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Choices made in the design phases of multiscale structures are guided by the integration of knowledge on parameters at different scales of observation of 
the structure. These choices are often based on many experimental and predictive campaigns which increase modelling costs. The work developed here 
integrates the consideration of uncertainties in order to rationalise the cost of modelling (predictive and experimental) while controlling uncertainty 
over those parameters that are of interest for the structure scale. The methodology is applied to the study of a thick composite pressure vessel to be used 
for hydrogen storage. 
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1. Introduction 

The cost of decisions taken during the different design phases
affects a large proportion of the cost of the life cycle of a product. 
To reduce decisional risk, many experimental, analytical, 
numerical or semi analytical models are incorporated into the 
modelling process to guide the designer’s choices [1]. During the 
preliminary design phase or as part of a product redesign, many 
concepts are envisaged relating to sizing or choice of materials. 
Improvements in predicting the behaviour of these systems are 
dependent on integrating knowledge into the models. This 
integration is carried out at different scales of the structure (not 
always representative) by means of complex and costly 
experimental modelling campaigns. One of the problems facing 
the designer is based on the right trade off between improving 
the quality of the prediction and increasing modelling costs. 
Different studies put managing uncertainty in product design at 
the different phases of the design process [2]. Many studies also 
propose decision support methodologies in design integrating the 
consideration of uncertainties into the resolution of optimisation 
problems [3 ,4]. In order to consider uncertainties, there are 
issues that have to be dealt with such as identifying their nature, 
their representation and their propagation in the associated 
models. In the literature, different studies differentiate between 
aleatory and epistemic uncertainties in their approaches to 
representation and propagation [1, 5]. Probabilistic approaches, 
used in this work, are based on a representation of uncertainty 
specific to each parameter across all of the studied interval. When 
using these approaches, uncertainties over the models’ output 
parameters are assessed based on the variability of the input 
variables and the models used [6]. To do this, sources of 
uncertainty are represented by means of different interpretations 
described in the works of Sudret [7] according to information 
available on the uncertain parameters. These uncertainties are 
then propagated in the models using sampling methods [8]. The 
aim of this study is to develop a method to assist design under 
uncertainties to guide the designer in choosing combinations of 
predictive and experimental models so that levels of uncertainty 

and modelling costs are controlled and adapted to the 
advancement of the design process. After first focusing on 
considering uncertainties in the method developed here, the 
results are applied to a case study of a thick composite pressure 
vessel for hydrogen storage [6].  

2. Methodology structure 

The study structure for this work is a thick carbon fibre 
composite wounded pressure vessel designed to ensure a 
minimum burst pressure. Figure 1 shows a breakdown of the 
studied vessel into different observation scales.  

Figure 1. Outline of experimental and predictive modelling. 

The developed methodology is based on the definition of 
different sets of vectors. The set X=[x1,…,xs] contains vectors xi of 
parameters obtained at each ith scale from experimental test 
campaigns or geometric parameters, involved in characterising 
the burst pressure of the vessel. The set M{X}=[m1,…,ms] includes 
vectors mi, of predictive and experimental models defined at each 
ith scale to determine parameters of the set X. The set W{M} 
contains vectors wj called modelling paths defined by a 
combination of models (predictive or experimental) selected in 
M{X}, at different scales, to define each parameter of X involved in 



determining the burst pressure of the vessel Pecl. A change of 
model along a path results in a new modelling path being defined 
in W{M}. Thus, the search space contains a multitude of modelling 
paths.  

 
2.1. Uncertainty and modelling costs methods 
 

The designer’s decision making process is based on: 
 
 consideration of aleatory uncertainties U{X} over the 

parameters of the set X. Representation and propagation are 
described by a frequentist interpretation of the probabilistic 
approach. Distribution analysis was used to propagate all 
information on the uncertainty of the input variables via the 
total description of the distribution envelope using probability 
density functions.  

 consideration of epistemic uncertainties U{M} over the models 
mi of the set M{X}. In addition to propagating uncertainties 
associated with the input variables of the set X, each predictive 
model presents an epistemic uncertainty defined from the Mean 
Squared Error (MSE) [9] between a reference distribution and 
the results obtained by the model. 
Uncertainty across all parameters is propagated using 

probability density functions represented by normal laws 
obtained by Monte Carlo sampling. Epistemic and aleatory 
uncertainties are aggregated to ensure they are carried along the 
modelling paths by representing terms linked to the variance by 
normal distributions with zero mean and variance corresponding 
to the square of their standard deviation [10]. Each modelling 
path wj of the set W{M} conveys an uncertainty about the burst 
pressure uj(Pecl). 
 defining the cost of the models in order to assess the cost of 

modelling path. Fuzzy logic [11] was used with logical rules 
implemented using the Mamdani inference method [12]. The 
defuzzification was carried out using the barycentre method 
[13]. The cost of the models used is determined so that each 
modelling path presents a cost associated with the 
experimental and predictive modelling of the parameters. Total 
cost of the analytical models is based on two criteria: the 
number of input parameters in the model and the number of 
operations carried out. Calculating the cost of experimental 
models is based on calculating the cost of the treatment model 
(similar to calculating the cost of analytical models) and 
calculating the cost of the experiment. This cost takes into 
account the complexity of setting up the test pieces, the 
quantity of test pieces, the complexity of the equipment used. 
Finally, the vector c[W] contains the j variables c(wj) defining 
modelling path costs.  

The Figure 2 summarises the process of search for solutions 
consisted of solving a multiobjective optimisation problem.  
The methodology is applied to determine optimised modelling 
paths wj that will minimise uncertainty over the burst pressure 
uj(Pecl) of the vessel and minimise the cost of modelling c(wj).  
 
2.2. Overview of mechanical properties required 
 

At each scale, the parameters involved in determining the burst 
pressure of the vessel Pecl are defined (Figure 1). Burst pressure is 
calculated using a fibre direction failure criterion in each ply of 
the stratification. This criterion requires knowledge of the fibre 
direction stress σx(k) in each ply of the stratification, calculated 
using the predictive model proposed by Xia et al. [14], and the 
fibre direction stress at failure, written X. When using the thick 
model, all the elastic properties of the unidirectional plies Exx, νxy, 
Gxy, Gyz, νyz, Ezz, νzx, Gzx, Eyy must be determined in the different 
axes. The experimental modelling in this study is based on 

experimental tests carried out on: UD plates wound, specimens 
obtained from wound cylinders with 310 mm diameter (Cyl. 
Φ310) and 32 mm diameter tubes (Φ32 tube) [15].  
 

 
 

 
 
 
 
 
Figure 2. Multiobjective optimisation process 
 
The different models used are summarised in Table 1. The 
stratification and the inner diameter are fixed by the 
specifications. Ply thickness ep(k) is obtained from two models: 
one where ply thickness is constant in the stratification and one 
which considers that the thickness of each ply is variable [16]. 
The fibre volume fraction Vf is approximated using three 
techniques: chemical dissolution (ch. diss.), supercritical 
solvolysis (solv.) and image analysis measurements (img. anal.) of 
stratified plates [16]. Models that consider or disregard the 
volume fraction of porosities are included. The effect of the 
porosity rate on the elastic properties of the plies is taken into 
account by applying an adjustment to the elastic modulus Em, the 
Poisson’s ratio νm of the matrix, and the fibre direction stress at 
failure of unidirectional ply X [16]. The reference path, identified 
in Table 1, is based on experimental and predictive campaigns 
validated in the work of [16] to define the vessel [15, 16].  

Table 1  
Experimental and predictive modelling of parameters 
 

Param 
eters 

Analytical 
modelling 

Experimental modelling 

Ef, Vm Database [16] * 
Em Database Nanoindentation [16] * 
Exx Chamis [17] Plate [15] * Cyl. Φ310 [15] 
Eyy   Plate * Cyl. Φ310  Φ32 tube [15] 
Ezz Chamis RARDE [15] * 
vxy Chamis Plate*     
Gxy Chamis Plate* Cyl. Φ310  Φ32 tube 
Gyz Chamis *       
X Plate*       
Vf                                  img. anal. [16] * solv. [16] ch. diss. [16] 
Vp None img. anal. *   
σx(k) Xia [14] * 
ep(k)  constant [16]  variable [16] * 
Pecl Failure criteria [16] * 

* reference modelling path choices 

3. Results 

3.1. Obtaining the Pareto front 
 

The search space includes all possible modelling paths for 
defining the burst pressure of the vessel. The genetic algorithm 
NSGA-II (Fast Nondominated Sorting Genetic Algorithm) was 
used to determine the optimised modelling paths that make it 
possible to minimise uncertainty over burst pressure and 
modelling cost. This algorithm is based on elitism and nesting 
processes [18] and its effectiveness in problems with two 
objectives has been demonstrated in several studies [19, 20]. The 
configuration of the NSGA-II genetic algorithm is based on a 
population composed of 80 generations of 100 individuals. 
Crossover probability is fixed at 85% and mutation probability at 
7%. For more in-depth information, the choice of the number of 
individuals, the number of generations, crossover probability and 

 



mutation probability are discussed in several studies [20, 21]. In 
the proposed methodology, uncertainty over the burst pressure is 
obtained by calculating the root mean square error (RMSE) 
between the distribution obtained on the burst pressure at the 
end of each modelling path and that obtained when using the 
reference modelling path identified in Table 1. Thus the RMSE 
indicator contains two pieces of information: the coefficient of 
variation which characterises the aleatory and epistemic 
uncertainty carried by the modelling path and the deviation from 
the mean which characterises the deviation between the average 
obtained for the burst pressure values at the end of a modelling 
path and that obtained by the reference path. Figure 3 presents 
all the modelling paths that were evaluated by the NSGA-II 
algorithm according to their modelling cost. The cost shown in 
Figure 3 is calculated in relation to the cost of the reference path 
and the RMSE indicator is adimensional, using the average burst 
pressure for each modelling path. Ten optimised modelling paths 
were identified on the Pareto front. The reference modelling path 
has a high cost and a burst pressure with an average value of 
2540.9 bars, with a coefficient of variation of 2.1%.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Pareto front obtained by minimising modelling cost and 
uncertainty (RMSE) on the burst pressure of the vessel. 
 
3.2. Determining efficient knowledge integration 
 

Table 2 presents the modelling choices made from the 10 
modelling paths on the Pareto front and the values of costs 
associated with each modelling path. Analysis of knowledge 
integration focuses on 4 key discriminating parameters in 
determining the burst pressure: longitudinal Young’s modulus of 
the plies Exx, out of plane Young’s modulus Ezz, porosity rate Vp 
and ply thickness ep(k). The results obtained show that path 10, 
50% less expensive than the reference path, requires very little 
experimental development, the average burst pressure 
determined by this path is 2853 bars (+12.3%/reference) with a 
coefficient of variation of 7.2%. With a similar modelling cost, 
path 9 integrates the consideration of variable ply thickness, 
which improves the burst pressure prediction compared to path 
10. The average pressure calculated by path 9 is 2710 bars with a 
coefficient of variation of 5.5%. The integration of the 
experimental tests on the longitudinal Young’s modulus of the 
plies Exx allows a significant reduction in the coefficient of 
variation on the burst pressure (2.1% vs. 5.5%) for the group of 
three modelling paths (6, 7, 8). The choice from these 
experimental models (based on tensile tests on wound UD plates 
or on specimens obtained from large diameter cylinder) does not 

significantly influence the cost of modelling and the quality of the 
burst pressure prediction. 

Table 2 
Choice of predictive and experimental modelling of the Pareto front 
modelling paths 
 

Path ID 
Parameters        

1 2 3 4 5 6 7 8 9 10 

Exx 
 
 

Plate           
Cyl.           
Chamis           

Ezz 
 

RARDE           
Chamis           

ep(k) 
 

variable           
constant           

Vp 
 

Yes           
No           

Cost Gain (%) 22 31 31 34 38 39 40 42 49 51 

 
The savings made in these modelling paths are the result of 

using the transverse isotropy hypothesis and disregarding 
porosities. Path 5 uses predictive modelling for the longitudinal 
Young’s modulus of the plies Exx which leads to an increase in the 
coefficient of variation and in the deviation from the reference 
mean, but this second deviation is offset by consideration of 
porosities. Modelling paths 2 to 4 form a group of paths with 
similar modelling costs. All these paths consider a constant ply 
thickness in the structure. In all these paths, the effect of the 
volume fraction of the porosities is considered in the modelling. 
These paths differ from path 1 as they determine the out of plane 
modulus Ezz using the transverse isotropy hypothesis. The 
differences between these modelling paths are mainly focused on 
the experimental model used to define the volume fraction of the 
fibres Vf and the longitudinal Young’s modulus Exx. The results 
show that these experimental models do not have a significant 
influence on the quality of the burst pressure prediction. Finally, 
for modelling path 1 the cost is 22% less than the reference and 
the propagated epistemic and aleatory uncertainty is similar to 
the reference (2.2% vs. 2.1%). The average burst pressure 
calculated for this modelling path is 2529 bars (-0.5%/reference). 
This modelling path takes porosities into account and the variable 
thickness of the plies in the structure. The out of plane Young’s 
modulus Ezz is obtained from an experimental model. The 
longitudinal Young’s modulus for the plies Exx is modelled using 
experimental tests on wound plates. This drop in cost compared 
to the reference is possible due to a rationalisation of the 
experimental models used to calculate burst pressure, especially 
when using predictive models to characterise the Poisson’s ratio 
in the plane and shear moduli. Results obtained by using the 
Pareto front show that the quality of the estimate of the burst 
pressure averages is improved by the experimental modelling of 
the out of plane Young’s modulus Ezz, by considering the porosity 
rate Vp and by the experimental modelling of variable ply 
thickness ep(k). In addition, the level of epistemic and aleatory 
uncertainty over the burst pressure decreases with the 
experimental modelling of variable ply thickness ep(k) and the 
longitudinal Young’s modulus of the plies Exx without the need to 
resort to applying the model to sections of specimens which are 
more complex to prepare. 

4. Composite vessel redesign 

Modelling paths 1, 6 and 9 (Table 2) on the Pareto front were 
used in the redesign of the thick composite pressure vessel. The 
basic vessel with an inner diameter of 310 mm has the following 
stratification: [(±15/±25/902/±35/±45/902)7/90]. The minimum 

 



burst pressure of this basic vessel must be greater than 2300 
bars. The redesign concerns vessels with inner diameters of 
between 220 mm and 380 mm, (volume of the vessel increased or 
decreased by 50%), and burst pressures between 1800 bars and 
2800 bars. Four redesign case studies are defined (Table 3). 
Calculating the minimum burst pressure is based on the 
experimental and predictive modelling choices made in optimised 
modelling paths 1, 6 and 9 (Table 2). The cost of each optimised 
modelling paths 1,6,9, calculated on the basic vessel is retained in 
the redesign of the vessel. During the redesign process, the design 
parameter represents the number of groups of plies N in the 
stratification [(±15/±25/902/±35/±45/902)N/90] which will 
guarantee the minimum burst pressure required in each case 
study. Figure 4 shows the overestimate obtained in parameter N 
compared to the sizing solution obtained when using the 
reference modelling path. 

Table 3  
Case study to redesign a hydrogen pressure vessel  
 

Vessel Inner diameter  Minimum 
burst pressure 

Redesigned 
vessel 

Case study 1 220 mm 2300 bars V-50% 

Case study 2 380 mm 2300 bars V+50% 

Case study 3 310 mm 1800 bars P-500 bars 

Case study 4 310 mm 2800 bars P+500 bars 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Stratification obtained in the redesign of the pressure vessel 
compared to the reference stratification. 
 
Solution 1, which shows a 22% gain in the cost of modelling 
compared to the reference modelling path, delivers the same 
sizing proposals as the reference path in all the proposed 
redesign cases (volume 50% higher or lower and minimum burst 
pressure increased or decreased by 500 bars). Solution 6, where 
the modelling cost is 39% lower, delivers a systematic oversizing 
of a group of plies for each redesign case. This solution represents 
a good trade-off between modelling cost and precision in the 
prediction. Finally, solution 9 produces varying overestimates 
depending on the redesign case. These results are linked to the 
large number of predictive models assigned to this modelling 
path. The use of optimised paths in the pressure vessel redesign 
phase makes it possible to select design choices during the 
preliminary design phases while still guaranteeing low modelling 
costs and a controlled level of confidence regarding the 
parameters of interest. 

5. Conclusion 

The methodology developed here, and applied to the case study 
of a thick composite pressure vessel on which reference studies 
had been carried out [15, 16], made it possible to examine in 
further depth the means of integrating knowledge in order to 
model multiscale structures. The optimisation work rationalises 
the experimental and predictive modelling by reducing their 
costs, while at the same time guaranteeing a controlled 
uncertainty over the burst pressure of the vessel. Different 
modelling choices were selected for the redesign of the vessel 
with different trade offs between modelling costs and 
uncertainty. The optimised modelling paths result in sizing 
solutions suitable for vessel volumes 50% larger or smaller and 
for burst pressures 500 bars lower or higher. This methodology 
takes place in cases where the designer’s knowledge of the 
parameters is high such as routine design or redesign process. 
Different representation of uncertainties and propagation 
methods will have to be developed in order to integrate lower 
levels of information on uncertain parameters corresponding, for 
instance, to upstream design phases or at the pre-project stage.  
 
References  
 

[1] Jaeger, L., 2013, Optimisation multdisciplinaire sous incertitude en phase 
conceptuelle avion, Ph.D. thesis, Université Toulouse III. 
[2] Morse, E., Dantan, J-Y., Anwer, N., Söderberg, R., Moroni, G., Qureshi, A., Jiang, X., 
Mathieu, L., 2018, Tolerancing: Managing uncertainty from conceptual design to final 
product, Annals of the CIRP, 67/2: 695-717. 
[3] António, C. C., Hoffbauer, L. N., 2017, Optimal design of composite shells based on 
minimum weight and maximum feasibility robustness, Int. J. Mech. Mater. Des., 
13/2:287–310. 
[4] Roy, R., Azene, Y. T., Farrugia, D., Onisa, C., Mehnen, J., 2009, Evolutionary multi-
objective design optimisation with real life uncertainty and constraints, Annals of 
the CIRP, 58/1:169-172. 
[5] Malmiry, R. B., Pailhès, J., Qureshi, A. J., Antoine, J. F., & Dantan, J. Y., 2016, 
Management of product design complexity due to epistemic uncertainty via energy 
flow modelling based on CPM, Annals of the CIRP, 65/1: 169-172. 
[6] Rodríguez Pila, E.C., Guillebaud, C., Wargnier, H., 2016, Development of a 
sensitivity-based design methodology for composite structures, Proceedings of the 
17th European Conference on Composite Materials ECCM. 
[7] Sudret, B., 2007, Uncertainty propagation and sensitivity analysis in mechanical 
models - Contributions to structural reliability and stochastic spectral methods, 
HDR, Université Blaise Pascal – Clermount II, Aubière, France. 
[8] Lee, S.H., Chen, W., 2009, A comparative study of uncertainty propagation 
methods for black-box-type problems, Struct. Multidiscip. Optim., 37/3:239. 
[9] Shiao, M.C., Chamis, C.C., 1999, Probabilistic evaluation of fuselage-type 
composite structures,  Probabilistic Engineering Mechanics 14/1–2:179–187. 
[10] Dobson, A.J., Barnett, A., 2008, An Introduction to Generalized Linear Models, 
Third Edition. CRC Press. 
[11] Noor, A.K., Starnes Jr, J.H., Peters, J.M., 2000, Uncertainty analysis of composite 
structures, Computer Methods in Applied Mechanics and Engineering 185/2–4:413–
432. 
[12] Iancu,I., 2012 A Mamdani Type Fuzzy Logic Controller, in Fuzzy Logic - Controls, 
Concepts, Theories and Applications, Ed. InTech. 
[13] Leekwijck, W.V., Kerre, E.E., 1999, Defuzzification: criteria and classification, 
Fuzzy Sets and Systems 108/2:159–178. 
[14] Xia, M., Takayanagi, H., Kemmochi, K., 2001, Analysis of multi-layered filament-
wound composite pipes under internal pressure, Composite Structures 53/4:483–
491. 
[15] Perry, N., Wahl, J.C., Bois, C., Pilato, A., Bernard, A., 2013, Thick composite design 
for hydrogen vessels: A contribution to composite design method, Annals of the 
CIRP, 62/1:139–142. 
[16] Pilato, A., 2011, Caractérisation des structures composites bobinées épaisses, 
application à l’étude du comportement de réservoirs de stockage d’hydrogène, Ph.D. 
thesis, Université Bordeaux I. 
[17] Chamis, C.C., 1984, Simplified composite micromechanics equations for 
strength, fracture toughness and environmental effects S.A.M.P.E. 15/4:41–55. 
[18] Gharari, R., Poursalehi, N., Abbasi, M., Aghaie, M., 2016, Implementation of 
Strength Pareto Evolutionary Algorithm II in the Multiobjective Burnable Poison 
Placement Optimization of KWU Pressurized Water Reactor, Nucl. Eng. Technol. 
48/5:1126–1139. 
[19] De Munck, M., De Sutter, S., Verbruggen, S., Tysmans, T., Coelho, R.F., 2015, 
Multi-objective weight and cost optimization of hybrid composite-concrete beams, 
Composite Structures 134:369–377. 
[20] Honda, S., Igarashi, T., Narita, Y., 2013, Multi-objective optimization of 
curvilinear fiber shapes for laminated composite plates by using NSGA-II, 
Composites Part B: Engineering 45/1:1071–1078.  
[21] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002, A fast and elitist 
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6/2:182–197. 

 




