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Abstract

In this article, we fully characterize the measurable Gaussian processes pUpxqqxPD whose
sample paths lie in the Sobolev space of integer order Wm,p

pDq, m P N0, 1 ă p ă `8,
where D is an arbitrary open set of Rd. The result is phrased in terms of a form of Sobolev
regularity of the covariance function on the diagonal. This is then linked to the existence
of suitable Mercer or otherwise nuclear decompositions of the integral operators associated
to the covariance function and its cross-derivatives. In the Hilbert case p “ 2, additional
links are made w.r.t. the Mercer decompositions of the said integral operators, their trace
and the imbedding of the RKHS in Wm,2

pDq. We provide simple examples and partially
recover recent results pertaining to the Sobolev regularity of Gaussian processes.

1 Introduction

Sobolev spacesWm,ppDq are central tools in modern mathematics, most notably in the study of
partial differential equations (PDEs). These spaces are built upon the notion of weak derivative:
v is the weak derivative of u in the direction xi if for all smooth compactly supported function
φ P C8

c pDq,

ż

D
upxq

Bφ

Bxi
pxqdx “ ´

ż

D
vpxqφpxqdx. (1.1)

Weak derivatives generalize classical, pointwise defined derivatives. In particular, there are cases
where weak derivatives are well defined and pointwise differentiation otherwise fails (see e.g. [19],
Examples 3 and 4 p. 260). The popularity of Sobolev spaces is justified by a number of reasons:
first, they are separable reflexive Banach spaces when 1 ă p ă `8, and separable Hilbert
spaces when p “ 2 ( [36], Theorem 3.6 p. 61). Through duality, this allows for geometrical
interpretations of PDEs which in turn lead to numerous quantitative theoretical results in the
study of PDEs [19]. Second, as the Sobolev norm is defined through integrals of powers of the
function and its weak derivatives, it is easily interpreted as an energy functional of the said
function, which complies with physical interpretations of PDEs. This is a desirable feature as
PDEs are generally used for describing physical phenomena. Finally, Sobolev spaces are useful
for practical purposes as they are the natural mathematical framework for the celebrated finite
element method when seeking numerical solutions to PDEs ( [6], Chapter 1).

When a function of interest u : D Ñ R is unknown, it may be relevant to model it as
a sample path of a random field pUpxqqxPD, say a Gaussian process, whose realizations lie
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in a suitable function space. This is e.g. frequent in Bayesian inference of functions [45].
Such suitable spaces can indeed happen to be Sobolev spaces, for example when u describes
a physical quantity. The question at hand in this article is thus the following: when do the
sample paths of a given Gaussian process lie in some Sobolev space? This question is closely
linked to the recent attention that Gaussian processes have drawn for tackling machine learning
problems arising from PDE models; see e.g. [28,32,35,46]. Notably (see [9]), Gaussian processes
seem to provide a numerically competitive and mathematically tractable alternative to the now
widespread ”physics informed neural networks” (PINNs, [34]). For the moment though, the
machine learning techniques involving Gaussian processes have only been studied within the
framework of spaces of functions with classical smoothness : C0, C1, etc. As argued before,
these spaces are often not as well-suited for studying PDEs as Sobolev spaces.

Though weak differentiability is more general, it is less direct to check than classical dif-
ferentiability. Weak derivatives are defined implicitly and in the most general case, ensuring
Sobolev regularity is not usually done by directly verifying that an integral or a series is finite,
as would be the case in Lp spaces; variational or boundedness criteria are used instead (see
Proposition 2.1).

In many important cases however, handy characterizations of such regularity do exist, which
have effectively been used to bypass the implicit definition of Sobolev regularity and generate
results on the sample path regularity of Gaussian processes. When D “ Rd, the spaceWm,ppRdq

can be characterized in terms of a sufficient decay of of the Fourier transform ( [40], Theorem
3 p. 135; [19], Section 5.8.5; [36], Section 7.63). Still in the case D “ Rd, Sobolev regularity
is equivalent to the convergence of its de la Vallée Poussin expansion in a suitable space (
[31], Section 8.9). This fact has been the first to be employed for characterizing the Sobolev
regularity of stationary Gaussian processes indexed by the unit cube of Rd in [13,23], in terms
of the spectral measure of its covariance. For some Banach spaces, explicit Schauder bases
are known and lying in such spaces can be translated as the convergence of some coordinate
series. This has been exploited in [12] for studying the Besov and Besov-Orlicz regularity of one
dimensional Gaussian processes (they are natural generalizations of Sobolev regularity, [36]).
Wavelet analysis is also available for describing Sobolev regularity ( [36], Section 7.70) and has
been used for studying the smoothness of the Brownian motion [11,38]. More complex notions
such as the existence of an underlying Dirichlet structure have been put to use in [26]. The
latter work deals with Besov Bs8,8 regularity, s ą 0, on compact metric spaces, and relies
on a convergence analysis of suitable spectral coefficients, based on the so called Littlewood-
Paley decomposition. In [41], Karhunen-Loève expansions are used to study whether or not
the sample paths of a general second order random process lie in interpolation spaces between
the reproducing kernel Hilbert space (RKHS, Section 4.1 below) of the process and L2pνq,
where ν is a σ-finite measure. This is then applied to study Hs-regularity properties of the
corresponding sample paths when s ą d{2 (Corollary 4.5 and 5.7 in [41]), with applications
to Gaussian processes in particular. Note that RKHS are also popular function spaces in the
machine learning community [3]. Using the notion of mean square derivatives, [39] shows that
the sample paths of a general second order random field lie in Wm,2pDq under an integrability
condition of the symmetric cross derivatives of the kernel over the diagonal ( [39], Theorem 1).
This result strongly suggests that a purely spectral criteria for Sobolev regularity of a random
process should exist as the integrals appearing in Theorem 1 of [39] exactly correspond to the
trace of specific integral operators which are naturally linked to the covariance of the process;
in fact, we provide such a criteria in Proposition 4.4. For the suitable definition and use of the
mean square derivatives of the process, [39] additionally requires that the covariance function
be continuous over the diagonal as well as its symmetric cross derivatives.

The purpose of this article is to uncover necessary and sufficient characterizations of the
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Sobolev regularity of nonnegative integer order of a given Gaussian process, in terms of its
covariance function. In an attempt to make them both as general and concise as possible, we
set the following targets and assumptions.

• The covariance function of the Gaussian process will only be assumed measurable, as in [41].
This contrasts with some of the previously mentioned works [12, 26, 39], where the covariance
function is assumed continuous. It seems though that assuming the continuity of the covariance
(and thus more or less that of the sample paths, [2] p. 31) to examine some Sobolev regularity
of potentially low order is an unnatural hypothesis. This is especially true as the dimension
of D increases, since Wm,ppDq is embedded in C0

BpDq, the Banach space of continuous and
bounded functions over D, only when m ą d{p ( [36], Theorems 4.12 and 7.34).

• We will not make any regularity or shape assumptions on the open set D. Indeed, Sobolev
spaces of integer order are easily defined over arbitrary open sets D Ă Rd, and thus some
results should exist within this general setting. As a result though, we will not deal with
fractional Sobolev spaces nor Besov spaces. Indeed, those spaces may have some pathological
properties without additional hypotheses on D, namely enjoying a Lipschitz boundary or the
cone condition (see e.g. [15], Example 9.1). We will see that elementary characterizations of
Sobolev regularity (Lemmas 2.1 and 2.4) will prove to be enough for our purpose.

• Our results should lie outside of the assumption that m ą d{p, where m, p and d correspond
to the notation Wm,ppDq, D Ă Rd. Indeed, many previous results concerning the Sobolev reg-
ularity of a given Gaussian process concern the spaces HmpDq “ Wm,2pDq, D Ă Rd, only in the
case m ą d{2. This is convenient because it ensures that HmpDq is continuously embedded in
C0
BpDq when D is smooth enough, which suppresses the ambiguity of choosing a representative

of a function in HmpDq. However, m ą d{2 excludes the spaces H1pR2q and H1pR3q, which
are central in the study of many important second order PDEs such as the wave equation, the
heat equation, Laplace’s equation or Schrödinger’s equation.

Our characterizations of measurable Gaussian processes with sample paths in Wm,ppDq is
phrased in terms of a form of Sobolev regularity of the covariance function on the diagonal. It
is then linked to the existence of suitable Mercer or otherwise nuclear decompositions of the in-
tegral operators associated to the covariance function and its symmetric weak cross-derivatives.
In the Hilbert case p “ 2, additional links are made w.r.t. the Mercer decompositions of the said
integral operators, their trace and the Hilbert-Schmidt nature of the imbedding of the RKHS
inWm,2pDq. Our results are strongly reminiscient of those found in [39], where we removed the
continuity asusmptions over the covariance. In particular, this shows that contrarily to what
is suggested in [41], p. 370, the Sobolev regularity of the sample paths of a given Gaussian
process is not about d{2 less than that of the functions of its RKHS. This regularity is rather
characterized by purely spectral properties of the covariance operator of the associated Gaus-
sian measure. It just happens that in many standard cases such as with the Matérn kernels
of order ν on ”nice” bounded domain D Ă Rd, their RKHS turns out to be Hν`d{2pDq ( [41],
Example 4.8) and the imbedding of Hν`d{2pDq in HspDq is Hilbert-Schmidt when s ă ν. See
Example 4.5 for further details.

The article is organized as follow. In Section 2, we introduce the necessary notions for
properly stating our results as well as some useful lemmas directly related to these notions. In
Sections 3 and 4, we state and prove the main results of this article, which treat the general
case p P p1,`8q and the special case p “ 2 respectively. In Section 5, we conclude and provide
some further outlooks. We prove the intermediary lemmas used in the main proofs in Section
6.
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Notations Given a Banach space X, X˚ denotes its topological dual. Given x P X and
l P X˚, we denote the duality bracket as follow: lpxq “ xl, xyX˚,X . BpXq denotes the Borel σ-
algebra of X for its norm topology. Given two linear operators A : X1 Ñ Y1 and B : X2 Ñ Y2,
A b B : X1 b X2 Ñ Y1 b Y2 denotes their tensor product which verifies pA b Bqpa b bq “

pAaq b pBbq. Given two real valued functions f and g, f b g denotes their tensor product
defined by pf b gqpx, yq “ fpxqgpyq. Given h P Rd, |h| denotes its Euclidean norm. Given
p P p1,`8q, q will always denote its conjugate: 1{p`1{q “ 1 i.e. q “ p{pp´1q. As usual, when
D is an open set of Rd, we identify the dual of LppDq with LqpDq. Explicitly, if f P LppDq and
g P LqpDq, we have

xf, gyLp,Lq “

ż

D
fpxqgpxqdx “ xg, fyLq,Lp . (1.2)

When there is no risk of confusion, we will write ||f ||p :“ ||f ||LppDq. If H is a Hilbert space,
x¨, ¨yH denotes its inner product. We denote N :“ t1, 2, ...u the set of natural numbers and
N0 :“ N Y t0u. Given an open set D Ă Rd, we write D0 Ť D if D0 Ă D and D0 is compact.
L1
locpDq denotes the space of equivalence classes of locally integrable functions over D, i.e. such

that
ş

K
|fpxq|dx ă `8 for all K Ť D. Elements of L1

locpDq are identified when they are equal
almost everywhere w.r.t. the Lebesgue measure. Given an equivalence class f P L1

locpDq, a

representative of f is a function pf : D Ñ R such that the equivalence class of pf in L1
locpDq is f .

We will sometimes denote f and pf with the same symbol, e.g. f . Given a function k defined
over D ˆ D, Ek denotes the associated integral operator (if well defined):

pEkfqpxq “

ż

D
kpx, yqfpyqdy. (1.3)

The input and output spaces of Ek will be specified on a case-by-case basis.

2 Preliminary notions and results

In Sections 2.1, 2.2 and 2.3, we introduce Sobolev regularity through the prisms of weak deriva-
tives and generalized functions, and provide handy characterizations of this regularity. We
present useful notions from operator theory in Section 2.4. In Section 2.5, we recall some useful
results related to Gaussian processes and Gaussian measures.

2.1 Definition of weak derivatives and Sobolev spaces

Let α “ pα1, ..., αdq P Nd0. Denote Bα “ Bα1
x1
...Bαd

xd
the αth derivative, and |α| :“

řd
i“1 |αi|. In

this article, the statement “let |α| ď m” will mean “let α “ pα1, ..., αdq P Nd0 be such that
|α| ď m”. Given a function k defined on D ˆ D, Bα,αk denotes its symmetric cross derivative:
Bα,αkpx, yq :“ Bα1

x1
...Bαd

xd
Bα1
y1 ...B

αd
yd
kpx, yq (formally, Bα,α “ Bα b Bα). A function u P L1

locpDq has

v P L1
locpDq for its αth weak derivative if ( [36], section 1.62)

@φ P C8
c pDq,

ż

D
upxqBαφpxqdx “ p´1q|α|

ż

D
vpxqφpxqdx. (2.1)

v is then unique in L1
locpDq and is denoted v “ Bαu. Let p P r1,`8s. The Sobolev space

Wm,ppDq is defined as ( [36], section 3.2)

Wm,ppDq “ tu P LppDq : @ |α| ď m, Bαu P LppDqu. (2.2)
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Sobolev spaces are Banach spaces for the norm ||u||Wm,p :“ p
ř

|α|ďm ||Bαu||ppq1{p; they are

separable when p ‰ `8 ( [36], Theorem 3.6 p. 61). When p “ 2, Wm,ppDq is usually denoted
HmpDq and is a Hilbert space for the following inner product

xu, vyHmpDq :“
ÿ

|α|ďm

xBαu, BαvyL2pDq. (2.3)

Note that we made no assumptions on the regularity of the open set D.

2.2 Characterization of Wm,p-regularity for locally integrable func-
tions

As for pointwise derivatives, finite difference operators can be used for characterizing Sobolev
regularity. Given h P Rd, introduce the translation operator pτhuqpxq “ upx ` hq, which is
bounded over LppRdq. Introduce the associated finite difference operator:

∆h “ τh ´ Id. (2.4)

The linear subspace of bounded operators over LppRdq induced by the translation operators is
commutative, as τh1 ˝ τh2 “ τh1`h2 “ τh2 ˝ τh1 . Let h “ ph1, ..., hmq P pRdqm, we define the
mth order finite difference operator associated to h to be ∆h :“

śm
i“1 ∆hi where the product

symbol denotes the composition of operators. When h P Rd, the adjoint of ∆h is also a finite
difference operator, which is computable using the change of variable formula. If h P Rd, then

∆˚
h “ τ´h ´ Id. (2.5)

Finally, when α “ pα1, ..., αdq P Nd0 and h “ ph1, ..., hdq P pR˚
`qd, we denote by δαh the finite

difference approximation of Bα defined by

δαh “

d
ź

i“1

ˆ

∆hiei

hi

˙αi

“

ˆ

∆h1e1

h1

˙α1

¨ ¨ ¨

ˆ

∆hded

hd

˙αd

. (2.6)

Above, pe1, ..., edq is the canonical basis of Rd. Depending on which one is the most convenient,
we will either use ∆h or δαh . We shall use the following characterizations of Wm,p-regularity,
which are straightforward generalizations of Proposition 9.3 from [7] to multiple derivatives.
We prove them in Section 6, as we could not find them stated as such in the literature.

Lemma 2.1. Suppose that u P L1
locpDq. Let m P N0, p P p1,`8s and introduce q ě 1 the

conjugate of p : 1{p` 1{q “ 1. Then the following statements are equivalent

(i) u P Wm,ppDq

(ii) (Variational control) for all α such that |α| ď m, there exists a constant Cα such that

@φ P C8
c pDq,

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ
ď Cα||φ||LqpDq. (2.7)

In this case, the Lp norm of Bαu is given by

||Bαu||LppDq “ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||Lq

dx

ˇ

ˇ

ˇ

ˇ

. (2.8)
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(iii) (Finite difference control) there exists a constant C such that for all open set D0 Ť D, for
all l ď m and all h “ ph1, ..., hlq P pRdql such that

ř

i |hi| ă distpD0, BDq,

||∆hu||LppD0q ď C|h1| ˆ ...ˆ |hl|. (2.9)

Moreover, ||Bαu||LppDq ď C for any C verifying equation (2.9) and one can actually take C “

||u||Wm,ppDq in equation (2.9).

In Point piiiq above, the assumption that
ř

i |hi| ă distpD0, BDq is only there to ensure that
the quantity ∆hupxq makes sense when x P D0.

2.3 Sobolev regularity and generalized functions

The theory of generalized functions (or distributions) provides a flexible way of characterizing
Sobolev regularity, by building a larger space in which partial derivatives are always defined.
Given an open set D, denote C8

c pDq the space of smooth functions with compact support in
D. Endow it with its usual LF topology, defined e.g. in [43], Chapter 13. This topology is
such that the sequence pφnq converges to φ in C8

c pDq if and only if there exists a compact set
K Ă D such that Supppφnq Ă K for all n and

@α “ pα1, ..., αdq P Nd0, sup
xPK

|Bαφnpxq ´ Bαφpxq| ÝÑ 0. (2.10)

With C8
c pDq endowed with this topology, the space of generalized functions, or distributions,

is then defined as the topological dual of C8
c pDq i.e. the set of all continuous linear forms

over C8
c pDq. It is traditionally denoted as follow: D 1pDq :“ C8

c pDq1 ( [43], Notation 21.1). A
generalized function T P D 1pDq is said to be regular ( [43], p. 224) if it is of the form

@φ P C8
c pDq, T pφq “

ż

D
upxqφpxqdx. (2.11)

for some u P L1
locpDq, in which case one writes T “ Tu. Given any function u P L1

locpDq and
α P Nd0, its distributional derivative Dαu is defined by the following formula ( [43], pp. 248-250):

Dαu : φ ÞÝÑ p´1q|α|

ż

D
Bαφpxqupxqdx. (2.12)

Dαu then also lies in D 1pDq. Sobolev regularity can now be rephrased as follow : u lies in
Wm,ppDq iff for all |α| ď m, the distributional derivative Dαu is in fact a regular generalized
function represented by some vα P LppDq i.e. Dαu “ Tvα . Then vα is unique in LppDq and
Bαu “ vα in LppDq, where Bαu is the αth weak derivative of u.

Moreover, the control equation (2.7) shows that Bαu exists and lies in LppDq if and only
if Dαu : C8

c pDq Ñ R can be extended as a continuous linear form over LqpDq. Ensuring the
existence of such extensions will thus be of prime interest for us, and is the topic of the next
lemma. Specifically, the next result states that given continuous linear or bilinear forms over
C8
c pDq, the existence of extensions of these maps to LqpDq can be ensured by obtaining suitable

estimates on a well chosen countable set Eq Ă C8
c pDq. Restricting ourselves to Eq will allow

us to eliminate any measurability issues when introducing the supremum of certain random
variables indexed by Eq, as a countable supremum of random variables remains a random
variable (i.e. a measurable map). Below, we write || ¨ ||q :“ || ¨ ||LqpDq for short.

Lemma 2.2 (Extending continuous linear and bilinear forms over C8
c pDq to LppDq). Let

p P p1,`8q. There exists a countable Q´vector space Eq “ tΦqn, n P N0u Ă C8
c pDq with the

following property.
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(i) A distribution T P D 1pDq is a regular distribution, T “ Tv, for some v P LppDq iff it verifies
the countable estimate for some constant C ą 0

@φ P Eq, |T pφq| ď C||φ||q. (2.13)

or equivalently, supnPN |T pΦqnq|{||Φqn||q ă `8 (here, setting Φp0 “ 0 without loss of generality).
This is equivalent to T admitting an extension over LqpDq which is then uniquely given by
T pfq “

ş

D fpxqvpxqdx. Moreover,

sup
nPN

|T pΦqnq|

||Φqn||q
“ sup
φPC8

c pDq

|T pφq|

||φ||q
, (2.14)

whether these quantities are finite or not.

(ii) Let b be a continuous bilinear form over C8
c pDq. Then b can be extended to a continuous

bilinear form over LqpDq iff it verifies the countable estimate

@φ,ψ P Eq, |bpφ,ψq| ď C||φ||q||ψ||q. (2.15)

In this case, such an extension is unique and there will exist a unique bounded operator B :
LqpDq Ñ LppDq verifying the following identity

@φ,ψ P C8
c pDq, bpφ,ψq “ xBφ,ψyLp,Lq . (2.16)

The proof of this result can be found in Section 6. It is based on Lemma 2.3 below, which
is interesting in itself. Recall that a topological space X is separable if there exists a countable
subset Y Ă X which is dense in X for the topology of X. Then the following holds.

Lemma 2.3. C8
c pDq endowed with its LF-topology is separable.

A short proof of this result can be found in [22], Lemma 3.5. See also [21], p. 73, (3) for a
statement of this result, or [20], Corollaire (1).2, p. 78 for a reference in French. Given the set
Eq provided by Lemma 2.2, we next define the countable set Fq to be

Fq :“ tφ{||φ||q, φ P Eq, φ ‰ 0u “ tfqn, n P Nu Ă Sqp0, 1q. (2.17)

Above, pfqnqnPN is an enumeration of Fq and Sqp0, 1q is the unit sphere of LqpDq. The next
lemma is then a direct consequence of Lemmas 2.1 and 2.2.

Lemma 2.4 (Countable characterization of Sobolev regularity). Let p P p1,`8q. For any
u P L1

locpDq, u lies in Wm,ppDq iff for all multi index α such that |α| ď m, there exists a
constant Cα such that

@φ P Eq,

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ

ˇ

ď Cα||φ||q, (2.18)

or equivalently, in terms of the set Fq defined in equation (2.17),

sup
φPFq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
nPN

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαfqnpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ă `8. (2.19)

Moreover,

sup
φPFq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||q
dx

ˇ

ˇ

ˇ

ˇ

ˇ

, (2.20)

whether these quantities are finite or not. If one of them is finite, then it is equal to ||Bαu||LppDq.

This lemma provides us with a somewhat explicit countable criteria for Sobolev regularity,
which is valid whatever the open set D.
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2.4 Tools from operator theory

The following reminders may be found in [4], Section A.2. Let H1 and H2 be two Hilbert
spaces, and X and Y two Banach spaces.

(i) A linear operator T : X Ñ Y is bounded if ||T || :“ sup||x||X“1 ||Tx||Y ă `8. A bounded

operator T : X Ñ Y is compact if T pBq is a compact set of Y , where B is the closed unit
ball of X. When X “ Y , the spectrum of a compact operator is purely discrete, and can be
reordered as a sequence pλnqnPN which converges to 0.

(ii) If T : H1 Ñ H2 is compact, then T˚T : H1 Ñ H1 is compact, self-adjoint and nonnegative
p@x P H1, xx, T

˚TxyH1
ě 0q. If H1 is separable, T˚T can be diagonalized in an orthonormal

basis penq of H1. The nonnegative eigenvalues of T
˚T , ps2nq, are called the singular values of T .

If H1 is separable, T is said to be Hilbert-Schmidt if
ř

nPN ||Ten||2H2
ă `8 for one (equivalently,

all) orthonormal basis penq of H1. Its Hilbert-Schmidt norm, defined as the sum above, is then
also the sum of its singular values:

||T ||2HS “
ÿ

nPN
||Ten||2H2

“
ÿ

nPN
s2n (2.21)

Every Hilbert-Schmidt operator is compact, and every Hilbert-Schmidt operator T acting on
L2pDq can be written in integral form ( [4], Lemma A.2.13): there exists a ”kernel” k P

L2pD ˆ Dq such that for all f P L2pDq,

pTfqpxq “

ż

D
kpx, yqfpyqdy “ pEkfqpxq. (2.22)

If T is symmetric, nonnegative and Hilbert-Schmidt, there exists an orthonormal basis pϕnq of
L2pDq of eigenvectors of T with nonnegative eigenvalues pλnq, such that in L2pDˆDq, we have

kpx, yq “
ÿ

nPN
λnϕnpxqϕnpyq. (2.23)

We will refer to decompositions of f of the form of equation (2.23) as Mercer decompositions,
in reference to the celebrated Mercer’s theorem ( [8], Theorem 1.2).

(iii) If H1 is separable, T is said to be trace-class (or nuclear) if
ř

nPN sn ă `8. One can then
define its trace as the following linear functional, which is independent of the choice of basis
penq, and equal to the series of the eigenvalues of T (Lidskii’s theorem)

TrpT q :“
ÿ

nPN
xTen, eny “

ÿ

nPN
λn. (2.24)

Any trace-class operator is Hilbert-Schmidt, and T is Hilbert-Schmidt if and only if T˚T is
trace-class, in which case TrpT˚T q “ ||T ||2HS “ ||T˚||2HS . If H1 “ H2 “ L2pDq, if T is trace
class with kernel k and if k is sufficiently smooth (say continuous), then the trace of T “ Ek is
given by TrpT q “

ş

D kpx, xqdx. Extensions of this formula to general Hilbert-Schmidt kernels
k P L2pD ˆ Dq of trace class operators is studied in [8]; see also Proposition 2.9 and Lemma
3.7 below. If T : H1 Ñ H1 is bounded, self-adjoint and nonnegative, then we define its trace
as the possibly infinite series of nonnegative scalars TrpT q :“

ř

nPNxTen, eny.

(iv) ( [29], p. 160) A bounded operator T : X Ñ Y is nuclear if there exists sequences
pxnq Ă X˚ and pynq Ă Y with

ř`8

n“1 ||xn||X˚ ||yn||Y ă `8 such that Tx “
ř`8

n“1xxn, xyX˚,Xyn
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for all x P X. In this case, we write abusively T “
ř`8

n“1 xn b yn. The nuclear norm of T is
then defined as

νpT q :“ inf

" `8
ÿ

n“1

||xn||X˚ ||yn||Y such that T “

`8
ÿ

n“1

xn b yn

*

. (2.25)

A bounded operator K : X˚ Ñ X is symmetric if for all x, y P X˚, xx,Ryy “ xy,Rxy, and
nonnegative if xx,Rxy ě 0. When X “ Y “ H where H is a separable Hilbert space, the
sets of trace class and nuclear operators coincide; moreover, the same can be said for the trace
functional (2.24) and the nuclear norm (2.25) if T has a nonnegative spectrum : νpT q “ TrpT q.

2.5 Gaussian processes and Gaussian measures over Banach spaces

Throughout this article, pΩ,F ,Pq denotes the same probability space. Given p P p1,`8q, LppPq

denotes the space of real valued random variables X such that Er|X|ps ă `8.

(i) If pE,Bq is a measurable space, the law PX of a random variable X : Ω Ñ E is the push-
forward measure of P through X, which is defined by PXpBq :“ PpX´1pBqq for all measurable
set B P B ( [5], Section 3.7).

(ii) A Gaussian process ( [1], Section 1.2) pUpxqqxPD is a family of Gaussian random vari-
ables defined over pΩ,F ,Pq such that for all n P N, pa1, ..., anq P Rn and px1, ..., xnq P

Dn,
řn
i“1 aiUpxiq is a Gaussian random variable. The law it induces over the function space

RD endowed with its product σ-algebra is uniquely determined by its mean and covariance
functions, mpxq “ ErUpxqs and kpx, x1q “ CovpUpxq, Upx1qq ( [24], Section 9.8). We then
write pUpxqqxPD „ GP pm, kq. The covariance function k is positive definite over D, which
means that for all nonnegative integer n and px1, ...xnq P Dn, the matrix pkpxi, xjqq1ďi,jďn

is nonnegative definite. Conversely, given a positive definite function over an arbitrary set
D, there exists a centered Gaussian process indexed by D with the this function as its co-
variance function ( [1], p. 11). We shall often denote σpxq :“ kpx, xq1{2. Given ω P Ω, the
corresponding sample path (or realization) of pUpxqqxPD is the following deterministic function
Uω : D Ñ R defined by Uωpxq :“ Upxqpωq. A Gaussian process is said to be measurable if
the map pΩ ˆ D,F b BpDqq Ñ pR,BpRqq, pω, xq ÞÑ Upxqpωq is measurable. If pUpxqqxPD is
measurable, then from Fubini’s theorem the maps of the form x ÞÑ kpx, x1q, x ÞÑ kpx, xq, etc,
are measurable. We further discuss this property in Remark 2.10.

We shall need the following lemma pertaining to the sample path-wise integration of Gaus-
sian processes.

Lemma 2.5. Let D Ă Rd be an open set. Let pUpxqqxPD „ GP p0, kq be a measurable centered
Gaussian process such that its standard deviation function σ lies in L1

locpDq. Then the sample
paths of U lie in L1

locpDq almost surely and given φ P C8
c pDq, the map defined by

Uαφ : Ω Q ω ÞÝÑ p´1q|α|

ż

D
UpxqpωqBαφpxqdx (2.26)

is a Gaussian random variable. Moreover, for all p P p1,`8q, pUαφ qφPFq
is a centered Gaussian

sequence (i.e. a Gaussian process indexed by a countable set), where Fq is defined in equation
(2.17).

We will also use the following fact about bounded Gaussian sequences, which can be seen
as a weak form of Fernique’s theorem ( [4], Theorem 2.8.5, p. 75).
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Lemma 2.6 ( [1], Theorem 2.1.2). Let pUnqnPN be a Gaussian sequence and set |U | :“ supn |Un|.
Suppose that Pp|U | ă `8q “ 1. Then there exists ε ą 0 such that

Erexppε|U |2qs ă `8. (2.27)

In particular, Er|U |ps ă `8 for all p P N.

(iii) A Gaussian measure µ ( [4], Definition 2.2.1) over a Banach space X is a measure over
its Borel σ-algebra such that given any x˚ P X˚, the pushforward measure of µ through
the functional x˚ is a Gaussian measure over R (see Section 2.5piq for a definition of the
pushforward). Gaussian measures are equipped with a mean vector aµ P X˚˚ and a covariance
operator Kµ : X˚ Ñ X˚˚, defined in [4], Definition 2.2.7. When X is separable, µ is Radon
( [4], p. 125). This implies that aµ lies in X and that the covariance operator Kµ maps X˚

to X ( [4], Theorem 3.2.3). The vector aµ and the covariance operator Kµ are defined by the
following formulas

@x P X˚, xaµ, xy “

ż

X

xx, zyµpdzq, (2.28)

@x, y P X˚, xy,Kµxy “

ż

X

xx´ aµ, zy xy ´ aµ, zyµpdzq. (2.29)

Any operator K : X˚ Ñ X˚˚ which is the covariance operator of a Gaussian measure is called a
Gaussian covariance operator. In Propositions 2.7 and 2.8, we present useful characterizations
of Gaussian measures µ over two important classes of Banach spaces: spaces of type 2 and
cotype 2 respectively. For a definition of spaces of type 2 and cotype 2, see e.g. [10]. In this
article, we will only use the fact that LppDq is of type 2 when p ě 2, and cotype 2 when
1 ď p ď 2 (see [4], p. 152). Moreover we shall restrict ourselves to the case where X is
separable. This implies that µ is Radon, which removes problems pertaining to extensions of
measures otherwise considered in [29] and [10].

Proposition 2.7 ( [29], Theorem 4). Let X be a separable Banach space of type 2, and let µ
be a Gaussian measure over X. Then its covariance operator is symmetric, nonnegative and
nuclear. Conversely, given any a P X and any symmetric, nonnegative and nuclear operator
K : X˚ Ñ X, there exists a Gaussian measure over X with mean vector a and covariance
operator K.

Denote l2 the Hilbert space of square summable sequences.

Proposition 2.8 ( [10], Theorem 4.1 and Corollary 4.1). Let X be a separable Banach space
of cotype 2, and let µ be a Gaussian measure over X. Then there exists a continuous linear
map A : l2 Ñ X and a symmetric, nonnegative and trace-class operator S : l2 Ñ l2 such
that covariance operator of µ is given by ASA˚ (in particular, the covariance operator of µ
is nuclear). In other words, µ is the pushforward measure of a Gaussian measure µ0 over l2

through some bounded linear map A. Conversely, given any a P X and any operator of the
form ASA˚ where A : l2 Ñ X is a bounded linear map and S a symmetric, nonnegative and
trace class operator over l2, there exists a Gaussian measure over X with mean vector a and
covariance operator K.

In practice, we shall replace l2 with L2pDq, which are isomorphic Hilbert spaces. The
propositions 2.7 and 2.8 generalize the case where X is a separable Hilbert space, which can
be found in [4], Theorem 2.3.1. We finish with the following handy result describing centered
Gaussian measures over Lp-spaces.
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Proposition 2.9 ( [4], Proposition 3.11.15 and Example 2.3.16).

• Let µ be a centered Gaussian measure over LppDq where 1 ď p ă `8 and D Ă Rd is
an open set. Then there exists a function k P LppD ˆ Dq such that the covariance operator
of µ is Ek : LqpDq Ñ LppDq, the integral operator associated to k. Moreover, there exists a
centered measurable Gaussian process pUpxqqxPD whose covariance function k̃ verifies k̃ “ k in
LppD ˆ Dq, and whose sample paths lie in LppDq a.s.. Setting σpxq “ k̃px, xq1{2, k̃ verifies

ż

D
k̃px, xqp{2dx “

ż

D
σpxqpdx ă `8. (2.30)

Additionally, PU “ µ, where PU is the pushforward of P through the Borel-measurable map
ω ÞÑ Uω P LppDq. Conversely, given any measurable nonnegative definite function k verifying
(2.30), the corresponding integral operator Ek : LqpDq Ñ LppDq is the covariance operator of a
centered Gaussian measure µ over LppDq.

• Given a centered measurable Gaussian process pUpxqqxPD whose covariance function we de-
note k̃, the condition (2.30) is equivalent to pUpxqqxPD having its sample paths lie in LppDq

a.s..

This result is quite strong, as it ensures the existence of a representative in LppDˆDq of the
kernel of any Gaussian covariance operator, which is the covariance function of a measurable
Gaussian process. This will enable us to remove awkward measurability issues w.r.t. k over its
diagonal and equation (2.30). Without the use of an underlying measurable Gaussian process,
these issues are not trivial to deal with, see e.g. [8] for an analysis of the Hilbert case p “ 2.

Remark 2.10. Proposition 2.9 shows that the assumption that a given Gaussian process is
measurable is slightly less demanding that it might seem. Ensuring the existence of a measurable
modification of a general random process is difficult outside of it being continuous in probability
( [17], Theorem 2.6 p. 61). Tedious extensions of this result exist ( [16], Theorem 2.3). For
a Gaussian process pUpxqqxPD „ GP p0, kuq however, Propositions 2.7, 2.8 and 2.9 shows that
the measurability of its covariance function over D ˆ D and the integrability of its standard
deviation in LppDq (or equivalently, suitable nuclear decompositions of its associated integral
operator Ek) ensure the existence of a measurable Gaussian process pV pxqqxPD „ GP p0, kvq

with the same covariance function in L1
locpD ˆDq. Consequently, ku “ kv a.e. on D ˆD. Note

though that the process V need not be a modification of U . Since ku “ kv a.e., we only have
that U and V have the same finite dimensional marginals ”almost everywhere” in the sense of
the Lebesgue measure: for all n P N and almost every px1, ..., xnq P Dn, pUpx1q, ..., Upxnqq and
pV px1q, ..., V pxnqq have the same law.

Throughout this article, we will only consider centered Gaussian processes pErUpxqs ” 0q

and Gaussian measures paµ “ 0q. Generalizations of the results of this article to non centered
Gaussian processes are straightforward.

3 Sobolev regularity for Gaussian processes : the general
case, 1 ă p ă `8

We can now state our first result, which deals with Wm,ppDq-regularity of Gaussian processes,
given any p P p1,`8q and any open set D Ă Rd.

Proposition 3.1 (Sample path Banach-Sobolev regularity for Gaussian processes). Let D Ă Rd
be an open set. Let pUpxqqxPD „ GP p0, kq be a measurable centered Gaussian process, defined
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on a probability set pΩ,F ,Pq, such that its standard deviation function σ lies in L1
locpDq. Let

p P p1,`8q. The following statements are equivalent :

(i) (Sample path regularity) The sample paths of pUpxqqxPD lie in Wm,ppDq almost surely.

(ii) (Integral criteria) For all |α| ď m, the distributional derivative Bα,αk lies in LppD ˆ Dq

and admits a representative kα in LppD ˆ Dq which is the covariance function of a measurable
Gaussian process. Note σαpxq :“ kαpx, xq1{2, then additionally

ż

D
σαpxqpdx ă `8. (3.1)

(iii) (Covariance structure) For all |α| ď m, the distributional derivative Bα,αk lies in LppD ˆ

Dq and the associated integral operator Eαk : LqpDq Ñ LppDq defined by

Eαk fpxq “

ż

D
Bα,αkpx, yqfpyqdy (3.2)

is symmetric, nonnegative and nuclear: there exists pλαnqnPN ě 0 and pψαnqnPN Ă LppDq such
that

$

’

’

’

’

&

’

’

’

’

%

`8
ÿ

n“0

λαn||ψαn ||2LppDq ă `8, (3.3)

Bα,αkpx, yq “

`8
ÿ

n“0

λαnψ
α
npxqψαnpyq in LppD ˆ Dq. (3.4)

If 1 ď p ď 2, then one can choose pλαnq such that
ř

n λ
α
n ă `8, and there exists a bounded

operator Aα : L2pDq Ñ LppDq and an orthonormal basis pϕαnq of L2pDq such that ψαn “ Aαϕ
α
n

for all n ě 0 (in particular, we have the uniform bound ||ψαn ||p ď ||Aα||).

The proposition above shows that a suitable Lp control of the function Bα,αk over the
diagonal is necessary and sufficient for ensuring the Sobolev regularity of the sample paths of
the Gaussian process with covariance function k. Formally speaking, the function px, yq ÞÑ

Bα,αkpx, yq is the covariance function of the differentiated process, pω, xq ÞÑ BαUωpxq. This is
formal only, as the weak derivative of the sample paths are only defined up to a set of Lebesgue
measure zero, and thus there is no obvious way of defining the joint map pω, xq ÞÑ BαUωpxq. Note
also that the idea of ensuring a suitable control of this covariance function near its diagonal is
not with reminding more standard results pertaining to the differentiability in the mean square
sense of a random process (see e.g. [1], Section 1.4.2). See [39] for similar remarks on the
Sobolev regularity of random fields.

Observe also that there is an asymmetry between Point piiq and Point piiiq of Proposition
3.1, as one depends on whether p is lower or greater than 2 while the other does not. Moreover,
both points rely on the finiteness of some quantity, so explicit bounds should be sought so that
Point piiq controls Point piiiq and conversely. This is the content of Proposition 3.5.

Finally, observe that the integrability criteria piiq cannot be expected to hold for any positive
definite representative k̃α of Bα,αk, even if k̃α is measurable on its diagonal. For example, set
k̃αpx, yq :“ kαpx, yq ` δx,y where δx,y is the Kronecker delta, which verifies k̃α “ Bα,αk in

LppD ˆ Dq. But if D has infinite Lebesgue measure, it is also clear that
ş

D k̃αpx, xqp{2dx ě
ş

D δx,xdx “ `8. Lemma 3.7 describes a natural set of “admissible” representatives for which
Point piiq holds, in the case p ě 2.
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Remark 3.2. Under the assumption that pUpxqqxPD is measurable, the statement that its sample
paths lie in some Sobolev space is not up to a modification of the process. This is a consequence
of Lemmas 2.4, 2.5 and 2.6, which show that the Sobolev regularity of its paths is fully deter-
mined by the finite dimensional marginals of the process (see equation (3.7)). This contrasts
with more classical results, e.g. pertaining to the continuity of the process ( [2], Section 1.4.1).
Still, ensuring the measurability of the process is not really straightforward (see Remark 2.10).

Example 3.3 (Finite rank covariance functions). Let p P p1,`8q, m P N0 and N P N.
Consider f1, ..., fN P Wm,ppDq and choose once and for all representatives of those functions in
LppDq, also denoted by f1, ..., fN , so that they may be understood as functions in the classical

sense. Consider the covariance function kpx, x1q :“
řN
i“1 fipxqfipx

1q. Then obviously, for all
|α| ď m, the weak derivative Bα,αk is given by

Bα,αkpx, x1q “

N
ÿ

i“1

BαfipxqBαfipx
1q in LppD ˆ Dq, (3.5)

and the associated integral operators fulfill the criteria piiiq of Proposition 3.1. Thus the
corresponding measurable Gaussian process has its sample paths in Wm,ppDq almost surely.
Note that this was obvious in the first place, since this Gaussian process can be written as
Upxq “

řN
i“1 ξifipxq where ξ1, ..., ξN are independent standard Gaussian random variables

(checking that the covariance function is the right one is trivial). Still, this example fell out of
the scope of the previous results pertaining to the Sobolev regularity of Gaussian processes.

Proof. (Proposition 3.1) We show piq ùñ piiq & piiiq, piiq ùñ piq and piiiq ùñ piiq.
piq ùñ piiq & piiiq : Suppose piq and let |α| ď m. We first prove that the mapNα : pΩ,F ,Pq Ñ

pR,BpRqq, ω ÞÑ ||BαUω||LppDq is measurable. Indeed, given φ P Fq (see equation (2.17) for the
definition of Fq), the map

Uαφ : ω ÞÝÑ

ż

D
BαUωpxqφpxqdx “ p´1q|α|

ż

D
UωpxqBαφpxqdx (3.6)

is a real valued random variable (this follows from Lemma 2.5). From Lemma 2.4, one also has
ˆ

ω ÞÑ ||BαUω||LppDq

˙

“ sup
φPFq

|Uαφ |. (3.7)

The supremum being taken over a countable set, Nα is indeed a measurable map. Given
any f P LppDq, a slight modification of this proof shows that ω ÞÑ ||BαUω ´ f ||LppDq is also
measurable. We can now show the map Tα : pΩ,F ,Pq Ñ pLppDq,BpLppDqqq, ω ÞÑ BαUω is
measurable. Let f P LppDq, r ą 0 and B “ Bpf, rq be an open ball in LppDq. Then from the
measurability of ω ÞÑ ||BαUω ´ f ||LppDq,

T´1
α pBq “ tω P Ω : ||Bαu´ f ||LppDq ă ru P F . (3.8)

Since LppDq is a separable metric space, its Borel σ-algebra is generated by the open balls of
LppDq (see e.g. [5], Exercise 6.10.28). Thus Tα is Borel-measurable and the pushforward of P
through Tα induces a (centered) probability measure µα over the Banach space LppDq. We
show that it is Gaussian. Let f P LqpDq and denote Tf the associated linear form over LppDq.
Let pϕnq Ă C8

c pDq be such that ϕn Ñ f in LqpDq and ω P Ω be such that Uω lies in L1
locpDq:

Tf pBαUωq “

ż

D
BαUωpxqfpxqdx “ lim

nÑ8

ż

D
BαUωpxqϕnpxqdx (3.9)

“ lim
nÑ8

p´1q|α|

ż

D
UωpxqBαϕnpxqdx. (3.10)
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For each value of n, Lemma 2.5 shows that the map ω ÞÑ p´1q|α|
ş

D UωpxqBαϕnpxqdx is a
Gaussian random variable. Thus ω ÞÑ Tf pBαUωq is a Gaussian random variable as an a.s. limit
of Gaussian random variables. This shows that the pushforward of µα through Tf is Gaussian
(see Section 2.5piq for the pushforward), since for all Borel set B P BpRq,

µαpT´1
f pBqq “ µαptg P LppDq : Tf pgq P Buq “ Pptω P Ω : Tf pBαUωq P Buq. (3.11)

Hence, µα is Gaussian. We next show that Bα,αk P LppDˆDq and that the covariance operator
of µα is the integral operator Eαk : LqpDq Ñ LppDq with kernel Bα,αk. Let D0 Ť D ˆ D and

K0 Ť D be such that D0 Ă K0 ˆ K0 (for example, set K1 :“ tx P D : Dy P D, px, yq P Ku,
K2 :“ ty P D : Dx P D, px, yq P Ku which are both compact subsets of D and K0 :“ K1 Y K2).
Let h “ ph1, ..., hdq P pR˚

`qd be such that
ř

i |hi| ă distpK0,D0q. Use then the bilinearity of the
covariance operator:

ż

D0

|pδαh b δαh qkpx, yq|pdxdy “

ż

D0

|ErδαhUpxqδαhUpyqs|pdxdy (3.12)

ď

ż

K0ˆK0

|ErδαhUpxqδαhUpyqs|pdxdy (3.13)

ď

ż

K0ˆK0

Er|δαhUpxqδαhUpyq|psdxdy (3.14)

ď E
„ˆ

ż

K0

|δαhUpxq|pdx

˙2ȷ

“ Er||δαhU ||p{2
p s (3.15)

ď Er||U ||
p{2
Wm,ppDq

s “: Cp ă `8. (3.16)

The expectation in equation (3.16) is indeed finite because of the following. Given |α| ď m,
equation (3.7) shows that the map ω ÞÑ ||BαUω||p is the supremum of a Gaussian sequence which
is finite a.s. by assumption; Lemma 2.6 then implies that all the moments of this supremum are
finite. Writing then ||U ||Wm,p in terms of these Lp norms yields equation (3.16). To see that the
control (3.16) implies that Bα,αk P LppD ˆ Dq, we copy the steps of equations (6.2)-(6.3)-(6.4)
in the proof of Lemma 2.1. Let φ P C8

c pDˆDq. Since it is compactly supported in DˆD, find
an open set D0 Ť D such that Supppφq Ă D0. Use Hölder’s inequality and equation (3.16):

ˇ

ˇ

ˇ

ˇ

ż

DˆD
pδαh b δαh qkpx, yqφpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

ď ||pδαh b δαh qk||p||φ||q ď C||φ||q. (3.17)

Next, use the discrete integration by parts formula:

ż

DˆD
pδαh b δαh qkpx, yqφpx, yqdxdy “

ż

D
kpx, yqpδαh b δαh q˚φpx, yqdxdy. (3.18)

When h Ñ 0, observe that pδαh b δαh q˚φpx, yq Ñ Bα,αφpx, yq pointwise. Use Lebesgue’s domi-
nated convergence theorem and equation (3.17) to obtain

ˇ

ˇ

ˇ

ˇ

ż

DˆD
kpx, yqBα,αφpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

ď C||φ||q, (3.19)

which indeed shows that Bα,αk P LppD ˆ Dq, from Riesz’ lemma. We now identify Kα, the
covariance operator of µα, in terms of Bα,αk. Let f, g P LqpDq and using the density of C8

c pDq

in LqpDq ( [36], Corollary 2.30), let pfnq, pgnq Ă C8
c pDq be two sequences such that fn Ñ f in
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LqpDq and likewise for gn and g. Then (explanation below),

xf,KαgyLq,Lp “ lim
nÑ8

xfn,KαgnyLq,Lp (3.20)

“ lim
nÑ8

ż

LppDq

xfn, hyLq,Lpxgn, hyLq,Lpdµαphq

“ lim
nÑ8

ż

Ω

xfn, B
αUωyLq,Lpxgn, B

αUωyLq,LpdPpωq (3.21)

“ lim
nÑ8

ż

Ω

xBαfn, UωyLq,LpxBαgn, UωyLq,LpdPpωq

“ lim
nÑ8

ż

DˆD
BαfnpxqBαgnpyqkpx, yqdxdy (3.22)

“ lim
nÑ8

ż

DˆD
fnpxqgnpyqBα,αkpx, yqdxdy

“

ż

DˆD
fpxqgpyqBα,αkpx, yqdxdy “ xf, Eαk gyLq,Lp (3.23)

We used the sequential continuity ofKα in equation (3.20), the transfer theorem for pushforward
measure integration ( [5], Theorem 3.6.1) in equation (3.21) and Fubini’s theorem in equation
(3.22). THus Kα “ Eαk . According to Proposition 2.9, since µα is a Gaussian measure over
LppDq, there exists a representative kα of Bα,αk in LppD ˆ Dq which is the covariance function
of a measurable Gaussian process. Note σαpxq “ kαpx, xq1{2, then the same proposition shows
that

ż

D
σαpxqpdx ă `8, (3.24)

which shows piiq. By Proposition 3.5.11 from [4], Eαk is nuclear and admits a symmetric non-
negative representation as the one in equation (3.4). if 1 ď p ď 2, then LppDq is of cotype 2 and
since Eαk is a Gaussian covariance operator, from Proposition 2.8 there exists a bounded operator
Aα : L2pDq Ñ LppDq and a trace class operator Sα : L2pDq Ñ L2pDq such that Eαk “ AαSαA

˚
α.

Introduce a Mercer decomposition of Sα (equation (2.23)): Sα “
ř

n λ
α
nϕ

α
n b ϕαn. Use the con-

tinuity of Aα and A˚
α to obtain that Bα,αkpx, yq “

ř

n λ
α
npAαϕ

α
nqpxqpAαϕ

α
nqpyq in LppD ˆ Dq,

which finishes to prove piiiq.
piiq ùñ piq : from Proposition 2.9, let pV αq be a centered measurable Gaussian process with
covariance function kα. Then its sample paths lie in LppDq a.s. and the Gaussian measure it
induces over LppDq through the map ω ÞÑ V αω P LppDq is the centered Gaussian measure with
covariance operator Eαk . Given φ P C8

c pDq, denote V αφ the following random variable

ω ÞÑ

ż

D
V αω pxqφpxqdx. (3.25)

From Lemma 2.5, pV αφ qφPFq is a Gaussian sequence. It is also centered and using Fubini’s
theorem to permute E and

ş

, we have that

ErV αφ V
α
ψ s “

ż

DˆD
φpyqψpxqkαpx, yqdxdy “

ż

DˆD
φpyqψpxqBα,αkpx, yqdxdy

“

ż

DˆD
BαφpyqBαψpxqkpx, yqdxdy. (3.26)

ErUαφU
α
ψ s “

ż

DˆD
BαφpyqBαψpxqkpx, yqdxdy. (3.27)
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Having the same mean and covariance, the two Gaussian sequences pV αφ qφPFq
and pUαφ qφPFq

have
the same finite dimensional marginals. One checks in an elementary fashion that their countable
suprema over Fq then have the same probability law (e.g. by showing that they have the same
cumulative distribution function). Recalling from Lemma 2.4 that ||V αω ||p “ supφPFq

|V αφ pωq|,
we obtain that

1 “ Pp||V αω ||p ă `8q “ Pp sup
φPFq

|V αφ | ă `8q “ Pp sup
φPFq

|Uαφ | ă `8q, (3.28)

which shows that BαU P LppDq almost surely. This is true for all |α| ď m, which shows piq.
piiiq ùñ piiq : if piiiq, then from either Proposition 2.7 or 2.8 depending on whether p ď 2 or
p ě 2, there exists a Gaussian measure over LppDq whose covariance operator is Eαk as defined
in equation (3.2). Proposition 2.9 yields piiq.

Remark 3.4. In Point piiiq of Proposition 3.1, it is very tempting to distribute the cross
derivative Bα,α on the nuclear decomposition of k (i.e. when α “ 0, setting λn :“ λ0n and
ψn :“ ψ0

n), thus setting λαn “ λn and ψαn “ Bαψn. While we can show that Bαψn P LppDq

(copy the proof of Lemma 4.9, Point piq), it is not clear whether the obtained decomposition
converges in LppD ˆ Dq, or that it corresponds to a nuclear one, i.e.

ř

n λn||Bαψn||2p ă `8 (it
is not even clear in what sense this derivative can be distributed, apart from the distributional
sense). Assume formally that the derivative can be suitably distributed, and introduce the
functions vαpxq :“

ř

n λnBαψnpxq2 and σαpxq :“ vαpxq1{2. From Proposition 3.1, we expect
that ||σα||p ă `8. When 1 ď p ă 2, the reverse Minkowski inequality in Lp{2pDq (see [36],
Theorem 2.13 p. 28) then yields

`8
ÿ

n“0

λn||Bαψn||2p “

`8
ÿ

n“0

λn||Bαψ2
n||p{2 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

n“0

λnBαψ2
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p{2

“ ||vα||p{2 “ ||σα||2p ă `8, (3.29)

so that the series
ř

n λn||Bαψn||2p converges. From this, it is then readily checked that the
equality Bα,αk “

ř

n λnBαψnbBαψn holds in LppDˆDq, which is then a nuclear decomposition
of Bα,αk (it is rigorously proved in the upcoming Proposition 4.4 shows that this holds with
equality for p “ 2). When p ą 2 though, the usual Minkowski inequality in Lp{2pDq yields
the converse inequality in equation (3.29), which then states nothing about the convergence
of the series

ř

n λn||Bαψn||2p w.r.t. the finiteness of ||σα||p. Yet, from Proposition 3.1, nuclear
expansions of Bα,αk do exist if p ą 2.

The following proposition deals with the apparent asymmetry in p between Points piiq and
piiiq of Proposition 3.1. We recall that the nuclear norm νpT q is defined in equation (2.25).
Contrarily to Proposition 3.1, we do not exclude p “ 1.

Proposition 3.5. Let µ be a centered Gaussian measure over LppDq, where 1 ď p ă `8. Let
k P LppDˆDq be the kernel of its covariance operator pKµ “ Ekq, chosen such that k is also the
covariance function of a measurable Gaussian process pUpxqqxPD, from Proposition 2.9. Define
σpxq “ kpx, xq1{2 and set Cp “ 2p{2Γppp` 1q{2q{

?
π p“ Er|X|ps where X „ N p0, 1qq. Then the

following bounds hold.

• if 1 ď p ă 2, there exists a symmetric, nonnegative and trace class operator S over L2pDq

and a bounded operator A : L2pDq Ñ LppDq such that Ek “ ASA˚. Moreover,

νpEkq ď inf
A,S s.t.

Ek“ASA˚

||A||2νpSq ď ||σ||2p ď C´2{p
p inf

A,S s.t.
Ek“ASA˚

||A||2νpSq. (3.30)
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• if 2 ď p ă `8, then Ek is symmetric, nonnegative and nuclear, and

C´2{p
p νpEkq ď ||σ||2p ď νpEkq. (3.31)

Observe that if p “ 2 then C2 “ 1 and equation (3.31) yields ||σ||22 “ νpEkq “ TrpEkq.
It is expected that the nuclear norm of Ek cannot directly appear on the right hand side of
equation (3.30), as not all nuclear operators are Gaussian covariance operators when 1 ď p ă 2
(Proposition 2.8). Proposition 3.5 in fact suggests that for general Banach spaces X of cotype
2, the following map defined over the set of Gaussian covariance operators B : X˚ Ñ X,

B ÞÑ inf
A,S s.t.
B“ASA˚

||A||2νpSq (3.32)

is the natural measurement of the ”size” of such operators. When X is of type 2, this would
be the case for the nuclear norm B ÞÑ νpBq.

Remark 3.6. Proposition 3.5 is interesting from an application point of view because it states
that the operator norms appearing in this proposition, as well as the Lp norm of the standard
deviation function σ, are suitable quantities for quantitatively controlling the Lp norm of the
sample paths of the underlying Gaussian process. For instance, we have the following Lp control
in expectation: Er||U ||pps “ Cp||σ||pp (see equation (3.34)). Applying this fact recursively, we
obtain that the Wm,p-Sobolev norm of the sample paths of the Gaussian process in question
is controlled as follow, denoting σαpxq “ Bα,αkpx, xq1{2 (choosing the representative of Bα,αk
which is the covariance of a measurable Gaussian process)

E
“

||U ||
p
Wm,p

‰

“ Cp
ÿ

|α|ďm

||σα||pp. (3.33)

If such a control cannot be obtained, then it means that the sample paths of U do not lie in
Wm,ppDq in the first place. Finally, we have the following asymptotic behaviour of the constant

when p Ñ `8 : C
´2{p
p „ expp1q{pp´ 1q.

Proof. (Proposition 3.5) We begin with the following general fact concerning the measurable
Gaussian process pUpxqqxPD, observing from Fubini’s theorem that

Er||U ||pps “ E
„

ż

D
|Upxq|pdx

ȷ

“

ż

D
Er|Upxq|psdx “

ż

D
Cpσpxqpdx “ Cp||σ||pp, (3.34)

where Cp “ 2p{2Γppp` 1q{2q{
?
π. Indeed, given X „ N p0, σ2q, then Er|X|ps “ Cpσ

p.
Suppose now that 1 ď p ă 2. Let µ0 be a Gaussian measure on L2pDq and A : L2pDq Ñ

LppDq a bounded operator such that µ “ µ0A (pushforward of µ0 through A, see Section 2.5piq)
and S the trace class covariance operator associated to µ0 (see Proposition 2.8). Recall also
that from Proposition 2.9, µ “ PU . Then (explanation below),

Cp||σ||pp “ Er||U ||pps “

ż

Ω

||Uω||ppPpdωq “

ż

LppDq

||f ||ppµpdfq (3.35)

“

ż

L2pDq

||Ag||ppµ0pdgq ď ||A||p
ż

L2pDq

||g||
p
2µ0pdgq (3.36)

ď ||A||p
ż

L2pDq

xg, gy
p{2
L2 µ0pdgq ď ||A||p

ˆ
ż

L2pDq

xg, gyL2µ0pdgq

˙p{2

(3.37)

ď ||A||p TrpSqp{2 “ ||A||pνpSqp{2. (3.38)
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In equation (3.35), we used equation (3.34) and pushforward integration to write the integral
w.r.t. P as an integral w.r.t. µ “ PU . Likewise in equation (3.36) where we write the integral
w.r.t. µ as an integral w.r.t. µ0 using the pushforward identity µ “ µ0A. In equation (3.37),
we used Jensen’s inequality for concave functions (0 ă p{2 ă 1). In equation (3.38), we used
the the trace identity for Gaussian measures over Hilbert spaces from [4], equation 2.3.2 and
the one following p. 49. Moreover, from the nuclear norm estimate of [43], Proposition 47.1
pp. 479-480,

νpEkq “ νpASA˚q ď ||A||νpSq||A˚|| ď ||A||2νpSq (3.39)

. In equations (3.38) and (3.39), taking the infimum over all representations Ek “ ASA˚ yields

νpEkq ď inf
A,S s.t.

Ek“ASA˚

||A||2νpSq, ||σ||2p ď C
´ 1

p
p inf

A,S s.t.
Ek“ASA˚

||A||2νpSq. (3.40)

To prove the remaining inequality (infEk“ASA˚ ||A||2νpSq ď ||σ||2p), we use an explicit decom-
position Ek “ ASA˚ by first setting

Afpxq “ fpxqσpxq1´p{2. (3.41)

Using Hölder’s inequality with a “ 2{p, 1{a` 1{b “ 1 (notice that a ą 1), we obtain

||Af ||pp “

ż

D
|fpxq|pσpxqpp1´p{2qdx (3.42)

ď

ˆ
ż

D
|fpxq|2dx

˙p{2ˆ
ż

D
σpxqbpp1´p{2qdx

˙1{b

. (3.43)

But b “ a
a´1 “

2{p
2{p´1 “ 1

1´p{2 and bp1 ´ p{2q “ 1, which together with equation (3.42) yields

||Af ||pp ď ||f ||
p
2||σ||pp1´p{2q

p . (3.44)

Thus A : L2pDq Ñ LppDq is bounded and ||A|| ď ||σ||
1´p{2
p . One also verifies that A˚ :

LqpDq Ñ L2pDq is given by A˚fpxq “ fpxqσpxq1´p{2, with ||A|| “ ||A˚||. Introduce the
functions k0px, yq :“ kpx, yqσpxqp{2´1σpyqp{2´1, and σ0pxq “ k0px, xq1{2; k0 is the covariance
function of the measurable Gaussian process V pxq :“ σpxqp{2´1Upxq, and verifies

||σ0||22 “

ż

D
σ0pxq2dx “

ż

D
k0px, xqdx “

ż

D
σpxqpdx “ ||σ||pp ă `8. (3.45)

Therefore Ek0 , the integral operator over L2pDq associated to k0, is trace class (Proposition
3.1piiq). Observe also that k “ pAbAqk0 also yields that Ek “ AEk0A˚. Thus,

inf
A,S s.t.

Ek“ASA˚

||A||2νpSq ď ||A||2νpEk0q ď ||σ||2´p
p ||σ||pp “ ||σ||2p. (3.46)

Combining equations (3.40) and (3.46) yields the desired result of equation (3.30).
Suppose now that p ě 2. Recall that µ “ PU . We successively use the transfer theorem for

pushforward measure integration, Jensen’s inequality for probability measures pp{2 ě 1q and
the nuclear norm estimate from [29], Theorem 3:

Er||U ||pps “

ż

Ω

||Uω||ppPpdωq “

ż

LppDq

||f ||ppµpdfq “

ż

LppDq

||f ||2ˆp{2
p µpdfq (3.47)

ě

ˆ
ż

LppDq

||f ||2pµpdfq

˙p{2

ě νpEkqp{2, (3.48)
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which together with equation (3.34) yields ||σ||2p ě C
´2{p
p νpEkq. We now prove the last remain-

ing inequality, i.e. ||σ||2p ď νpEkq. For this, consider kpx, yq “
ř

n µnψnpxqϕnpyq, a nuclear
representation of k in LppD ˆ Dq, with ||ψn||p “ ||ϕn||p “ 1 and S :“

ř

n |µn| ă `8. Denote

by v the function v : x ÞÑ
ř`8

n“0 µnψnpxqϕnpxq. Minkowski’s inequality in Lp{2pDq shows that

x ÞÑ
ř`8

n“0 |µnψnpxqϕnpxq| is finite a.e. and in fact that v P Lp{2pDq:

||v||p{2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

n“0

µnψnϕn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p{2

ď

`8
ÿ

n“0

|µn| ˆ
ˇ

ˇ

ˇ

ˇψnϕn
ˇ

ˇ

ˇ

ˇ

p{2
ď

`8
ÿ

n“0

|µn| ˆ ||ψn||p||ϕn||p “ S. (3.49)

In equation (3.49) above, we used used the Cauchy-Schwarz inequality on ||ϕnψn||p{2. From
the nuclear decomposition of k, it is very tempting to write ||σ||2p “ ||v||p{2, but unfortunately
the diagonal of D ˆ D has a null Lebesgue measure. This equality turns out to be true but
this fact is non trivial and deferred to Lemma 3.7 below. From this lemma and equation (3.49)
which holds whatever the nuclear decomposition of Ek, taking the infimum over all nuclear
representations of Ek in equation (3.49) yields ||σ||2p ď νpEkq. This finishes the proof.

The next lemma, which was key in the proof of equation (3.31), states that evaluating the
Lp{2-norm of the diagonal of a nuclear representation of a Gaussian covariance operator K in
LppDq, p ě 2, yields the same result as evaluating Lp{2-norm of the diagonal of the covariance
function k of any measurable Gaussian process pUpxqqxPD such that Ek “ K. This fact is not
obvious at all, as the diagonal of DˆD has null Lebesgue measure and different representatives
of k in LppD ˆ Dq have no reason a priori to agree on sets of null measure. However, the
assumptions that the representation is nuclear and that U is measurable turn out to be strong
enough to yield the desired conclusion. The proof ideas for this result should largely be credited
to [8]; we generalized them in a straightforward fashion from L2pDq to LppDq and applied them
to the Gaussian process pUpxqqxPD of Proposition 3.5. They are based on the Hardy-Littlewood
maximal inequality.

Lemma 3.7. Let 2 ď p ă `8, D Ă Rd be an open set and pUpxqqxPD „ GP p0, kq be a
measurable Gaussian process whose sample paths lie in LppDq a.s.. Then Ek : LqpDq Ñ LppDq

is nuclear and there exists sequences pµnq Ă R, pψnq, pϕnq Ă LppDq such that k “
ř

n µnψnbϕn
in LppD ˆ Dq, with ||ψn||p “ ||ϕn||p “ 1 and

ř

n |µn| ă `8 (Propositions 2.9 and 2.7). Then
x ÞÑ

ř8

n“0 |µnψnpxqϕnpxq| is finite a.e. and v : x ÞÑ
ř8

n“0 µnψnpxqϕnpxq is nonnegative a.e..
Moreover,

||σ||pp “

ż

D
kpx, xqp{2dx “

ż

D

ˆ `8
ÿ

n“0

µnψnpxqϕnpxq

˙p{2

dx “ ||v||
p{2
p{2 (3.50)

A remarkable consequence of this result is that the Lp{2-norm of the diagonal of a nuclear
representation of Ek “

ř

n µnψn b ϕn is invariant w.r.t. said nuclear decomposition, while
its finiteness fully characterizes the nuclearity of Ek (Proposition 3.5piiq); the same invariance
property does not hold for

ř

n |µn|, hence the need to define the nuclear norm of Ek as the
infimum over such quantities.

Proof of Lemma 3.7. We first prove the statement when D “ Rd. We begin with some defini-
tions and observations. For r ą 0, denote Cr :“ r´r, rsd and Crpxq :“ x` Cr. For f P LppRdq

(resp. g P LppRd ˆ Rdq), denote its average over Crpxq (resp. Crpxq ˆ Crpxq) as

Apdq
r fpxq :“

1

|Cr|

ż

Crpxq

fptqdt, Ap2dq
r gpxq :“

1

|Cr|2

ż

Crpxq

ż

Crpxq

gps, tqdsdt (3.51)
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The functions A
pdq
r f and A

p2dq
r g are defined pointwise and continuous. The point of averaging

over cubes rather than balls is that we have A
p2dq
r “ A

pdq
r b A

pdq
r . One then introduces the

Hardy-Littlewood maximal functions of f and g, as

M pdqfpxq :“ sup
rą0

1

|Cr|

ż

Crpxq

|fptq|dt, M p2dqgpx, yq :“ sup
rą0

1

|Cr|2

ż

Crpxq

ż

Crpxq

|gps, tq|dsdt.

M pdqf (resp. M p2dqg) is measurable, nonnegative and defined pointwise over Rd (resp. RdˆRd).
For all x P Rd, we obviously have the pointwise majoration

|Apdq
r fpxq| ď M pdqfpxq, (3.52)

and likewise for M p2dqg. A key point for us will be the Hardy-Littlewood maximal theorem
( [40], Theorem 1 p. 5), which states that there exists a constant Sp ą 0 such that for all
f P LppRdq,

||M pdqf ||p ď Sp||f ||p. (3.53)

This theorem allows a first general observation, given f P LppRdq. Indeed, the Lebesgue

differentiation theorem ( [40], Corollary 1 p. 5) states that A
pdq
r fpxq Ñ fpxq a.e.; but we also

have the pointwise domination

|Apdq
r fpxq ´ fpxq| ď |Apdq

r fpxq| ` |fpxq| ď M pdqfpxq ` |fpxq| a.e.. (3.54)

From equation (3.53), the function on the right-hand side of equation (3.54) lies in LppRdq and
Lebesgue’s dominated convergence theorem in LppDq yields that we also have convergence:

||Apdq
r f ´ f ||LppRdq ÝÝÝÑ

rÑ0
0. (3.55)

We will also use that the nonlinear operator M is submutliplicative and subadditive:

M p2dqpψ b φqpx, yq ď M pdqψpxqM pdqφpyq, (3.56)

M pdqpψ ` φqpxq ď M pdqψpxq `M pdqφpxq. (3.57)

With equations (3.55), (3.56) and (3.57), we now prove the desired result. We first focus on
the decomposition k “

ř

n µnψn b ϕn, for which the following pointwise equality holds ( [8],
Corollary 2.2 and Lemma 2.3, or equation 3.6 from [8])

Ap2dq
r kpx, yq “

`8
ÿ

n“0

µnA
pdq
r ψnpxqApdq

r ϕnpyq @px, yq P Rd ˆ Rd. (3.58)

We now prove that from this decomposition, we can deduce a first important fact, which is

lim
rÑ0

Ap2dq
r kpx, xq “

`8
ÿ

n“0

µnψnpxqϕnpxq a.e.. (3.59)

For this, first observe that for all x P Rd and n P N0, the following domination holds:

|µn| ˆ |Apdq
r ψnpxqApdq

r ϕnpxq| ď |µn| ˆM pdqψnpxqM pdqϕnpxq. (3.60)
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But the series obtained by summing the right-hand side term of equation (3.60) is an a.e. finite
function of x, as Minkowski’s inequality in Lp{2pRdq and equation (3.53) yield:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

n“0

|µn|M pdqψnM
pdqϕn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p{2

ď

`8
ÿ

n“0

|µn| ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
M pdqψnM

pdqϕn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p{2

ď

`8
ÿ

n“0

|µn| ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
M pdqψn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
M pdqϕn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p
(3.61)

ď

`8
ÿ

n“0

|µn| ˆ S2
p ||ψn||p||ϕn||p “ S2

p

`8
ÿ

n“0

|µn| ă `8. (3.62)

We used the Cauchy-Schwarz inequality in equation (3.61). Choose now a conull set T Ă Rd,
on which the Lebesgue differentiation theorem applies for all ψn and ϕn, and on which x ÞÑ
ř

n |µn|M pdqψnpxqM pdqϕnpxq is finite (such a set exists from the finiteness of its Lp{2-norm).
For all x P T , the Lebesgue dominated convergence theorem for the discrete measure

ř

nPN0
δn

(using the domination (3.60)) yields the equality (3.59).
We now focus on the Gaussian process pUpxqqxPRd . Since its sample paths Uω lie in LppRdq

almost surely, equation (3.55) yields that for almost every ω P Ω,

||Apdq
r Uω ´ Uω||pp ÝÝÝÑ

rÑ0
0. (3.63)

We also have that for every such ω P Ω and r ą 0,

||Apdq
r Uω ´ Uω||p ď ||Apdq

r Uω||p ` ||Uω||p ď ||M pdqUω||p ` ||Uω||p ď pSp ` 1q||Uω||p, (3.64)

and from Fubini’s theorem, the right-hand side of equation (3.64) lies in LppPq:

Erω ÞÑ ||Uω||pps “ Er||U ||pps “

ż

Rd

Er|Upxq|psdx “ Cp||σ||pp ă `8 (3.65)

Thus, from equations (3.63), (3.64), (3.65) and Lebesgue’s dominated convergence in LppPq,

Er||Apdq
r U ´ U ||pps ÝÝÝÑ

rÑ0
0. (3.66)

In particular, using the reverse triangle inequality on the norm V ÞÑ Er||V ||pps1{p, we have

E
“

||Apdq
r U ||pp

‰

ÝÝÝÑ
rÑ0

E
“

||U ||pp

‰

“ Cp||σ||pp. (3.67)

We then wish to use equations (3.67) and (3.59) to prove the desired result. For this, observe

that from the linearity of the operator A
pdq
r , pA

pdq
r UpxqqxPD is a centered measurable Gaussian

process whose covariance function is given by

CovpApdq
r Upxq, Apdq

r Upyqq “
`

Apdq
r bApdq

r

˘

kpx, yq “ Ap2dq
r kpx, yq @px, yq P Rd ˆ Rd (3.68)

(Note then that A
p2dq
r kpx, xq “ VarpA

pdq
r Upxqq ě 0, which also shows that the limit in equation

(3.59) is nonnegative a.e.) The proof of the Gaussianity of pA
pdq
r UpxqqxPD is carried out similarly

as for Lemma 2.5, and the expression of its covariance function follows from the measurability
of U and Fubini’s theorem. Fubini’s theorem and the fact that Er|X|ps “ Cps

p if X „ N p0, s2q

then lead to

Er||Apdq
r U ||pps “

ż

Rd

Er|Apdq
r Upxq|psdx “ Cp

ż

Rd

´

Ap2dq
r kpx, xq

¯p{2

dx (3.69)
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We will finally apply Lebesgue’s dominated convergence theorem on equation (3.69) when r goes
to zero, using the limit given in equation (3.59). For this, observe that equation (3.52) together
with the sublinear properties of M pdq (equations (3.56) and (3.57)) lead to the domination

|Ap2dq
r kpx, xq| ď M p2dqkpx, xq ď

`8
ÿ

n“0

|µn|M pdqψnpxqM pdqϕnpxq @x P Rd, (3.70)

and the right-hand side of equation (3.70) indeed lies in Lp{2pDq, from equation (3.62). We
finally conclude from Lebesgue’s dominated convergence theorem that

lim
rÑ0

Er||Apdq
r U ||pps “ Cp

ż

Rd

lim
rÑ0

´

Ap2dq
r kpx, xq

¯p{2

dx “ Cp

ż

Rd

ˆ `8
ÿ

n“0

µnψnpxqϕnpxq

˙p{2

dx,

which, together with equation (3.67), finishes the proof.
To deal with the general case where D is only an open subset of Rd, extend any function

f P LppDq to a function f̃ P LppRdq by setting f̃pxq “ fpxq if x P D, f̃pxq “ 0 elsewhere. f̃
remains measurable, and all the arguments and results stated above are preserved.

4 Sobolev regularity for Gaussian processes : the Hilbert
space case, p “ 2

In the case p “ 2, we provide an alternative proof of the integral and spectral criteria of
Proposition 3.1, based on the study of the ”ellipsoids” of Hilbert spaces (see Section 4.2).
These geometrical objects are well understood in relation with Gaussian processes (see [18]
or [42], Section 2.5). Compared with the general case p P p1,`8q, we draw additional links
between the different Mercer decompositions of the kernels Bα,αk, the trace of Eαk and the
Hilbert-Schmidt nature of the imbedding of the reproducing kernel Hilbert space (see Section
4.1 below) associated to k in HmpDq.

4.1 Reproducing Kernel Hilbert Spaces (RKHS, [3])

Consider a general set D and a positive definite function k : D ˆ D Ñ R, i.e. such that given
any n P N and px1, ..., xnq P Dn, the matrix pkpxi, xjqq1ďi,jďn is nonnegative definite. One
can then build a Hilbert space Hk of functions defined over D which contains the functions
kpx, ¨q, x P D and verifies the reproducing identities

xkpx, ¨q, kpx1, ¨qyHk
“ kpx, x1q @x, x1 P D, (4.1)

xkpx, ¨q, fyHk
“ fpxq @x P D, @f P Hk. (4.2)

Hk is the RKHS of k. This space is exactly the set of functions of the form fpxq “
ř`8

i“1 aikpxi, xq

such that ||f ||2Hk
“

ř`8

i,j“1 aiajkpxi, xjq ă `8. If for all x P D, kpx, ¨q is measurable, then Hk

only contains measurable functions. One may then consider imbedding Hk in some Sobolev
space HmpDq. Recall that in HmpDq, functions are equal up to a set of Lebesgue measure zero.
If such an imbedding i : Hk Ñ HmpDq is well-defined (i.e. if f P Hk then its weak derivatives
Bαf exist and lie in L2pDq for all |α| ď m), we will sometimes use the same notation for f P Hk

and its equivalence class f P HmpDq; strictly speaking, the latter should be denoted ipfq. It
may then happen that i is not injective, as with the RKHS associated to the Kronecker delta
kpx, x1q “ δx,x1 (in this case, we even have ipHkq “ t0uq.
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Remark 4.1. In Proposition 4.4, we will be interested in the Hilbert-Schmidt nature of the
imbedding i. However, it may happen that Hk is not separable, such as with the RKHS
associated to the Kronecker delta δx,x1 . This results in additional care required for defining
the notion of Hilbert Schmidt operators, as the definition from Section 2.4piiq cannot hold.
Still, this case is dealt with in Proposition 4.4pivq. See [33] and [4], Remark 3.2.9 p. 103 for
discussions on non separable RKHS.

4.2 Ellipsoids of Hilbert spaces and canonical Gaussian processes [18]

Let pH; x, yHq be a separable Hilbert space. We introduce pVxqxPH the canonical Gaussian
process of H, defined as the centered Gaussian process whose covariance function is the inner
product of H :

ErVxVys “ xx, yyH . (4.3)

A subset K of H is said to be Gaussian bounded (GB) if

Ppsup
xPK

|Vx| ă `8q “ 1. (4.4)

The GB property was first introduced for studying the compact sets of Hilbert spaces, see [18] on
that topic. In equation (4.4), the random variable is defined as supxPK |Vx| :“ supxPA |Vx| where
A is any countable subset of K, dense in K. Different choices of A only modify supxPK |Vx| on
a set of probability 0 ( [18], p. 291), which leaves equation (4.3) unchanged. We will use the
two following results below, taken from [18].

Proposition 4.2 ( [18], p. 293 and [18], Proposition 3.4). We have the two following facts.

(i) If K is a GB-set, then its closed, convex, symmetric hull is a GB-set.

(ii) The closure of a GB-set is compact.

Given a self-adjoint compact operator T : H Ñ H, introduce a basis of eigenvectors xn and
its real eigenvalues λn, λn Ñ 0. The image of the closed unit ball of H, B “ BHp0, 1q is the
following ”ellipsoid” ( [18], p. 312)

T pBq “

"

ÿ

λną0

anxn s.t.
ÿ

λną0

a2n{λ2n ď 1

*

. (4.5)

The main result we will use is the following.

Proposition 4.3 ( [18], Proposition 6.3). Suppose that T is compact and self-adjoint. Then
T pBq is a GB-set if and only if

ř

nPN λ
2
n ă 8, i.e. T pBq is a ”Schmidt ellipsoid”.

We can now state our result pertaining to the HmpDq-regularity of Gaussian processes,
given an arbitrary open set D Ă Rd.

Proposition 4.4 (Sample path Hilbert-Sobolev regularity for Gaussian processes). Let D Ă Rd
be an open set. Let pUpxqqxPD „ GP p0, kq be a measurable centered Gaussian process, defined
on a probability set pΩ,F ,Pq, such that its standard deviation function σ lies in L1

locpDq. The
following statements are equivalent:

(i) (Sample path regularity) The sample paths of U lie in HmpDq almost surely.
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(ii) (Spectral structure) For all |α| ď m, the distributional derivative Bα,αk lies in L2pD ˆ Dq

and the associated integral operator

Eαk fpxq “

ż

D
Bα,αkpx, yqfpyqdy (4.6)

is trace class. Equivalently, there exists a representative kα of Bα,αk in L2pD ˆ Dq which is
the covariance function of a measurable Gaussian process. Note σαpxq :“ kαpx, xq1{2, then
additionally

ż

D
kαpx, xqdx ă `8. (4.7)

(iii) (Mercer decomposition) The kernel k has the following Mercer decomposition

kpx, yq “

`8
ÿ

n“0

λnϕnpxqϕnpyq in L2pD ˆ Dq, (4.8)

where pλnq is a nonnegative sequence and pϕnq is an orthonormal basis of L2pDq. Moreover,
for all n P N such that λn ‰ 0, Bαϕn P L2pDq, Bα,αk P L2pD ˆ Dq, the following equalities hold

$

’

’

’

’

&

’

’

’

’

%

TrpEαk q “

`8
ÿ

n“0

λn||Bαϕn||22 ă `8, (4.9)

Bα,αkpx, yq “

`8
ÿ

n“0

λnBαϕnpxqBαϕnpyq in L2pD ˆ Dq. (4.10)

(iv) (imbedding of the RKHS) Hk Ă HmpDq, the corresponding natural imbedding i : Hk Ñ

HmpDq is continuous and ii˚ : HmpDq Ñ HmpDq is trace class. Equivalently, kerpiqK endowed
with the topology of Hk is a separable Hilbert space and j :“ i| kerpiqK : kerpiqK Ñ HmpDq is
Hilbert-Schmidt. Moreover, the Hilbert-Schmidt norm of j (see Section 2.4piiq and piiiq) is
given by

||j||2HS “ Trpii˚q “
ÿ

|α|ďm

TrpEαk q. (4.11)

Before proving this result, we discuss Proposition 4.4 in relation with previous results from
the literature. First, point pivq is not without reminding Driscoll’s theorem ( [25], Theorem
4.9) which is widely spread in the machine learning/RKHS community; this theorem states the
following. Let k and r be two positive definite functions defined over D, and let U „ GP p0, kq.
Suppose that Hk Ă Hr with a Hilbert-Schmidt imbedding, then the sample paths of U lie in
Hr almost surely.

Second, Proposition 4.4 and equation (4.7) in particular, is a generalization of Theorem
1 from [39] in the case of Gaussian processes; By removing the assumption in [39] that the
covariance function be continuous on its diagonal as well as its symmetric cross derivatives,
the sufficient condition derived in [39] becomes also necessary. Finally, Proposition 4.4 shows
that if p “ 2, then in the nuclear decomposition of Eαk (see Proposition 3.1piiiqq one can choose
λαn “ λn and ψαn “ Bαψn. It is not obvious that this should hold when p ‰ 2 (see Remark 3.4).

Example 4.5 (Hilbert-Schmidt imbeddings of Sobolev spaces). Proposition 4.4 can be com-
pared with the results found in [41] and its Corollary 4.5 in particular. This corollary states
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that if D Ă Rd is sufficiently smooth, if Hk Ă HtpDq with a continuous imbedding and if
t ą d{2, then the sample paths of the centered Gaussian process with covariance function k lie
in HmpDq for all real number m P r0, t ´ d{2q. For example, this holds when k is a Matérn
covariance function of order t´ d{2; its RKHs is then exactly HtpDq ( [41], Example 4.8).

In the particular case where in addition m is an integer, we recover this result from Propo-
sition 4.4. Indeed, it is known that when m P p0, t´d{2q, the imbedding of HtpDq in HmpDq is
Hilbert-Schmidt. When the involved indexes are nonnegative integers, this is known as Mau-
rin’s theorem ( [36], Theorem 6.61, p. 202). Maurin’s theorem is generalized to fractional
exponents in [44], Folgerung 1 p. 310 (in German) or [27], Proposition 7.1 (in French). if
Hk Ă HtpDq with a continuous imbedding, then the inclusion map of Hk in HmpDq is Hilbert-
Schmidt for all m P r0, t ´ d{2q X N0. From Proposition 4.4, we obtain that the sample paths
of the corresponding Gaussian process indeed lie in HmpDq.

However, not all RKHS that are subspaces of HmpDq with a Hilbert-Schmidt imbedding
are contained in some HtpDq with t ą m ` d{2, as the following trivial example shows. Fix
any ε ą 0 and consider the rank one kernel kpx, x1q “ fpxqfpx1q where f is chosen such that
f P HmpDq and f R Hm`εpDq (choose a representative of f in L2pDq so that f is a function
in the classical sense). Then Hk “ Spanpfq and the imbedding of Hk in HmpDq is Hilbert-
Schmidt since it is rank one; but Hk Ć Hm`εpDq. Proposition 4.4 yields that the associated
trivial Gaussian process Upxqpωq “ ξpωqfpxq where ξ „ N p0, 1q has its sample paths in HmpDq

(it was obvious in the first place).

Example 4.6 (One dimensional case). We build a covariance function which is not pointwise
differentiable at any pq, q1q P Q ˆ Q, and such that the corresponding Gaussian process has its
sample paths in H1pRq. Let hapxq :“ maxp0, 1 ´ |x ´ a|q be the hat function centered around
a P R. It lies in H1pRq but it is not differentiable at x “ a, a ´ 1 and a ` 1. Let pqnq be an
enumeration of Q. Then the following positive definite function over R

kpx, x1q :“
`8
ÿ

n“0

1

2n
hqnpxqhqnpx1q (4.12)

is not differentiable in the classical sense at each point px, x1q of the form pqn, qmq, but the
map ii˚, with i : Hk Ñ H1pRq the canonical imbedding, is trace-class (use equations (4.9) and
(4.11)):

Trpii˚q “ TrpEkq ` TrpE1
kq (4.13)

ď

`8
ÿ

n“0

1

2n
||hqn ||22 `

`8
ÿ

n“0

1

2n
||h1

qn ||22 (4.14)

ď

`8
ÿ

n“0

1

2n
`

`8
ÿ

n“0

1

2n
ˆ 22 “ 10. (4.15)

Before proving Proposition 4.4, we shall require a number of lemmas concerning the Mercer
decomposition of Hilbert-Schmidt operators over L2pDq. They are proved in Section 6.

Lemma 4.7. Let k be a measurable positive definite function defined on an open set D. Suppose
that σ P L1

locpDq. Then k P L1
locpD ˆ Dq. Given a multi-index α, its distributional derivative

Dα,αk exists and we can introduce the associated continuous bilinear form over C8
c pDq

bαpφ,ψq :“ Dα,αkpφb ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy. (4.16)
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Suppose that it verifies the estimate

@φ,ψ P E2, |bαpφ,ψq| ď Cα||φ||2||ψ||2, (4.17)

where E2 is the set given in Lemma 2.2. Then bα can be extended to a continuous bilinear
form over L2pDq and there exists a unique bounded, self-adjoint and nonnegative operator Eαk :
L2pDq ÝÑ L2pDq such that

@φ,ψ P C8
c pDq, bαpφ,ψq “ xEαk φ,ψyL2pDq. (4.18)

Lemma 4.8. Let k P L2pD ˆ Dq be a be a positive definite function and α a multi-index.
Suppose that the weak derivative Bα,αk exists and lies in L2pD ˆ Dq. Then the associated
Hilbert-Schmidt integral operator defined on L2pDq

pEαk fqpxq “

ż

D
Bα,αkpx, yqfpyqdy (4.19)

is self-adjoint and nonnegative.

Lemma 4.9. Let k P L2pDˆDq be a positive definite function and Ek be its associated Hilbert-
Schmidt operator. Let

kpx, yq “

`8
ÿ

i“1

λiϕipxqϕipyq (4.20)

be a symmetric, nonnegative expansion of k in L2pDˆDq where pλiq is a nonnegative sequence
decreasing to 0; it may or may not be its Mercer expansion (i.e. pϕiq may or may not be an
orthonormal basis of L2pDq; they are still assumed to be elements of L2pDq though). Then

(i) if the partial mixed weak derivative Bα,αk exists and lies in L2pD ˆ Dq, then for all i P N
such that λi ‰ 0, Bαϕi P L2pDq.

(ii) if for all i P N such that λi ‰ 0, Bαϕi P L2pDq, then

TrpEαk q “

`8
ÿ

i“1

λi||B
αϕi||

2
L2pDq, (4.21)

whether these quantities are finite or not. If in equation (4.21), either one of them is finite,
then the series of functions

ř

iPN λiB
αϕipxqBαϕipyq is norm convergent in L2pD ˆ Dq (i.e.

ř

iPN λi||B
αϕi b Bαϕi||L2 ă `8), Bα,αk lies in L2pD ˆ Dq and we have the following equality:

Bα,αkpx, yq “

`8
ÿ

i“1

λiB
αϕipxqBαϕipyq in L2pD ˆ Dq. (4.22)

Equation (4.22) then holds for asymmetric derivatives, as for all |α|, |β| ď m, we also have
ř

iPN λi||B
βϕi b Bαϕi||L2 ă `8.

We can now prove Proposition 4.4.

Proof. (Proposition 4.4) We successively prove piiq ùñ piq, piq ùñ piiq, piiq ðñ piiiq,
piiiq ùñ pivq and pivq ùñ piiiq.
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Before all things, the assumptions and Lemma 2.5 show that the sample paths of U lie in
L1
locpDq, that the random variable given by the formula

Uαφ : Ω Q ω ÞÝÑ p´1q|α|

ż

D
UpxqpωqBαφpxqdx (4.23)

is well defined and that pUαφ qφPF2
is a Gaussian sequence (see equation (2.17) for the definition

of F2).
piiq ùñ piq : From Lemma 4.8, Eαk is a self-adjoint, nonnegative Hilbert-Schmidt operator; it is

actually trace-class by assumption. We can thus define Aα :“
a

Eαk , which is a Hilbert-Schmidt,
self-adjoint, nonnegative operator. From Proposition 4.3, AαpBq is a GB-set (B is the closed
unit ball of L2pDq). Therefore, using the canonical Gaussian process of L2pDq,

Pp sup
ψPAαpBq

|Vψ| ă `8q “ 1, (4.24)

which, since F2 Ă B, yields in particular that

Pp sup
φPF2

|VAαpφq| ă `8q “ 1. (4.25)

We now observe that the two Gaussian sequences pVAαpφqqφPF2
and pUαφ qφPF2

have the same
finite dimensional marginals. Indeed, they are both centered Gaussian sequences with the same
covariance:

ErVAαpφqVAαpψqs “ xAαpφq, AαpψqyL2 “ xA2
αpφq, ψyL2 “ xEαk φ,ψyL2 . (4.26)

ErUαφU
α
ψ s “ E

„
ż

D
UpxqBαφpxqdx

ż

D
UpyqBαψpyqdy

ȷ

“

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy

“

ż

DˆD
Bα,αkpx, yqφpxqψpyqdxdy “ xEαk φ,ψyL2 . (4.27)

As in the proof of Proposition 3.1 (e.g. equation (3.28)), we deduce that the two random
variables supφPF2

|Uαφ | and supφPF2
|VAαpφq| have the same law, and from equation (4.25), we

obtain that

Pp sup
φPF2

|Uαφ | ă `8q “ Pp sup
φPF2

|VAαpφq| ă `8q “ 1. (4.28)

Since equation (4.28) holds for all |α| ď m, this provides a set of probability 1 on which all the
sample paths of U lie in HmpDq, which proves piq.
piq ùñ piiq : From Lemma 2.4 and the assumption from piq,

Pp sup
φPF2

|Uαφ | ă `8q “ 1. (4.29)

From Proposition 2.6, we have that

Cα :“ E
“

sup
φPF2

|Uαφ |2
‰

ă `8. (4.30)

Introduce bα, the continuous bilinear form over C8
c pDq given by

bαpφ,ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy. (4.31)
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Consider now φ and ψ in F2. Then,

|bαpφ,ψq| “

ˇ

ˇ

ˇ

ˇ

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy

ˇ

ˇ

ˇ

ˇ

“ |ErUαφU
α
ψ s|

ď Er|Uαφ0
Uαψ0

|s ď
1

2
E

“

pUαφ0
q2 ` pUαψ0

q2
‰

ď E
“

sup
φ0PF

pUαφ0
q2

‰

“ Cα. (4.32)

From Lemma 4.7, bα can be extended to a continuous bilinear form over L2pDq and there exists
a unique bounded, self-adjoint and nonnegative operator Eαk which verifies

@φ,ψ P C8
c pDq,

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy “ bαpφ,ψq “ xEαk φ,ψyL2 . (4.33)

Since Eαk is self-adjoint and nonnegative, we can introduce its square root Aα :“
a

Eαk , which is
also a bounded, self-adjoint and nonnegative operator. As in equation (4.28), we can introduce
pVAαpφqqφPF2

and observe that pVAαpφqqφPF2
and pUαφ qφPF2

have the same law. Thus,

Pp sup
φPF2

|VAαpφq| ă `8q “ Pp sup
φPF2

|Uαφ | ă `8q “ 1. (4.34)

Therefore, AαpF2q is a GB-set. From Proposition 4.2(ii), ConvpAαpF2qq is compact. One then
checks by elementary considerations that ConvpAαpF2qq “ AαpBq, where B is the unit ball
of L2pDq. This shows that Aα is a compact operator. But from Proposition 4.2(i), AαpBq “

ConvpAαpF2qq is also a GB-set. From Proposition 4.3, Aα is Hilbert-Schmidt and Eαk is trace-
class. In particular, Eαk is a Hilbert-Schmidt operator with a kernel kα that lies in L2pD ˆ Dq:

@φ,ψ P C8
c pDq, Dα,αkpφb ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy (4.35)

“

ż

DˆD
kαpx, yqφpxqψpyqdxdy “ Tkαpφb ψq. (4.36)

Equation (4.36) shows that the distributional derivative Dα,αk and the regular distribution Tkα
coincide on the set DpDq b DpDq. From the Schwartz kernel theorem ( [43], Theorem 51.7),
Dα,αk “ Tkα in D 1pD ˆ Dq, which shows that Bα,αk exists in L2pD ˆ Dq and that Bα,αk “ kα.
For the existence of a representative kα with the desired properties, we refer to the previous
Proposition 3.1piiq. This finishes to prove piiq.
piiq ðñ piiiq: this equivalence is fully given by Lemma 4.9.
piiiq ùñ pivq: we first study how finite difference operators behave on elements of Hk in order
to use Lemma 2.1piiiq. First, using the reproducing formula (4.2), observe that for suitable x
and h P D,

∆hfpxq “ fpx` hq ´ fpxq “ xf, kpx` h, ¨q ´ kpx, ¨qyHk
“ xf,∆hkpx, ¨qyHk

. (4.37)

More generally, for any finite difference operator ∆h of order l ď m, h “ ph1, ..., hlq and any
open set D0 Ť D such that

ř

i |hi| ă distpD0, BDq,

∆hfpxq “ xf,∆hkpx, ¨qyHk
. (4.38)

The Cauchy-Schwarz inequality in Hk yields

∆hfpxq2 ď ||f ||2Hk
||∆hkpx, ¨q||2Hk

. (4.39)
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Furthermore, using the bilinearity of x, ¨, ¨yHk
, we have that

||∆hkpx, ¨q||2Hk
“ rp∆h b ∆hqkspx, xq. (4.40)

We then deduce that (explanation below)

@f P Hk, ||∆hf ||2L2pD0q “

ż

D0

`

∆hf
˘

pxq2dx ď ||f ||2Hk

ż

D0

rp∆h b ∆hqkspx, xqdx (4.41)

ď ||f ||2Hk

`8
ÿ

i“1

λi

ż

D0

p∆hϕiqpxq2dx (4.42)

ď ||f ||2Hk

`8
ÿ

i“1

λi

´

||ϕi||
2
Hm |h1|2 ¨ ¨ ¨ |hl|

2
¯

(4.43)

ď ||f ||2Hk

ˆ

ÿ

|α|ďm

TrpEαk q

˙

`

|h1|2 ¨ ¨ ¨ |hl|
2
˘

. (4.44)

We used equations (4.39) and (4.40) to obtain equation (4.41). In equation (4.42), we dis-
tributed ∆h b ∆h on the Mercer decomposition of k (which exists by the assumption piiiq).
In equation (4.43), we used the fact that ϕi P HmpDq (see Lemma 4.9piq) conjointly with the
finite difference control of Lemma 2.1piiiq. In equation (4.44), the we used the trace equality
from Lemma 4.9piiq. From equation (4.44) and Lemma 2.1piiiq again, we obtain that f lies in
HmpDq. Consider now any open set D0 Ť D. Equation (4.44) applied to δαh , the finite difference
approximation of Bα from equation (2.6) with suitably chosen h “ ph1, ..., hlq P pR˚

`qd, yields
that

@f P Hk, ||δαhf ||2L2pD0q ď ||f ||2Hk

ˆ

ÿ

|α|ďm

TrpEαk q

˙

. (4.45)

From Lemma 2.1piiiq, we then obtain that

@f P Hk, ||Bαf ||2L2pDq ď ||f ||2Hk

ˆ

ÿ

|α|ďm

TrpEαk q

˙

. (4.46)

Summing the inequality (4.46) for all |α| ď m, we obtain that

||f ||Hm ď C||f ||Hk
, (4.47)

with C “
`

N
ř

|α|ďm TrpEαk q
˘1{2

and N is the number of multi-indexes α such that |α| ď m.

Therefore Hk Ă HmpDq and the corresponding imbedding i : Hk Ñ HmpDq is continuous.
Using the reproducing formula (4.2), its transpose i˚ : HmpDq Ñ Hk is given by

i˚pfqpxq “ xi˚pfq, kxyHk
“ xf, ipkxqyHm “

ÿ

|α|ďm

ż

D
Bαy kpx, yqBαfpyqdy. (4.48)

Above, Bαy denotes differentation w.r.t. the y coordinate (note that i˚pfq is indeed defined
pointwise, since i˚pfq P Hk). Let pψjq be an orthonormal basis of HmpDq and k “

ř

i λiψibψi
be the Mercer decomposition of k provided by the assumption piiiq. The trace of the nonnegative
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self-adjoint operator ii˚ is given by (explanation below)

Trpii˚q “
ÿ

j

xψj , ii
˚pψjqyHm “

ÿ

j

ÿ

|β|ďm

xBβψj , B
βii˚pψjqyL2

“
ÿ

j

ÿ

|β|ďm

ż

D
BβψjpxqBβii˚pψjqpxqdx

“
ÿ

j

ÿ

|β|ďm

ż

D
BβψjpxqBβx

ÿ

|α|ďm

ż

D
Bαy kpx, yqBαψjpyqdydx (4.49)

“
ÿ

j

ÿ

i

λi
ÿ

|α|ďm

ÿ

|β|ďm

ż

DˆD
BβϕipxqBαϕipyqBβψjpxqBαψjpyqdydx (4.50)

“
ÿ

j

ÿ

i

λi

ˆ

ÿ

|α|ďm

ż

D
BαϕipxqBαψjpxqdx

˙2

“
ÿ

j

ÿ

i

λi

ˆ

ÿ

|α|ďm

xBαϕi, B
αψjyL2

˙2

“
ÿ

i

λi
ÿ

j

xϕi, ψjy
2
Hm “

ÿ

i

λi||ϕi||
2
Hm “

ÿ

|α|ďm

ÿ

i

λi||B
αϕi||

2
L2 “

ÿ

|α|ďm

TrpEαk q. (4.51)

In equation (4.49), we used the fact that i˚pψjq given by equation (4.48) is a representative of
ii˚pψjq in H

mpDq. In equation (4.50), we used the fact that the series of functions
ř

i λiB
βϕi b

Bαϕi is norm convergent (Lemma 4.9piiq) to distribute the partial derivatives over to the Mercer
decomposition of k. We also used Fubini’s and Tonelli’s theorems ad libitum, as all the series
ř

i λiB
βϕi b Bαϕi are norm convergent. Since

ř

|α|ďm TrpEαk q is finite by assumption, equation

(4.51) finishes to prove pivq when Hk is separable.
When Hk is not separable, observe that kerpiq is closed in Hk since i is continuous. There-

fore Hk “ kerpiq ‘ kerpiqK and kerpiqK endowed with the topology of Hk is a Hilbert space.
Moreover, i˚ : HmpDq Ñ Hk is compact since ii˚ is trace class. Thus its closed range impi˚q

is separable ( [14], Exercise 3 p. 176). Finally, observe that impi˚q “ kerpiqK ( [14], Theorem
4.12) so that kerpiqK is a separable Hilbert space. Consider now j :“ i| kerpiqK , the restriction of

i to kerpiqK. Then ii˚ “ jj˚, so that equation (4.51) indeed yields that j is Hilbert-Schmidt.
pivq ùñ piiiq: by assumption, ii˚ is a compact self-adjoint nonnegative operator acting on the
Hilbert space HmpDq. There exists a decreasing nonnegative sequence pµjqjPN and a orthonor-
mal basis of eigenvectors of ii˚, pψjqjPN such that for all f P HmpDq,

ii˚pfq “

`8
ÿ

j“1

µjxψj , fyHmψj in HmpDq. (4.52)

Since ii˚ is assumed trace class,

ÿ

|α|ďm

`8
ÿ

j“1

µj ||B
αψj ||

2
L2 “

`8
ÿ

j“1

µj ||ψj ||
2
Hm “

`8
ÿ

j“1

µj ă `8. (4.53)

We now show that the following equality holds in L2pD ˆ Dq:

kpx, yq “

`8
ÿ

j“1

µjψjpxqψjpyq. (4.54)

In conjunction with equation (4.53), this equation will allow us to use Lemma 4.9piiq, which
will imply the point piiiq. First, one easily shows that

ř`8

j“1 µjψj b ψj , the right-hand side of
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equation (4.54), is indeed in L2pD ˆ Dq (e.g. use that
ř

j µj ă `8). The upcoming equation

(4.64) will then show that k is indeed in L2pD ˆ Dq. Now, decompose ipkxq P HmpDq on the
basis pψjqjPN given any x P D:

ipkxq “

`8
ÿ

j“1

xψj , ipkxqyHmψj in HmpDq. (4.55)

In equation (4.55), the scalar xψj , ipkxqyHm is obtained through the reproducing formula (4.2):

xψj , ipkxqyHm “ xi˚pψjq, kxyHk
“ i˚pψjqpxq. (4.56)

Moreover, ψj is an eigenvector of ii˚: µjψj “ ii˚pψjq in HmpDq. In particular,

||µjψj ´ ii˚pψjq||L2pDq “ 0. (4.57)

But the pointwise defined function i˚pψjq is a representative of ii˚pψjq in H
mpDq, since i is the

imbedding of Hk in HmpDq. Setting S “
ř

j µj “ Trpii˚q, one then has (explanation below)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k ´

`8
ÿ

j“1

µjψj b ψj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2pDˆDq

“

ż

DˆD

´

kpx, yq ´

`8
ÿ

j“1

µjψjpxqψjpyq

¯2

dxdy (4.58)

“

ż

D

ż

D

´

kxpyq ´

`8
ÿ

j“1

µjψjpxqψjpyq

¯2

dydx (4.59)

“

ż

D

ż

D

´

ipkxqpyq ´

`8
ÿ

j“1

µjψjpxqψjpyq

¯2

dydx (4.60)

“

ż

D

ż

D

ˆ `8
ÿ

j“1

µjψjpyq
`

µj
´1i˚pψjq ´ ψjpxq

˘

˙2

dydx (4.61)

ď

ż

D

ż

D
S

`8
ÿ

j“1

µjψjpyq2
`

µj
´1i˚pψjq ´ ψjpxq

˘2
dydx (4.62)

ď S
`8
ÿ

j“1

µj

ż

D
ψjpyq2dy

ż

D

`

µj
´1ii˚pψjq ´ ψjpxq

˘2
dx (4.63)

ď S
`8
ÿ

j“1

µj ||ψj ||
2
L2pDq||µj

´1ii˚pψjq ´ ψj ||
2
L2pDq “ 0 (4.64)

Above, we used Tonelli’s theorem in equation (4.59). We imbedded kx in HmpDq in equation
(4.60). We used equations (4.55) and (4.56) in equation (4.61). We used Jensen’s discrete
inequality on the squaring function p¨q2 with the weights µj{S (µj{S ě 0,

ř

j µj{S “ 1) in
equation (4.62). We imbedded i˚pψjq in H

mpDq and used Tonelli’s theorem in equation (4.63).
We used equation (4.57) in equation (4.64).

Therefore we have proved that equation (4.54) holds. By the assumption that ii˚ is trace
class and using Lemma 4.9piiq,

ÿ

|α|ďm

TrpEαk q “
ÿ

|α|ďm

`8
ÿ

j“1

µj ||B
αψj ||

2
L2 “

`8
ÿ

j“1

µj ||ψj ||
2
Hm “

ÿ

i

µj “ Trpii˚q ă `8. (4.65)

Therefore, Lemma 4.9piiq implies that every Eαk is indeed trace-class, which shows piiiq.
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5 Concluding remarks and perspectives

Given p P p1,`8q and m P N0, we showed that the Wm,p-Sobolev regularity of integer order of
a measurable Gaussian process ppUpxqqxPD „ GP p0, kq is fully equivalent to the fact that Bα,αk
lies in LppD ˆ Dq combined with the integrability in LppDq of the associated standard deviation.
Using general results on Gaussian measures over Banach spaces of type 2 and cotype 2, we
translated this criteria as the existence of suitable nuclear decompositions of the covariance.
These can be understood as generalizations to Banach spaces of the eigenfunction expansion of
symmetric, nonnegative and trace class operators. In the Hilbert space case p “ 2, we linked
this property with the Hilbert-Schmidt nature of the imbedding of the RKHS in HmpDq, and
gave explicit formulas for the traces of the involved integral operators in terms of the Mercer
decomposition of the kernel.

The results presented in this article provide a theoretical background w.r.t. the use of
Gaussian processes for solving physics-related machine learning problems, in particular when
modelling solutions of PDEs as sample paths of some Gaussian process. These results also come
along with suitable quantities for controlling the Sobolev norm of the corresponding sample
paths (see Remark 3.6). The application of the Gaussian process principles identified here
to PDE-related machine learning problems, e.g. following the approach of [9], is certainly an
interesting continuation of the results of this article. Controlling the small ball probability (see
e.g. [30] for further details) of the Sobolev norm of a Gaussian process, perhaps in terms of some
nuclear norm, is also a relevant question for further applications of Gaussian process techniques
in such machine learning problems. Finally, the following question (which was implicit in this
article) is interesting for probability theory: are all Gaussian measures over Wm,ppDq induced
by some Gaussian process? Proposition 2.9 states that this is true for m “ 0, i.e. LppDq.

The following directions are interesting for generalizing the results presented here. First,
similar spectral/integral criteria should be obtained for fractional Sobolev and Besov spaces.
Second, similar results should be sought to tackle the limit cases p “ 1 and p “ `8. Linked to
the case p “ 1, results should be sought for the space of functions of bounded variations ( [7],
p. 269), which are important in many problems related to physics.

Ackowledgements This work was funded by the SHOM (Service Hydrographique et Océano-
graphique de la Marine). The author warmly thanks Pascal Noble, Olivier Roustant and Rémy
Baraille for fruitful discussions.

6 Proofs of intermediary results and lemmas

Proof. (Lemma 2.1) This proof follows exactly the lines of the proof of Proposition 9.3 from [7].
piq ðñ piiq: suppose that u P Wm,ppDq, use the fact that the distributional derivative Dαu is
a regular distribution represented by a function that lies in LppDq, denoted by Bαu :

@φ P C8
c pDq,

ż

D
upxqBαφpxqdx “ p´1q|α|

ż

D
Bαupxqφpxqdx. (6.1)

Hölder’s inequality yields (2.7) with Cα “ ||Bαu||Lp . Conversely, suppose that (2.7) holds and
consider any |α| ď m. Since C8

c pDq is dense in LqpDq (whatever the open set D, [36], section
2.30), equation (2.7) shows that the linear form Lα : φ ÞÝÑ p´1q|α|

ş

D upxqBαφpxqdx, φ P

C8
c pDq, can be extended to a continuous linear form over LqpDq. From Riesz’ representation

lemma, there exists vα P LppDq such that Lαpφq “ xvα, φyLp,Lq for all φ P LqpDq. In particular,
this is valid for all φ P C8

c pDq, which shows that for all |α| ď m, Bαu exists and is equal to vα.
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Thus u P Wm,ppDq. Finally, Hölder’s inequality and the density of C8
c pDq in LqpDq yield

||Bαu||LppDq “ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||LqpDq

dx

ˇ

ˇ

ˇ

ˇ

ˇ

.

piiiq ùñ piiq: suppose piiiq, let us show piiq. Let |α| ď m and let φ P C8
c pDq. Note K :“

Supppφq its compact support and consider an open set D0 such that K Ă D0 Ť D. Let α$inNd0
and h “ ph1, ..., hdq P pR˚

`qd be such that
ř

i αihi ă distpD0, BDq. Recall that δαh from equation
(2.6) is a finite difference approximation of Bα and from piiiq,

ˇ

ˇ

ˇ

ˇ

ż

D
δαhupxqφpxqdx

ˇ

ˇ

ˇ

ˇ

ď ||φ||LqpD0q||δαhu||LppD0q ď C||φ||LqpDq. (6.2)

Note also that we have the discrete integration by parts formula since h is suitably chosen:

ż

D
δαhupxqφpxqdx “

ż

D
upxqpδαh q˚φpxqdx. (6.3)

Therefore,

ˇ

ˇ

ˇ

ˇ

ż

D
upxqpδαh q˚φpxqdx

ˇ

ˇ

ˇ

ˇ

ď C||φ||LqpDq. (6.4)

The Lebesgue dominated convergence theorem yields that the left hand side converges to
ˇ

ˇ

ş

D upxqBαφpxqdx
ˇ

ˇ. We therefore have piiq.
piq ùñ piiiq: We will use recursively the fact that if f P W 1,ppDq, then for all D0 Ť D and

h P Rd such that |h| ă distpD0, BDq, there exists an open set D1 Ť D which verifies D0`th Ă D1

for all t P r0, 1s and

||∆hf ||
p
LppD0q

“ ||τhf ´ f ||
p
LppD0q

ď |h|p||∇f ||
p
LppD1q

“ |h|p
d

ÿ

j“1

||Bxj
f ||

p
LppD1q

. (6.5)

(this is equation 4 p. 268 in [7], found in the proof of Proposition 9.3 in [7]). First, one easily
checks that weak partial derivatives and finite difference operators all commute together. Let
l ď m, D0 Ť D and h “ ph1, ..., hlq P pRdql such that

ř

i |hi| ă distpD0, BDq. Recall that

∆h “

l
ź

i“1

∆hi
. (6.6)

Note now that
śl
i“2 ∆hi

u lies in W 1,ppDq. Since |h1| ď
ř

i |hi| ă distpD0, BDq, from equation
(6.5) there exists an open set D1 Ť D such that D0 ` th1 Ă D1 for all t P r0, 1s. Moreover, one

can choose D1 small enough so that distpD1, BDq ă
řl
i“2 |hi|.

||∆hu||
p
LppD0q

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∆h1

l
ź

i“2

∆hi
u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD0q
ď |h1|p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇

l
ź

i“2

∆hi
u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD1q
(6.7)

ď |h1|p
d

ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Bxj

l
ź

i“2

∆hi
u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD1q
ď |h1|p

d
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

l
ź

i“2

∆hi

`

Bxj
u

˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD1q
. (6.8)
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We used equation (6.5) in equation (6.7) which then yields equation (6.8). But note that for all
j, Bxj

u P W 1,ppDq. One can then proceed by induction and perform the above step sequentially
over i P t2, ..., lu, which yields a sequence of open sets D0 Ă D1 Ă ... Ă Dl Ť D such that

||∆hu||
p
LppD0q

ď |h1|p ˆ ...ˆ |hl|
p

ÿ

|β|ďl

||Bβu||
p
LppDlq

(6.9)

ď |h1|p ˆ ...ˆ |hl|
p||u||

p
W l,ppDq

ď |h1|p ˆ ...ˆ |hl|
p||u||

p
Wm,ppDq

, (6.10)

which shows equation (2.9) with C “ ||u||Wm,ppDq. We finally show that ||Bαu||LppDq ď C given
any C which verifies equation (2.9). For this, copy the previous steps of piiiq ùñ piiq, which
prove that for all φ P C8

c pDq, the control from equation (2.7) holds for this C. Using the
extremal equality case of Hölder’s inequality in equation (2.7) indeed yields

||Bαu||LppDq “ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||LppDq

dx

ˇ

ˇ

ˇ

ˇ

ď C. (6.11)

Proof. (Lemma 2.4) We begin by explicitly constructing the family pΦqnq. First, use the fact
that LqpDq is a separable Banach space ( [36], Theorem 2.21) : let pfnqnPN Ă LqpDq be
a dense countable subset of LqpDq. For all n P N, let pϕnmqmPN Ă C8

c pDq be such that
ϕnm ÝÑ fn for the LqpDq topology (recall that C8

c pDq is dense in LqpDq, [36], Corollary 2.30).
We relabel the countable family pϕnmqn,mPN as pφnqnPN, which is thus dense in LqpDq. Second,
let phnqnPN Ă C8

c pDq be a dense subset of C8
c pDq for its LF-space topology (see Lemma 2.3).

We then define Eq to be the set of all finite linear combinations of elements of pφnq and phnq

with rational coefficients :

Eq “ SpanQtφn, n P Nu ` SpanQthm,m P Nu (6.12)

“
ď

n,mPN

!

n
ÿ

i“1

qiφi `

m
ÿ

j“1

rjhj , pq1, ..., qn, r1, ..., rmq P Qn`m
)

. (6.13)

Note that Eq is countable, as a countable union of countable sets. We then define the family
pΦqnq to be an enumeration of Eq : Eq “ tΦqn, n P Nu.
Proof of piq: Suppose that T “ Tv for some v P LppDq. Then the control (2.13) is obviously
true. Now, suppose that this countable control holds : let us show that T “ Tv for some
v P LppDq.

We begin by showing that the map T|Eq
,the restriction of T to the set Eq, can be uniquely

extended to a continuous linear form T̃ over LqpDq. Begin with the fact that for all f, g P Eq,
then f ´ g P Eq and from equation (2.18),

|T pfq ´ T pgq| “ |T pf ´ gq| ď C||f ´ g||q. (6.14)

Equation (6.14) shows that T|Eq
is Lipschitz over Eq and therefore uniformly continuous on

Eq. Since R is complete and Eq is dense in LqpDq, T|Eq
can be uniquely extended by a map

T̃ defined over LqpDq, which is itself uniformly continuous ( [37], Problem 44, p. 196). We
briefly recall the construction procedure of T̃ over LqpDq. Given f P LqpDq and pfnq Ă Eq any
sequence such that ||fn ´ f ||Lq Ñ 0, one shows that the sequence pT pfnqqnPN is Cauchy, thus
convergent and one sets T̃ pfq :“ limn T pfnq. One proves that the value T̃ pfq does not depend
on the sequence pfnq, which implies that T̃ is well defined and coincides with T on Eq.
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We now check that T̃ remains linear. Let f, g P LqpDq and λ P R. Let pfnq, pgnq Ă Eq
and pλnq Ă Q be sequences such that fn Ñ f, gn Ñ g both in LqpDq and λn Ñ λ. Then
λnfn ` gn Ñ λf ` g in LqpDq, and the sequence pλnfn ` gnq is contained in Eq. Since T̃ is well
defined, we have that

T̃ pλf ` gq “ lim
nÑ8

T pλnfn ` gnq “ lim
nÑ8

λnT pfnq ` T pgnq “ λT̃ pfq ` T̃ pgq. (6.15)

Thus, T̃ is a (uniformly) continuous linear form over LqpDq. Riesz’ representation lemma yields
a function v P LppDq such that

@f P LqpDq, T̃ pfq “

ż

D
fpxqvpxqdx. (6.16)

We now need to check that in fact T̃ pφq “ T pφq if φ P C8
c pDq, to show that T̃ is indeed

an extension of T . For this, notice that T and T̃ both define continuous linear forms over
C8
c pDq, w.r.t. its LF-topology (v lies in L1

locpDq). Note also that T and T̃ coincide on Eq, by

construction of T̃ :

@n P N, T pΦnq ´ T̃ pΦnq “ 0. (6.17)

But Eq is chosen so that it contains phnq, which is a dense subset of C8
c pDq. Given φ P C8

c pDq,
consider pjnq a subsequence of phnq such that jn ÝÑ φ for the topology of C8

c pDq. Then,

pT ´ T̃ qpφq “ lim
nÑ8

pT ´ T̃ qpjnq “ lim
nÑ8

0 “ 0, (6.18)

which shows that in fact, T̃ pφq “ T pφq.
Proof of piiq: if b can be extended to a continuous linear form over LqpDq, then the estimate
(2.15) is obviously true, by continuity over LqpDq of the said extension. Suppose now that
(2.15) holds. Let φ P Eq. Then Lφ, the continuous linear form over C8

c pDq defined by

@ψ P C8
c pDq, Lφpψq “ bpφ,ψq (6.19)

verifies

@ψ P Eq, |Lφpψq| ď C||φ||q||ψ||q. (6.20)

From the point piq, Lφ is a regular distribution with a representer vφ P LppDq which is unique
in LppDq. Define the map B : Eq Ñ LppDq by Bφ “ vφ. Then B verifies

@φ P Eq,@ψ P LqpDq, |xBφ,ψyLp,Lq | “ |Lφpψq| ď C||φ||q||ψ||q. (6.21)

Taking the supremum w.r.t. ψ P LqpDq yields

@φ P Eq, ||Bφ||p ď C||φ||q. (6.22)

Observe now that the bilinearity of b yields Bpφ ` λψq “ Bφ ` λBψ if φ,ψ P Eq and λ P Q.
Taking the exact same steps as for the proof of point piq and using equation (6.22), B : Eq Ñ

LppDq is Lipschitz continuous over Eq, and can thus be uniquely extended as a uniformly

continuous map B̃ : LqpDq Ñ LppDq. This relies on the fact that Eq is dense in L
qpDq and that

LqpDq is complete. As above, one checks that B̃ is linear. Being uniformly continuous, it is
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then a bounded operator from LqpDq to LppDq (its adjoint B̃˚ is then automatically bounded).
Denote by b̃ the continuous bilinear form over LqpDq defined by

b̃pf, gq “ xB̃f, gyLp,Lq @f, g P LqpDq. (6.23)

We now need to check that b̃ indeed coincides with b over C8
c pDq, so that it is indeed an

extension of b. For this, let φ,ψ P C8
c pDq and pφnq, pψnq two sequences of elements of Eq that

converge to φ and ψ respectively. Then b and b̃ coincide on Eq:

bpφn, ψmq “ b̃pφn, ψmq. (6.24)

Observe the following chain of equalities, which rely on the sequential continuity (for the LF
topology of C8

c pDq) of the linear forms φ ÞÑ bpφ,ψq, ψ ÞÑ bpφ,ψq and Tv : φ ÞÑ Tvpφq “

xv, φyLq,Lp for any v P LqpDq, as well equation (6.24).

bpφ,ψq “ lim
nÑ8

bpφn, ψq “ lim
nÑ8

lim
mÑ8

bpφn, ψmq “ lim
nÑ8

lim
mÑ8

b̃pφn, ψmq

“ lim
nÑ8

lim
mÑ8

xB̃φn, ψmyLp,Lq “ lim
nÑ8

lim
mÑ8

TB̃φn
pψmq “ lim

nÑ8
TB̃φn

pψq

“ lim
nÑ8

xB̃φn, ψyLp,Lq “ lim
nÑ8

xφn, B̃
˚ψyLq,Lp “ lim

nÑ8
TB̃˚ψpφnq “ TB̃˚ψpφq

“ xφ, B̃˚ψyLq,Lp “ xB̃φ, ψyLp,Lq “ b̃pφ,ψq. (6.25)

The uniqueness of b follows from the uniqueness of B̃ as an extension of B.

Proof. (Lemma 2.5) Let pKnq be an increasing sequence of compact subsets of D such that
Ť

nKn “ D. From the measurability of U and Tonelli’s theorem, ω ÞÑ
ş

Kn
|Uωpxq|dx is mea-

surable and we have that

E
„

ż

Kn

|Upxq|dx

ȷ

“

ż

Kn

Er|Upxq|sdx “

c

2

π

ż

Kn

σpxqdx ă `8. (6.26)

From equation (6.26), ω ÞÑ
ş

Kn
|Uωpxq|dx is finite almost surely. Since the family pKnq is

countable, one obtains a set Ω0 Ă Ω of probability one such that for all ω P Ω0 and for all
n P N,

ş

Kn
|Uωpxq|dx ă `8. Given now any compact subset K of D, there exists N P N such

that K Ă KN and thus for all ω P Ω0,
ş

K
|Uωpxq|dx ă `8. Therefore, the sample paths of U

lie in L1
locpDq almost surely. From this fact and Fubini’s theorem, we next obtain that given

any φ P C8
c and |α| ď m, the following map

Uαφ : Ω Q ω ÞÝÑ

ż

D
UωpxqBαφpxqdx (6.27)

is a well defined random variable (i.e. it is measurable; see e.g. [17], Theorem 2.7, p. 62).
Moreover, one can show that it is a limit in probability of suitably chosen Riemann sums of the
integrand ( [17], Theorem 2.8, p. 65). But here, those Riemann sums are all Gaussian random
variables because U is a Gaussian process. Thus Uαφ is a Gaussian random variable. a a limit
in probability of Gaussian random variables. This also shows that tUαφ , φ P C8

c pDqu is in fact
a Gaussian process, since the linearity of Bα yields

n
ÿ

i“1

aiU
α
φi

“ Uαp
řn

i“1 aiφiq, (6.28)

and thus
řn
i“1 aiU

α
φi

is a Gaussian random variable. An alternative proof is found in [4],
Example 2.3.16. p. 58-59.

36



Proof. (Lemma 4.7) First, the map k is measurable over D ˆ D. Then, given a compact set
K Ă D ˆ D, there exists a compact set K0 Ă D such that K Ă K0 ˆ K0 (see e.g. the text
before equation (3.12)). Then, using the Cauchy-Schwarz inequality for k,

ż

K

|kpx, yq|dxdy ď

ż

K0ˆK0

σpxqσpyqdxdy “

ˆ
ż

K0

σpxqdx

˙2

ă `8. (6.29)

Therefore, k P L1
locpD ˆ Dq and for all mutli-index α, bα is a bilinear continuous form over

C8
c pDq. From Lemma 2.2, bα can be uniquely extended to a continuous bilinear form over

L2pDq. Denote by Eαk the associated bounded operator over L2pDq. We now need to show that
Eαk is self-adjoint and nonnegative. First note that for all φ,ψ P C8

c pDq,

xEαk φ,ψyL2 “

ż

DˆD
kpx, yqBαφpxqBαψpyqdydx “ xφ, Eαk ψyL2 . (6.30)

Equation (6.30), conjoined with the density of C8
c pDq in L2pDq and the continuity of the bilinear

form pf, gq ÞÑ xEαk f, gyL2 yields that xEαk f, gyL2 “ xf, Eαk gyL2 for all f, g P L2pDq. Therefore
Eαk is self-adjoint. For the positivity, consider again φ P C8

c pDq. Then from Fubini’s theorem
(justified below),

xEαk φ,φy “

ż

DˆD
kpx, yqBαφpxqBαφpyqdydx “

ż

DˆD
ErUpxqUpyqsBαφpxqBαφpyqdydx

“ E
„ˆ

ż

D
UpxqBαφpxqdx

˙2ȷ

ě 0. (6.31)

Indeed the following integrability condition holds, setting K “ Supppφq :

E
„

ż

DˆD
|BαφpxqBαφpyqUpxqUpyq|dxdy

ȷ

“

ż

KˆK

|BαφpxqBαφpyq|Er|UpxqUpyq|sdxdy

ď

ż

KˆK

|BαφpxqBαφpyq|σpxqσpyqdxdy “

ˆ
ż

K

|Bαφpxq|σpxqdx

˙2

ď sup
xPK

|Bαφpxq|2
ˆ

ż

K

σpxqdx

˙2

ă `8. (6.32)

Equation (6.32), conjoined with the density of C8
c pDq in L2pDq and the continuity of the

quadratic form f ÞÑ xEαk f, fyL2 yields that xEαk f, fyL2 ě 0 for all f P L2pDq. Therefore Eαk is
nonnegative.

Proof. (Lemma 4.8) Introduce bα the continuous bilinear map over C8
c pDq defined by

bαpφ,ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy “

ż

DˆD
Bα,αkpx, yqφpxqψpyqdxdy

“ xEαk φ,ψyL2 . (6.33)

From Cauchy-Schwarz’s inequality, it verifies

@φ,ψ P C8
c pDq, |bαpφ,ψq| ď ||Bα,αk||2||φ||2||ψ||2 (6.34)

From Lemma 4.7, there exists a unique bounded, self-adjoint and nonnegative operator Bα
over L2pDq such that bαpφ,ψq “ xBαφ,ψyL2 for all φ,ψ P C8

c pDq. The uniqueness of Bα and
equation (6.33) yield Bα “ Eαk , and thus Eαk is self-adjoint and nonnegative.
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Proof. (Lemma 4.9) piq : Let n P N0 be such that λn ‰ 0. Let φ P C8
c pDq. Then

λn

ˆ
ż

D
ϕnpxqBαφpxqdx

˙2

ď

`8
ÿ

i“1

λi

ˆ
ż

D
ϕipxqBαφpxqdx

˙2

ď

`8
ÿ

i“1

λi

ż

DˆD
ϕipxqϕipyqBαφpxqBαφpyqdxdy

ď

ż

DˆD
kpx, yqBαφpxqBαφpyqdxdy

ď

ż

DˆD
Bα,αkpx, yqφpxqφpyqdxdy

ď ||Bα,αk||L2pDˆDq||φ||2L2pDq. (6.35)

Therefore, from Lemma 2.1, Bαϕn P L2pDq.
piiq : introduce the finite rank kernel kn defined by

knpx, yq “

n
ÿ

i“1

λiϕipxqϕipyq. (6.36)

Then its mixed derivative Bα,αknpx, yq is equal to
řn
i“1 λiB

αϕipxqBαϕipyq in L2pDˆDq and the
associated operator Eαkn is trace class, with

TrpEαknq “

`8
ÿ

j“1

xEαknϕj , ϕjyL2 “

`8
ÿ

j“1

n
ÿ

i“1

λixBαϕi, ϕjy
2
L2 (6.37)

“

n
ÿ

i“1

λi

`8
ÿ

j“1

xBαϕi, ϕjy
2
L2 “

n
ÿ

i“1

λi||B
αϕi||

2
L2 . (6.38)

Now, observe that Eαkn ď Eαk in the sense of the Loewner order. Indeed, let first φ P C8
c pDq:

xpEαk ´ Eαknqφ,φyL2 “ xpEk ´ EknqBαφ, BαφyL2 “

`8
ÿ

i“n`1

λixϕi, B
αφy2L2 ě 0. (6.39)

The density of C8
c pDq in L2pDq and the continuity of the quadratic form f ÞÑ xpEαk ´Eαknqf, fyL2

over L2pDq yields indeed that Eαkn ď Eαk . Taking the trace :

n
ÿ

i“1

λi||B
αϕi||

2
L2 “ TrpEαknq “

`8
ÿ

j“1

xEαknϕj , ϕjyL2 ď

`8
ÿ

j“1

xEαk ϕj , ϕjyL2 “ TrpEαk q. (6.40)

Taking the limit when n goes to infinity yields
ř`8

i“1 λi||B
αϕi||

2
L2 ď TrpEαk q. Suppose now that

TrpEαk q ă `8. Equation (6.40) shows that the series of functions
ř

i λiB
αϕi b Bαϕi converges

in norm in L2pD ˆ Dq. Moreover, we check that it is equal to Bα,αk : taking φ P C8
c pD ˆ Dq,

then
ż

DˆD
kpx, yqBα,αφpx, yqdxdy “

ÿ

i

λi

ż

DˆD
ϕipxqϕipyqBα,αφpx, yqdxdy (6.41)

“
ÿ

i

λi

ż

DˆD
BαϕipxqBαϕipyqφpx, yqdxdy (6.42)

“

ż

DˆD

ˆ

ÿ

i

λiB
αϕipxqBαϕipyq

˙

φpx, yqdxdy. (6.43)
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We can then write, following the steps of equation (6.37)

TrpEαk q “

`8
ÿ

j“1

xEαk ϕj , ϕjyL2 “

`8
ÿ

j“1

ÿ

i

λixBαϕi, ϕjy
2
L2 “

`8
ÿ

i“1

λi||B
αϕi||

2
L2 (6.44)

Suppose now that
ř`8

i“1 λi||B
αϕi||

2
L2 ă `8. Then as observed before, the series of functions

ř

i λiB
αϕi b Bαϕi converges in norm in L2pD ˆ Dq, one verifies that Bα,αk exists in L2pDq and

is in fact given by

Bα,αk “
ÿ

i

λiB
αϕi b Bαϕi in L2pD ˆ Dq. (6.45)

Finally,

`8
ÿ

i“1

λi||B
αϕi||

2
L2 “

`8
ÿ

i“1

λi
ÿ

j

xBαϕi, ϕjy
2
L2 (6.46)

“
ÿ

j

`8
ÿ

i“1

λi

ˆ
ż

D
Bαϕipxqϕjpxqdx

˙2

(6.47)

“
ÿ

j

ż

DˆD

ÿ

i

λiB
αϕipxqBαϕipyqϕjpxqϕjpyqdxdy (6.48)

“
ÿ

j

xEαk ϕj , ϕjyL2 “ TrpEαk q. (6.49)

Therefore Eαk is trace class and TrpEαk q “
ř`8

i“1 λi||B
αϕi||

2
L2 . For asymmetric derivatives, simply

observe that for all |α|, |β| ď m,

||Bαϕi b Bβϕi||2 “ ||Bαϕi||2||Bβϕi||2 ď
||Bαϕi||

2
2 ` ||Bβϕi||

2
2

2
. (6.50)

Therefore the norm convergence of the series
ř

iPN λi||B
αϕi b Bαϕi||L2 for all |α| ď m implies

that of all the series of the form
ř

iPN λi||B
αϕi b Bβϕi||L2 converge, provided that |α| ď m and

|β| ď m. As previously, one then deduces that Bα,βk “
ř8

i“0 λiB
αϕi b Bβϕi.
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