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Abstract

Newton already mentioned indivisible time in Principia. In 1899, Max Planck derived a unique time period

from three universal constants: G, c, and ~, and today this is known as the Planck time. The Planck time is

of the order of about 10
�44

seconds while the best atomic clocks are down to 10
�19

seconds. An approach has

recently been outlined that puts an upper limit on the quantization of time to 10
�33

seconds; this is, however,

still far away from the Planck time. We demonstrate that the Planck time can easily be measured without any

knowledge of any other physical constants. This is remarkable as this means we have demonstrated that the

Planck time and therefore the Planck scale is real and detectable. It has taken more than 100 years to understand

this. The reason for the breakthrough in Planck scale physics in recent years comes from understanding that

G is a composite constant and that the true matter wavelength is the Compton wavelength rather than the de

Broglie wavelength. When this is understood, the mysteries of the Planck scale can be uncovered. In this paper,

we also demonstrate how to measure the number of Planck events in a gravitational mass without relying on

any constants. This directly relates to a new and simple method for quantizing general relativity theory that we

also will shortly discuss.

Key Words: Planck time, fundamental time, indivisible time, Newton, Planck length, quantum gravity.

1 The early forgotten history of the indivisible time interval

The Higgs boson was popularized partly because it was coined The God Particle, due to Nobel Laureate Lederman’s
[1] 1993 book with the same title about concepts related to the Higgs boson. Many physicists did not like the label
The God Particle for the Higgs boson, but it is still often used. On the other hand, we see, surprisingly, that the
possible first mention of an indivisible time interval seems to have been in the bible; something we soon will get
back to. We are not mentioning this because we want to mix religion and physics, but simply because it is an
interesting historical fact that has typically gone unnoticed.

Isaac Newton [2] in his 1686 book Principia wrote:

Since every particle of space is always and every indivisible moment of duration is everywhere cer-
tainly the Maker and Lord of all things cannot be never and nowhere . . . ”. Further, he mentioned:
” ...then we conclude the least particles of all bodies to be also extended, and hard and movable, and
endowed with their proper vires inertia. And this is the foundation of all philosophy.—Isaac Newton (p.
505)

Newton clearly mentioned an indivisible time interval. If a time interval is indivisible, it cannot be broken down
further and cannot be shorter. That Newton mentions an indivisible time interval has basically gone unnoticed
by the physics community. It could naturally be that Newton came up with the idea of indivisible time himself,
but he is mixing this in with some “religious talk” which was not uncommon among scientists back then. It is
also well known that Newton, in addition to his physics, spent considerable time reading scriptures as well as the
bible; some say in the hope of finding deeper and ancient wisdom, or perhaps to please the church; see, for example,
Heberle-Bors [3] for a discussion on this. Interestingly, the first place an indivisible time interval is mentioned is in
the New Testament (in Paul’s 1 Corinthians 15:52. In the original Greek version, we find

This has often been translated in the English translation of the New Testament as “In an instant, in the twinkling
of an eye”. But we think all English translations we have seen miss an important point. “↵⌧oµo⌫” is ancient Greek
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that in English means atom, and atom in ancient Greek means indivisible, or uncuttable, that is, something that
cannot be divided further. So ”atomic time” must, in our interpretation, have meant an indivisible time interval –
not only an instant – and the di↵erence in interpretation is large. The word “atom” meant indivisible particle since
the time of Democritus, and Leuppicus [4, 5] introduced atomism about 500 B.C.

The famous theologian and philosopher, Saint Augustine, as cited in [6], was clear in interpreting this passage
from Paul’s 1 Corinthians as representing indivisible time. Saint Augustine lived from the year 354 to 430 AD and
was also clear that many, even back then, did not know what an atom was, as they were not familiar with the
subject. For example, St. Augustine wrote,

”A year, for example, is split into months, months are divided into days, and days can be split into
hours and now hours can be lead into certain parts of hours which admit division, up until you arrive at
such point in time and a certain droplet of moment so that no further parts can be drawn out of it and
so it cannot be divided: this is the atom in time.” – Saint Augustine

Bede, who wrote a text titled ’De Temporum Ratione’ related to the calculation of Easter and published in the
year 703 AD, specifically referred to Paul’s 1 Corinthians and again interpreted it as a time interval that cannot be
divided [7, 8].

However, as one delves deeper into the Middle Ages, the precise interpretation of atomic time becomes less clear.
We believe this ambiguity is largely due to part of the Catholic Church’s opposition to atomism back then. For
instance, Rabanus Maurus (780-856) abruptly redefined atomic time as merely the duration of an eye’s twinkle.
Over time, the interpretation held by theological and philosophical experts – that atomic time represents the
shortest possible indivisible time interval – lost its significance and was likely misinterpreted. Later, as Latin fell
out of use, the English translation of the New Testament failed to convey the concept that atomic time probably
meant indivisible time. The Catholic Church’s hostility towards atomism persisted at least until the Renaissance and
Early Modern Era. For example, in 1624, the Paris Parliament decreed that anyone advocating or teaching atomism
would be subject to the death penalty. Parisian scholars Bitaud and de Villion, who attempted to demonstrate
atomism (indivisibles) through experiments, were arrested by the police for their e↵orts. According to more recent
research by Redondi [9], the Galileo a↵air was primarily about Galileo violating the Catholic Church’s prohibition
on discussing atomism. This naturally has little to do with any specific religion but rather with how various powers
at di↵erent times in history have suppressed free speech and the flow of ideas. That some organizations at certain
points in time have suppressed ideas does not mean they have not also come up with great discoveries. For example,
thanks to discoveries by the Catholic priest Lemâıtre [10], who was the first to estimate what is now known as the
Hubble constant, his work complemented that of Hubble [11], resulting in considerably improved insight about the
cosmos today. As we will soon describe, the concept of God-Time (indivisible) is even concealed within the Hubble
constant.

Still everyone knew that atom meant indivisible all the way up to the time when John Dalton introduced the
periodic system in 1808. Dalton thought he had found the indivisible particles of the Greek philosophers, but some
years later it was shown that what he thought were atoms (indivisibles) where composite particles, in other words,
divisible. However, the word “atom” was maintained for these elements that had nothing to do with the original
meaning of the word. Several scientists in the past did, in fact, point out that the Daltonian atom was not a true
atom (an indivisible), even before this was fully proven. For example, in their book A History of Science, published
in 1904, Williams and Williams [12] stated that:

There are, indeed, as we shall see, experiments that suggest the dissolution of the [Dalton] atom –
that suggest, in short, that the Daltonian atom is misnamed, being a structure, under certain conditions,
be broken asunder. When experiment shall have demonstrated the Daltonian atom is a compound, and
that in truth there is a single true atom, which, combining with its fellows perhaps in varying numbers
and in di↵erent special relations, produces the Daltonian atoms, then the philosophical theory of monism
will have the experimental warrant which to-day it lacks.

Gæury [13] points out that even if time is mentioned by Epicurus (another atomist) it is never mentioned explicit
that also time is thought of as indivisible in his atomism. However, Gæury indicates that still this was indirectly
clear.

Moses Maimonides [14] in his book “A Guide for the Perplexed” published around year 1190 describes that
‘‘Time is composed of time-atoms” where he further go on to discuss indivisible time units. He even goes on to say
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that the shortest time unit is of the order to take the shortest common time unit and divide by 60 ten times in a
row. If the shortest standard time unit was a blink of an eye which is about a tenth of a second, then this time unit
would be of the order of 10�19 seconds. This is far above the Planck time, but still an impressive speculative guess
of the ultimate shortest time interval. Isaac Newton supposedly had the book of Maimonides and even made notes
about it, so possibly also Newton got the idea of indivisible time from Maimonides.

Our point is that until Dalton the word “atom” was always interpreted as indivisible, the true ancient Greek
meaning of the word. So, we are quite convinced that the original New Testament talked about an indivisible time
and not just an instant, or a short time interval. The indivisible time is, however, according to recent findings, the
Planck time, so it is also an instant, or the shortest possible instant of time that exists. Yet, to call it just an instant
of time is an incomplete description. Indivisible (atomic) time, on the other hand, gives a complete description of
perhaps one of the most important things in physics. An instant period is just a very short time period; it could
even be a second or a millisecond. Naturally other time units existed back then as the second was not yet invented.
Atom (indivisible) time on the other hand is the very shortest time interval that can exist, so it is likely linked to
the very foundation of time.

One possibility, and we would even say a likelihood, is that Isaac Newton therefore had the idea of indivisible
time from the New Testament, when he mentioned indivisible time in his book Principia. This we will likely never
know for sure; what we do know is that Isaac Newton studied the Bible in detail. Newton likely reading the Greek
version; in his time the word “atom” was not misinterpreted, at least not by scientists, as the only meaning of the
word then was indivisible. It was first with Dalton that the word “atom” lost its original meaning when attached
to elements which he thought were indivisibles, but which were actually divisible composite particles.

2 Planck time, quantum time, and quantum gravity

In 1899 Max Planck [15, 16] introduced a unique length: lp =
q

G~
c3

, time: tp =
q

G~
c5

, mass: mp =
q

~c
G

and

temperature: Tp = 1

kb

q
~c5
G

. Planck got to these by assuming there were three important universal constants: the

gravitational constant G, the Planck constant h, and the speed of light, then he combined these with dimensional
analysis one get these units. These units are today known as the Planck units [17] or just natural units. However,
until recently, it has been assumed it is almost impossible to detect the Planck scale (see for example [18–20]) and
therefore also to measure the Planck time. For example, the most accurate atomic and optical clocks can measure
a time interval of about 10�19 seconds; see [21]. Wendel, Mart́ınez, and Bojowald [22] who have recently found a
strong upper boundary of the fundamental period of time of approximately 10�33 seconds, which is still not even
close to the Planck time that is only approximately:

tp =

r
G~
c5

=
lp

c
⇡ 5.4⇥ 10�44

s

.
The Planck time is, by most physicists [23, 24], considered the shortest possible, even hypothetically measurable,

time interval. Some think it is an invariant indivisible time interval. The Planck time is the time it takes for the
speed of light to travel the Planck length, and the Planck length is, among most physicists, considered the minimum
length interval, and some even think it is an indivisible length. The reduced Compton wavelength of a Planck mass
is the Planck length: �̄ = ~

mpc
= lp. A better understanding of the Planck time and the other Planck units can

be an important step towards a unified quantum gravity theory. Ball [25] summarized nicely in one sentence the
importance of better understanding the Planck time:

A physics to match the Planck timescale is the biggest challenge to physicists in the coming century.
– Philip Ball, 1999

This because the Planck time scale (the Planck length, the Planck time, and other Planck units) are likely linked
to quantum gravity that is needed to unify gravity with quantum mechanics; see, for example [26, 27].

In 1984, Cohen suggested that the Planck units were likely more important than the gravitational constant and
that the gravitational constant perhaps therefore could be expressed as G = ~c

m2
p
, which is simply the Planck mass

formula solved with respect to G. However, in 1987, Cohen [28] pointed out that no one had shown a way to find
the Planck mass or any other Planck units without first knowing G, so that to express G from Planck units would
just lead to a circular problem. This view has been held until very recently and was, for example, repeated in 2016
by McCulloch [29] who also expressed the Newton gravitational constant as G = ~c

m2
p
.
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Strehl [30] in 1913 discusses that continuous time do not make sense, and that time come in discrete units that
he calls zeit-atome (german for time-atoms). Eddington [31] in 1918 was likely the first to suggest the Planck
length would have to play a central role in a future quantum gravity theory, but without suggesting how. Actually,
already in 1931, Nobel Laureate Percy Bridgman [32] ridiculed the Planck units. For him, they were more like some
artificial mathematical units that simply came out of dimensional analysis from other constants. They were, in his
view, likely not linked to anything fundamental physical. We will claim little progress has been made for more than
100 years on the Planck scale, except until very recently.

For example, Das and Modak [33] have as recently as 2021, pointed out what is likely still the main view among
physicists in relation to the Planck scale detection:

The Planck or the quantum gravity (QG) scale, being 16 orders of magnitude greater than the
electroweak scale, is often considered inaccessible by current experimental techniques.

We will claim that the Planck scale being considered inaccessible by current experimental techniques by most
of the physics community is simply due to a lack of understanding of the Planck scale and the lack of progress in
understanding quantum gravity using standard theory, as well as such failed attempts as super string theory. The
reason for this, we will claim, is that very few physicists are still aware of the enormous progress made in relation
to the Planck scale in the past few years. This is mostly because research about how to detect and understand the
Planck scale has mainly been published in low- ranked journals and in a step-by-step process.

We have, in recent years, demonstrated that the Planck length and other Planck units can remarkably be found
without any knowledge o↵ G and h, and even without c; see [34–37]. This is in strong contrast to what was first
pointed out by Cohen and that has been the view until recently, and still is the view among most researchers. What
is new in this paper is both a more solid historical background on the indivisible time interval and its link to the
Planck time, and also that here we employ even more ways that will show how one can easily measure the Planck
time with no prior knowledge of G, ~ or c. That is, one needs to know no constants to measure the Planck time.
All we need is to combine two gravitational measurements, as will be demonstrated in the next few sections.

The reason we can easily detect the Planck scale is that quantum gravity is remarkably hidden and already
embedded in even Newtonian gravity, not by purpose but by calibration. To detect most gravitational e↵ects is to
detect the Planck scale. The reason this has not been discovered until recently is that one has, for more than 100
years, used a somewhat ad hoc inserted gravity constant, namely G, that first came into use in 1873. We have gained
a new understanding of the Newton gravitational constant now that we can find the Planck units independent of
G, as will be demonstrated below.

3 Compton wavelength for any mass

Essential for a recent breakthrough in understanding the Planck scale has been understanding that the Compton
wavelength is likely the true matter wavelength, and that the de Broglie wavelength is likely only a mathematical
derivative of the Compton wavelength. Since Einstein was able to describe the photo electronic e↵ect, it has been
known that light has particle-wave properties. Louis de Broglie suggested also that matter has a wave property in
addition to particle properties; in other words, that matter also has particle wave duality. Broglie suggested in his
PhD thesis [38] that he presented in 1923/1924, that the matter wavelength was likely given by:

�b =
h

mv
(1)

or in relativistic form [39]

�b =
h

mv�
(2)

where � as usual is the Lorentz factor, � = 1/
p
1� v2/c2.

In 1927, Davisson and Germer [40] reported that they had experimentally observed wavelike properties in
electrons. This was quickly interpreted as the de Broglie hypothesis where correct. However, physicists forgot to
distinguish between de Broglie’s idea that matter had wavelike properties, which indeed was confirmed, and his
formula that gave a precise prediction of the length of these waves. The experiment only confirmed the wavelike
properties and not any direct measurement on if the length of these waves were the same as predicted by de Broglie’s
formula.

In 1923, Arthur Holley Compton [41] reported that to scatter electrons with photons also led to a wavelength
linked to matter, today known as the Compton wavelength, that is given by:
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� =
h

mc
(3)

and the reduced Compton wavelength is given by �̄ = �

2⇡
.

Compton assumed the electrons, when scattered by photons, were standing still when initially hit by photons.
This has recently been extended to also hold true when the electron is initially moving; see [42]. The relativistic
Compton wavelength is given by:

� =
h

mc�
(4)

Now let us compare the de Broglie wavelength with the Compton wavelength. If the particle is at rest, then
the de Broglie wavelength is not even mathematically defined as it is not mathematically allowed to divide by zero.
Alternatively, one can assume a particle never stands fully still, but still then when v approaches zero the de Broglie
wavelength approaches infinite. This has led to absurd predictions, such as an electron is everywhere in the universe
at the same time, or until observed. On the other hand, the Compton wavelength is always mathematically well
defined, and for an electron it always has a length that is of the order of the atomic scale, which makes sense as the
electron is very small.

Pay attention to the fact that the de Broglie wavelength is always equal to the Compton wavelength multiplied
by c

v
. Why would matter have two di↵erent wavelengths and light only one wavelength? In our view, the de Broglie

wavelength is nothing more than a mathematical derivative of the true matter wavelength, namely the Compton
wavelength; see also [43, 44]. There is nothing mathematically wrong with the de Broglie wavelength; it is just it is
a mathematical function of a real physical matter wavelength, and so using it instead of the Compton wavelength
will complicate interpretations. Also, the de Broglie wavelength is not valid for rest-mass particles.

It’s also important that any mass, not only an electron, has a Compton wavelength. If we solve the Compton
wavelength formula with respect to m, we get:

m =
h

�

1

c
=

~
�̄

1

c
(5)

where ~ is the reduced Planck constant ( h

2⇡
).

To rewrite the Compton wavelength formula in terms of mass is trivial, but it seems it was first done and used in
2018 by Haug [45]. Some will likely protest here and say we cannot simply solve the Compton wavelength formula
with respect to m, in particular not for masses that are not electrons. Actually, the idea that also protons have
Compton wavelength goes back to at least 1958 with the paper of Levitt [46], and recently attention to the Compton
wavelength of the proton increased; see Bohr and Trinhammer [47].

We think only fundamental particles have a physical Compton wavelength. Still, all larger masses are composites
of fundamental particles, and their aggregates of reduced Compton wavelengths can be found by the following
aggregation formula:

�̄ =
1P
n

i

1

�̄i

(6)

This way to find the Compton wavelength of a composite particle is fully consistent with aggregating masses in
the standard way:

m =
nX

i

mi (7)

The formula above is strictly only valid for non-bound masses. For bound masses, the mass is typically slightly
lower than the mass aggregates of its individual components due to the release of binding energy [48]. This can
easily be adjusted for, as energy can be treated as mass equivalent from Einstein’s principle of m = E

c2
.

If we know the Planck constant and the kilogram mass of any mass in question, even the kilogram mass of
large objects like, for example, the Earth or the sun, then we can easily find its reduced Compton wavelength. It
is simply given by �̄ = ~

mc
. For masses larger than the Planck mass, the reduced Compton wavelength will be

shorter than the Planck length. No physical Compton wavelength can likely be shorter than the Planck length, but
the aggregates of Compton wavelengths that are all larger than the Planck length can be shorter than the Planck
length. This is related to the fact that the aggregated Compton wavelength is given by formula (6).

However, to find the kilogram mass of the Earth or the sun, we typically need to know G. Later on, we will
need to find the Compton wavelength of larger masses without knowing G and also without knowing ~. This is fully
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possible. First, one can find the Compton wavelength from an electron, as it also can be described by the following
formula (see [35, 42]):

� =
�1,� � �2,�

1� cos ✓
(8)

where ✓ is the angle between the ingoing and outgoing photon from photon scattering. Further, �1,� and �2,� are
the wavelength of the photon when sent towards the electron and when reflected from the electron. All these are
measurable without knowledge o↵ ~ or G.

Next, we can find the Compton wavelength by utilizing cyclotron frequencies. The cyclotron frequency is given
by:

f =
qB

m2⇡
(9)

and since electrons and protons have the same absolute value of the charge, |q|, then the cyclotron frequency ratio
of electrons and protons are proportional to their mass ratio. That is, we must have:

mp

me

=
fe

fP
=

qB

mP 2⇡

qB

me2⇡

=
�̄e

�̄P

(10)

So, when we have measured the cyclotron frequency of electrons and protons, we can find the proton electron
mass ratio (without knowing ~). It has experimentally been found to be approximately 1836.15 by indeed using
the cyclotron method; see [49–51]. All we now need in order to find the Compton wavelength of the proton is to
divide the Compton wavelength of the electron by the cyclotron ratio of 1836.15. For any larger masses, one will
now get a very accurate approximation of the Compton wavelength of that mass by counting the number of protons
in it and dividing by that number. For simplicity, we do not need to distinguish between neutrons and protons as
they have almost the same mass, or we can do the small mass adjustment. This method will lead to the estimated
Compton wavelength being o↵ by less than one percent. The up to 1% error is because we have not considered
binding energy. However, we can also easily estimate the binding energy and adjust for it. However, for our purpose
that we will come to later, we can do well enough without even adjusting for binding energy.

To count the number of atoms in a mass is, however, not trivial. For macroscopic masses that we can hold in
our hand, it is however practically possible. Actually, one of the competing methods for the 2019 redefinition of
the kilogram mass consisted of counting very accurately the number of atoms in silicon spheres; see [52–55]. Silicon
crystals have a very uniform structure (28Si), so by counting a few of them and knowing the volume of, for example,
a silicon sphere very accurately, one can easily estimate the number of atoms in it.

Still, what about large masses like the Earth or the sun? Also, here we can easily find the Compton wavelength
as we must have the following relation:

g1R
2

1

g2R
2

2

=
�̄2

�̄1

(11)

So, we can easily find the gravitational acceleration of a small silicon sphere that we have counted the number
of atoms in and therefore also know the Compton wavelength of; this we can do in a Cavendish apparatus. Some
will possibly think that if we use a Cavendish apparatus then we need to know G, but this is not the case. Actually,
Cavendish himself never used nor suggested a gravitational constant when he measured the density of the Earth;
see [56]. The gravitational acceleration in the Cavendish apparatus is given by:

g =
L4⇡2

✓c

T 2
(12)

where L is the length of the arm between center to center of the two small balls in the apparatus. Further, ✓c is the
angle of deflection of the arm and T is the measured oscillation period. Clearly no G or ~ are needed to measure
this also. Next, to find the gravitational acceleration field of the Earth, for example, one can simply drop a ball
from height H to the ground. The gravitational acceleration is then given by g = 2H

T 2 where T is the time it took for
the ball to fall to the ground. We now have all we need to also calculate the Compton wavelength of large objects
like the Earth, independent of G or ~.

In the next section we will see how the Compton wavelength plays a critical role in finding the Planck time from
simple gravitational measurements.
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4 Measuring the Planck time independent of knowledge of G, c and h

To find the Planck length without knowledge of G or h or c, we can measure the gravitational bending of light, for
example from the sun, and the gravitational acceleration, for example from the Earth. That is, we need to combine
two gravitational measurements. These two gravitational measurements can be from the same object, for example
both from the sun, or they can be from two di↵erent objects, for example the sun and the Earth, something that
is more practical. The general formula for the Planck time is then given by (as first presented here):

tp =
�

4
p
g

R1�̄1

R2

p
�̄2

(13)

where � is the measured light bending at radius R1 from the gravitational object, g is the measured gravitational
acceleration from the other gravitational object at radius R2, and �̄1 and �̄2 are the reduced Compton wavelength
of, respectively, the mass a↵ecting the gravitational deflection of light and the mass we measure the gravitational
acceleration from. We will get back to how to derive it in the next section.

Let’s take a numerical example. The gravitational acceleration we can measure on the surface of the Earth; it
is approximately 9.84 m/s

2. Be aware that to measure it we need no knowledge of G or ~. We can, for example,
measure it by simply dropping a ball from height H above the ground and simply measuring the time it takes from
when we dropped it until it hits the ground. The gravitational acceleration is then given by g = 2H

T 2 . It is only when
we want to predict the gravitational acceleration from Newton or general relativity theory that we need to know G,
not to measure it. In the Planck time equation (13) above, we need the radius of the Earth; this is approximately
R2 = 6371000 meters. The deflection of a light beam passing the sun has been measured to be approximately
1.75 arcseconds. This corresponds to approximately 85 ⇥ 10�7 radians. The radius of the sun is approximately
R1 = 696340000 meters. The reduced Compton wavelength of the sun and the Earth are respectively 1.77⇥ 10�73

m and 5.89⇥ 10�68 m. Inputting this in equation (13) gives:

tp =
85⇥ 10�7

4
p
9.84

696340000⇥ 1.77⇥ 10�73

6371000
p
5.89⇥ 10�68

⇡ 5.4⇥ 10�44
s

This is the Planck length found without any knowledge of G, h, and c. Or actually, it can be discussed if we
need to know c when finding the Compton wavelength, but we definitely do not need any knowledge of G or the
Planck constant.

In the special case where the gravitational acceleration is measured from the same gravitational object and the
same mass as the light bending, then equation (13) can be simplified to:

tp =
�

p
�̄

4
p
g

(14)

Alternatively, for gravitational acceleration we could, for example, have used orbital velocity to find the Planck
time. Then we have the following relation:

tp =
�

4vo

R1�̄1p
R2�̄2

(15)

That is, again to find the Planck time independently of G, ~, and c, we need to do two gravitational measure-
ments: the bending of light and the orbital velocity. Or we can find the Planck time from only one gravitational
measurement if we know the speed of light. The Planck time is equal to:

tp =
R

p
g�̄

c2
(16)

where R is the distance from the center of the gravitational object to where the measurements of the gravitational
acceleration g take place.

The breakthrough in understanding that we can measure any Planck units without knowledge of G or h basically
came with the understanding that matter ticks at the reduced Compton frequency and then the reduced Compton
wavelength is the true matter wavelength, while the de Broglie wavelength [38, 39] is only a mathematical derivative
of the Compton wavelength.

Table 1 shows a series of ways to find the Planck time with no knowledge of G or ~, and some ways to find it
without knowledge of G, ~, and c. To find the Planck time from a pendulum clock has recently been described in
[57] and from a Cavendish apparatus in [37], but the other methods are basically described for the first time here.
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Planck time (God time) from: Formula Comments
Not dependent on G, ~ or c :

Light deflection and orbital velocity tp = �

4vo
R1�̄1p
R2�̄2

Light deflection and gravitational acceleration tp = �

4
p
g

R1�̄1

R2

p
�̄2

Not dependent on G or ~, but on c:

Gravitational acceleration tp = R

p
g�̄

c2

Orbital velocity tp = v0

p
R�̄

c2

Orbital time tp = 2⇡
p
R3�̄

Tc2

Periodicity pendulum clock tp = 2⇡R

p
L�̄

Tc2
L: length pendulum.

Velocity ball Newton cradle tp = Rvout
p
�̄

c2
p
2H

H: hight of ball drop.

Light deflection tp =
p
�R�̄

2c � light deflection.

Advance of perihelion tp =
p

��̄a(1�e2)p
6⇡

� Advance of perihelion

Micro lensing
✓

r
�̄

dSdL
dS�dL

2 ✓ micro lensing.

Cavendish apparatus tp =
q

�̄L2⇡2R2✓c
T2c4

R distance from small to large ball.

L distance between small balls,
✓c angle, T pendulum periodicity.

Hubble time and reduced Compton time tp =
q

th
1
2 tc th: Hubble time, tc: Compton time critical Friedmann universe.

Hubble time and reduced Compton time tp =
p
thtc th: Hubble time, tc: Compton time Haug-Spavieri universe.

Hubble constant and CMB temp tp = H0

T
2

CMB

~2
k
2

b32⇡
2

H0: Hubble constant, Tcmb: CMB temp.

Redshift and CMB temp tp = z

dT
2

CMB

~2c
k
2

b32⇡
2

z: cosmological redshift, Tcmb: CMB temp.

Table 1: The table shows various ways we can find the Planck time without knowledge of G, h, and c, as well as

without knowledge of G and h.

5 How did we come up with these formulas?

Anyone can input values in the formulas above from experiments and test that what comes out is the Planck time.
Still, how did we come up with these formulas? Do they have a proper foundation? Anyone can ad hoc put together
some crackpot formulas by trial and error and get some output similar to the value of the Planck length; that would
be numerology. It is hard to see from the formulas how we got to them. The way we got to them is, however,
rooted in a solid foundation and deep understanding of the Planck scale and other quantum aspects of matter and
gravity. One of the keys is the Compton wavelength formula. It is given by:

� =
h

mc
(17)

The key is to solve this with respect to m, and this gives:

m =
h

�

1

c
=

~
�̄

1

c
(18)

The second insight is that we can solve the Planck length formula for G, and this gives G =
l
2

pc
3

~ . In all observable
gravitational phenomena, we have GM and not GMm, as discussed in [58]. This means ~ always cancels out, as it
is not needed for gravity. Further, by now using the conventional formulas, for example for gravitational deflection,

� = 4GM

c2R
=

4l
2

p

�̄R
and gravitational acceleration, g =

c
2
l
2

p

R2�̄
we can now see that we can combine these to get tp = lp

c
.

If we take the gravitational deflection and divide it by the square root of the gravitational acceleration, we can see
we get:

�
p
g
=

4l
2

p

�̄Rq
c2l2p

R2�̄

=
4lp

c

p
�̄

(19)

In other words, this must be multiplied by �̄ and divided by four to be left with only the Planck time, tp = lp

c
, so

we end up with:

tp =
�

p
�̄

4
p
g
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which is our equation number (14).
Similarly, all the other formulas can be simply derived. We can ensure all the formulas given above are not

just some approximation or randomly put together formulas, but they are exact and it is suddenly possible to
easily find the Planck time and other aspects of the Planck scale from a few gravitational observations and without
any knowledge of G. This because we now understand both G and m from a deeper perspective. The Newton
gravitational constant, which actually was first invented in 1873 by Cornu and Baily [59]1 is, in reality, a composite
constant (see [61]) and the matter wavelength is the Compton wavelength. When combining these simple insights,
it is easy to detect the Planck scale. This again has led us to a recent quantum gravity theory.

We can even build up a full quantum gravitational theory without relying on G or h; this has recently been
done [27, 44], but it is naturally up to others to scrutinize and investigate.

6 The hidden quantization in gravity

In standard physics, we have quantization of energy linked to the Planck constant h as pure electromagnetic energy
can be described as E = h

c

��
. In gravity, we do not need the Planck constant to get quantization.

The hidden Planck constant in the mass and in G always cancel each other out, as we, in “all” observable
gravitational phenomena, have:

GM =
l
2

p
c
3

~ ⇥ ~
�̄

1

c
= c

3
lp

c

lp

�̄
= c

3
tp
lp

�̄
(20)

Therefore, there are no Planck constants needed to predict any gravitational phenomena, as it always cancels
out. Still, it is expected that a final gravitational quantum theory will have quantization of gravity. To our own
surprise, the quantization is already hidden in standard gravity if one just digs deep enough. That is, when one
expresses G as a composite constant and M as M = ~

�

1

c
and calculates out the various gravitational formals, then

GM can be seen as a way to turn the incomplete kilogram mass, which is a human arbitrarily chosen unit, and
construct a more complete mass, namely Mg = lp

c

lp

�̄
= tp

lp

�̄
. This new mass definition can also be found by simply

taking GM

c3
, so it is basically already embedded in standard gravitational physics. It is just that G was inserted ad

hoc in 1873, and was never derived from deeper principles, and has therefore not been understood until recently.
The gravitational constant is found, from calibration, to fix the incomplete kilogram mass so the gravitational
formulas can be used to accurately predict gravitational phenomena. The gravitational constant, by calibration to
gravity phenomena, is able to capture what is missing in the incomplete kilogram mass.

Pay attention to the fact that our new mass definition (collision-time mass) that is embedded (and concealed)
in standard gravitational theory, it is given by:

G

c3
M = Mg =

lp

c

lp

�̄
= tp

lp

�̄
= tpnp (21)

This mass2 is simply equal to the Planck time multiplied by lp

�̄
. This last part lp

�̄
corresponds to the number of

Planck mass events, np, in the gravitational mass Mg per Planck time. This is discussed in detail in a new unified
quantum gravity theory that is rooted in the Planck scale and an indivisible time interval; see [26, 27, 44]. And as
we have clearly demonstrated in the previous section, there is no need to know G or ~ to find the Planck time, so
we can also find this collision-time mass directly without knowledge of such constants. In other words, we do not
need to know G and multiply it with M to find this new mass, as we have also demonstrated in other papers.

For a Planck mass, this last term lp

�̄
is one. So, in a Planck mass particle there is one Planck mass event per

Planck time, and its duration is only the Planck time. For a mass smaller than the Planck mass, it is less than one;
that is, it is then the probability for a Planck mass event to happen in the observational time interval of the Planck
time. For large macroscopic masses, this factor will be an integer plus a small fraction. The integer part then
represents the number of Planck events per Planck time happening in that mass, and the remaining fraction part
is the probability for one more such event. For the sun, we have that this factor is approximately lp

�̄
⇡ 9.15⇥ 1037

events per Planck time. That is, the gravity is quantized. So, what we actually measure is the enormous amount
of Planck times aggregated, but we are able to separate them and even find the one Planck time as matter can be
seen as clocks ticking at the Compton frequency. However, this clocks have two properties. The time between each
Planck event is the Compton time, that is �̄

c
while the Planck event itself lasts the Planck time. You can think

of it is as a clock that every hour says: Ding. The Compton time is the time between each ding, but what is the
duration of the ding itself? That is the Planck time, and it is the ding itself that is a Planck mass event that is the

1They used the notation f for the gravity constant, while Boys [60] in 1894 is likely the first to use the notation G.
2In some previous papers we have used symbol notation M̄ for what we here use symbol Mg for.
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cause of gravity; see [26, 27, 44]. See the papers just referred to for an in-depth discussion and for a suggestion for
a unified quantum gravity theory.

Table 2 shows how to find the number of Planck events inside the gravitational mass per Planck time.

From Formula Comments
Not dependent on G, ~ or c :

Light deflection
lp

�̄
= np =

p
�R

2
p
�̄

� light deflection.

Advance of perihelion
lp

�̄
= np =

p
�a(1�e2)p

6⇡�̄
� Advance of perihelion

Micro lensing
lp

�̄
= np =

✓

r
dSdL

dS�dL

2
p
�̄

✓ micro lensing

Not dependent on G or ~, but on c:

Gravitational acceleration
lp

�̄
= np =

R
p
g

c

p
�̄

Orbital velocity
lp

�̄
= np = v0

p
R

c

p
�̄

Orbital time
lp

�̄
= np = 2⇡

p
R3

Tc

p
�̄

Periodicity pendulum clock
lp

�̄
= np = 2⇡R

p
L

Tc�̄
L is length pendulum.

Velocity ball Newton cradle
lp

�̄
= np ⇡ Rvout

c

p
2H�̄

H hight of ball drop.

Cavendish apparatus
lp

�̄
= np = L2⇡2

R
2
✓c

T2c3lp
R distance from small to large ball.

L distance between small balls,
✓c angle, T pendulum periodicity.

Not dependent on G or c, but on ~ and H0 and Tcmb:

Cosmology observations:
lp

�̄c
= np =

T
2

CMB
H

2

0

k
2

b16⇡
2

~2 Tcmb: CMB temperature, H0: Hubble constant.

Table 2: The table shows various ways we can find the number of Planck mass events
lp

�̄
without knowledge of G, h,

and c as well as without knowledge of G and h.

Table 2 above gives the number of Planck events per Planck time; that is, for the indivisible time interval. We
can easily convert all the formulas above to the arbitrarily human chosen time interval of one second by multiplying
all formulas in table 2 with: 1

tp
. One then end up with c

�̄
= fc, in other words, the reduced Compton frequency per

second, which again is the number of Planck events per second in the gravitational mass.

7 The number of Planck mass events in a Planck mass particle

Interesting is the special case of the Planck mass particle when we are at a distance equal to the Planck length. For
example the Planck acceleration is then ap = c

2

lp
, and the number of Planck mass events as predicted from this is

given by the formula in the table, it is:

lp

�̄
= np =

R
p
g

c

p
�̄

=
lp

q
c2

lp

c
p

lp

= 1 (22)

That is the Planck mass particle is a Planck mass event that last the Planck time as has been suggested not
only by asumption, but by calibration in a new quantum gravity theory, see [26, 27]. The same answer one get from
the orbital velocity formula, for a Planck mass particle the orbital velocity is v0 = c and it gives

lp

�̄
= np =

v0

p
R

c

p
�̄

=
c
p
lp

c
p
lp

= 1 (23)

This means if one observe a Planck mass particle in the Planck time then it is always in a collision state. The
Planck mass is in a new quantum gravity theory [27] simply the collision between two photons (light particles).
Also in standard theory mass can be created from photon photon collisions.

8 Consistent with a new quantum version of general relativity theory

We have demonstrated above how one can extract the number of Planck mass events in any gravitational mass, even
the Hubble sphere. This is consistent with a new approach to quantizing the general relativity theory. Einstein’s
[62] field equation is given by:
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Rµ⌫ � 1

2
Rgµ⌫ =

8⇡G

c4
Tµ⌫ . (24)

However, when we solve the Max Planck formula for the Planck length for G, we obtain G =
l
2

pc
3

~ , and replacing
G with this in Einstein’s field equation gives (see [63, 64]):

Rµ⌫ � 1

2
Rgµ⌫ =

8⇡tplp
~ Tµ⌫ . (25)

This only makes sense if one can find the Planck length or Planck time independent of G, something that has been
demonstrated to be fully possible in recent years and also in this paper. Furthermore, for example, the Schwarzschild
metric can then be written as:

ds
2 = �

✓
1� 2lp

r

lp

�̄M

◆
c
2
dt

2 +

✓
1� 2lp

r

lp

�̄M

◆�1

dr
2 + r

2
d⌦2 (26)

where d⌦2 = (d✓2 + sin2 ✓d�2) and �̄M represents the reduced Compton wavelength of the gravitational mass M .

The term lp

�̄M
denotes the reduced Compton frequency per Planck time, and in section 7, we have demonstrated

how this can be extracted from gravitational observations without any knowledge of G. This is what makes this
version of general relativity quantized. The gravitational mass M has a number of Planck mass events per Planck
time equal to lp

�̄M
. If the mass is equal to the Planck mass, then lp

�̄M
= lp

lp
= 1. For masses smaller than the Planck

mass, the frequency per Planck time is below one. As the lowest observable frequency is one, this should, in our
view, be interpreted as the frequency probability of a Planck mass hit. Therefore, gravity for a mass below the
Planck mass is probabilistic. For macroscopic objects from Planck mass size and much larger, gravity is, on the
other hand, deterministic.

As Haug [65] has recently also demonstrated, we have: T
2

cmb

T
2

Haw

= lp

�̄
when we work with black holes. This is based

on the that the temperature inside the black hole is:

Tcmb =
~c

kb4⇡
p

Rs2lp
(27)

where Rs = 2GM

c2
, which is the Schwarzschild radius of the black hole. This formula was basically first presented

by Tatum et al. [66] and has later been demonstrated to be derived from the Stefan-Boltzmann law by Haug and
Wojnow [65, 67], as well as by Haug and Tatum [68] through a geometric mean approach.

The Schwarzschild metric can therefore even be written in what we can call a thermodynamic form that is valid
for all black holes:

ds
2 = �

✓
1� 2lp

r

T
2

cmb

T
2

Haw

◆
c
2
dt

2 +

✓
1� 2lp

r

T
2

cmb

T
2

Haw

◆�1

dr
2 + r

2
d⌦2 (28)

That is, there is a strong thermodynamic connection to black holes as initially investigated by Bekenstein and

Hawking, but now even incorporated in the Schwarzschild metric itself. So this means T
2

cmb

T
2

Haw

is also directly linked

to the Planck time as this is the reduced Compton frequency per Planck time in the mass of the black hole.

9 Can we really detect the Planck time?

Can we truly detect the Planck time or the Planck length? The Planck time is significantly shorter than what even
the most advanced optical clocks can measure, which is about 10�19 seconds, see [69–72]. Currently, and likely in
the future, we cannot measure a single Planck time. However, if we assume that the Compton frequency is the true
cause of quantization in matter (and gravity), then at each Compton time interval, a Planck mass event occurs, at
least according to recent theories in collision-time quantum gravity theory (see [27] ) as well as in a recent quantum
version of general relativity theory, see [65, 73]. Thus, what we are capable of measuring is a large aggregate of
these Planck mass events, each lasting for the Planck time. Such massive aggregates of events are only found in
macroscopic masses. Additionally, since we can also identify the reduced Compton frequency in the gravitational
object of interest, for example, a one-kilogram ball used in a Cavendish apparatus, we can then isolate the Planck
time. This mean the Planck time is discovered, not only theoretically, but physically. That idea that there was
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a indivisible time interval, that strangely enough was first described directly in the New testament, and later by
Isaac Newton has now been discovered, it is the Planck time and it is fully measurable and has recently led to even
a new quantized form of general relativity theory.

10 Planck time (God time) from cosmology

The Planck time can also be derived from the Cosmic Microwave Background (CMB) temperature combined with
the cosmological red-shift and the Hubble constant. The Planck time is given by

tp =
H0

T
2

CMB

~2
k
2

b
32⇡2

⇡ 5.39⇥ 10�44
s (29)

when using a Hubble constant of 66.8 km/s/Mpc (2.167⇥ 10�18) s�1 and a CMB temperature of 2.725K, see
[74–77]. To understand how we arrive at this formula, we must refer to [65]. Alternatively, from the cosmological
red-shift and CMB temperature, the formula is:

tp =
z

dT
2

CMB

~2c
k
2

b
32⇡2

⇡ 5.39⇥ 10�44
s (30)

where d represents the distance to the emitted photons, and z is the cosmological red-shift.
Furthermore, the reduced Compton time for the critical Friedmann mass in the Hubble sphere is given by:

tc =
�̄c

c
=

H
3

0

T
4

CMB

~4
k
4

b
512⇡4

⇡ 1.26⇥ 10�104
s (31)

This is much shorter than the Planck time, indicating that many events occur within one Planck time inside
the Hubble sphere, each with a duration of the Planck time.

Furthermore, the reduced Compton frequency per Planck time, np = lp

�̄c
, for the critical mass in the Hubble

sphere is:

np =
lp

�̄c

=
T

2

CMB

H
2

0

k
2

b
16⇡2

~2 ⇡ 4.28⇥ 1060 frequency per Planck time (32)

This represents the number of bits computed by the Hubble sphere per Planck time. In this context, the Hubble
sphere can be seen as the most powerful computer, metaphorically referred to as the ”God Computer.” It calculates
an astonishing 7.93⇥10103 bits per second. The fastest human-made computer at the time of writing only performs
about 1 quintillion operations per second, which is like nothing compared to this.

11 The Hubble time, the Planck time, the Compton time and the

Holy trinity of Space-Time

The Hubble constant, first introduced and estimated by Lemâıtre and Hubble, has recently been understood from
a deeper quantum perspective. The Hubble time (the assumed age of the universe) is simply given by th = 1

H0

.
The Hubble time is the longest time in cosmos we know about that we can indirectly estimate and is relevant to
the universe we live in. The Planck time is the shortest time, it is the indivisible time intervale. Here we will
demonstrate there is a direct relation between the two. In the critical Friedmann [78] universe, the Hubble constant
can be described as (see [79, 80]):

H0 =
1

2tp
lp

�̄c

(33)

where �̄c is the reduced Compton wavelength of the critical Friedmann mass, and as before, lp

�̄c
is the reduced

Compton frequency per Planck time. Furthermore, the Hubble time must then be given by:

th =
1

H0

= 2tp
lp

�̄c

(34)

This means the Planck time can also be extracted from the Hubble constant; it is given by:
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tp =

s
�̄c

H02c
=

r
th
�̄c

2c
=

r
th
1

2
tc (35)

where th is the Hubble time, and tc is the reduced Compton time of the critical Friedmann universe. This result was

indirectly shown by Haug [88], who provided the formula: lp =
q

1

2
Rs�̄, in 2018. Additionally, since the Hubble

radius is identical to the Schwarzschild radius: Rs, in the critical Friedman universe, one can derive equation (35)
from this equation simply by dividing it by c.

In the extremal universe [81] that emerges from the extremal solution of the Reissner-Nordström [82, 83], Kerr
[84], and Kerr-Newman [85] metrics, as well as in the Haug and Spavieri [86, 87] universe, we must have:

H0 =
1

tp
lp

�̄u

(36)

where �̄u is the reduced Compton wavelength of the mass in the extremal universe or the Haug-Spavieri universe.
This mass (mass equivalent) is exactly twice the mass in the critical Friedmann universe: 2Mc =

c
3

GH0

. Furthermore,
we have that the Hubble time is given by:

th =
t
2

p

tc
(37)

So, in the extremal universe or in the Haug-Spavieri universe, we have:

tp =

s
�̄u

H0c
=

r
th
�̄u

c
=

p
thtc (38)

where th is the Hubble time and tc is the reduced Compton time in the extremal universe as well as in the Haug-
Spavieri cosmological model. This means the Planck time is the geometric mean time of the Hubble time and the
reduced Compton time of the universe.

Table 1 summarizes direct relationships between microcosmos and cosmos in the form of direct relations between
the Planck time, the Hubble time, and the reduced Compton time, as well as for the Planck length, the Hubble
radius, and the reduced Compton wavelength.

Critical Friedmann universe Haug-Spavieri universe

Planck time tp =

q
th 1

2 tc tp =
p
thtc

Hubble time th =
2t2p
tc

th =
t
2

p

tc

Reduced Compton time tc =
2t2p
th

tc =
t
2

p

th

Planck length lp =

q
Rh

1
2 �̄c lp =

p
Rh�̄u

Hubble radius Rh =
2l2p
�̄c

Rh =
l
2

p

�̄u

Reduced Compton time �̄c =
2l2p
Rh

�̄u =
l
2

p

Rh

Table 3: This table summarize the direct relations between the Planck time, the Hubble time and the reduced Compton

time.

Figure 1 summarizes the relationship between the Planck time, the Hubble time, and the reduced Compton time,
as well as the relationship between the Planck length, the Hubble radius, and the reduced Compton wavelength of
the extremal universe or the Haug-Spavieri cosmological model.
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Figure 1: This figure shows the relationship between Planck time (the indivisible time interval), the Hubble time and

the reduced Compton time.

12 Conclusion

We have looked at the history of the indivisible time interval. An indivisible time interval was mentioned in the New
Testament, something that seems to have got lost in modern English translations. Isaac Newton clearly mentioned
an indivisible time interval in his book Principia, though it is unclear if he got the idea for this from the New
Testament and it is also not important. Today, the Planck time is considered by many physicists to be the smallest
possible time interval and therefore somehow indivisible. However, very recently one has been able for the first
time to measure the Planck time without calculating it from dimensional analysis. The Planck time can be found
by combining two gravitational observations without any knowledge o↵ G, ~ ,and c, or just from one gravitational
observation if one only wants it independent of G and ~. This strongly supports the recent view that to observe
simple e↵ects from gravity itself, such as gravitational acceleration or orbital velocity, is remarkably a detection
of the Planck scale. This is also in line with a recent quantum gravity theory that claims to unify gravity with
quantum mechanics. If this attempt will be considered a useful one or not, only time will tell, when more researchers
have carefully investigated it.
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