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In this article, we propose some renements of Huygens inequality. We establish new bounds for Huygens and Neuman-Sandor inequalities. The analysis results show that our bounds are tighter than the older ones.

Introduction

For 0 < x < π 2 we know

sin x x < 1 < tan x x , (1) 
or equivalently

x tan x < 1 < x sin x .
In order to exploit and improve these inequalities Wilker [START_REF] Sumner | Inequalities involving trigonometric functions[END_REF] proposed open problems. One of them

sin x x 2 + tan x x > 2
was solved by Sumner [START_REF] Wu | A weighted and exponential generalization of Wilker's inequality and its applications[END_REF]. Moreover, Wilker asked about the largest constant c such that

sin x x 2 + tan x x > 2 + cx 3 tan x
Sumner and al proved [START_REF] Wu | A weighted and exponential generalization of Wilker's inequality and its applications[END_REF] 2 + 16 π 4 x 3 tan x <

sin x x 2 + tan x x < 2 + 8 45 x 3 tan x.
These constants 16 π 4 and 8 45 are the limits at 0 and π/2 of the function

x → ( sin x x ) 2 + tan x x -2 x 3 tan x .

1

Chen and Cheung [START_REF] Chen | Sharpness of Wilker and Huygens type inequalities[END_REF] proved that this function decreases monotonically on (0, π 2 ).

They also prove the following inequalities

3 + 3 20 x 3 tan x < 2 sin x x + tan x x < 3 + 2 π 4 x 3 tan x,
where the constants 3 20 and ( 2 π ) 4 are the best possible. This gives an improvement of the Huygens inequality

x ≤ 2 sin x 3 + tan x 3 .
(

) 2 
Combined with (1) the following inequality is sharper than the left part of (1)

8 sin(x) -sin(2x) 6 ≤ x, (3) 
for 0 < x < π 2 . Formula (3) has been rst provided by W. Snell (1621) in order to compute π using Archimedes method. Later (3) will be proved by C. Huygens [START_REF] Huygens | De circuli magnitudine inventa[END_REF].

In this paper, we are interested in better approximations of the Huygens function:

x ≈ 2 3 sin x + 1 3 tan x, for x ∈ 0, π 2 .
Estimates of the errors functions of Huygens approximation

2 3 sin x + 1 3 tan x -x, f or x ∈ 0, π 2 ,
are achieved by use of some polynomial functions.

A method called the natural approach, proposed by Mortici in [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF], uses the idea of comparing functions to their corresponding Taylor polynomials. This method has been successfully applied to prove and approximate a wide category of trigonometric inequalities. We focus on results related to Huygens inequalities and propose to generalize and rene of inequalities stated in [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF] as well as provided by B. Malesevic, T. Lutovac1, M. Rasajski1 and C. Mortici [START_REF] Malesevic | Mortici Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF]. In the last part, we are interested in the work of B. Malesevic, M. Nenezic, L. Zhu, B. Banjac and M. Petrovic [START_REF] Malesevic | Some new estimates of precision of Cusa-Huygens and Huygens approximations[END_REF] who used new estimations for the Huygens approximations. 

Huygens inequality

Notice that we have an equivalence between inequalities

cos x < ( sin x x ) 3 ⇐⇒ 1 < ( sin x x ) 2 tan x x , 0 < x < π 2 . (4) 
By using the arithmetic-geometric mean inequality, Baricz and Sandor have pointed out that inequality (4) implies

2 sin x x + tan x x > 3 and ( sin x x ) 2 + tan x x > 2 for 0 < x < π 2 .
The inequality Huygens

2 sin x x + tan x x > 3, x ∈ (0, π) (5) 
is a consequence of (4).

C. Mortici [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF] showed

3 + 3x 4 20 cos x - 3x 6 140 cos x < 2 sin x x + tan x x < 3 + 3x 4 20 cos x
which improves (2). Later B. Malesevic , T. Lutovac1, M. Rasajski1 and C. Mortici [START_REF] Malesevic | Mortici Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF] exploited method of [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF] and provided some generalizations. E. Neuman and J. Sandor [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities[END_REF], C. Cheng and R. Paris [START_REF] Cheng | On the Wilker and Huygens-type Inequalities[END_REF] provided some other renements.

Main results

We propose the following which permits to improve Statements 1,2,3. For 0 < x < π 2 and every n ∈ IN the following inequalities holds

(i) S 2n+1 (x) < 2 sin x x + tan x x < S 2n (x).
Here

S 2n (x) = S 2n+1 (x) + x 4n+2 (4n+2)! .
(ii) For m ≥ 2 we have the following error estimation :

| 2 sin x x + tan x x -S m |< 1 (2m + 2)! x 2m+2 tan x
x .

Proof of Theorem 3-1

We have the series representation of cos x, [START_REF] Abramowitz-I | Stegun Handbook of mathematical functions[END_REF], [START_REF] Gradshteyn | Table of Integrals Series and Products[END_REF] 

cos x = 1 - x 2 2! + x 4 4! - x 6 6! + .... = ∞ k=0 (-1) k x 2k (2k)! , for 0 <| x |< π 2 .
By the Taylor expansions of cos x, for any k ≥ 0

cos x = 1 - x 2 2! + x 4 4! - x 6 6! + .... + (-1) k x 2k 2k! + (-1) k+1 cos θx (2k + 2)! x 2k+2 ,
where 0 < θ < 1. It is easy to remark that for 0

< x < π 2 1 - x 2 2! + x 4 4! - x 6 6! + x 8 8! - x 10 10! < cos x < 1 - x 2 2! + x 4 4! - x 6 6! + x 8 8! .
Or more generally, for n ≥ 1

2n+1 k=0 (-1) k x 2k (2k)! < cos x < 2n k=0 (-1) k x 2k (2k)! .
We then deduce

1 + 2 2n+1 k=0 (-1) k x 2k (2k)! < 1 + 2 cos x < 1 + 2 2n k=0 (-1) k x 2k (2k)! .
Notice that since

2 sin x x + tan x x = tan x x (1 + 2 cos x)
then we derive Theorem 3-1.

Examples : -For n = 1 we deduce Mortici result [START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens inequalities[END_REF]. Using Maple one easily veries

3 + 3x 4 20 cos x - 3x 6 140 cos x < tan x x 3 -x 2 + x 4 12 - 1 360 x 6 < 2 sin x x + tan x x < tan x x 3 -x 2 + x 4 12 < 3 + 3x 4 20 cos x -For n = 2 we have tan x x 3 -x 2 + x 4 12 - 1 360 x 6 + 1 20160 x 8 - 1 1814400 x 10 < 2 sin x x + tan x x < tan x x 3 -x 2 + x 4 12 - 1 360 x 6 + 1 20160
x 8

and get Corollary 3-2 For 0 < x < π 2 and for n = 2 we nd again Statement 1 Indeed, we have to prove that

tan x x 3 -x 2 + x 4 12 - 1 360 x 6 + 1 20160
x 8 -1 1814400

x 10 -

3 - 2 cos x 3 40
x 4 -3 280

x 6 + 3 4480

x 8 -1 39600

x 10 > 0 and

tan x x 3 -x 2 + x 4 12 - 1 360 x 6 + 1 20160 x 8 -3- 2 cos x 3 40 x 4 - 3 280 x 6 + 3 4480 x 8 < 0.
Notice by the following inequalities

1 - x 2 3! + x 4 5! - x 6 7! + x 8 9! - x 10 11! < sin x x < 1 - x 2 3! + x 4 5! - x 6 7! + x 8 9!
for 0 < x < π 2 , we easily verify by Maple :

(i) sin x x 3 -x 2 + x 4 12 - 1 360
x 6 + 1 20160

x 8 -1 1814400

x 10 - Malesevic and al [START_REF] Malesevic | Mortici Extensions of the natural approach to renements and generalizations of some trigonometric inequalities[END_REF] proved the following Proposition [7,Theorem 3,p. 7] For 0 < x < π/2 and for n ∈ IN -0 the following inequalities holds

3+ 2 cos x 2n+1 k=2 (-1) k 4 k -3k -1 (2k + 1)! x 2k < 2 sin x x + tan x x < 3+ 2 cos x 2n k=2 (-1) k 4 k -3k -1 (2k + 1)! x 2k .
For n=2 we get Corollary 3-2. For n=3 we get Corollary 3-3 For 0 < x < π 2 and for n = 3 we nd

3 + 2 cos x 7 k=2 (-1) k 4 k -3k -1 (2k + 1)! x 2k < tan x x 1 + 2 7 k=0 (-1) k x 2k (2k)! < 2 sin x x + tan x x < tan x x 1 + 2 6 k=0 (-1) k x 2k (2k)! < 3+ 2 cos x 6 k=2 (-1) k 4 k -3k -1 (2k + 1)! x 2k .
Indeed, thanks to Maple we may prove the following inequalities 3+ 3 20 x 6 + 1 20160

x 4 cos x - 3 
x 8 -1 1814400

x 10 + 1 239500800

x 12 .

Therefore, we may expect to improve [7,Theorem 3,p. 7]:

Conjecture 3-4 : For 0 < x < π 2 and for n ∈ IN -0 the following hold

3 + 2 cos x 2n+1 k=2 (-1) k 4 k -3k -1 (2k + 1)! x 2k < tan x x 1 + 2 2n+1 k=0 (-1) k x 2k (2k)! < 2 sin x x + tan x x < tan x x 1 + 2 2n k=0 (-1) k x 2k (2k)! < 3+ 2 cos x 2n k=2 (-1) k 4 k -3k -1 (2k + 1)! x 2k .
This conjecture already has been veried for n = 1, 2, 3.

Turn now to Statement 2.

Theorem 3-5 For 0 < x < π 2 and n ∈ IN -0 the following inequalities holds

2 sin x x + tan x x > tan x x 1 + 2 2n+1 k=0 (-1) k x 2k (2k)! > 2x sin x + x tan x > 3.
Proof of Theorem 3-5

It suces to prove that

tan x x 1 + 2 3 k=0 (-1) k x 2k (2k)! = tan x x 3 -x 2 + x 4 12 - 1 360 x 6 > 2x sin x + x tan x .
We need the following Lemma 3-6 Consider the function

g(x) = (sin x) 2 3 -x 2 + x 4 12 - 1 360 x 6 -2 x 2 cos x -(x cos x) 2 dened for 0 < x < π 2 . Then g(x) is non negative in this interval. Indeed, since cos x < 1 -x 2 2 + x 4
4 , and sin x > x -x 3 6 then we have

g(x) > x - x 3 6 2 3 -x 2 + x 4 12 - 1 360 x 6 -2 x 2 1 - x 2 2 + x 4 4 -x 2 1 - x 2 2 + x 4 4 2 = x - x 3 6 2 3 -x 2 + x 4 12 - 1 360 x 6 -2 x 2 1 - x 2 2 + x 4 24 -x 2 1 - x 2 2 + x 4 24 2 = 7 - 1 12960
x 12 + 13 8640 x 10 -1 60

x 8 + x 6 12 = - 1 25920
x 6 2 x 6 -39 x 4 + 432 x 2 -2160 > 0.

Lemma 3-6 implies that g(x)

x sin x cos x > 0. Or equivalently

tan x x 1 + 2 2n+1 k=0 (-1) k x 2k (2k)! > 2x sin x + x tan x .
This completes the proof of Theorem 3-5.

Consider now the next result

Theorem 3-7 For 0 < x < π 2 and n ≥ 2 the following inequalities holds

3 + 3 20 + x 2 280 + 23x 4 33600 x 3 tan x < S 2n+1 < 2 sin x x + tan x x < S 2n < 3 + 3 20 + x 2 280 + 17920 -168π 4 -π 6 70π 8 x 4 x 3 tan x,
where

S p = tan x x 1 + 2 p k=0 (-1) k x 2k (2k)! 
.

Theorem 3-7 implies statement 3.

Proof of Theorem 3-7

For 0 < x < π 2 It suces to prove it for n = 3 th two following inequalities Moreover, it is known

1 tan x - 1 x = - x 3 - x 3 45 - 2x 5 945 -... = - x 3 - ∞ k=1 2 2k | B 2k | (2k)! x 2k-1 < - x 3 - x 3 45 - 2 945
x 5 -1 4725

x 7 -2 93555

x 9 -1382 638512875

x 11 -4 18243225

x 13 , then (i) can be majored x 9 -78671 12108096000

x 11 -9557 14529715200

x 13 < 0.

We then prove the left inequality.

For the right inequality consider the dierence Therefore since by [6, p.145] for x ∈ (0, π)

1 tan x = 1 x - x 3 - x 3 45 - 2x 5 945 -.... = 1 x - ∞ k=1 2 2k | B 2k | (2k)! x 2k-1 = 1 x - n-1 k=1 2 2k | B 2k | (2k)! x 2k-1 - ∞ k=n 2 2k | B 2k | (2k)! x 2k-1 ,
and by D'Agnolo [START_REF] D'aniello | On some inequalities for the Bernoulli numbers[END_REF] 2

(2k)! π 2k (2 2k -1) <| B 2k |< 2(2k)! π 2k (2 2k -2) . (6) 
Then we deduce the inequality

∞ k=5 -3 2 2k+1 π 2k (2 2k -2) x 2k-1 < 3 tan x - 3 x + 4 k=1 3 2 2k | B 2k | (2k)! x 2k-1 = 3 tan x - 3 x + x + x 3 15 + 2x 5 
315 .

That means

- 3 tan x + 3 x - 2x 5 315 - x 3 15 -x < ∞ k=5 3 2 2k+1 π 2k (2 2k -2)
x 2k-1 .

On the other hand, since x < π 2 one obtains 1 -2 1-2 k < -0.014984 < 0.

∞ k=5 3 2 2k+1 π 2k (2 2k -2) x 2k-1 = 6 π ∞ k=5 1 1 -2 1-2k x π 2k-1 2 π < 6 π ∞ k=5 1 1 -2 1-2k
Thus the right inequality is proved.

Another approach

In this part we will be interested in another approach concerning The Hyugens inequality. In the recent paper of Malesevic and al [START_REF] Malesevic | Some new estimates of precision of Cusa-Huygens and Huygens approximations[END_REF] one proved the following result which uses the method called "Double sided Taylor approximations" Malesevic and al [START_REF] Malesevic | Some new estimates of precision of Cusa-Huygens and Huygens approximations[END_REF]Theorem 6] proved the following 

Theorem 3 - 1

 31 Let us consider the function for any integer p S p (x

Proposition 4 - 1

 41 For any xed c ∈ (0, π 2 ) and for x ∈ (0, c) then the following inequalities holdT φ,0+ 0 (x) < ... < T φ,0+ n (x) < ... < φ(x) = 2 sin x 3 + tan x 3 <

... < T φ,0+,c- n (x) < ... < T φ,0+,c- 0 (x), where

x n c n .

For n = 5 one gets

x 5 .

Following [START_REF] Gradshteyn | Table of Integrals Series and Products[END_REF], for n = 7, n = 9 one gets

The following result yields a slight improvement. One proves that Theorem 3-1 is ner than Proposition 4-1, but only for x ≈ 0. then :

(i) -for n ≥ 2 there exists c 1 < c such that for all x < c 1

(ii) -for n ≥ 2 there exists c 2 < c such that we have for all x > c 2

Proof of Theorem 4-2

We will prove this theorem by recurrence on n. Let us consider

For n=2 one has

Then by Theorem 3-1

On the other hand,

We may verify by Maple for c ∈ (0, π 2 ) :

That means for x ≈ 0

For n=4 By the same way, we have

Then by Theorem 3-1

One gets also

We may verify by Maple for c ∈ (0, π 2 ) :

That means for x ≈ 0

Thus, Theorem 4-1 is veried for n=2, n=4.

For any n Suppose now for x < c 1 we have for any p ≤ n

We know that

, where

(-1) p+1

(2 p -1)! . This achieved the proof of Theorem 4-1.

Therefore for