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ORIGINAL ARTICLE
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Abstract

Objectives. The accumulation of tumor-associated macrophages
(TAMs) is correlated with poor clinical outcome, but the mechanisms
governing their differentiation from circulating monocytes remain
unclear in humans. Methods. Using multicolor flow cytometry, we
evaluated TAMs phenotype in 93 breast cancer (BC) patients.
Furthermore, monocytes from healthy donors were cultured in the
presence of supernatants from dilacerated primary tumors to
investigate their differentiation into macrophages (MΦ) in vitro.
Additionally, we used transcriptomic analysis to evaluate BC
patients’ blood monocytes profiles. Results. We observed that high
intra-tumor CD163-expressing TAM density is predictive of reduced
survival in BC patients. In vitro, M-CSF, TGF-b and VEGF from primary
tumor supernatants skewed the differentiation of healthy donor
blood monocytes towards CD163highCD86lowIL-10high M2-like MΦ
that strongly suppressed CD4+ T-cell expansion via PD-L1 and IL-10.
In addition, blood monocytes from about 40% of BC patients
displayed an altered response to in vitro stimulation, being
refractory to type-1 MΦ (M1-MΦ) differentiation and secreting
higher amounts of immunosuppressive, metastatic-related and
angiogenic cytokines. Aside from showing that monocyte
transcriptome is significantly altered by the presence of BC, we also
demonstrated an overall metabolic de-activation in refractory
monocytes of BC patients. In contrast, monocytes from sensitive BC
patients undergoing normal M1-MΦ differentiation showed up-
regulation of IFN-response genes and had no signs of metabolic
alteration. Conclusion. Altogether, our results suggest that systemic
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factors skew BC patient blood monocytes towards a pro-metastatic
profile, resulting in the accumulation of further polarised CD163high

TAMs resembling type-2 MΦ (M2-MΦ) in the local BC
microenvironment. These data indicate that monitoring circulating
monocytes in BC patients may provide an indication of early
systemic alterations induced by cancer and, thus, be instrumental in
the development of improved personalised immunotherapeutic
interventions.

Keywords: breast cancer, CD163, IFN responses, IL-10, tumor-
associated macrophages

INTRODUCTION

During cancer development, a complex micro-
environment is formed, generating a unique set
of signals impacting infiltrating immune cells. One
consequence is the accumulation of tumor-
associated macrophages (TAMs), which are often
abundantly present in malignant solid tumors and
have been associated with tumor invasion,
migration and angiogenesis,1,2 as well as worse
clinical outcome.3,4

Tumor-associated macrophages are mostly
derived from circulating monocytes and can be
classified by an oversimplified bi-functional model
of M1-MΦ (inflammatory) versus M2-MΦ (anti-
inflammatory) differentiation.5,6 M1-MΦ are
recognised as classically activated MΦ endowed
with anti-tumoral properties, while M2-MΦ
contribute to tumor development because of their
immunosuppressive and pro-angiogenic features.7,8

The use of large-scale single-cell analyses has
recently revealed a new level of diversity in TAM
populations according to their ontogeny and
functional state that extends beyond the M1- and
M2-like phenotypes.9–11 However, the mechanisms
and tumor-derived factors responsible for
educating monocytes to TAMs with different
phenotypes by tumor-derived factors remain
poorly characterised in humans.

Importantly, several recent pre-clinical and
clinical data highlight that cancer progression is
driven not only by genetic alterations in
tumors and interactions with their local micro-
environment, but also by complex and poorly
understood systemic processes, which may have
a profound impact on anti-tumor immune
responses.12 In this context, we have previously
shown that circulating monocytes from breast
cancer (BC) patients fail to differentiate into

functional dendritic cells (DCs)13,14 and present
an altered cytokine profile in response to
in vitro stimulation.15 Furthermore, other recent
studies also highlighted the altered profile of
circulating myeloid cells in both human16–19 and
mouse20–22 cancer-bearing hosts, strongly
suggesting a systemic role for tumors in skewing
monocytes.

Using biological and transcriptomic approaches,
we report here that systemic factors skew the
blood monocytes of BC patients towards an anti-
inflammatory/pro-metastatic profile, which, in the
local microenvironment, are further differentiated
into immunosuppressive CD163high M2-like TAMs.
Understanding the mechanisms by which tumor-
derived factors influence TAM phenotype, either
in circulation or within the tumor milieu, can be
critical for the development of novel anti-tumor
therapeutic approaches.

RESULTS

Accumulation of CD163+ TAMs is associated
with poor survival in BC patients

Tumor-associated macrophage infiltrates in
primary BC were characterised by multicolour
flow cytometry, using the gating strategy shown
in Supplementary figure 1a. TAMs were identified
as CD45+CD11b+HLA-DR+CD14+BDCA1negCD64+

cells and formed two distinct clusters, namely
CD163neg/low and CD163high, presenting variable
patterns among patients (Figure 1a). A similar
profile was obtained by analysing a large cohort
of BC patients (Supplementary table 1, n = 93).
Total CD14+ TAMs represented about 25%
(� 17.6%) of living CD45+ cells, with CD163neg/low

and CD163high TAMs representing 15% (� 11.6%)
and 9.7% (� 11%), respectively (data are
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presented as log2 values, Figure 1b). FACS-sorted
TAM subpopulations displayed distinct
morphologies, CD163high TAMs being larger and
more vacuolated than CD163neg/low TAMs
(Figure 1c).

We analysed the impact of TAMs on patient
survival by IHC evaluation of the frequency of
CD163+ TAMs on paraffin-embedded TMA from a
retrospective cohort of 238 primary BC patients.
According to pathologist evaluation, tumors were
classified as presenting ‘low’ (0) or ‘high’ (1–2)
CD163+ TAM infiltration (Figure 1d). Univariate
analysis revealed that high CD163+ TAM
infiltration was correlated with more aggressive
tumors (high SBR grade, lymph node involvement
and lymphatic emboli; Supplementary table 2)
and was associated with poor progression-free
survival (PFS) compared to patients with low-
CD163 TAM expression (Figure 1e; *log-rank
P-value = 0.024). Importantly, the negative impact
of high CD163+ TAM infiltration on the PFS was
still observed when the analysis was focused on
non-triple negative BC (TNBC) patients (n = 207
patients; log-rank P-value = 0.0022). This result
demonstrates that the negative impact of high
CD163+ TAM infiltration on PFS (Figure 1e) is not
exclusively attributable to the higher infiltration
of TNBC by CD163+ TAMs (Figure 1f).

TGF-b, M-CSF and VEGF derived from the
tumor microenvironment educate
monocytes into suppressive
CD163highCD86lowIL-10high MΦ

To decipher the impact of the tumor
microenvironment on TAM populations, we
investigated whether soluble factors present in
primary tumor supernatants could affect the
differentiation/function of healthy donor (HD)
blood monocytes. CD14+ monocytes purified from
HD blood were cultured for 7 days in the
presence of SNDils (supernatant from primary
dilacerated tumors) and analysed after 24 h of LPS
activation for the expression of surface molecules
and cytokine production. Results were compared
to those observed in control M0-MΦ, M1-MΦ, M2-
MΦ and Mo-DCs differentiated in vitro under
well-defined conditions. All MΦ populations (M0-
MΦ, M1-MΦ, M2-MΦ and SNDil-MΦ) were
characterised as CD14+CD64+BDCA1low, and Mo-
DCs as CD14lowCD64negBDCA-1high. Among the
cells differentiated under controlled conditions,
M2-MΦ displayed the highest levels of r-CD163,

while CD163 was lost in M1-MΦ and Mo-DCs
(Supplementary figure 1b; Figure 2a).
Interestingly, we found heterogeneous levels of r-
CD163 in SNDil-MΦ, indicating a tumor-dependent
phenomenon (Figure 2a and b). A CD163high

phenotype (Figure 2a, red dots), similar to M2-
MΦ, was obtained in 51% (15/29) of SNDil-MΦ,
whereas the other SNDils (14/29) induced a
CD163neg/low phenotype (Figure 2a, blue dots),
mostly resembling M0-MΦ.

Regardless of r-CD163 levels, SNDil-MΦ showed
significantly lower CD86 levels than M0-MΦ
(Figure 2c). However, CD163high SNDil-MΦ
produced significantly higher IL-10 levels (but not
TNF-a) than CD163neg/low SNDil-MΦ (Figure 2d). Of
note, CD86 and TNF-a were statistically higher in
M1-MΦ (Figure 2c and d), while a significant up-
regulation of IL-10 was observed in M2-MΦ
(Figure 2d). Interestingly, we also found a positive
correlation between r-CD163 and IL-10 levels
considering all SNDil-MΦ (Figure 2e). Moreover,
the addition of neutralising anti-IL-10Ra mAb to
M2-MΦ cultures demonstrated that autocrine IL-
10 production is critical for the up-regulation of
CD163 (mean MFI � SEM: anti-IgG: 4538 � 779 vs
anti-IL-10Ra: 790 � 127, n = 3) and PD-L1 (mean
MFI � SEM anti-IgG: 3626 � 361 vs anti-IL-10Ra:
1755 � 410, n = 3), but did not significantly alter
PD-L2, CD80 or CD86 expression (Supplementary
figure 2a).

To identify SNDil tumor microenvironmental
factors responsible for M2-like MΦ differentiation,
we quantified 48 cytokines and chemokines in
SNDils by conducting a multiplexed immunoassay.
Elevated amounts of CCL2, M-CSF, TGF-b1, TGF-b3
and VEGF were detected in SNDils promoting
CD163highIL-10high MΦs compared to those
promoting CD163lowIL-10low MΦ (Supplementary
figure 2b). The addition of specific Abs
neutralising M-CSF, pan TGF-b and VEGF during
differentiation significantly impaired CD163, PD-L1
and IL-10 induction and led to a CD86 increase in
SNDils promoting CD163highIL-10high MΦ, whereas
no modulation was observed for those inducing
CD163lowIL-10low MΦ (Figure 2f and g).

To investigate the functional consequences of
tumor supernatants in MΦ differentiation, we
evaluated the impact of differentiated MΦ on
T-cell proliferation and suppression. CD163high

SNDil-MΦ strongly suppressed CD4+ T-cell
proliferation in response to anti-CD3/anti-CD28
beads compared to CD163neg/low SNDil-MΦ and
M0-MΦ (Figure 3a, upper panel) and were as
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Figure 1. High frequency of CD163+ TAMs is correlated with higher risk of relapse in BC patients. CD163neg/low and CD163high TAMs within live

CD45+CD11b+HLA-DR+CD14+CD64+ cells from BC suspensions were analysed by FACS (a) (control isotype in grey). Dot plots shown are

representative of each TAM profile for CD163 expression (low, intermediate and high) among 93 BC patients analysed. (b) Presence of total
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sorted CD163neg/low and CD163high TAMs (objective 40x) obtained for one BC patient out of two performed. (d) Different levels of CD163+ TAM

infiltration detected in TMAs: 0, low infiltration and 1–2, high infiltration. (e) Analysis of the PFS of the 238 BC patients according to their high
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potent as M2-MΦ (Figure 3a, lower panel).
Furthermore, significant up-regulation of IL-10 was
observed only in co-cultures containing CD163high

SNDil-MΦ and M2-MΦ (Figure 3b). Mechanistically,
the simultaneous blockade of IL-10/IL-10Ra and PD-
L1 partly neutralised the suppressive functions of
CD163high SNDil-MΦ and M2-MΦ (Figure 3c and d),
and partially restored IFN-c, GM-CSF and IL-13
production by activated-CD4+ T cells (Figure 3e).
Overall, these findings suggest that primary BC-
derived M-CSF, VEGF and TGF-b triggered IL-10
production by monocytes, driving their final
differentiation into immunosuppressive
CD163highIL-10highPD-L1+CD86low MΦ. Of note, we
did not detect any specific pattern in SNDil from
TNBC compared to other BC tumor subtypes.

Blood monocytes from BC patients
categorised as sensitive or refractory to
GM-CSF/IFN-c M1 differentiation

Having demonstrated that the tumor
microenvironment can drive the differentiation of
monocytes into suppressive MΦ in vitro, we next
investigated whether it could influence patient
blood monocytes at distance via the bloodstream.
To achieve this, fresh CD14+ blood monocytes
from BC patients were cultured in the presence of
a GM-CSF + IFN-c (M1-MΦ) cocktail. Although no
difference was observed in CD163 levels at the
beginning of the culture (Figure 4a and b,
D0-blood monocytes), 41% (18/44) of BC patient
monocytes were refractory to M1-MΦ
differentiation since they did not down-regulate
CD163 expression under GM-CSF/IFN-c culture as
opposed to HD monocytes (n = 25; 36.1 � 4.2%
all patients vs 16 � 2.3% HDs; Figure 4a and b).
We also assessed the production of cytokines/
chemokines of freshly isolated CD14+ patient
monocytes under LPS stimulation (Figure 4c). Both
patient monocyte subgroups produced
significantly lower levels of TNF-a and CXCL1 than
HD monocytes. Refractory BC patient monocytes
produced higher levels of IL-10, CCL2, TGF-b1 and
TGF-b3, but less IL-22 and LIF than HD monocytes.
Interestingly, refractory BC patient monocytes
secreted elevated amounts of CCL2, CCL4, CCL5,
IL-1a and VEGF, and lower levels of LIF when
compared to sensitive patient monocytes.
Furthermore, considering all soluble factors, linear
discriminant analysis (LDA) revealed that BC
patient monocyte subgroups (refractory and
sensitive to GM-CSF) could be separated into 2

clusters by a combination of twelve cytokines
(Supplementary figure 3).

Tumor modulates transcriptional
programming of BC patient monocytes

To further investigate the systemic effect of the
tumor in modulating patient monocytes, we
evaluated the transcriptional profile of HD
monocytes and both GM-CSF refractory and
sensitive patient monocytes through microarray
analysis. Interestingly, principal component
analysis (PCA) (Figure 5a) segregated patient
monocytes from HD monocytes. We next applied
a filter by considering genes with a log2 fold
change ≥ 0.58 and FDR ≤ 0.05 comparing patient
versus HD monocytes, and obtained 421
differentially expressed genes (DEGs)
(Supplementary table 3). An unsupervised
hierarchical clustering of these 421 DEGs
confirmed the transcriptome alteration of BC
patient monocytes compared to HD monocytes
(Figure 5b). Running pathway enrichment analysis
(MSigDB) (Figure 5c and Supplementary table 3)
revealed that the most significant variations were
hallmark of TNF-alpha signalling via NF-jB, down-
regulated in patient monocytes and hallmarks of
both interferon alpha and gamma responses up-
regulated in patient monocytes. Additionally,
Gene Ontology (GO) analysis revealed down-
regulation of metabolic processes, but up-
regulation in defence response to virus in patient
monocytes, which is consistent with an up-
regulation of the IFN-a response. Among the top
100 DEGs (Figure 5d and Supplementary table 3),
70 were down-regulated in BC patient monocytes,
including immune-related genes already known to
be involved in MΦ/DC differentiation (e.g. MAFB
and ID2)23,24 and immunity stimulation (e.g.
MAPK6, TNFRSF12A, CD69, PTGS2, FCAR, CD53,
CD83 and CXCL8).25–27 Thirty genes were up-
regulated in BC patient monocytes, comprising
genes encoding GTPases of the immunity-
associated protein (e.g. GIMAP7 and GIMAP8),
and genes involved in inflammasome signalling
(e.g. NLRC4).28 Importantly, using recently
published transcriptomic data sets of blood
monocytes from an independent cohort of BC,18

we confirmed that genes such as HBEGF, CD83,
CD69, ID2 and HIF1A were statistically down-
regulated, while DDX58, NLRC4, TNFSF10, CXC3R1
and CCR2 genes were statistically up-regulated in
patient monocytes compared to HD monocytes
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(Figure 5e). Altogether, these findings revealed
important differences in the transcriptional
profiles of BC patient and HD monocytes, strongly
suggesting that tumor development can act
systemically, modifying the transcriptional profile
of circulating monocytes.

We next performed GSEA stratifying patient
monocytes according to their refractory and
sensitive status to GM-CSF/IFN-c responses.
Interestingly, sensitive patient monocytes presented
an enrichment in sets of genes associated with
hallmarks of both IFN-a and IFN-c responses when
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Figure 3. CD163highCD86lowIL-10high SNDil-MΦ suppress T-cell proliferation. SNDil-MΦ and control APCs were co-cultured for 4 days with

allogeneic na€ıve CD4+ T cells pre-activated using expand beads. Evaluation of (a) T-cell proliferation and (b) IL-10 secretion in the co-culture

supernatants (SNDil-MΦ CD163low (blue, n = 8); SNDil-MΦ CD163high (red, n = 11); control APCs (n ≥ 5) (mean � SEM; *P ≤ 0.05, **P ≤ 0.01;

***P ≤ 0.0001 to M0-MΦ). Impact of neutralising anti-IL-10/IL-10R and anti-PD-L1 antibodies on (c, d) T-cell proliferation and (e) cytokine

production in the same experimental settings as Figure 3a (*P ≤ 0.05). One representative experiment is shown in c and e out of two performed.

d shows cumulative data of two independent experiments.
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Figure 4. Blood monocytes from BC patients can be categorised as sensitive and refractory to GM-CSF/IFN-c and produce distinct levels of

cytokines upon stimulation. (a, b) BC patient blood monocytes were analysed for CD64 and CD163 expression at day 0 (at least n = 7) and after

culture in M1-MΦ condition (HD, n = 25; BC patients, n = 44; **P ≤ 0.01). a shows one representative dot plot of CD64 vs CD163 expression
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compared to refractory or HD monocytes
(Figure 6a). This observation was thus attributed to
the up-regulation of genes including XAF1, RASD2,
MX1, IFIT2, IFIT3, IFI44, DDX58, IFITM1, IFITM3 and
ISG15 in sensitive patient monocytes (Figure 6b).
Conversely, refractory patient monocytes displayed
a reduced expression of the majority of gene sets
tested, including metabolic-related gene sets, namely
oxidative phosphorylation, fatty acid metabolism and
inner mitochondrial membrane protein complex
(Figure 6a and c). Furthermore, sensitive and
refractory patient monocytes displayed distinct DEG
modulations with exclusively down-regulated ones
(sensitive = 52 genes,refractory = 210 genes) and up-
regulated ones (sensitive = 99 genes,refractory = 82
genes), compared to HD monocytes (Figure 6d and
Supplementary table 4). In addition, analysis of DEGs
between refractory and sensitive patient monocytes
revealed only 16 genes (13 up-regulated in sensitive,
3 up-regulated in refractory; Figure 6e and
Supplementary table 4). Importantly, we extracted
gene signatures of refractory and sensitive patients
(Supplementary table 5) using the GeneSign tool25

with the min–max method and a minimal log fold
change (LFC) threshold to 1.2. We performed single-
sample scoring analysis to evaluate the sensitive and
refractory signatures, as well as the hallmark
signatures for IFN-a response and OXPHOS identified
in Figure 6a. We demonstrated in an independent
cohort of BC patients18 that, unlike the refractory
signature, the sensitive signature score was
significantly higher (P = 0.0037) in monocytes with a
high IFN signature score (Figure 6f). This sensitive
signature score was also more significantly enriched
in monocytes expressing a high OXPHOS score,
compared to the refractory signature score, which
was at the limit of significance when comparing
monocytes with high versus low OXPHOS status in
the Cassetta cohort (P = 0.045; Figure 6f).

Altogether, these results suggest that patient
monocytes that normally respond to GM-CSF/IFN-c
cytokines exhibit an intrinsic activation of an IFN-
signalling set of genes that could allow patient
stratification. Notwithstanding, refractory patient
monocytes display non-functional features
evidenced by a down-regulation in pathways
associated with metabolisms.

DISCUSSION

We herein describe an important mechanism by
which the tumor microenvironment educates human
blood monocytes, providing a possible explanation

for the generation/accumulation of suppressive TAMs
in human BC. We identified soluble factors derived
from the primary tumor microenvironment,
responsible for the differentiation of suppressive
CD163highCD86lowIL-10high MΦ. Additionally, we
show that blood CD14+ monocytes from BC patients
are transcriptionally distinct from HD monocytes and
could be categorised as sensitive or refractory to M1-
MΦ differentiation, under GM-CSF/IFN-c. The
transcriptional characterisation of these two BC
patient monocyte subgroups revealed an intrinsic
metabolic de-activation in refractory monocytes that
contrasted with the active intrinsic IFN-signalling
pathway detected in sensitive monocytes, thus
allowing them to overcome the systemic negative
tumor influence. Hence, we propose that this skewed
differentiation capacity of BC patient monocytes,
induced by the combined local and systemic skewing
of tumor education, gives rise to suppressive M2-like
TAMs, contributing to the immune response failure
and impacting BC patient outcome.

We identified about 25% of total immune cells
infiltrating BCs as CD14+ TAMs that express
variable levels of CD163, underlying the
phenotypic heterogeneity in TAMs. Through high-
dimensional analysis approaches, several recent
reports have uncovered TAM heterogeneity at the
single-cell level in distinct tumor types, including
BC,9,29 clear cell renal cell carcinoma,10

melanoma30 and lung adenocarcinoma.11,31 These
studies revealed a great variety of distinct
phenotypic TAM subsets that co-exist by sharing
the expression of well-established M1 and M2
markers. In agreement with our present work,
these emerging studies suggest that TAMs may
adapt to a variety of tumor microenvironmental
clues during tumor development, by acquiring a
large spectrum of states.32 Importantly, recent
studies have shown that the use of immune
checkpoint inhibitors such as anti-PD-1 and anti-
CTLA-4 can modify the myeloid high-dimensional
landscape in mouse models,33,34 providing new
insights into its mechanisms of action and its
clinical applications.

In addition, our IHC analysis revealed a positive
association between high infiltration by CD163+

TAMs and poor prognosis, in accordance with
other studies in BC.35–39 Additionally, recent
reports have focused on CD163 status in specific
well-defined BC subtypes and under different
therapies. In particular, CD163+ TAMs were shown
in two independent cohorts of TNBC patients, to
be associated with worse patient prognosis after
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adjuvant chemotherapy.40 Moreover, BCs
harbouring the c-Myb transcription factor known
to be associated with a good prognosis41 display a
reduced macrophage infiltration and express
lower levels of CD163 mRNA.42 This may be
because of the fact that c-Myb regulates the
transcriptional programme of tumor cells,
reducing classical cytokines involved in monocyte
recruitment and differentiation and angiogenesis
such as Ccl2, Csf2, Csf3, Vegfa and Vegfc. INOS+

M1-like TAMs, in contrast to CD163+ M2-like
TAMs, were associated with improved survival of
trastuzumab-treated HER2 amplified metastatic BC
patients.43 Other very recent studies have
demonstrated interesting strategies for the in vivo
modulation of TAMs. In a murine colon
adenocarcinoma model, treatment with two mAbs
to concomitantly block CSF-1R and stimulate CD40
resulted in the reprogramming of TAMs by
increasing pro-inflammatory signals such as IL-12B,
IL-27, IL-1b and CCL5.44 In addition, in a
melanoma tumor model, the depletion of CD163+

TAMs, using an anti-CD163 antibody conjugated
to a doxorubicin charged liposome, led to a
monocyte influx, the up-regulation of IFN-related
cytokines and an anti-tumor T-cell response.45

Importantly, we described for the first time that
conditioned-media supernatants of dilacerated
primary human breast tumors promote either
highly suppressive CD163highIL-10highCD86low MΦ,
resembling suppressive TAMs,46–48 or CD163lowIL-
10lowCD86lowMΦ, displaying moderate suppressive
functions. Aside from its central role in T-cell
suppression, we further documented the
contribution of autocrine IL-10 in the phenotypic/
functional switch of monocytes into suppressive
CD163high MΦ, with low IL-12p40 production and
high PD-L1 expression, in accordance with previous
reports.7,49 Indeed, both murine and human TAMs
have been described to favor tumor progression
through the promotion of angiogenesis50,51 and
the inhibition of T-cell responses through IL-10 and
TGF-b49,52 or through the expression of inhibitory
receptors, such as PD-L1.7,53 However, the
association of immunosuppressive properties of

TAMs with the CD163 status was poorly explored in
humans.

We demonstrate for the first time that the
combination of M-CSF, TGF-b and VEGF, all present in
the BC primary tumor microenvironment, converts
monocytes into suppressive CD163highCD86lowIL-
10high MΦ, whereas GM-CSF and IFN-c, master M1-
MΦ inducers, were not detected in SNDils. This
observation is concordant with (1) our pioneer works
on M-CSF and IL-6 skewing monocytes into
suppressive MΦ-like cells, and blocking Mo-DC
differentiation54,55 and (2) the ability of TGF-b
to enhance the suppressive phenotype of
monocytes56–58 and pDC.59 Of importance, blocking
M-CSF, TGF-b and VEGF also impairs IL-10 production
by SNDil-MΦ. Although tumor-derived factors have
been extensively studied using cancer cell lines, our
study is unique in demonstrating that primary BC
environment-derived M-CSF, VEGF and TGF-b
promote IL-10 production by monocytes, driving
their final differentiation into immunosuppressive
CD163highIL-10highCD86low MΦ. Importantly, other
tumor microenvironment-derived factors may also
play a role in the TAM polarisation/differentiation. In
particular, it was shown that breast tumor cell lines
with epithelial-to-mesenchymal transition (EMT)
features expressed AXL and that AXL/Gas6 signalling
in TNBC patients can modulate TAM phenotype by
inducing a M2-like phenotype.40 In addition, cancer-
associated fibroblasts producing CXCL12 stimulate
the migration of TAMs towards tumor-associated
vessels that may promote the extravasation of tumor
cells to the bloodstream.58 In phyllode malignant
breast tumors, a particular BC subtype, CCL5
produced by tumor cells promotes the polarisation of
TAMs into IL18+ producers, via the AKT pathway
leading to a positive feedback for tumor promotion
and aggressiveness.60 Moreover under hypoxia,
murine melanoma tumors secrete exosomes able to
up-regulate oxidative phosphorylation in bone
marrow-derived macrophages, inducing their
polarisation towards F4/80+CD206high M2-MΦ,
favoring tumor development.61

Outstandingly, our data suggest that tumor-
derived factors affect monocytes in the

Figure 5. Transcriptomic profiles of blood monocytes from BC patients differ from HD monocytes. FACS-sorted CD14+ blood monocytes from

BC patients (n = 8) and HDs (n = 8) were submitted to transcriptome analysis. (a) Principal component analysis (PCA) plot from HD and patient

monocytes considering the top 500 most variant genes. (b) Hierarchical clustering of all differentially expressed genes (DEGs) between BC

patients and HD monocytes. (c) Pathway enrichment analysis (hallmark sets and Gene Ontology) of DEGs between BC patients and HD

monocytes. (d) Bar plot of the top 100 DEGs between HD and patient monocytes (log2 fold change ≤ 0.58 and FDR ≤ 0.05). (e) Normalised

expression of selected genes from our study in an independent cohort of BC from Cassetta et al.18
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bloodstream of patient. Microarray analysis
revealed that patient monocytes display a distinct
transcriptome by down-regulating genes involved
in monocyte differentiation and immune
stimulation, while producing fewer inflammatory
cytokines than HD monocytes and these results
have been confirmed in an independent set of
transcriptomic data from patients with primary
BC.18 These findings are in accordance with our
previous studies, showing that blood monocytes
from primary BC give rise to Mo-DCs that
favor Treg responses, partially via TGF-b.13,14

Furthermore, this monocyte skewing phenomenon
depends on the tumor burden, since a functional
recovery of Mo-DCs is observed after tumor
resection62 or after immunotherapeutic DC
vaccination.63 Most interestingly, we highlight a
heterogeneity among patients, by revealing two
distinct transcriptome profiles. Patient monocytes
sensitive to GM-CSF have intrinsic activation of
the IFN pathway that may facilitate their
differentiation towards M1-MΦ. In contrast,
refractory patient monocytes show an overall
metabolic de-activation that may preclude their
M1-MΦ differentiation. IFN signalling has been
largely reported as relevant for anti-tumor
responses64 and predictive of reduced bone
marrow metastasis.65 IFN signalling may also exert
a protective role by overcoming tumor education
in bloodstream as observed in sensitive patient
monocytes, confirming previous in vitro studies
documenting the effect of IFNs on DC or MΦ
differentiation.66,67 Furthermore, previous studies
also reported that circulating patient monocytes
present alterations in metabolic pathways in renal
cell carcinoma16 and metastatic BC patients,17

corroborating the fact that tumor cells can alter
the monocytes in their periphery. Our study adds
another level of complexity by identifying cancer
patients with localised primary breast tumors
presenting circulating monocytes refractory or
sensitive to GM-CSF differentiation into M1-MΦs.
Importantly, we validate in an independent

cohort of BC patients that the sensitive monocyte
score is enriched in the type I IFNhigh group, but
the prognostic value of this finding should be
further validated in a retrospective cohort.

We also found that LPS-treated refractory
patient monocytes preferentially produce
immunosuppressive (TGF-b1, TGF-b3 and IL-10),
angiogenic (VEGF) and metastatic-related (CCL2,
CCL4 and CCL5) cytokines. These findings
corroborate our previous studies, showing that
blood monocytes from primary BC patients have a
reduced ability to secrete TNF-a in response to
IFN-a stimulation15 and give rise to TGF-b-
producing Mo-DCs.13 Moreover, previous studies
have also reported that TAM differentiation at
distant sites may promote metastasis through the
production of chemokines such as CCL2 and
CCL5.68,69 Thus, the abnormal down-regulation of
cellular metabolic pathways found in refractory
monocyte transcriptomes suggests an altered
reprogramming capacity preventing their M1-MΦ
differentiation and increasing their suppressive
phenotype.

Soluble factors detected in serum previously
associated with worse prognosis for BC patients
such as TGF-b,70 VEGF and IL-671 or M-CSF72 may
alter monocytes at a distance. Alternatively, as the
presence of tumor cells in the bone marrow of BC
patients is correlated with worse prognosis,73,74 it
may suggest that bone marrow invading tumor
cells could reprogram monocyte progeny in the
bone marrow during their differentiation/
maturation.

CONCLUSIONS

Overall, we propose a new mechanism of tumor
escape in BC patients. Indeed, complex tumor
microenvironmental products appear to act either
locally, at the tumor site, or systemically (through
the bloodstream and/or bone marrow) to trigger
two main monocyte profiles: (1) metabolic
impairment, which leads to differentiation and

Figure 6. Monocytes from BC patients sensitive to M1 differentiation process display up-regulated IFN-signalling pathways. FACS-sorted CD14+

blood monocytes from BC patients (sensitive, n = 4; refractory, n = 4) and HDs (n = 8) were submitted to transcriptome analysis. (a) BubbleGUM

analysis for enriched sets of genes (GSEA) in sensitive, refractory and HD monocytes. Representative heat-maps of selected sets of genes

associated with (b) IFN-a and IFN-c responses, and (c) oxidative phosphorylation, fatty acid metabolism and inner mitochondria membrane

protein complex. (d) Venn diagram of commonly down-regulated (blue circles) or up-regulated (red circles) genes in monocytes from sensitive or

refractory BC patients versus HDs. (e) Representation of 16 DEGs between sensitive and refractory BC patient monocytes. (f) Single-sample

scoring analysis of the sensitive and refractory signatures in BC patient cohorts from Cassetta et al.18 stratified according to their type I IFN

response or oxidative phosphorylation score.
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functional biases that favor the tumor growth
and (2) IFN enrichment, suggestive of patient
protection. These aspects should be considered in
the design of personalised immunotherapeutic
approaches targeting autologous monocytes/DCs
against cancer.

METHODS

Biological samples

The clinical characteristics of all patients are summarised in
Supplementary table 1. Fresh untreated primary breast
tumors (BC) (n = 93) obtained at the Centre L�eon B�erard
hospital (CLB) were used for TAM analysis. All of these
samples were provided by the tissue bank of CLB (BB-0033-
00050, CRB-CLB, Lyon, France, French agreement number:
AC-2013-1871), after approval from the institutional review
board and ethics committee (L-06-36 and L-11-26) and
patient written informed consent, in accordance with the
Declaration of Helsinki. Blood samples from 44 patients
with untreated primary BC were obtained after signed
informed consent from CLB and from P�erola Byington
Hospital (S~ao Paulo, Brazil). All samples were anonymously
coded in accordance with local ethical guidelines. Healthy
donor (HD) blood samples were obtained from the
‘Etablissement Franc�ais du Sang’ (Lyon).

Preparation of tumor supernatants (SNDil)
and of total cells from BC

Breast tumors tissues were weighed and dissociated
mechanically in an equal volume (w/v) of RPMI-1640 medium
containing antibiotics (penicillin 100 IU mL�1 and
streptomycin 100 mg L�1, Life Technologies, Cailloux-sur-
Fontaines, France), and supernatants, later referred to in the
text as ‘supernatant of dilaceration (SNDil)’, were harvested,
filtered (0.22 µm), aliquoted and frozen at �80°C until
further use. The mechanically disrupted BC was then
enzymatically (Collagenase Ia (1 µg mL�1) and DNase-I
(50 kU mL�1), Sigma-Aldrich, Saint-Quentin-Fallavier, France)
digested for 45 min at 37°C in serum-free RPMI 1640 medium
with antibiotics under agitation. The final cell suspension
extracted from BC was washed and resuspended in PBS 2%
FCS (Eurobio, Les Ulis, France) plus 0.5 mM EDTA (Sigma-
Aldrich) for FACS analysis and subsequent experiments.

Isolation of TAMs by FACS and cytospin

Tumor-associated macrophages were isolated from BC
suspensions by cell sorting (FACS Aria-II, Becton Dickinson)
using specific fluorescent antibodies and the following
strategy: DAPIneg, CD45+/CD11b+/HLA-DR+/CD14+/CD64+

CD163neg/low or CD163high (control isotypes were used to
define the CD163 gate) as shown in Supplementary figure 1.
TAMs were submitted to cytospin centrifugation at
600 rpm for 5 min on glass slides. Cytoplasm and nuclei
morphology were then revealed by May–Gr€unwald/Giemsa
staining.

Immunohistochemistry

A TMA (600 µm core in triplicate) collecting paraffin-
embedded tumors from 238 untreated patients with
pathologically confirmed primary BC at the CLB was
developed for in situ analysis (see Supplementary table 2 for
clinical characteristics). CD163 expression was analysed on
sections with a mouse IgG1 anti-human CD163 antibody
(clone 10D6, 0.5 µg mL�1, reference: NCL-L-CD163,
Novocastra, Leica Biosystems, Nanterre, France). Optimisation
of staining was previously performed by the Pathology
Department at the CLB using a monoclonal mouse control
isotype (mouse IgG1-clone MOPC21, reference: PA0996,
Novocastra) in distinct human tissues.

Blood monocyte purification and
differentiation into antigen-presenting cells
(APCs) in vitro

Peripheral blood mononuclear cells (PBMCs) were obtained by
Ficoll density gradient centrifugation (Eurobio). Subsequently,
HD monocytes were enriched on 51% Percoll density gradient
(GE Healthcare Life Sciences, Buc, France) and CD14+

monocytes were purified by negative selection (CD14 isolation
kit, Miltenyi Biotec, Paris, France) according to the
manufacturer’s instructions (> 95% pure). Isolated monocytes
were then differentiated in complete RPMI-1640 medium
(containing antibiotics and 10% heat-inactivated FCS) for
7 days into the different control APC populations, that is:
cultured in medium alone for M0-MΦ; GM-CSF (50 ng mL�1,
Schering-Plough, Dardilly, France) and IFN-c (20 ng mL�1,
PeproTech, Neuilly-sur-Seine, France) for M1-MΦ; M-CSF
(50 ng mL�1, R&D Systems, Lille, France) and IL-4 (20 ng mL�1,
Schering-Plough) for M2-MΦ; and GM-CSF (50 ng mL�1) and
IL-4 (20 ng mL�1) for Mo-DC. For some experiments, LPS
(Escherichia coli 0111:B4; 100 ng mL�1, Invivogen, Toulouse,
France) was added during the last 24 h. For SNDil experiments,
purified HD CD14+ monocytes were incubated with 25% (v/v)
of SNDils for 7 days in complete RPMI medium (SNDil-MΦ) and
LPS was added at day 6 to activate the cells. CD163 relative
expression (r-CD163) was assessed by dividing CD163 MFI from
each investigated cell population by CD163 MFI of the internal
control (M0-MΦ) of each experiment. SNDil-MΦ CD163highIL-
10high was considered when r-CD163 was ≥ 1.6 fold, a value
similar to the lowest value of M2-MΦ; and when IL-10
concentration was ≥ 415 pg mL�1, the highest value of IL-10
produced byM0-MΦ.

For experiments using BC patient blood, CD14+

monocytes were purified directly from PBMCs by negative
selection as above. For some experiments, LPS
(100 ng mL�1) was added for 24 h.

Suppression assay

CD4+CD45RA+ na€ıve T cells purified by negative selection
(Magnisort Human CD4 Naive T cell Enrichment Kit,
ThermoFisherScientific, Waltham, Massachusetts, USA) and
stained with CellTrace Violet (5 µM, Life Technologies) were
cultured in U-bottom 96-well plates in the presence of
expand beads (anti-CD3/anti-CD28 beads, expand beads,
Life Technologies). After 30 min of pre-incubation, LPS-
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activated control APCs or SNDil-MΦ were added in plates
for 4 days at a ratio of 1 APC: 2 T cells. CD4+ T-cell
proliferation was assessed by the analysis of CTV dilution by
flow cytometry. Condition with expand beads alone
corresponded to the maximum of proliferation. To assess
expansion/suppression of CD4+ T lymphocytes, data were
normalised by calculating the % of proliferating cells with
expand beads + APCs in relation to CD4+ T lymphocytes
activated by expand beads alone (defined as T-cell
expansion).

Blocking antibodies

Anti-IL-10 (10 µg mL�1, clone JES3-12G8, rat IgG2a, AbD
Serotec, Marnes-la-Coquette, France), anti-IL-10Ra
(10 µg mL�1, clone 3c.5.2b, mouse IgG1, Schering-Plough)
and anti-PD-L1 (20 µg mL�1, clone 29E.2A3, mouse IgG2b,
Biolegend, Saint-Cyr-L’�ecole, France) blocking antibodies
and their respective controls were used in the suppression
assay and to assess the role of IL-10 in the modulation of
surface markers on in vitro generated M2-MΦ. Anti-M-CSF
(20 µg mL�1, polyclonal rabbit IgG, Genzyme, Lyon, France)
and anti-TGF-b (10 µg mL�1, pan-specific antibody,
polyclonal rabbit IgG, R&D Systems) antibodies and clinical
anti-VEGF antibody (1 µg mL�1, human IgG1, Avastin�,
Roche, Bale, Switzerland) were used in SNDil-MΦ cultures.

Cytokine detection in supernatants

IL-10 and TNF-a levels were quantified in culture
supernatants from control APCs or SNDil-MΦ by ELISA (Life
Technologies and Biolegend, respectively) and analysed
with SkanIt software (Thermo Scientific, Dardilly, France).
Cytokines and soluble factors were evaluated using
multiplex Luminex technology according to the
manufacturer’s recommendations as follows: (1) in
supernatants of suppression assay with or without anti-IL10/
anti-PD-1 blockage with a customised 14-plex (Millipore,
Molsheim, France); (2) in SNDils using 4 different kits:
12plex, 9plex, 8plex and 3plex (Bio-Rad, Marnes-la-
Coquette, France); and (3) supernatants from LPS-activated
CD14+ blood monocytes from BC patients and HD, with 3
different kits: 23plex, 5plex (Life Technologies) and 3plex
(TGF-b; Bio-Rad). All assays were analysed on Bio-Plex 200
(Bio-Rad) and analysed with Bio-Plex Manager software.

Microarray analysis of BC patient
monocytes

CD14+HLA-DR+ monocytes were FACS-sorted (> 98% purity)
from 8 HDs’ and 8 BC patients’ frozen PBMCs and
submitted to total RNA extraction using the microRNeasy
kit (Cat. No. 74004; Qiagen, Courtaboeuf, France) according
to the manufacturer’s protocol. After RNA integrity number
calculation (RIN from samples ≥ 5.7), 500 pg of total RNA
(samples ≥ 1.3 ng µL�1) was submitted to cDNA synthesis
and DNA labelling and hybridisation (GeneChipTM

Hybridization, Cat. No. 900720; Applied Biosystems, Thermo
Scientific, for subsequent microarray analysis (ClariomTM S
Assay human, Cat. No. 902927; Applied Biosystems) using
Scanner 3000 7G (Applied Biosystems). Microarray data

analysis was performed in R (version 3.5.2, supported by R
Foundation for Statistical Computing, Vienna, Austria). Raw
probe intensities were quantile normalised and log2-
transformed using the Robust Multi-array Averaging (RMA)
method implemented in the oligo R package (v. 1.46.0).75

Differentially expressed genes (DEG) between HD and
patient monocytes were identified using DESeq2
(v. 1.22.2).76 A heat-map of DEGs was generated using
Morpheus from the Broad Institute considering a false
discovery rate (FDR) < 0.05 and a log2 fold change > 0.58.
Hierarchical clustering was based on one minus the Pearson
correlation distance. Gene Ontology (GO) analysis was
performed with AmiGO web browser77 and functional
analyses (KEGG and MsigDB hallmark collection) with
clusterProfiler package (v. 3.10.1).78 Gene set enrichment
analyses (GSEA) were represented using BubbleGUM.79

Enriched gene sets were considered with a normalised
enrichment scores (NES) > 1.5 and FDR < 0.05. Molecular
phenotypic signatures were extracted from monocytes of
BC patients with the GeneSign tool of BubbleGUM79 with
the min–max method and a minimal log fold change (LFC)
threshold to 1.2. Finally, single-sample scoring analysis was
performed using singscore with default parameters (v 1.2.2)
and patients were stratified according to the median of
IFN-alpha response or OXPHOS scores.

Statistical analysis

For in situ analysis of CD163 in IHC studies, the correlation
with clinical parameters was assessed using either the chi-
square test or Fisher’s exact test. The impact on BC patient
progression-free survival (PFS) was assessed using the
Kaplan–Meier method with SAS software, version 9.2 (SAS
Institute, North Caroline, USA). For phenotype and cytokine
production of monocytes, MΦ, DCs, SNDil-MΦ and tumor
analysis, we used the one-way ANOVA test with the
Bonferroni post hoc test (GraphPad Prism 6.05, GraphPad
Software, San Diego, CA, USA). For cytokine production
from LPS-stimulated blood monocytes, we used an unpaired
t-test with the Mann–Whitney U-test comparing refractory,
sensitive and HD monocytes. Linear discriminant analysis
(LDA) using cytokine production was applied to predict
patient monocyte classification into refractory versus
sensitive groups (XLStat software, Addinsoft, Paris, France).
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