑
l∈T (r)

v̂l,j
K̂m,j + yl,u

yl,u
(11)

The computation described above also applies to Hill Kinetics of order η, ∀j ∈ R ∪ P, ∀l ∈
{1, . . . , n}

vl,j = sjf(Yl,•) = sjνmax

yηl,u
yηl,u +Km

(12)

2.3.3 Ranking of the best reaction candidates

In order to compare reaction candidates between them, an interesting criterion to look at is
certainly the statistical quality of the inferred kinetics on the support of the inferred reaction
skeleton. The variance of the mass action law coefficient estimate over the support of the
reaction can be estimated itself for each species involved in the reaction:

σj =
1

#T (r)

∑
l∈T (r)

(
v̂l,j∏
u∈R yl,u

− k̂j
)2

(13)

It is worth noticing however that there is a relationship between mean and variance when
estimating the kinetics of different reactions: a slow reaction will tend to produce a low variance,
compared to a faster reaction. We thus consider the coefficient of variation (CV),

ρj =
σj

|k̂j |
(14)

measured for each reactant or product of the reaction, and introduce more precisely the species
index that minimizes it:

j∗ = argmin
j∈R∪P

ρj (15)
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on which we rely to estimate k. The complete reaction is therefore r = (R,P, f̂) with f̂ : y 7→ k̂
∏
u∈R

yu

and k̂ = k̂j∗ . This process is performed for all reaction skeleton candidates.
A reaction candidate r is accepted if it satisfies ρ(r) < α. A typically acceptable value for

α is below 1, indicating that the variance of the estimator does not overcome the mean. In the
event where the best reaction r∗ fails to satisfy that condition, the addition of a catalyst to the
reaction candidate is tried. To that end, Equation (6) is modified:

vl,j = sjk
∏

u∈R∪{c}

yl,u (16)

∀j ∈ R ∪ P , and c can be any species. The optimal catalyst c∗ for a particular reaction is the
species providing the lowest CV, in which case R ← c∗ and P ← c∗. A catalyzed reaction is
accepted if its associated loss value is below α.

The reaction candidates are thus ranked according to their CV, the lowest CV corresponding
to the best reaction. The β best accepted reactions are returned, representing the maximum
number of inferred candidates.

2.3.4 Velocity matrix update

Once a candidate reaction (R,P, f) is accepted and selected to develop the search tree, its effect
on the velocity data is removed at that node of the search tree as follows:

V̂← V̂ −

f(Y1,•)
...

f(Yn,•)

 sT (17)

This mechanism is illustrated in Figure S1 with the example of the chain CRN.
It is worth remarking that this velocity update mechanism can also be used in our approach

to take into account prior knowledge consisting of already known reactions between the observed
species, simply by updating the initial velocity matrix according to those reactions.

2.3.5 Theoretical complexity

Proposition. The computational time complexity to infer one reaction (R,P, f) is O(nmI)
where n is the number of time points, m the number of species, and I = |R ∪ P |.
Proof. Inferring the reaction kinetics constant involves the computation of a mean for each
species present in the reaction (Equation 7), which is O(nI). In the worst-case, a lookup for
a catalyst species is necessary, at a cost of O(nIm). The velocities update step performed in
Equation (17) is O(nI). Generating reaction skeletons requires the computation of the species
displaying highest velocities for each time point, which is O(nm) (Equation (2)). After that, the
sets Rδ(tl) and Pδ(tl) are obtained with a bounded number of δ values. The time complexity
for the inference of one reaction is therefore O(nmI).

Since the depth of the search tree is bounded by γ and each node has at most β children,
the time complexity of Reactmine is thus O(βγnmI).

2.3.6 Final global re-optimization of kinetic parameters

The sequential inference of reactions together with their kinetics may introduce errors in the
rate constants which can be corrected by a final global re-optimization step of the rate constants
of all reactions on the whole trace. Let V̂ be the initial matrix of the estimated velocities, i.e.
before the removal of the effect of the inferred reactions. Once a CRN has been built from the
iterative inference of p reactions, an additional optimization step can be applied. From a CRN
R = {(Rq, Pq, fq)}16q6p and data matrix Y, one can construct a matrix F(Y,k) ∈ Rn×p:

F(Y,k) :=

 | | |
f1(Yl,•,k) . . . fq(Yl,•,k) . . . fp(Yl,•,k)

| | |

 (18)
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with n the number of time points. The qth column of F(Y,k) is a vector describing the rate
of the reaction (Rq, Pq, fq) at each time point, with k being the vector of reaction kinetic
parameters. Combined with the stoichiometry matrix of the CRN S ∈ Rp×m, we can formulate
an optimization problem:

k = argmin
k∈Rp

+

‖V̂ − F(Y,k)S‖2F (19)

Where ‖·‖F is the Frobenius norm. In particular, for a mass action law CRN,

F(Y,k) =

 | | |∏
i∈R1

yl,i . . .
∏
i∈Rq

yl,i . . .
∏
i∈Rp

yl,i

| | |

 diag(k) (20)

The optimization starts with an initial guess set as k = (k1, . . . , kp)
T . It is worth noticing

that the least squares term compares the inferred and observed velocities, rather than the data
measurements Y and a numerical integration of the inferred CRN, which allows avoiding the
resolution of a non-convex optimization problem in the case of mass action law kinetics. Indeed,
Equation (20) shows that the inferred velocities are written as a weighted linear combination of
reaction effects, which makes the minimization problem convex. However, for Michaelis-Menten
and Hill kinetics, the optimization of K̂m constants leads to a non-convex problem, with no
convergence guarantees. Furthermore, in order to take into account the fact that concentrations
might span a wide range from one species to another, we normalize the jth column of the matrix
(V̂−F(Y,k)S) by max

l∈1≤l≤n
V̂l,j , for all j, inducing equal importance for each species in the cost

function. This final step of global optimization is performed for all CRN candidates at the leaves
of the search tree. Reactmine returns the CRN which minimizes the loss function defined in
Equation (19).

Finally, it is worth noting that the same loss function can be used more globally to parametrize
Reactmine by choosing the hyperparameter values which minimize the loss. This is done by
grid search as described in the next section on evaluation results.

2.4 Related work

Some methods originally designed to discover the dynamics of physical systems can be applied to
our problem of inferring a CRN from time series data. Most notably, the SINDy system (Brunton
et al., 2016), starting from temporal measurements, aims at providing a reconstruction of the
velocities in the following way:

V̂ = Θ(Y)Ξ (21)

Θ(Y) ∈ Rn×p is a library of p functions constructed from the input variables Y including, for
instance, first to m-order polynomial interactions, e.g. Y•,i �Y•,i′ the sin and cos functions,
e.g. sin(Y•,i), or even more sophisticated user-defined functions. The dynamics of each variable
is then captured by a weighted combination of library members, the weights being encompassed
in Ξ. Because it is thought that the expression of the dynamics should be sparse within the
library Θ(Y), SINDy proposes to obtain Ξ using sparse regression.

Ξ = argmin
Ξ∈Rp×m

‖V̂ −Θ(Y)Ξ‖2F + λ‖Ξ‖1 (22)

For fair comparison within our CRN setup with mass action law and stoichiometry at most
1, Θ(Y) is here restricted to polynomials up to the second order, and a bias term. Hence

p =
(

1 + m(m+1)
2

)
.

Θ(Y) :=

 | | | | |
1 Y•,1 . . . Y•,m Y•,1Y•,2 . . . Y•,m−1Y•,m
| | | | |

 (23)

Associated to a positive weight, the bias term corresponds to a synthesis reaction. First order

interactions translate to reactions such as A
k→ B+C for A 6= ∅, with the special case A ∈ {B,C}
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corresponding to a catalyzed synthesis. Second order interactions encompass reactions of the

form A+B
k→ C+D for {A,B} 6= ∅. Again, the case AYB ∈ {C,D} corresponds to a catalyzed

reaction, with Y referring to the exclusive OR.
Somewhat related to SINDy is the algorithm GRISLI originally designed for inferring Gene

Regulatory Networks from single-cell data (Aubin-Frankowski and Vert, 2020). GRISLI solves
a similar problem as SINDy, but estimates velocities V̂ thanks to a weighted average of finite
differences, with weights defined by a spatio-temporal kernel K (Yl,•,Yl′,•)), which quantifies
how Yl′,• is believed to be useful in estimating the velocity at Yl,•. Subsequently, multiple

instances of Equation (22) are solved, each time with a bootstrapped sample of Y and V̂. This
leads to frequencies of apparition of each term. GRISLI considers a library Θ(Y) made with
first-order interactions only, which makes it a particular case of SINDy for the optimization
part. This last point means that GRISLI cannot infer complexation reactions. Furthermore,
GRISLI outputs frequencies that are difficult to compare with the output of Reactmine and
SINDy. For these reasons, we decided to compare with SINDy only. In our experiments, we use
the pySINDy package with STLSQ optimizer, as the latter yielded the best results.

3 Results

3.1 Evaluation on simulation data from hidden CRNs

We first evaluate our algorithm on simulation data obtained from hidden CRNs, with which
the inferred CRNs can be compared. For Reactmine, we report the reactions in the order of
their inference along the search tree branch that gives the best CRN. For SINDy, we report
the inferred ODE systems. In these experiments, numerical integration is performed using the
Python package scipy.integrate.odeint with the default integrator lsoda. Simulations run
for a time horizon T = 10 and a time step ∆t = 0.1.

Reactmine uses four hyperparameters which are optimized by grid search to minimize the
quadratic loss criterion of Equation (19). SINDy uses one hyperparameter, the sparsity-enforcing
penalty coefficient λ. It turns out that in all the examples below, there is no value of λ leading
to both a good fit and a sparse model. In particular, there is no value of λ for which the hidden
dynamics are recovered, as illustrated by Figure S2. For the sake of comparison to SINDy,
we thus report the ODE system obtained using the (greatest) value of λ that gives the same
quadratic loss as Reactmine.

On the chain CRN example, Table 1 shows that Reactmine succeeds in recovering the hidden

CRN by inferring D
1−→ E first, with the end of the trace as support, as shown in Figure 1. Then

the other reactions are learned in backward order, after successive velocity matrix updates,
shown in Figure S1, for subtracting the effects of each learned reaction. More details are given
in Table S1 where we see that, in this example, the reactions are immediately inferred with the
right kinetics and not changed by global re-optimization. Table S2 gives the hyperparameter
settings used for the results reported in this section, the number of CRN candidates computed
using the best hyperparameter setting found (here 128 chain CRN candidates) the learning time
(here 0.31 seconds) and the hyperparameter grid search computation time (here 50 minutes).

In this example, SINDy correctly infers the (ODE terms of the) hidden reaction A
1−→ B, then

a part of reaction B
1−→ C is present: Ḃ includes the term −1.00B, but only 0.18B can be found

in Ċ among several other terms that do not correspond to reactions. Likewise, the production

of E by the reaction D
1−→ E is correctly inferred, but the ODE associated with D is −0.37DE

instead of −1.00D. Moreover, the learned ODEs are not able to generalize the dynamics of
species D and E on traces that were not used during training, as shown in Figure S3. It is
worth noting in this respect that the chain CRN is composed of 8 ODE terms, whereas the
SINDy library comprises 5× (1 + 5×6

2
) = 80 terms in this example.

The second example concerns the MAPK signaling network, a ubiquitous CRN structure
that is present in all eukaryote cells and in several copies. We consider the simplified two-stage
(instead of three) CRN model composed of 7 species and 7 reactions of Qiao et al. (2007). The
input species A goes through a first stage of complexation and phosphorylation to produce the

9



Hidden CRN CRN inferred by Reactmine ODE system inferred by SINDy

Chain CRN

A
1−→ B

B
1−→ C

C
1−→ D

D
1−→ E

D
1.00−−→ E

C
1.00−−→ D

B
1.00−−→ C

A
1.00−−→ B





Ȧ = −1.00A
Ḃ = 1.00A− 1.00B
Ċ = 1.03B − 1.03C +0.01D − 0.06AB
Ḋ = 0.33B − 0.64DE
Ė = 1.00D

MAPK CRN

A
0.0045−−−−→ Ap

Ap+ B
1000−−−→ ApB

ApB
150−−→ Ap+ B

ApB
150−−→ Ap+Bp

Ap+Bp
1000−−−→ ApBp

ApBp
150−−→ Ap+Bp

ApBp
150−−→ Ap+Bpp

A
0.0045−−−−→ Ap

Bp+Ap
499.97−−−−→ Bpp+Ap

B +Ap
500.01−−−−→ Ap

ApB
150.04−−−−→ Ap+Bp

Ap+B
501.19−−−−→ ApB

ApB
150.37−−−−→ Ap+B

Ap+Bp
517.78−−−−→ ApBp

ApBp
155.34−−−−→ Ap+Bp

Ap+B
500.19−−−−→ ApB +B

No sparse ODE system with a good loss function is inferred for any value of λ
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Ground truth sparsity

Reactmine sparsity

SINDy Sparsity

SINDy loss

Ground truth loss

Reactmine loss

Table 1: Results obtained by Reactmine and SINDy on the Chain and MAPK CRNs
using a single simulation trace from one initial state containing the molecular species indicated in
bold in the first column. The reactions learned by Reactmine are indicated in green if they belong
to the hidden CRN structure, in yellow if they lead to equivalent terms of the associated ODEs,
and in red otherwise. For the ODE systems inferred by SINDy on the Chain example, the terms
are coloured in green if they correspond to the kinetics of some hidden reactions, regardless of the
precise kinetic constant value as long as the sign is exact, and in red otherwise. For the MAPK CRN,
SINDy fails to learn the hidden dynamics, as shown in Table S1. The lower right panel reports the
quadratic training loss (blue) and the number of nonzero terms in the library (red) found by SINDy,
as a function of λ. The dashed red line represents the actual number of nonzero terms in the ground
truth CRN. The dashed darkblue line stands for the quadratic loss value found by Reactmine. The
left arrow shows that the ODE model inferred by SINDy matching the Reactmine loss contains too
many terms, around 90, while the right arrow demonstrates that the sparse ODE systems inferred
by SINDy are not able to fit the observed velocities.

phosphorylated form Ap which plays the role of a kinase on B at the second stage to produce
the doubly phosphorylated output species Bpp. Signal amplification is caused by the difference
of concentrations by several orders of magnitude between the input and the output, as shown
in Figure S4. For this example, we set trace parameters T = 100 and ∆t = 1

3
.

As shown in Table 1, Reactmine recovers 6 out of 7 reactions of the hidden CRN and 3 other

reactions: ApB
499.96−−−−→ Bpp+Ap, B +Ap

500.01−−−−→ Ap and Ap+B
500.19−−−−→ ApB +B. It is worth

remarking that by summing the ODE terms of the latter two reactions, we get the same effect

as the already inferred reaction Ap + B
500−−→ ApB, but with the original rate constant value

1000 by summing the two copies of the reaction. On the other hand, a variant of the missing

reaction ApBp
150−−→ Ap+Bpp is inferred by Reactmine, namely Ap+Bp

500−−→ Ap+Bpp, where
the reactant complex, ApBp replaced by its two components. Figure S5 shows that this is a
very good approximation of the ground truth dynamics, on the training trace, as well as on the
other simulation traces obtained from different initial conditions.

On the other hand, the ODE system inferred by SINDy has no term close to the hidden CRN,
contains two zero-valued differential functions for yet evolving species, and fails on sparsity with
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an average number of 15 terms per non-zero ODE. Furthermore, the bottom right Figure in
Table 1 shows that SINDy fails on this example for all values of its hyperparameter λ. It is
worth remarking in that Figure that the loss of the ground truth CRN is not zero for the subtle
reason that the loss is computed by an estimation of the velocity matrix by finite differences on a
trace, produced by numerical integration with a more elaborate implicit method, and overfitted
by SINDy with low values of λ. It is worth noting that the 7 ODEs of the MAPK CRN comprise
a total of 20 terms, whereas the SINDy library comprises 7×(1+ 7×8

2
) = 203 terms. Likewise, for

the chain CRN, this creates particularly challenging sparse regression problems in the absence
of strong independence properties between predictors (Zhao and Yu, 2006). The better results
reported in (Mangan et al., 2016) may be explained by the recourse to multiple traces with
different zeroes in the initial conditions, similarly to what has been shown in the context of
Boolean models in (Carcano et al., 2017).

Table S1 summarizes the results obtained by Reactmine and SINDy on a benchmark of even
smaller size CRNs presenting different kinds of difficulties. The learning velocity traces used in
those examples, also including the chain CRN, are detailed in Figures S6–S9. The loop CRN

adds a feedback reaction E
1−→ A to the chain CRN, leading to the stabilization of all molecular

species on some common concentration value. Reactmine succeeds in recovering the hidden
reactions in forward order, directly with the right kinetics. Here again, SINDy recovers some
terms of the two first reactions and of the last reaction, but among many other overfitting terms
which do not generalize to simulation traces obtained from different initial states, as shown in
Figure S10.

The reactant-parallel CRN is just composed of one catalytic reaction, A+C
1−→ B+C, where

the catalyst C is produced by two concurrent reactions D
2−→ C and E

1−→ C. Reactmine first
infers the preponderant production of C by D, then by E, after what the reaction catalyzed
by C is correctly inferred. One can notice that the rate constant first inferred for the reaction
E −→ C has a small value below its final value by two orders of magnitude. The reason is that

right after the inference of D −→ C, reaction E
1.00−−→ ∅ is inferred prior to E

0.01−−→ C. The global
re-optimization of rate constants has for effect in this case to set to 0 the rate constant of the

second reaction, in favor of the third reaction E
1−→ C which is thus finally recovered with the

right kinetics. In this example, SINDy infers a wrong ODE system that does not reproduce the
learning trace, even by increasing the number of time points as shown in Figure S11.

The product-parallel CRN is the symmetrical case of two concurrent consumptions of the
catalyst C with the production of species D and E, on which SINDy similarly fails. Reactmine
first infers the preponderant transformation of C in E, then of C in D and then the correct
catalysed reaction with little correction of the rate constants by the global optimization phase,
as shown in Table S1.

3.2 Hyperparameter sensitivity analyses

In this section, we study the impact on the previous resuls of the hyperparameter values of
Reactmine and of the number of time points. Figure S12 shows that Reactmine results are sen-
sitive to both α and β. In particular, there exist a region for which sufficiently many candidates
are proposed and accepted due to a sufficiently high acceptance threshold (e.g. β > 6, α > 0.01
for the loop CRN). Next, Figure S13 also assesses the sensitivity with respect to γ the maximal
CRN size and δmax the maximum absolute fold change between species variations in a reaction.
Only the value of either δmax or γ is changed, the other hyperparameters are set to values
leading to maximum F1-score. γ is a sensitive hyperparameter either in terms of quadratic loss
value or F1-score. This is expected as being the maximum CRN size, γ can be seen as the
maximum number of freedom degrees. One should remark that the γ value associated with a
perfect F1-score is sometimes higher than the size of the hidden CRN. As previously mentioned
in Section 3.1 for the case of the Reactant-Parallel CRN, this is due to the inference of reactions
whose effect is later set to 0 upon global re-optimization. For this example, these steps were
somewhat needed otherwise the ground truth CRN would have been recovered with γ = 3. It
is worth noticing that the hyperparameter sets yielding the lowest quadratic loss are associated
with highest F1-score for all CRNs, thus providing empirical evidence concerning the relevance
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of hyperparameter selection based on quadratic loss minimization.
Now, the sensitivity to the number of time points in the trace is evaluated in Figure S14 on

the chain CRN. We observe an almost monotonic transition to high F1-score / low reconstruction
error as the number of time points increases with optimal performance being reached above 40
time points only.

On the other hand, Figure S11 shows that the failure of SINDy to recover the hidden CRNs
persists independently of the number of time points for both the reactant and product-parallel
examples. For these examples, increasing up to 200000 time points did not lead to perfect
inference as can be seen from the F1-score being different from 1. The learned models display
high precision but low recall, suggesting sparse but yet incomplete dynamics. However, the
chain and loop CRN could be recovered using 10000 and 500 time points, respectively. This
suggests that the problem of sparse regression in that approach rather comes from the high level
of correlations observed in single CRN traces without the possibility to vary the zeroes in the
initial conditions.

3.3 Evaluation on videomicroscopy data

In this section we apply Reactmine to time lapse videomicroscopy data of fluorescent reporters
of the cell cycle and circadian clock in NIH-3T3 embryonic mouse fibroblasts (Feillet et al.,
2014). These data have been used to develop a coupled model of the cell cycle and the circadian
clock in this cell line in Traynard et al. (2016). The cell line was modified to include three
fluorescent markers of the circadian clock and the cell cycle: the RevErb-α::Venus clock gene
reporter (Nagoshi et al., 2004) for measuring the expression of the circadian protein RevErbα,
and the Fluorescence Ubiquitination Cell Cycle Indicators (FUCCI), Cdt1 and Geminin, two cell
cycle proteins which accumulate during the G1 and S/G2/M phases respectively, for measuring
the cell cycle phases (Sakaue-Sawano et al., 2008). The cells were left to proliferate in vitro
in standard culture medium supplemented with 20% of Fetal Bovine Serum . Fluorescence
recording was performed in constant conditions with one image taken every 15 to 30 minutes
during 72 hours.

A dataset of 67 tracked cells was built from these experiments (Feillet et al., 2014). Figure S15
displays the fluorescence levels trajectories obtained for 3 of these cells as an illustration of the
high inter-cell variability and noise level displayed by the data. For this reason, our learning
protocol will

• first smooth the curves with a sliding window of 2.5 h;

• apply Reactmine to infer a CRN for each cell individually, using Michaelis-Menten rate
functions (as described in Section 2.3.2) in order to fit indirect effects, γ = 3 in order to
discover the main influences between the 3 variables, and the remaining three hyperpa-
rameters selected by grid search as mentioned in Section 2.3.6;

• then compute statistics on the number of reaction occurrences across the C = 67 inferred
CRNs (one per cell). To this end, we define the mean effect µ of a reaction r = (R,P, f)
on the velocity matrix as:

µr =
1

nC

C∑
c=1

n∑
l=1

f(y
(c)
l ) (24)

where y
(c)
l is the fluorescence vector at time tl for cell c.

As shown in Figure S16, two reactions clearly stand out compared to the others in terms of
effect. The first one , G2 −→ REV , represents a possible effect of the cell cycle on the circadian
clock through the activation of Rev-Erbα during the G2 phase, in agreement with the main
surprising findings of the modeling study of (Traynard et al., 2016), using the same dataset.
The second most impactful reaction effect-wise is G1 −→ G2, the reaction accounting for the
cell phase transition from G1 into S/G2/M. The reverse formal reaction G1 −→ G2 which could
perhaps be expected, is learned but ranked effect-wise behind several meaningless reactions.
In terms of occurrence number, one can observe the predominance of a meaningless reaction
G2 +G1 −→ ∅, present in 37 out of 67 cells, yet never inferred first, and with low rate constants.
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3.4 Detection of systemic controls on clock gene transcription

In this section, we apply Reactmine to biological data measuring the circadian rhythms of
five systemic regulators in mice: body temperature, rest-activity rhythms, food intake, plasma
corticosterone and melatonin, as well as the circadian mRNA expression data in the mouse liver
of two core clock genes: Bmal1 and Per2. These datasets have been analyzed in (Martinelli et al.,
2021) to infer the preponderant systemic regulators on clock gene transcription through another
model learning approach. Using an ODE-based model of the liver circadian clock (Hesse et al.,
2021) as well as data from four mouse classes, transcription activation profiles y were derived
for the two genes. These profiles were regressed on systemic regulators with the aim to infer
the significant drivers of clock gene transcription. Let us now attempt to use Reactmine for this
task and compare the results.

Since we are looking for an influence model rather than a reaction model properly speaking,
we shall use the classical encoding of an influence by one formal reaction catalyzed by the source
of the influence (Fages et al., 2018). We will thus enforce in Reactmine the search of influence

reactions of the form z
k−→ z+y where z is one systemic regulator, y one transcription activation

profile for a target gene. We shall assume mass action law kinetics representing influence forces.
Furthermore, it is assumed that a systemic regulator z acts either directly, or indirectly

though intermediate species by considering its integral counterpart
∫
z, but not both ways.

The 5 systemic regulators thus lead to 10 possible influences on Bmal1 and Per2 genes. The
Reactmine hyperparameters γ and β can be set accordingly to 5 and 10. δmax is set to 3 as
in the previous experiments. Only α, the acceptance threshold for influence skeletons, needs
to be searched in order to restrict ourselves to preponderant influences only. Figure S17 shows
the mean quadratic loss and the number of influences of the CRNs inferred by Reactmine for
different values of α. We observe that for α = 6, the inferred CRNs with only two influences in
average reach an MSE below 0.15, i.e. explain more than 85% of the variance.

Remarkably, Reactmine discovers that Food Intake and Temperature are the main influenc-
ing factors of clock gene expression, either in a direct or an indirect manner, in agreement with
previous findings in (Martinelli et al., 2021). More precisely, Figure S18 recapitulates the mean
kinetic rate constants of the inferred reactions obtained across the traces as a function of α.
The zoomed part of the figure corresponds to the region where α = 6 for which the inferred
CRNs contain 2 reactions in average. Using α = 6, for Bmal1, the indirect action of Food
Intake is deemed the most relevant regulator, followed by the indirect action of Temperature
and the direct action of Corticosterone, in agreement with Martinelli et al. (2021). Concerning
Per2, Food Intake and Temperature again stand out as most important systemic drivers, in
both direct and indirect forms. The recovered regulation importance ordering is the same as
in (Martinelli et al., 2021) (Figure 6B-C), except for one permutation between

∫
Corticosterone

and
∫

Temperature.

4 Conclusion

We have presented Reactmine, an algorithm designed to infer biochemical reactions with kinet-
ics, between molecular species observed in wild type time series data, i.e. without gene knock
out nor other possibilities to put initial conditions to 0 at will. On a benchmark of hidden CRNs
of increasing difficulty, including one model of MAPK signal transduction (Qiao et al., 2007),
we have shown that Reactmine is able to recover the hidden CRN, or an essentially equivalent
form of it, from one single ODE simulation trace. On the opposite, the state-of-the-art sparse
regression algorithm for non linear dynamical systems, SINDy Brunton et al. (2016), with ap-
propriate function libraries for the examples, fails to infer sparse ODE systems from such wild
type traces, and even to reproduce other simulation traces obtained from different initial states.

The behavior of sparse regression algorithms is indeed conditional to assumptions about the
low level of correlation between predictors (Zhao and Yu, 2006). Those hypotheses are not
satisfied in the context of wild type time series data, specifically in a low data regime. The
possibility of varying the traces by setting to 0 some initial conditions has a de-correlation effect
which may explain the better results reported in Mangan et al. (2016), similarly to what has
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been shown for boolean models in Carcano et al. (2017). More work is however needed to
develop those arguments in the general context of sparse identification of non linear dynamics.

Reactmine solves those issues by not relying on sparse regression but on a bounded-depth
search of reaction candidates, inferred in a sequential manner on a subset of supporting transi-
tions, with statistical criteria about the inferred velocities. This leads to four hyperparameters
which are currently chosen by grid search for the three sensitive ones. Some formulae are
currently under investigation for providing them with default values as a function of the dimen-
sion of the problem. The restriction to 0/1 stoichiometry adopted in this article can be easily
dropped as long as a limited number of reaction schemas is considered. When applied to real
biological data of videomicroscopy data and systemic circadian controls of clock genes, we have
shown that Reactmine is able to retrieve the main conclusions of the model-based analyses done
respectively in Traynard et al. (2016) and Martinelli et al. (2021) on the same datasets.

These encouraging results should motivate applying Reactmine to new study cases on the
one hand, and on the other hand, investigating extensions of our approach to deal, in that
setting, with the open problem of learning models including latent species.
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A. (2021). Model learning to identify systemic regulators of the peripheral circadian clock.
Bioinformatics, 37(1), i401–i409.

Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naef, F., and Schibler, U. (2004). Circadian gene
expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time
to daughter cells. Cell , 119, 693–705.

Qiao, L., Nachbar, R. B., Kevrekidis, I. G., and Shvartsman, S. Y. (2007). Bistability and
oscillations in the huang-ferrell model of mapk signaling. PLOS Computational Biology ,
3(9), 1–8.

Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi,
S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., and Miyawaki,
A. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell ,
132(3), 487–498.

Stolovitzky, G., Monroe, D., and Califano, A. (2007). Dialogue on reverse-engineering assessment
and methods: the DREAM of high-throughput pathway inference. Annals of the New York
Academy of Sciences, 1115(1), 1–22.

Traynard, P., Feillet, C., Soliman, S., Delaunay, F., and Fages, F. (2016). Model-based investiga-
tion of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction
of reverbα up-regulation during mitosis. Biosystems, 149, 59–69.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal of Machine
Learning Research, 7, 2541–2563.

Zoppoli, P., Morganella, S., and Ceccarelli, M. (2010). Timedelay-aracne: Reverse engineer-
ing of gene networks from time-course data by an information theoretic approach. BMC
Bioinformatics.

15



Supplementary material

S1 Detailed results of Reactmine and SINDy

Computation times reported here have been obtained on a Macbook M1 2020 13” with 8 cores.
For Reactmine, the grid search was parallelized. For SINDy we used the pysindy library with
STLSQ (sequential least square thresholding) optimizer, as we observed that it yielded better
results than Lasso or SR3. We chose to report in Table S1 and in the main text, the ODE
system inferred by SINDy with a value of regularization hyperparameter λ that leads to the
quadratic loss (which is not zero due to numerical integration errors) of the ground truth CRN
recovered by Reactmine.
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Name Hidden CRN CRN inferred by Reactmine ODE system inferred by SINDy

Chain

A
1−→ B

B
1−→ C

C
1−→ D

D
1−→ E

D
0.99869−−−−−→
1.00041

E

C
0.99836−−−−−→
1.00071

D

B
1.00102−−−−−→
0.99753

C

A
1.00069−−−−−→
1.00107

B





Ȧ = −1.00A
Ḃ = 1.00A− 1.00B
Ċ = 1.03B − 1.03C +0.01D − 0.06AB
Ḋ = 0.33B − 0.64DE
Ė = 1.00D

Loop

A
1−→ B

B
1−→ C

C
1−→ D

D
1−→ E

E
1−→ A

A
0.99958−−−−−→
1.00005

B

B
0.99748−−−−−→
0.99243

C

C
0.99772−−−−−→
0.99156

D

D
0.99771−−−−−→
0.92045

E

E
0.99758−−−−−→
1.00007

A





Ȧ = −1.00A+ 1.03E −0.006D − 0.07AE − 0.06DE
Ḃ = 1.00A− 1.00B +0.004C + 0.001AB − 0.211AC − 0.092BC
Ċ = 1.14B − 1.18C −0.002D − 0.17AB + 0.39CD
Ḋ = 0.35B − 0.35E
Ė = 0.39C + 0.457E − 4.21AE

Reactant
Parallel

A + C
3−→ B + C

D
2−→ C

E
1−→ C

D
2.00109−−−−−→
1.97698

C

E
1.00101−−−−−→
0.00526

C

A+ C
2.94380−−−−−→
2.95790

B + C





Ȧ = −1.12A− 510000276790.32C − 0.87AB + 1.03AD
+ 510000276788.57AC +510000276790.32BC − 0.04DC

Ḃ = 1.12A+ 510000276790.24C + 0.87AB − 1.04AD
−510000276788.49AC −510000276790.24BC + 0.04DC

Ċ = −2.20D +0.02E − 0.19AD + 0.40DE
Ḋ = 0.07A +1.96D + 1.02E −0.06DE
Ė = −1.00E

Product
Parallel

A + C
1−→ B + C

C
2−→ D

C
3−→ E

C
2.93602−−−−−→
3.12657

E

C
1.95735−−−−−→
2.08438

D

A+ C
0.96372−−−−−→
1.04002

B + C





Ȧ = −0.93C
Ḃ = 0.93C
Ċ = 68364.34− 84189.93A+ 32887.73C + 14190.64D

+21285.97E − 17066.849AC − 40273.85AE + 990.87CD
+990.83CD + 1486.24CE + 7919.89DE

Ḋ = 3.73C −1.84AC
Ė = 65012.55A− 60751.24C − 77885.60E − 4258.48AC
−10214.65CE − 27068.38DE

MAPK

A
0.0045−−−−→ Ap

Ap+ B
1000−−−→ ApB

ApB
150−−→ Ap+ B

ApB
150−−→ Ap+Bp

Ap+Bp
1000−−−→ ApBp

ApBp
150−−→ Ap+Bp

ApBp
150−−→ Ap+Bpp

A
0.00449−−−−−→
0.0045

Ap

Bp+Ap
499.96702−−−−−−→
499.96702

Bpp+Ap

B +Ap
500.01476−−−−−−→
500.01476

Ap

ApB
150.04220−−−−−−→
150.03923

Ap+Bp

Ap+B
501.19113−−−−−−→
501.19119

ApB

ApB
150.37064−−−−−−→
150.36767

Ap+B

Ap+Bp
517.78303−−−−−−→
517.78581

ApBp

ApBp
155.33508−−−−−−→
155.32578

Ap+Bp

Ap+B
500.18846−−−−−−→
500.18851

ApB +B





˙Bpp = 11764.89− 9818.81Bpp− 21809.21Ap− 64774.82ApBp− 9881.63Bp
+109653.06ApB − 10102.57B − 23028.83A+ 23087.90Bpp×Ap
+47383.24Bpp×ApBp+ 0.01Bpp×Bp− 94598.54Bpp×ApB
+0.05Bpp×B + 24104.25Bpp×A+ 58119.14Ap×Bp
+117674.08Ap×B + 68314.42ApBp×Bp+ 239788.36ApBp×B
−171491.97Bp×ApB + 0.03Bp×B + 45027.82Bp×A+ 118690.34B ×A

Ȧp = 0.003Bp− 0.001Bpp×Bp− 0.004Bpp×B − 0.002Bp×B
˙ApBp = −0.002Bp+ 0.001Bpp×Bp+ 0.004Bpp×B + 0.002Bp×B
Ḃp = −11345.814 + 9469.53Bpp+ 20253.98Ap +62939.32ApBp

+9525.97Bp− 105529.77ApB + 9401.39B + 22299.11A
−21772.25Bpp×Ap− 45730.13Bpp×ApBp− 0.01Bpp×Bp
+91003.53Bpp×ApB − 0.05Bpp×B − 23476.51Bpp×A
−56249.34Ap×Bp +996.55Ap×B − 64537.43ApBp×Bp
−113908.83ApBp×B + 163092.38Bp×ApB − 0.03Bp×B
−42276.50Bp×A+ 113704.11ApB ×B − 763.549B ×A

˙ApB = 0
Ḃ = −668.78 + 557.83Bpp+ 1724.07Ap+ 2552.29ApBp

+564.79Bp− 5063.51ApB + 551.20B + 784.94A
−1609.99Bpp×Ap+−1960.37Bpp×ApBp− 0.001Bpp×Bp
+4399.19Bpp×ApB − 0.01Bpp×B − 827.38Bpp×A
−3441.84Ap×Bp+ 543.68Ap×B − 4279.75ApBp×Bp
−8537.02ApBp×B + 10869.45Bp×ApB −0.003Bp×B
−3146.138Bp×A+ 6610.523ApB ×B + 1384.463B ×A

Ȧ = 0

Table S1: Results obtained by Reactmine and SINDy on hidden CRNs using a single
simulation trace from one initial state containing the molecular species indicated in bold in the first
column. The learned reactions are indicated in green if they belong to the hidden CRN, in yellow if
they lead to equivalent terms of the associated ODEs, and in red otherwise. For a learned reaction,
the number written underneath the arrow is the initial rate constant value learned with the reaction,
before global re-optimization. For the ODE systems inferred by SINDy, the terms are coloured in
green if they correspond to the kinetics of some hidden reactions, regardless of the precise kinetic
constant value as long as the sign is exact, and in red otherwise.

17



CRN
Hyperparameters
(α, β, δmax, γ)

Computation time
in seconds

Number of
inferred CRNs

Grid search values for (α, β, δmax, γ)
Computation time
with grid search

Chain (0.02, 7, 3, 4) 0.31 128

α ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}
β ∈ {4, 5, 6, 7, 8}
δmax = 3
γ ∈ {4, 5, 6}

3035.95

Loop (0.02, 7, 3, 6) 40.78 4198

α ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}
β ∈ {4, 5, 6, 7, 8}
δmax = 3
γ ∈ {5, 6}

30643.19

Reactant-Parallel (0.02, 4, 3, 5) 1.81 265

α ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}
β ∈ {4, 5, 6, 7, 8}
δmax = 3
γ ∈ {3, 4, 5, 6}

970.23

Product-Parallel (0.02, 5, 3, 3) 0.13 24

α ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}
β ∈ {4, 5, 6, 7, 8}
δmax = 3
γ ∈ {3, 4, 5, 6}

334.06

Mapk (0.02, 7, 3, 10) 3012.85 33104

α ∈ {0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.1, 0.2}
β ∈ {6, 8, 10}
δmax = 3
γ ∈ {7, 8, 9, 10}

77179.92

Table S2: Reactmine computation times and hyperparameter values used for the results
reported in Table S1. The best hyperparameter settings indicated in the second column for each
example, are found by grid search with a range of values reported in the third column, and a
computation time given in the last column. The CRN learning computation times in these settings
are given in the third column, with the number of generated CRN candidates in the fourth column.
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Figure S1: Successive velocity trace updates done by Reactmine for recovering the chain CRN.
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Figure S2: Quadratic training loss (blue) and number of nonzero terms in the library
(red) found by SINDy as a function of λ in our benchmark of reactant-parallel, product-parallel,
chain, loop and MAPK CRNs. The dashed red line represents the actual number of nonzero terms
in the ground truth ODE associated to each hidden CRN. The dashed darkblue line stands for the
(non-zero due to numerical errors) quadratic loss value of the ground truth CRN.
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Figure S3: Simulation of the ODE model learned by SINDy in the Chain example us-
ing different initial conditions (doted line) compared with ground truth (solid line), showing
erroneous dynamics for D and E.
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Figure S4: Learning trace and velocity trace for the MAPK CRN. The lower panel shows
the same plots with concentrations and velocities normalized by their maximal values along the trace
for visualization purposes.
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Figure S5: Reproduction of the MAPK CRN simulation traces obtained from different
initial conditions using the CRN inferred by Reactmine. Time-resolved species concentra-

tions are normalized to their maximal value across the trace. y
(1)
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simulation traces of the MAPK CRN and the CRN inferred by Reactmine.
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Figure S7: Learning trace and velocity trace for the Product-Parallel CRN.
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Figure S8: Learning trace and velocity trace for the Chain CRN.
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Figure S9: Learning trace and velocity trace for the Loop CRN.
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Figure S10: Simulation of the ODE model learned by SINDy in the Loop example us-
ing different initial conditions (doted line) compared with ground truth (solid line), showing
erroneous dynamics on all species.
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Figure S12: Sensitivity of Reactmine to α and β hyperparameters. Quadratic loss ‖V̂ −
F(Y,k)‖2F (lower is better) and F1-score (in parenthesis, higher is better). The colorbar levels relate
to the quadratic loss. δmax = 3 and γ = 6 except for the reactant-parallel CRN where γ = 5, as it
yielded a better result.
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Figure S13: Sensitivity of Reactmine to δmax and γ hyperparameters. The quadratic loss is
reported in darkblue, the F1-score in red, negated for visualization purposes.
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Figure S14: Sensitivity of Reactmine to the number of time points for the chain CRN
with δmax = 3, α = 0.2, β = 7, γ = 5. The time horizon of the simulation is T = 10. The quadratic
loss is reported in darkblue, the F1-score in red. The x-axis is in log scale.
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Figure S15: Fluorescence videomicroscopy plots of 3 cells among the 67 cells of the videomi-
croscopy data. Traces have been smoothed with a moving average.
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Figure S16: Results of Reactmine on videomicroscopy dataset. Bars in green report the
mean effect of each reaction across time and cells in the videomicroscopy data. Standard deviation
is indicated across the cells. The two reactions with the most important effect are in accordance
with the previous findings done in studies of this dataset. The number of occurrences of a reaction
is plotted in red.
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Figure S17: Results of Reactmine on systemic regulators of clock gene expression. Average
mean square error (green) and number of reactions (red) for the CRNs inferred by Reactmine are
given as a function of α. The statistics are computed over the N = 2000 trajectories {y(j)}1≤j≤N

considered. The green dotted horizontal line represents a MSE threshold of 0.15, equivalent here to
15% left unexplained by the inferred CRN. The red dotted vertical line reveals that for both Bmal1
and Per2, CRNs with only two reactions are enough to reach a MSE below 0.15.
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Figure S18: Systemic drivers of clock gene transcription inferred by Reactmine. The
mean rate constant associated to a catalyzed reaction is reported as a function of α. The mean is
computed over the N = 2000 trajectories {y(j)}1≤j≤N . The plot zoom corresponds to a region close
to α = 6.
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