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Abstract—Cyclostationary features of communication signals
can be considered as weaknesses from a security point of
view. They can be used by eavesdroppers for signal detection,
modulation recognition or blind parameter estimation. This work
presents a simple approach to make the blind estimation or
detection of these features more difficult. It relies on the use of
a dispersive filter at transmission that acts as a secret key. This
filter is a plugin that is applicable to any existing transmission
scheme. Numerical results applied to a DSSS signal with channel
replay simulations illustrate the benefits of the proposed method.

I. INTRODUCTION

Communication signals often exhibit statistical properties
that vary cyclically with time. Such a cyclicity can be induced
by various design choices such as repetitive pulse shaping or
specific framing/coding. In that case, the signals are said to
be cyclostationary (CS) [1]. Because they require little prior
knowledge on the signal to analyze, CS-based methods are
very relevant to detect communication signals and/or reverse-
engineer the parameters of their physical layer [2]–[6]. From
a security perspective, CS features are then considered as
weaknesses since they ease the work of eavesdroppers.

Removing cyclostationarity from communication signals is
possible in several ways. For instance, the symbol rate or the
pulse-shaping filter can be intentionally changed over time.
The drawback of this kind of approach is that a specific
waveform must be designed, and, more importantly, it may
affect the complexity and/or the performance of the receiver.
In this paper, an alternative point of view is introduced. Our
idea is to design a low-complexity plugin that can be added
to any existing physical layer. More specifically, we propose
(i) to add a linear filter before transmission to change the
CS pattern perceived by an eavesdropper and (ii) to reverse
its effect on the cooperative-receiver side by using a simple
matched-filter. The parameters of the filter are then considered
as a secret key. The main advantage of this approach is that
the design of existing transmitters and receivers does not have
to be changed. The limitation is that the CS features are not
annihilated, they are simply hidden. It is then important to
design a relevant filter to make it difficult for an eavesdropper
to recover the CS features. As discussed next, the family of
dispersive filters is well adapted to this purpose.

The rest of the paper is organized as follows. The signal
model and the assumptions are formulated in Sec. II. Sec. III
presents the main characteristics that must be satisfied by the
filters. Numerical results with dispersive filters are provided
in Sec. IV, followed by conclusions in Sec. V.

II. CYCLOSTATIONARITY OF UA COMMUNICATION
SIGNALS

A random signal x(t) is said to be second-order cyclosta-
tionary (CS) in the wide sense if its mean and autocorrelation
are periodic functions of time [1]. More specifically, let
Rx(t, u) be the autocorrelation function defined as

Rx(t, u)
∆
= E {x∗(t)x(t+ u)} . (1)

If x(t) is second-order cyclostationary, Rx(t, u) admits the
following Fourier series expansion

Rx(t, u) =
∑
α∈A

Rαx (u)e
i2παt, (2)

where Rαx (u) is the cyclic-autocorrelation function defined as

Rαx (u)
∆
= lim
T→∞

1

T

∫ T
2

−T
2

Rx(t, u)e
−i2παtdt. (3)

A denotes the countable set of cycle frequencies α. If A =
{k/Ts}k∈Z , for some Ts > 0, the signal x(t) is said to be
cyclostationary with period Ts. A CS feature or signature is
defined as a subset S ⊆ C, where C = {(u, α) : Rαx (u) ̸= 0}.

Underwater acoustic (UA) communication signals such as
PSK, QAM, DSSS or OFDM signals are second-order CS,
where Ts denotes the symbol duration. However, UA channels
can distort the CS features. For instance, the UA multiscale-
multilag channel, over which mobile and wideband systems
usually communicate, transforms cyclostationary signals into
a sum of motion-dependent time-warped cyclostationary pro-
cesses [7]. More specifically, given an input signal x(t) and
a time-varying channel impulse response h(τ, t), the received
signal r(t) satisfies

r(t) =

∫
R
h(τ, t)x(t− τ)dτ + w(t) =

L∑
ℓ=1

λℓ(t)yℓ(t) + w(t),

(4)
where λℓ(t) is the random complex attenuation of the ℓ-th
channel tap and w(t) is the additive noise. Both λℓ(t) and
w(t) are assumed to be (quasi) wide-sense stationary over the
observation interval. Their correlation functions are denoted as
Rλℓ,λm

(u) and Rw(u), respectively. yℓ(t) is a delayed, phase
and frequency shifted as well as time-warped version of x(t),

yℓ(t)
∆
= x(ψℓ(t)− τℓ)e

i2πfc(ψℓ(t)−τℓ−t). (5)

τℓ denotes the initial time of arrival of the ℓ-th tap, fc is the
carrier frequency and ψℓ(t) is the time-varying delay of the
ℓ-th tap due to motion. It is defined as

ψℓ(t)
∆
=

(
1− vℓ

c

)
t− aℓ

2c
t2 + o(t2), (6)



where c is the sound speed, vℓ is the relative velocity between
the transmitter and the receiver, and aℓ is the relative acceler-
ation. By combining Eqs (1) and (4), it can be shown that the
autocorrelation function Rr(t, u) satisfies

Rr(t, u) =

L∑
ℓ=1

L∑
m=1

Rλℓ,λm(u)Ryℓ,ym(t, u) +Rw(u) (7)

where

Ryℓ,ym(t, u) ≈ ei2πfc(ψm(t+u)−ψℓ(t)+τℓ−τm−u)

×
∑
α∈A

Rαx (ψm(u) + τℓ − τm)ei2πα(ψℓ(t)−τℓ).

(8)

If the acceleration is non-negligible in Eq. (6), then we observe
that Rr(t, u) is not a periodic function of time t but a linear
combination of several chirp signals, whose time-varying
phases depend on the time-varying delays ψℓ of the channel.
The received signal is said to be time-warped cyclostationary.
Although distorted by the channel, the CS features of x(t)
can still be estimated by an eavesdropper using advanced
processing of r(t) [6].

III. DISPERSIVE FILTERING

To hide the CS feature of a communication signal, we
suggest applying, before transmission, a linear filter that takes
advantage of the following result. Let ⊛t denote convolution
with respect to t, if z(t) = x(t)⊛t g(t) then [1, Eq. (3.83) ]

Rαz (u) = Rαx (u)⊛u A
α
g (u), (9)

where Aαg (u) is the narrowband ambiguity function of g,
defined as

Aαg (u)
∆
=

∫
g∗(t)g(t+ u)e−i2παtdt. (10)

Our idea is to find a filter that attenuates the amplitude of the
peak cycle frequencies perceived by an eavesdropper (Eve),
while making sure that a cooperative receiver (Alice) is able
to reverse the filtering process so as to recover the transmitted
signal. g(t) can then be seen as a secret key used to make it
more difficult for Eve to blindly analyze the intercepted signal.
Assuming a filter with unit energy, this vague specification can
be translated into more specific constraints listed below.

Constraint 1. (Attenuation of cycle frequencies)

maxu
∣∣Aαg (u)∣∣ << 1, ∀ |α| ≥ 1

Ts
(11)

Constraint 2. (Cooperative recovery)
Let B denote the (bilateral) bandwidth of x(t), ∃u0 ∈ R such
that

χℓg(u) ≈ E {|λℓ|} |sinc (πB(u− u0)) |, ∀ 1 ≤ ℓ ≤ L (12)

where χℓg(u) denotes the wideband ambiguity function defined
as

χℓg(u)
∆
=

E
{∣∣∣∣∫

R
g∗(t)λℓ(t+ u)g(ψℓ(t+ u))ei2πfc(ψℓ(t+u)−(t+u))dt

∣∣∣∣} .
(13)

χℓg(u) represents the response of a filter matched to g(t)
when it is received with a delay u, compressed or dilated with
a time-warping function ψℓ(t) and modulated with a random
time-varying amplitude λℓ(t). Therefore, if constraints C2 is
satisfied, it means that Alice can reverse the effect of the secret
key by simply applying a matched-filter at reception, while
being robust to Doppler scale and Doppler spread. Formally,
C1 and C2 are contradictory constraints. C1 indicates that
the matched-filter of g must not be robust to frequency shifts
(which can be thought as Doppler shifts), whereas C2 requires
this filter to be robust to Doppler scale and Doppler spread,
the three types of Doppler being closely related. However, in
practice, good compromises can be found. A relevant example
is that of dispersive filters that we define, in our context, as

g(t) = a(t)eiϕ(t)1[−Tg/2,Tg/2](t), (14)

with a(t) ≥ 0. 1(·) denotes the indicator function and Tg >>
Ts is the filter duration. This definition is very general and
includes any kind of parametric or pseudo-random amplitude,
phase or frequency modulated (FM) signal, as long as the
duration of the filter is much greater than the symbol period Ts.
It is out of the scope of this paper to discuss the characteristics
of all possible dispersive filters. Potential candidates can be
found in Radar/Sonar references on ambiguity functions [8].
A specific example is studied in the next section.

IV. ILLUSTRATIONS

For illustration purposes, we consider the family of FM-
filters as a running example (out of many possibilities). In this
case, a(t) is a low-pass and smooth amplitude function and
ϕ(t) is an oscillating phase. The main advantage of these filters
is that the trade-off between C1 and C2 can be easily tuned by
changing the value of a few phase parameters. A good trade-
off is illustrated next with an hyperbolic chirp, whose phase
and amplitude satisfy

ϕ(t) = 2π (ρt+ µ log (1 + ξt))

a(t) =
1

|1 + ξt|
, (15)

with ρ = −6.103, µ = 800, ξ = 10. Tg is set to 100 ms and
the bandwidth to B = 4 kHz.

A. Ambiguity functions

Fig. 1 shows the narrowband ambiguity function Aαg (u) of
the chirp filter. It is clearly visible that its amplitude quickly
decreases with α so that C1 is satisfied for a wide range
of symbol periods Ts. The impact of the filter g(t) on the
cyclic autocorrelation function is illustrated in Fig. 2 with a
DSSS signal. More precisely, it is a QPSK signal spread with a
maximum-length sequence whose chip-rate is set to 3200 Hz,
a symbol period set to Ts ≈ 0.97 ms (spreading factor Nc = 3)
and a root-raised cosine filter with a roll-off set to η = 0.25.
As expected [6] and shown in Fig. 2-(a), without the use of
a dispersive filter, Rαx (u) exhibits some significant energy at
several cycle frequencies multiples of 1/Ts ≈ 1067 Hz. This
energy is concentrated on a range of lags of the order of a
few symbol periods. Such a signature can easily be used by



Fig. 1. Narrowband ambiguity function
∣∣Aα

g (u)
∣∣ of the hyperbolic chirp

described in Eq. (15).

(a)

(b)

Fig. 2. Effect of a dispersive filter on the cyclic autocorrelation function of
a DSSS signal. (a) |Rα

x (u)|, (b) |Rα
z (u)|.

Eve as a relevant feature for modulation recognition or signal
detection. After filtering, the signal remains cyclostationary
but the secret key attenuates, shifts and spreads the cyclic
autocorrelation function along the lag-axis u. Note that the
shift is much larger than the symbol period Ts. Without the
knowledge of the filter parameters, it then becomes more
difficult for Eve to interpret and exploit this unusual CS
signature, especially with noisy observations.

(a)

(b)

Fig. 3. Wideband ambiguity function χℓ
g(u) of the hyperbolic chirp described

in Eq. (15). (a) RMS Doppler spread = 0.5 Hz, (b) RMS Doppler spread = 5
Hz.

Fig. 3 shows the wideband ambiguity function χℓg(u) of
the hyperbolic chirp. The carrier frequency was set to fc = 6
kHz, the relative velocity ranges from ±10 m/s and the relative
acceleration was set to 0.1 m/s2. The channel attenuation λℓ(t)
was modeled as a zero-mean complex Gaussian process with
a variance set to 4/π such that E {|λℓ|} | = 1. The Doppler
spectrum was obtained with a maximum entropy model [9].
The RMS Doppler spread was set to 0.5 Hz and 5 Hz in Fig. 3-
(a) and (b), respectively. Both figures show that the hyperbolic
chirp is very robust to Doppler scale since the amplitude
and the shape of χℓg(u) is almost invariant to velocity. A
higher velocity only induces a greater static delay u0, which
is not problematic for most applications. Doppler spread has
a stronger impact but still reasonable. A RMS Doppler spread
of 0.5 Hz induces almost no loss compared to a time-invariant
channel (maxχℓg(u) ≈ 1). When set to 5 Hz, it is only
responsible of a 1.5 dB loss in amplitude and a slight increase
of the mainlobe width.

As a conclusion, both constraints C1 and C2 can be satisfied
in operational scenarios. This is further illustrated next with
real data.

B. Validation with channel replay

The effect of dispersive filtering is validated with replay
simulations. By convolving input signals with at-sea measure-
ments of impulse responses, channel replay has become a



Fig. 4. Effect of dispersive filtering on the detection of the cyclostationary
signature of a DSSS signal.

standard procedure to test underwater communication systems
[10]–[13]. The impulse responses used in this section are the
one provided with the WATERMARK simulator [13].

1) Cyclostationary detection: We here consider the specific
scenario where Eve wants to detect a DSSS signal with a
specific cyclostationary signature S. Based on the observation
r(t) and the knowledge of S, the detection problem is to
decide between the following hypotheses{

H0 : Rαx (u) = 0, ∀ (u, α) ∈ S
H1 : Rαx (u) ̸= 0, ∀ (u, α) ∈ S. (16)

We consider the same DSSS signal as the one described in Sec.
IV-A with a duration set to 1 s. To limit the complexity, the sig-
nature is restricted to S =

{(
k Ts

4 ,±
n
Ts

)
; k = 1, 2;n = 1, 2

}
.

The chosen detector is the approximated de-warped cyclosta-
tionary (ADCS) detector presented in [6, Sec. III-D]. Fig. 4
shows the probability of signal detection with and without the
use of a dispersive filter. Results are examined versus the in-
band SNR defined as SNR = Eb

N0
× 2
Nc(1+η)

, where Eb denotes
the energy per bit and N0 the power spectral density of the
Gaussian noise. The channel used for the simulation is the
KAU1 channel (hydrophone #8) [13] and the false alarm rate
was set to 10−3. Thanks to the KAU1 channel that spreads
the CS features along the lag axis, signature detection is still
possible for Eve. However, for any targeted detection rate, the
use of a dispersive filter results in a huge SNR loss and some
high detection rates are not even achievable. Note that this
secrecy improvement does not come for free since there is a
10% loss in data rate (duration of x(t) = 1 s, whereas duration
of z(t) = 1.1 s).

2) Perceived channels: In addition to hiding the cyclosta-
tionarity, dispersive filtering drastically affects the parameters
of the transmission channel as perceived by Eve. Conversely,
as the process can be reversed by Alice, the channel perceived
after matched filtering remains very close to the real one. More
precisely, Alice perceives the following channel:

h̃A(t) =

∫
R

∫
R
h(τ, u)g(u− τ)g∗(u− t)dτdu, (17)

whereas, without the key, Eve perceives

h̃E(t) =

∫
R
h(τ, t)g(t− τ)dτ. (18)

Fig. 5. Power delay profiles of the KAU1 channel (hydrophone #8) as
perceived by Alice and Eve.

As illustrated in Fig. 5, the power-delay profile of h̃A(t) is
similar to the one of h(τ, t), while it is harsher for h̃E(t).
There are no identifiable individual taps and the time-delay
spread is larger. Blind synchronization or equalization will
then become more difficult for Eve. This is further illustrated
in Table IV-B2, where the root-mean square (RMS) delay
spread of the WATERMARK channels as perceived by Alice
and Eve is shown for two filter durations: Tg = 100 and 200
ms. It can be noticed that the delay spread for Alice is almost
invariant to this duration, which is not the case for Eve. Finally,
applying a dispersive filter will also tend to “Gaussianize” the
signal and make it look more like noise.

TABLE I
RMS delay spread of the WATERMARK channels as perceived by Alice

and Eve.

Channel RMS delay spread Alice RMS delay spread Eve
Tg = 0.1 s Tg = 0.2 s Tg = 0.1 s Tg = 0.2 s

BCH1 10.3 ms 10.3 ms 30.2 ms 57.8 ms
KAU1 17.5 ms 17.7 ms 31.5 ms 56.3 ms
KAU2 23.5 ms 23.4 ms 31.2 ms 48.0 ms
NCS1 8.7 ms 8.7 ms 31.1 ms 60.5 ms
NOF1 13.5 ms 13.5 ms 36.1 ms 67.4 ms

V. CONCLUSION

It is possible to transform the cyclic autocorrelation function
of communication signals and attenuate its local maxima
by applying, prior to transmission, a dispersive filter whose
impulse response duration is much larger than the symbol
period. Metrics that characterize the trade-off between the
impact of such a filter on the CS features and the ability for a
cooperative receiver to reverse its effect have been formulated.
With the example of an hyperbolic chirp filter applied to
a DSSS signal, numerical results have shown that cyclic-
autocorrelation-based signature detection can be made more
difficult for an eavesdropper. In addition, the transmission
channel, as perceived by the eavesdropper, becomes even more
difficult than it already is. There are no identifiable individual
taps and the time-delay spread is increased. The proposed
approach is low in complexity and can be applied to any
existing transmission scheme.
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