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Abstract: Nonreciprocal phonon emission is predicted theoretically from the coherent excitation
of two coupled optomechanical cavities arranged along a phoxonic crystal nanobeam. The latter
consists of a periodic array of holes and stubs and exhibits simultaneous photonic and phononic
bandgaps. It is shown that nonreciprocal phonon emission arises from a combined effect of the spatial
symmetry of the cavities and their underlying coupled phononic modes and the temporal phase shift
between the excitation sources. This demonstration paves the way for the development of advanced
integrated phonon networks and circuits, in which mechanical waves connect different elements in
phononic and optomechanical structures.

Keywords: phoxonic crystal; coupled optomechanical cavities; phonon emission

1. Introduction

Resonant optomechanical (OM) systems [1–3] enhance the interaction of light with
mechanical oscillators based on light and acoustic waves confinement in the same pho-
tonic/phononic (often referred as “phoxonic”) cavities [4–12], by means of high mechanical
and optical Q resonances. Such cavities have been designed in phoxonic (or OM) crystals
that exhibit simultaneously photonic and phononic band gaps [13–15]. Current research
trends on OM structures include topics such as radiation–pressure cavity cooling [16,17],
quantum coherent optomechanics [1,18], coherent coupling of optical and mechanical
waves in piezoelectric optomechanical microcavities [19–24], and high resolution sensing,
in particular the case of biomolecules [25–27]. The basic phonon circuits, typically taken
into consideration, contain resonant mechanical cavities as promising building blocks of
more complex devices, including filters, couplers, and mechanical sources/detectors. GHz
phonons travelling in suspended nanobeams are good candidates as new state variable
for signal transmission and processing in the microwave range of frequencies, owing to
their small wavelength and radiationless propagation. The emerging field of OM cavities is
expecting to enable on-chip photonic-operated phononic circuits [28]. The main drivers
are the advanced nanofabrication techniques currently available for high spatial resolved
microcavities, as well as the demonstration of self-oscillations/phonon lasing, up to the
GHz range.

In addition, the mechanical interaction between two OM cavities can be exploited for
synchronization purpose. A demonstration of such systems is provided in [29], where OM
cavities, intercoupled by mechanical link, support independent optical modes oscillating
in antiphase. Those modes can be temporarily de-synchronized by actuating one of the
cavities with a heating laser, so that the two cavities oscillate independently. The control of
the mechanical interaction opens the way to the realization of distributed networks of OM
resonators, for a future technology platform, possibly CMOS compatible.

In this contribution, we perform a rigorous analysis of the phonon modulation result-
ing from opto-mechanical coupling in a system of two resonant cavities in a 1D corrugated
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silicon nanobeam. The numerical analysis is qualitatively explained with an analytical
calculation with the help of a simple equivalent multilayer system. In the realistic OM
nanobeam, the corrugation is made in the form of a quasi-periodic structure consisting
of repeated holes and “wings” (lateral stubs) acting as periodic scatterers for bandgap
engineering [10,11]. Two types of coupled resonant cavities will be considered, for which
we recently demonstrated cavity phonon mode splitting [30]. In shape A, two cavities
are introduced as two defects in the same quasi-1D phoxonic crystal, and in shape B, two
quasi-1D phoxonic beams, each containing a single defect, are connected through a straight
nanobeam. Before going to a full 3D finite element analysis of the coupled cavities in our
OM nanobeam, we briefly explain the principle of unidirectional phonon propagation due
to the interaction of phonons produced by the two defects acting as coherent sources.

The paper is organized as follows: Section 2 outlines the theory of unidirectional
phonon propagation, based on the interaction of plane waves produced by two planar
coherent sources, taking into account their specific symmetry. Section 3 presents the numer-
ical 3D finite-element simulations of unidirectional phonon propagation for a system of two
phonon resonators in 1D quasiperiodic nanobeam based structures. Final considerations
will conclude the work.

2. Fundamentals for Two Levels Switching

To demonstrate the effect of unidirectional phonon emission, let us first consider
the simpler case of a single homogeneous nanobeam along the x-axis with two harmonic
sources of longitudinal displacement located at the points x1 and x2. Longitudinal displace-
ment sources are characterized by positive real amplitudes Sj (Sj > 0, where j = 1, 2 is
the number of the source) and phases, φj, (we will call them temporal phase shifts) and
produce guiding waves with a wave vector k. Assuming the sources are coherent, the
displacement in the nanobeam can be presented in the form:

ux(x) = S1eiφ1−ik|x−x1| + S2eiφ2−ik|x−x2|, (1)

As a result, the longitudinal component of the Poynting vector, averaged over the
high frequency cycle, Px(x, ω) = −c11ωIm(ux

∗∂ux/∂x) in the case of lossless medium
(Im(k) = 0), takes the form:

Px(x) = c11ωk


−
(
S1

2 + S2
2 + 2S1S2 cos(kd− φ)

)
, x < x1

S1
2 − S2

2, x1 < x < x2
S1

2 + S2
2 + 2S1S2 cos(kd + φ) x2 < x

, (2)

where φ = φ2 − φ1 is the temporal phase shift and d = x2 − x1 is the spatial distance
between the two sources, leading to the spatial phase kd, ω is the operation frequency, c11
is the 11 (or xx)-components of the stress tensor (normal stress).

The corresponding power consumption form Equation (2) takes the form:

∆Px ≡ Px(x > x2)− Px(x < x1) = 2c11ωk
[
S1

2 + S2
2 + 2S1S2 cos(kd) cos(φ)

]
. (3)

From Equation (3), it results that the power consumption changes from a minimum
value of ∆Pmin

x = 2c11ωk(S1 − S2)
2 (that is zero in the case S1 = S2) to a maximum value

of ∆Pmax
x = 2c11ωk(S1 + S2)

2.
The case of equal amplitudes (S1 = S2 = 1) is interesting to realize efficient redirection

of the phonon flux from one port to another. Thus, the flux at the output port from
Equation (2) is simplified as:
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Px(x) = 2c11ωRe(k)


−1− cos(kd− φ), x < x1

0 x1 < x < x2
1 + cos(kd + φ) x2 < x

, (4)

and the power consumption given by Equation (3) takes the form:

∆Px = 4c11ωRe(k)(1 + cos(φ) cos(kd)), (5)

with a maximal power consumption of ∆Pmax
x = 8c11ωk, which corresponds to the quadru-

ple value of the x-component of the Poynting vector for the single source. One can notice
that the energy flux is always zero inside the region between the two sources in the case of
equal amplitude due to reverse contribution of two identical energy fluxes with opposite
propagation directions.

The relative output of the port can be defined as a ratio between the x component of
the Poynting vector and the power consumption. Thus, using Equations (4) and (5), the
relative output takes the following form:

T =
1

2[1 + cos(φ) cos(kd)]


−1− cos(kd− φ), x < (x1 < x2)

0, x1 < x < x2
1 + cos(kd + φ) (x1 < x2) < x

. (6)

We considered two sources S1 and S2 distant of d and placed in a homogeneous
medium, for a wave vector k. As we can see from Equation (4), playing with the temporal
(φ) and spatial (kd) phase shifts, we can change the outputs of the ports. The energy
flux, the power consumption and the relative outputs at ports P1 (blue) and P2 (red) are
presented in Figure 1 for three spatial phases kd: π/2, 3π/4 and π. In Figure 1, we can
observe two limit cases. In the first one (right panels in Figure 1), when the spatial phase
kd = ±π + 2πm (m = 0;±1;±2; . . . integer), the same output signals is obtained at each
port, and they are zero when φ = 2πm and maximum when φ = ±π + 2πm. The opposite
sign between the two outputs specifies the different direction of propagation. We will refer
to this case as a “symmetric output”. In the second case (left panels in Figure 1), when
the spatial phase kd = ±π/2 + 2πm, the same non-zero output signal is obtained at each
port only at φ = πm. Moreover, the output signal is zero (resp. maximum) at port 1, and
maximum (resp. zero) at port 2, when the temporal phase shift is φ = ±π/2 + 2πm (resp.
φ = ±3π/2 + 2πm). We will refer to this case as an “antisymmetric output”. In other
words, the output level will be the same at φ = πm, and unidirectional at φ = ±π/2+ 2πm.
The power consumption strongly depends on the interrelation between the spatial and the
temporal phases, constant in the case of the spatial phase kd = ±π/2 + 2πm, and with
an oscillation for the other spatial phases. In addition, other situations can occur like the
zero-power consumption at kd = ±π + 2πm and φ = 2πm or the reverse situation for
kd = ±π + 2πm where the outputs are constant contrariwise to the power consumption.

Figure 2 presents deeply the evolution of the relative output at P2 as a function of the
temporal phase, φ, and the spatial phase, kd. One can see the transformation of the output
signal from a constant behavior (kd = 0 or π) to an oscillating curve when (kd = π/2).
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Figure 1. Energy flux (Pi), power consumption (∆Pi), and relative outputs (Ti) at ports P1 (blue) and
P2 (red) for two sources S1 and S2 distant of d and placed in a homogeneous nanobeam, for a wave
vector k as a function of the temporal phase for three spatial phases: π/2 (a), 3π/4 (b) and π (c).
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Figure 2. Relative output at port P2 for two sources S1 and S2, distant of d placed in a homogeneous
nanobeam, at the wave vector k, as function of temporal and spatial phases.

3. Numerical Simulations
3.1. Two Coherent Sources in a Straight Phononic Waveguide

Let us consider two sources, distant of d from each other, inside a simple silicon
nanobeam with a rectangular section (a× e) = (500 nm × 220 nm) (Figure 3a), where a is
the width and e the thickness of the nanobeam. The structure presents a symmetric plane
Π′ ′, parallel to the section. In the simulations, we used the finite-element method code
(COMSOL® multiphysic). The silicon is considered as a cubic material with the elastic
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constants c11 = 166 GPa, c12 = 64 GPa and c44 = 79.6 GPa, and a mass density ρ = 2330 kg/m3.
The two sources are generated under the excitation of two homogeneous forces per area
with a longitudinal component along x of value 108 N/m2 and 108·ei ϕ N/m2. For ports,
perfectly matched layers (PML) of length 9a, as well as a free tetrahedral mesh (except for
PML regions, where 6-layer swept meshes are used) with a minimal characteristic height of
2 nm were used.
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Figure 3. (a) Representation of the simple nanobeam of section (a× e), the symmetry planes and
the relative position of the two sources S1 and S2, distant of d. (b) Dispersion curve of the silicon
nanobeam of section (a× e) = (500 nm × 220 nm). The symmetry (S) or anti-symmetry (A) of the
mode is indicated with respect to the (Π′, Π) plane.

Figure 3b shows the dispersion curves of the nanobeam, in which the blue line corre-
sponds to the mode 4 with a displacement profile symmetric according to the planes Π′

and Π (symmetric in both y- and z-directions). Such longitudinal mode is well adapted to
the optomechanical cavity studied in the next section. At the frequency of 2 GHz, which
is well adapted to our optomechanic cavity studied in the next section the wavevector is
k = 1.6848 × 106 m−1. The corresponding value is indicated with an open black circle in the
dispersion curves of Figure 3b.

As detailed in the previous section, the power at ports P1 and P2 depends on the
distance between the two sources. The analytical model based on the equivalent stratified
multilayer system with two coherent sources presented in Appendix A gives us two
limit cases:

(a) if the spatial phase kd between the two sources is±π+2πm , we deduce the spatial
distance between the two sources d = ( ±1+2m )π/k = (1.9; 5.6; . . . ) µm and we get the
same power flux at both ports P1 and P2.

(b) if the spatial phase is kd= ±π /2 + 2πm , we deduce d = (±1/2 + 2m)π/k = (2.8;
6.53; . . . ) µm leading to a redirection of the energy flux toward one direction, either P1 or
P2. The bold values are the ones chosen for the illustrations given in the following.

This conclusion is supported by the illustration in Figure 4 where we reported the
output at ports P1 and P2 as a function of the temporal phase shift, φ, between the two
sources at different values of the distance d. As we can see from Figure 4, at d = 5.6 µm,
the transmitted signal is the same at both ports whatever is the temporal phase between
the two sources. We can tune the amplitude of the output signals from a maximum value
(φ = π(m + 1)) to zero (φ = 2πm). When d = 6.53 µm, one can tune the signal from one
port to another by changing the temporal phase between the two sources. This value of
d = 6.53 µm is especially interesting, because the output results are very dependent on the
temporal phase shift between the two sources. Indeed, we can get the following situations:
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(i) φ = 3π/2 (or −π/2), the output is maximum at port P1 while at port P2 the output
stays at zero;

(ii) φ = π, the output is the same at both ports;
(iii) φ = π/2, there is a situation opposite to (i), namely, the signal is maximum at port P2

and zero at P1, which in relation to (i) means switching the phonon flux from P1 to P2
when the phase changes from −π/2 to π/2.
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For other values of the distance, for example d = 6.06 µm, the modulation of the signal
from one port to another is still possible but less efficient.

3.2. Coherent Phonon Emission by Activating Two Coupled Cavities

In the previous section, we have considered a homogeneous nanobeam with two
virtual sources of mechanical waves. Such sources can be implemented, for instance, by
using locally piezoelectric materials. Local phonon sources can also be implemented by
optomechanical coupling. Therefore, to analyze the coherent emission of acoustic waves,
we consider the coupling of two phonon modes in two coupled optomechanical cavities
inside a phoxonic nanobeam crystal [9–11,30]. Our crystal is constituted by a periodic
repetition of period a of stubs and holes along a backbone nanobeam, in favor of the
creation of a dual phononic and photonic band gap. An optomechanic cavity of high-
quality factors Q can be created by a tapered variation in size of the holes and/or stubs.
The cavity supports photonic/phononic modes at the telecommunication wavelength of
1.55 µm, meaning a photonic frequency of few hundreds of THz and phononic modes in
the GHz range [9–11]. In the following, the cavity defect is formed with the period (δ = 4a)
and a stub height mismatch (∆h = 0.5a) [30], where δ is the distance between centers of
neighbor cells, and h is the height of the stubs. With such geometrical parameters of the
cavity, we target a mechanical frequency close to 2 GHz. In Figure 5, we show a schematic
representation of two geometries of coupling between two optomechanical cavities inserted
in a nanobeam [30]. In the first geometry (Figure 5a) both cavities belong to the same
phoxonic crystal and are separated by a few unit cells. In the second geometry (Figure 5b),
the cavities belong to two different phoxonic crystals attached to each other by a straight
waveguide of length D. In order to give a simple representation of the structures, we
designate the first corrugated nanobeams in shape A by “−o4×oN×o4−” and the second
one B by “−o4×o4−o4×o4−”. In this representation, the “−” means a straight nanobeam,
“o” one-unit cell of the perfect phoxonic crystal with one hole and two stubs, repeated as
much as the upper subscript (4 or N), and “×” corresponds to the optomechanic cavity.
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Figure 5. Schematic presentation of the phononic nanobeams including two connected defects with
the schematic representation (a) shape A, “−o4×oN×o4−” and (b) shape B, “−o4×o4−o4×o4−”.

Figure 6 presents the influence of the distance between the two cavities on the phonon
cavity modes frequencies, already investigated in our previous paper [30], and for the two
cases shown in Figure 5. The simulations are performed in the framework of the finite
element method (FEM) using COMSOL software. Let us note that a qualitative description
of resonators’ modes splitting can be obtained in a more simplified model of an effective
medium. As a support to the numerical simulations discussed below, we also add in
Appendix A the analytical model based on the equivalent stratified multilayer system.
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Figure 6. (a) Evolution of the resonant frequency as a function of the number of perfect unit cells
separating the two cavities (Figure 5a). (b) same as (a) as a function of length D of the straight
waveguide connecting the two phononic crystals containing the cavities (Figure 5b). The assignments
(1, 2, 3) in the legend of panel (b) represent the symmetries of the modes.

For the first structure, “−o4×oN×o4−”, the distance between cavities is changed by
an integer number of periodic cells N, so that the distance changes in discrete steps. Then,
due to the coupling between the cavities, we observe, when N < 4, the splitting of the
cavity mode at 2.05 GHz into two resonances, that exhibit symmetric and antisymmetric
displacement profiles along x-axis with respect to the middle nanobeam section between
the two cavities (see Figure 6a). For the second structure, “−o4×o4−o4×o4−”, the distance
between the cavities is continuously changing with the length of the central straight part,
D, noted as “−o4×o4−<D>−o4×o4−”. In this case, in addition to the cavity mode at
2.05 GHz, which can be either symmetric or antisymmetric, Fabry-Pérot type modes
coming from the straight nanobeam arise. These latter can also exhibit a symmetric or
antisymmetric displacement profiles along the x-axis with respect to the middle of the
straight nanobeam. Therefore, we can observe in Figure 6b the interaction between a
symmetric (resp. antisymmetric) Fabry-Pérot mode with a symmetric (resp. antisymmetric)
cavity mode when D ∼ 1 µm (resp. 3 µm).
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Figure 7 represents the evolution of the difference between the output at ports P1 and
P2 in shape A (“−o4×oN×o4−”) as a function of the number of perfect cells N, for four
temporal phase shifts between the two sources. In parallel, Figure 8 represents the same
evolution but for shape B (“−o4×o4−<D>−o4×o4−”), as a function of the length of the
straight phononic waveguide of length D. The frequency spectrum range was chosen near
the resonant frequency of uncoupled cavity resonance (2.05 GHz). The outputs at the ports
are calculated as a ratio between longitudinal components of the Poynting vector for the
corrugated nanobeam based cavity system and a straight nanobeam.
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Figure 7. Spectra of the difference between ports P1 and P2 in shape A (“−o4×oN×o4−”) as a
function of the perfect cells number N between the two cavities, for four principal values of the
temporal phase shift between the two sources in the cavity centers (a–d).

Figures 7 and 8 show that the difference between the two outputs is zero for the
temporal phases φ = 0 and φ = π. These phase shifts correspond to either a symmetric
or an anti-symmetric profile of the two sources, which, as a consequence, leads to the
excitation of a mode of same symmetry. But in any case, as seen in Figure 4, the two outputs
are equal, meaning that the difference will be always equal to zero. When the temporal
phase shift is φ = π/2 or 3π/2, the source profile leads to the excitation of both symmetric
and antisymmetric coupled modes of same amplitude. However, now the output can be
different from one port to the other, depending on the spatial distance between the two
cavities. The maximum value of the difference between the output ports is observed for
D = 2 µm and 3.8 µm. In the first case, the signal is maximum at port P1 whereas in the
latter, the signal is maximum at port P2. The distance between two sources in the case of the
shape B structure “−o4×o4−<D>−o4×o4−” is d = 2(4a) + δ + D, where “4” corresponds
to the number of perfect unit cells between the cavity centers and the straight nanobeam.
Thus, the centers of the two cavities are separated by 8 µm (φ = π/2) in the first case and
9.8 µm in the second one (φ = 3π/2).
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Figure 8. Spectra of the difference between ports P1 and P2 in shape B “−o4×o4−<D>−o4×o4−” as
a function of the straight nanobeam length D, for four principal values of the temporal phase shift
between two sources in the cavity centers (a–d).

As we can see from Figures 7 and 8, the maximum of difference between the two
ports is almost the same for shape A (N = 10 and 11 unit cells) and B (D = 2 µm and
9.8 µm). But in shape B, smoother adjustment of the length D can be achieved in contrast
to shape A, where only discrete changes are possible by adding/dropping one periodic
element. The individual signals at ports P1 and P2 and their differences for shape B are
presented Figures 9 and 10 respectively. As deduced previously from Figure 8, the output
spectra at ports P1 and P2 are the same for φ = 0 and φ = π, leading to zero for the
difference in Figure 10. Moreover, for φ = 0, one can see the occurrence of one peak at
2.0494 GHz, corresponding to the coupling of symmetric sources. At φ = π, the sources
are antisymmetric and the coupling mode, also antisymmetric, appears at 2.0495 GHz. In
the case of φ = π/2 and 3π/2, there are two peaks in the spectra due to presence of both
symmetric and anti-symmetric resonances. From Figure 10, one can say that a maximum of
signal is obtained at port P1 (resp. P2) when φ = π/2 (resp. φ = 3π/2). The discrimination
between the two ports, maximal in one and zero in the second, can be achieved over a
narrow frequency range and leads to the non-reciprocity property of the structure. By
tuning the temporal phase shift between the two sources we can change the unidirectional
way of propagation from one port to the other.

As a matter of illustration, the spatial distribution of the x-component of the Poynting
vector is presented Figure 11 for shape B for four temporal phase shifts. In the color
bar, the green corresponds to the zero value of the Poynting vector, the “blue” and “red”
colors correspond, respectively, to the negative and positive directions of propagation of
the mechanical wave. As can be seen from Figure 11, the distribution of the Poynting
vector is zero in the area between external sources as it can be described by Equation (4).
The Poynting vectors on the left and on the right sides of the nanobeam has the same
value but different signs. For φ = π/2 and 3π/2, Figure 11 clearly demonstrates the
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effective unidirectional phonon emission, respectively to the left (φ = π/2) or to the right
(φ = 3π/2) side of the structure under consideration. A similar picture can be observed
for shape A (see Appendix B), even if providing a perfect resonant state is more difficult
due to the discrete changes in the number of perfect cells between sources. This lack of fine
adjustment of the distance between defects, by a discrete change in the number of perfect
cells, leads to limit the efficiency of the unidirectional phonon emission in shape A.
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Figure 9. Outputs at ports P1 and P2 in shape B with D = 2 µm (a) and 3.8 µm (b) under the excitation
of two sources at four fixed temporal phase shifts.
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Figure 10. Difference between the output ports P1 and P2 in shape B with D = 2 µm (solid lines) and
3.8 µm (dashed lines) under the excitation of two sources at four fixed temporal phase shifts (a–d).
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Figure 11. Spatial distribution of the x-component of the Poynting vector in a corrugated nanobeam
with two cavities in the shape B with a straight nanobeam separation of D = 2 µm for four temporal
phase shifts: 0 (a), π/2 (b), π (c) and 3π/2 (d).

4. Conclusions

In this paper, we have theoretically investigated the nonreciprocal emission of phonons
in a system constituted by two coupled phonon cavities. The coupling of phononic
modes was considered in a phoxonic crystal inside a 1D corrugated silicon optomechanic
nanobeam with a rectangular cross section, which combined symmetrical stubs grafted on
each side of the nanobeam and cylindrical holes drilled in the middle of the nanobeam. To
understand the nature of the unidirectional phonon emission in such a system, we first
considered an equivalent multilayer modeling and then considered a realistic 3D system of
an optomechanical structure using finite element modeling. It was shown that symmetric
and antisymmetric phonon modes are formed due to the interaction between two phononic
sources implemented in the structured nanobeam. The coherent excitation of the symmetric
and antisymmetric phononic emissions can be tuned by the temporal phase shift between
the sources. It was shown that unidirectional phonon emission in such a system arises
as a result of the competition of two processes associated with the spatial symmetry of
phononic cavity resonances and the temporal symmetry of a double coherent source. In
our simulation, we have considered two types of phononic interaction in the optomechanic
nanobeam. In the first one, the two cavities are connected through a set of perfect unit
cells. In the second one, a straight waveguide is introduced in-between. We found that
the second implementation of the phonon coupler is more efficient for the control of the
nonreciprocal phonon emission, since it is much easier to provide resonance conditions by
smoothly changing the length of the connecting straight nanobeam.

This work demonstrates the possibility of creating optomechanical or electrome-
chanical switching devices for on-chip implementation for further application in sensing,
metrology and quantum information.
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Appendix A. Equivalent Stratified Multilayer Systems Corresponding to
Corrugated Nanobeams

The qualitative behavior of guided modes of a nanobeam can be described in the
framework of an equivalent media model. Since the propagation of waveguide modes in
confined systems differs from the propagation of bulk plane waves mainly by the presence
of localization in directions perpendicular to propagation, then for a qualitative description
of waveguide modes, it suffices to consider a simpler model of propagation of bulk plane
waves, where localization is taken into account by introducing an effective medium with
mass density, ρe f f . In this case, the transverse component of the wave vector is described
by the effective value, ne f f . Noting that ne f f is less than the ratio between transverse and
longitudinal sound velocities in this medium. Then, the quasi-periodic system can be
presented in the form of a medium with a mass density for which the ratio between the
transverse sound velocity in the first medium and the longitudinal sound velocities in
another medium (with index m), vt

1/vl
m, is less than ne f f and (vt

1/vl
m < ne f f < vt

1/vl
1). In

this case, there are only evanescence waves inside such medium and we can consider it as
a barrier for propagating guided modes. We can estimate mass density in the framework of
effective medium approximation: ρe f f = ρSi f + ρair(1− f ), where ρSi is the mass density
in silicon and ρair � ρSi is the mass density in air or vacuum, f is the air/vacuum filling
factor ( f = πr2/

(
a2 + 2hw

)
in the case of an elementary cell with stubs and a central

hole, shown in Figure 5, where r is the radius of the hole, w and h are the width and
height of the stubs, respectively). The profile of equivalent mass density and sketch of
corresponding 1D quasi-periodic nanobeam based phononic structures (see in Figure 5) and
the results of resonant frequency simulations is presented in Figure A1. The incoming wave
is assumed to be launched from one of sides of the structure under consideration. As can be
seen, the mode splitting within the framework of the effective medium model (Figure A1)
qualitatively coincides with numerical calculations by the finite element method (Figure 6).
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Figure A1. (a) The mass density profile of the two cavities linked directly in quasi 1D-periodic
phononic crystal of length d. (b) Resonant wavelength as a function of the cavities distance d
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corresponding to N cells in panel (a) for two cavities linked directly in quasi 1D-periodic phononic
crystal. (c) The mass density profile of the two cavities linked through a straight phononic waveguide
of length D. (d) Resonant wavelength as function of length D of middle layer (corresponding to a
straight phononic beam) in panel (c) that connects the two crystals containing the cavities.

Appendix B. Unidirectional Coherent Phonon Emission in the Quasi-One-Dimension
Corrugated Nanobeams of Shape A
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