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Abstract

In this article, we fully characterize the measurable Gaussian processes (U(z))zep whose
sample paths lie in the Sobolev space of integer order W™? (D), m € Ng, 1 < p < 400,
where D is an arbitrary open set of R%. The result is phrased in terms of a form of Sobolev
regularity of the covariance function on the diagonal. This is then linked to the existence
of suitable Mercer or otherwise nuclear decompositions of the integral operators associated
to the covariance function and its cross-derivatives. In the Hilbert case p = 2, additional
links are made w.r.t. the Mercer decompositions of the said integral operators, their trace
and the imbedding of the RKHS in Wm’Q(D). We provide simple examples and partially
recover recent results pertaining to the Sobolev regularity of Gaussian processes.

1 Introduction

Sobolev spaces WP (D) are central tools in modern mathematics, most notably in the study of
partial differential equations (PDESs). These spaces are built upon the notion of weak derivative:
v is the weak derivative of u in the direction x; if for all smooth compactly supported function
pe Cr(D),

aw = — vlxr x)ax
| w@£E @i =~ | v@eta)ds. (1)

Weak derivatives generalize classical, pointwise defined derivatives. In particular, there are cases
where weak derivatives are well defined and pointwise differentiation otherwise fails (see e.g. [19],
Examples 3 and 4 p. 260). The popularity of Sobolev spaces is justified by a number of reasons:
first, they are separable reflexive Banach spaces when 1 < p < +00, and separable Hilbert
spaces when p = 2 ( [36], Theorem 3.6 p. 61). Through duality, this allows for geometrical
interpretations of PDEs which in turn lead to numerous quantitative theoretical results in the
study of PDEs [19]. Second, as the Sobolev norm is defined through integrals of powers of the
function and its weak derivatives, it is easily interpreted as an energy functional of the said
function, which complies with physical interpretations of PDEs. This is a desirable feature as
PDEs are generally used for describing physical phenomena. Finally, Sobolev spaces are useful
for practical purposes as they are the natural mathematical framework for the celebrated finite
element method when seeking numerical solutions to PDEs ( [6], Chapter 1).

When a function of interest u : D — R is unknown, it may be relevant to model it as
a sample path of a random field (U(z))zep, say a Gaussian process, whose realizations lie



in a suitable function space. This is e.g. frequent in Bayesian inference of functions [45].
Such suitable spaces can indeed happen to be Sobolev spaces, for example when u describes
a physical quantity. The question at hand in this article is thus the following: when do the
sample paths of a given Gaussian process lie in some Sobolev space? This question is closely
linked to the recent attention that Gaussian processes have drawn for tackling machine learning
problems arising from PDE models; see e.g. [28,32,35,46]. Notably (see [9]), Gaussian processes
seem to provide a numerically competitive and mathematically tractable alternative to the now
widespread ”physics informed neural networks” (PINNs, [34]). For the moment though, the
machine learning techniques involving Gaussian processes have only been studied within the
framework of spaces of functions with classical smoothness : C°,C', etc. As argued before,
these spaces are often not as well-suited for studying PDEs as Sobolev spaces.

Though weak differentiability is more general, it is less direct to check than classical dif-
ferentiability. Weak derivatives are defined implicitly and in the most general case, ensuring
Sobolev regularity is not usually done by directly verifying that an integral or a series is finite,
as would be the case in LP spaces; variational or boundedness criteria are used instead (see
Proposition 2.1).

In many important cases however, handy characterizations of such regularity do exist, which
have effectively been used to bypass the implicit definition of Sobolev regularity and generate
results on the sample path regularity of Gaussian processes. When D = R, the space W™P(R%)
can be characterized in terms of a sufficient decay of of the Fourier transform ( [40], Theorem
3 p. 135; [19], Section 5.8.5; [36], Section 7.63). Still in the case D = R%, Sobolev regularity
is equivalent to the convergence of its de la Vallée Poussin expansion in a suitable space (
[31], Section 8.9). This fact has been the first to be employed for characterizing the Sobolev
regularity of stationary Gaussian processes indexed by the unit cube of R? in [13,23], in terms
of the spectral measure of its covariance. For some Banach spaces, explicit Schauder bases
are known and lying in such spaces can be translated as the convergence of some coordinate
series. This has been exploited in [12] for studying the Besov and Besov-Orlicz regularity of one
dimensional Gaussian processes (they are natural generalizations of Sobolev regularity, [36]).
Wavelet analysis is also available for describing Sobolev regularity ( [36], Section 7.70) and has
been used for studying the smoothness of the Brownian motion [11,38]. More complex notions
such as the existence of an underlying Dirichlet structure have been put to use in [26]. The
latter work deals with Besov Bj , regularity, s > 0, on compact metric spaces, and relies
on a convergence analysis of suitable spectral coefficients, based on the so called Littlewood-
Paley decomposition. In [41], Karhunen-Loeve expansions are used to study whether or not
the sample paths of a general second order random process lie in interpolation spaces between
the reproducing kernel Hilbert space (RKHS, Section 4.1 below) of the process and L?(v),
where v is a o-finite measure. This is then applied to study H*-regularity properties of the
corresponding sample paths when s > d/2 (Corollary 4.5 and 5.7 in [41]), with applications
to Gaussian processes in particular. Note that RKHS are also popular function spaces in the
machine learning community [3]. Using the notion of mean square derivatives, [39] shows that
the sample paths of a general second order random field lie in W"2(D) under an integrability
condition of the symmetric cross derivatives of the kernel over the diagonal ( [39], Theorem 1).
This result strongly suggests that a purely spectral criteria for Sobolev regularity of a random
process should exist as the integrals appearing in Theorem 1 of [39] exactly correspond to the
trace of specific integral operators which are naturally linked to the covariance of the process;
in fact, we provide such a criteria in Proposition 4.4. For the suitable definition and use of the
mean square derivatives of the process, [39] additionally requires that the covariance function
be continuous over the diagonal as well as its symmetric cross derivatives.

The purpose of this article is to uncover necessary and sufficient characterizations of the



Sobolev regularity of nonnegative integer order of a given Gaussian process, in terms of its
covariance function. In an attempt to make them both as general and concise as possible, we
set the following targets and assumptions.

e The covariance function of the Gaussian process will only be assumed measurable, as in [41].
This contrasts with some of the previously mentioned works [12,26,39], where the covariance
function is assumed continuous. It seems though that assuming the continuity of the covariance
(and thus more or less that of the sample paths, [2] p. 31) to examine some Sobolev regularity
of potentially low order is an unnatural hypothesis. This is especially true as the dimension
of D increases, since W™?(D) is embedded in C%(D), the Banach space of continuous and
bounded functions over D, only when m > d/p ( [36], Theorems 4.12 and 7.34).

e We will not make any regularity or shape assumptions on the open set D. Indeed, Sobolev
spaces of integer order are easily defined over arbitrary open sets D — R?, and thus some
results should exist within this general setting. As a result though, we will not deal with
fractional Sobolev spaces nor Besov spaces. Indeed, those spaces may have some pathological
properties without additional hypotheses on D, namely enjoying a Lipschitz boundary or the
cone condition (see e.g. [15], Example 9.1). We will see that elementary characterizations of
Sobolev regularity (Lemmas 2.1 and 2.4) will prove to be enough for our purpose.

e Our results should lie outside of the assumption that m > d/p, where m,p and d correspond
to the notation W™P(D), D < R%. Indeed, many previous results concerning the Sobolev reg-
ularity of a given Gaussian process concern the spaces H™ (D) = W™2(D), D < R?, only in the
case m > d/2. This is convenient because it ensures that H™ (D) is continuously embedded in
C% (D) when D is smooth enough, which suppresses the ambiguity of choosing a representative
of a function in H™(D). However, m > d/2 excludes the spaces H'(R?) and H!(R?), which
are central in the study of many important second order PDEs such as the wave equation, the
heat equation, Laplace’s equation or Schrodinger’s equation.

Our characterizations of measurable Gaussian processes with sample paths in W™P(D) is
phrased in terms of a form of Sobolev regularity of the covariance function on the diagonal. It
is then linked to the existence of suitable Mercer or otherwise nuclear decompositions of the in-
tegral operators associated to the covariance function and its symmetric weak cross-derivatives.
In the Hilbert case p = 2, additional links are made w.r.t. the Mercer decompositions of the said
integral operators, their trace and the Hilbert-Schmidt nature of the imbedding of the RKHS
in W™2(D). Our results are strongly reminiscient of those found in [39], where we removed the
continuity asusmptions over the covariance. In particular, this shows that contrarily to what
is suggested in [41], p. 370, the Sobolev regularity of the sample paths of a given Gaussian
process is not about d/2 less than that of the functions of its RKHS. This regularity is rather
characterized by purely spectral properties of the covariance operator of the associated Gaus-
sian measure. It just happens that in many standard cases such as with the Matérn kernels
of order v on "nice” bounded domain D < R?, their RKHS turns out to be H**%2(D) ( [41],
Example 4.8) and the imbedding of H**%?(D) in H*(D) is Hilbert-Schmidt when s < v. See
Example 4.5 for further details.

The article is organized as follow. In Section 2, we introduce the necessary notions for
properly stating our results as well as some useful lemmas directly related to these notions. In
Sections 3 and 4, we state and prove the main results of this article, which treat the general
case p € (1,400) and the special case p = 2 respectively. In Section 5, we conclude and provide
some further outlooks. We prove the intermediary lemmas used in the main proofs in Section
6.



Notations Given a Banach space X, X* denotes its topological dual. Given x € X and
l € X*, we denote the duality bracket as follow: I(z) = (I, z)x# x. B(X) denotes the Borel o-
algebra of X for its norm topology. Given two linear operators A : X; — Y; and B : X5 — Y5,
A® B : X; ® Xo — Y1 ® Y, denotes their tensor product which verifies (A ® B)(a ® b) =
(Aa) ® (Bb). Given two real valued functions f and g, f ® g denotes their tensor product
defined by (f ® g)(z,y) = f(x)g(y). Given h € R || denotes its Euclidean norm. Given
p € (1, +0), ¢ will always denote its conjugate: 1/p+1/q¢ = 1ie. ¢ =p/(p—1). As usual, when
D is an open set of RY, we identify the dual of LP(D) with L(D). Explicitly, if f € LP(D) and
g € LY(D), we have

Segprin = | F@gla)dn = (o i (12)
When there is no risk of confusion, we will write ||f||, := ||f|[z»(p). If H is a Hilbert space,
{-,->m denotes its inner product. We denote N := {1,2,...} the set of natural numbers and

Ny := N u {0}. Given an open set D c R4, we write Dy € D if Dy = D and Dy is compact.
L},.(D) denotes the space of equivalence classes of locally integrable functions over D, i.e. such

that §, |f(z)|dz < 40 for all K € D. Elements of L}, (D) are identified when they are equal

loc
almost everywhere w.r.t. the Lebesgue measure. Given an equivalence class f € L} (D), a
representative of f is a function f : D — R such that the equivalence class of f in L}, (D) is f.
We will sometimes denote f and f with the same symbol, e.g. f. Given a function k defined

over D x D, & denotes the associated integral operator (if well defined):
@h)e) = | k)i (13)

The input and output spaces of & will be specified on a case-by-case basis.

2 Preliminary notions and results

In Sections 2.1, 2.2 and 2.3, we introduce Sobolev regularity through the prisms of weak deriva-
tives and generalized functions, and provide handy characterizations of this regularity. We
present useful notions from operator theory in Section 2.4. In Section 2.5, we recall some useful
results related to Gaussian processes and Gaussian measures.

2.1 Definition of weak derivatives and Sobolev spaces

Let o = (v, ...,q) € N§. Denote 0% = 021...09¢ the o'" derivative, and |a| := Zf=1 la;|. In
this article, the statement “let |a| < m” will mean “let o = (ayq,...,aq) € N¢ be such that
|a] < m”. Given a function k defined on D x D, 0%k denotes its symmetric cross derivative:

0%k(x,y) = 091...00400 .00 k(x,y) (formally, 0 = 0*® 0“). A function u € Lj,.(D) has
ve L}, (D) for its al™ weak derivative if ( [36], section 1.62)
Vi € CF(D), J (@) p(@)dz — (—1)l°] f o(@)p(x)dz. (2.1)
D D

v is then unique in L} (D) and is denoted v = 0%u. Let p € [1,+00]. The Sobolev space

loc

WP (D) is defined as ( [36], section 3.2)

W™P(D) = {ue LP(D) : ¥ || < m, ®u e LP(D)}. (2.2)



Sobolev spaces are Banach spaces for the norm [[ullwm.r = (X4 <m ||0%ul[B)!/P; they are
separable when p # +00 ( [36], Theorem 3.6 p. 61). When p = 2, W™ P?(D) is usually denoted
H™(D) and is a Hilbert space for the following inner product

gy = Y {0%u, 0°V)L2(p). (2.3)
lal<m

Note that we made no assumptions on the regularity of the open set D.

2.2 Characterization of W™P-regularity for locally integrable func-
tions

As for pointwise derivatives, finite difference operators can be used for characterizing Sobolev
regularity. Given h € R? introduce the translation operator (7,u)(x) = u(x + h), which is
bounded over LP(R?). Introduce the associated finite difference operator:

Ah =Th—Id. (24)

The linear subspace of bounded operators over LP(R?) induced by the translation operators is
commutative, as T, © Thy = Thy+hy = Thy © Thy- Let B = (hy,...,hp) € (RY)™, we define the
m'" order finite difference operator associated to h to be Ay := [/~ A}, where the product
symbol denotes the composition of operators. When h € R?, the adjoint of A}, is also a finite
difference operator, which is computable using the change of variable formula. If h € R, then

Ai =T—_h — Id. (25)

Finally, when o = (o, ...,aq) € N and h = (hy,..., hq) € (R*)%, we denote by §¢ the finite
difference approximation of 0% defined by

d a; o o
16% Ahiei ’ Ahlel ! Ahe ¢
5"=H< hs ) =( I ) ( by ) (@6)

i=1

Above, (e1, ..., eq) is the canonical basis of R?. Depending on which one is the most convenient,
we will either use Ay, or ;). We shall use the following characterizations of W™ P-regularity,
which are straightforward generalizations of Proposition 9.3 from [7] to multiple derivatives.
We prove them in Section 6, as we could not find them stated as such in the literature.

Lemma 2.1. Suppose that u € L}, (D). Let m € No, p € (1,+)] and introduce ¢ > 1 the
conjugate of p : 1/p + 1/q = 1. Then the following statements are equivalent

(i) we W™P(D)
(i) (Variational control) for all a such that |a| < m, there exists a constant Cy, such that

Ve Cr(D), | Luma%(x)dx\ < Coll¢ll ooy (2.7)

In this case, the LP norm of 0%u is given by

[[0%u||p(py =  sup
peCP (D)\{0}

L) u(z) T;;p(l? dm‘. (2.8)




(iii) (Finite difference control) there exists a constant C' such that for all open set Dy € D, for
alll <m and all h = (h1,...,h;) € (RY)! such that Y, |hi| < dist(Do, D),

||Ahu||Lp(D0) < C‘hl‘ X ... X |hl| (29)

Moreover, |[0%ul|prpy < C for any C wverifying equation (2.9) and one can actually take C' =
|[w|lpm.» Dy in equation (2.9).

In Point (i) above, the assumption that »,, |h;| < dist(Do, dD) is only there to ensure that
the quantity Apu(x) makes sense when x € Dy.

2.3 Sobolev regularity and generalized functions

The theory of generalized functions (or distributions) provides a flexible way of characterizing
Sobolev regularity, by building a larger space in which partial derivatives are always defined.
Given an open set D, denote C' (D) the space of smooth functions with compact support in
D. Endow it with its usual LF topology, defined e.g. in [43], Chapter 13. This topology is
such that the sequence (¢, ) converges to ¢ in CP(D) if and only if there exists a compact set
K < D such that Supp(y¢,) < K for all n and

Va = (ai,...,aq) € Nd,  sup |0%p, (z) — 0%p(z)| — 0. (2.10)
zeK
With C% (D) endowed with this topology, the space of generalized functions, or distributions,
is then defined as the topological dual of C*(D) i.e. the set of all continuous linear forms
over CX(D). It is traditionally denoted as follow: 2'(D) := CL (D)’ ( [43], Notation 21.1). A
generalized function T € 2'(D) is said to be regular ( [43], p. 224) if it is of the form

Ve CP(D), T(p) L w(@)p(x)dz. (2.11)

1.(D), in which case one writes T' = T,,. Given any function u € L}, (D) and
o € N4, its distributional derivative D®u is defined by the following formula ( [43], pp. 248-250):

for some u € L}

Dz — (=1)lo JD 0%p(x)u(x)de. (2.12)

D%u then also lies in 2'(D). Sobolev regularity can now be rephrased as follow : u lies in
WP (D) iff for all |a] < m, the distributional derivative D% is in fact a regular generalized
function represented by some v, € LP(D) i.e. D% = T,_. Then v, is unique in LP(D) and
0% = v, in LP(D), where 0%u is the o' weak derivative of u.

Moreover, the control equation (2.7) shows that 0%u exists and lies in LP(D) if and only
if D% : CP (D) — R can be extended as a continuous linear form over L%(D). Ensuring the
existence of such extensions will thus be of prime interest for us, and is the topic of the next
lemma. Specifically, the next result states that given continuous linear or bilinear forms over
C¥ (D), the existence of extensions of these maps to LI(D) can be ensured by obtaining suitable
estimates on a well chosen countable set £, < C(D). Restricting ourselves to £, will allow
us to eliminate any measurability issues when introducing the supremum of certain random
variables indexed by FE,, as a countable supremum of random variables remains a random
variable (i.e. a measurable map). Below, we write || - || := || - ||za(p) for short.

Lemma 2.2 (Extending continuous linear and bilinear forms over C*(D) to LP(D)). Let
p € (1,+o). There exists a countable Q—wvector space E, = {®%,n € No} < CP(D) with the
following property.



(i) A distribution T € 9'(D) is a regular distribution, T = T,,, for some v € LP (D) iff it verifies
the countable estimate for some constant C' > 0

Ve By, |T() < Cllellg- (2.13)
or equivalently, sup,cy |T(®2)|/||®%|], < +oo (here, setting ®F = 0 without loss of generality).

This is equivalent to T admitting an extension over LI(D) which is then uniquely given by
T(f) = §p f(x)v(z)dx. Moreover,

T(®4 T
ap TE@DL T ()

nel ||1®hllg  pecz o) llolly

(2.14)

whether these quantities are finite or not.

(ii) Let b be a continuous bilinear form over CX (D). Then b can be extended to a continuous
bilinear form over L1(D) iff it verifies the countable estimate

Vo, 1 € Eq, b, )] < Cllellgl1¥1]q- (2.15)

In this case, such an extension is unique and there will exist a unique bounded operator B :
LY(D) — LP(D) verifying the following identity

VQD, 1/J € C(C')O(D)7 b(% 1/)) = <B()05 1/}>LP,L‘1- (216)

The proof of this result can be found in Section 6. It is based on Lemma 2.3 below, which
is interesting in itself. Recall that a topological space X is separable if there exists a countable
subset Y < X which is dense in X for the topology of X. Then the following holds.

Lemma 2.3. C*(D) endowed with its LF-topology is separable.

A short proof of this result can be found in [22], Lemma 3.5. See also [21], p. 73, (3) for a
statement of this result, or [20], Corollaire (1).2, p. 78 for a reference in French. Given the set
E, provided by Lemma 2.2, we next define the countable set Fj, to be

Fy = {QO/HSOH!I?@ €Eq,p# 0} = {f,‘i,n € N} < Sq(07 1)' (2'17)
Above, (f¥)nen is an enumeration of F, and S,4(0,1) is the unit sphere of LY(D). The next
lemma is then a direct consequence of Lemmas 2.1 and 2.2.

Lemma 2.4 (Countable characterization of Sobolev regularity). Let p € (1,400). For any
u € L}, (D), u lies in W™P(D) iff for all multi index o such that |a| < m, there exists a
constant C,, such that

Voe B, UD w(@)e*o(@)dz| < Cullolly, (2.18)

or equivalently, in terms of the set F, defined in equation (2.17),

sup J u(x)0%p(x)dz| = sup f u(z)0® fl(x)dx| < +c0. (2.19)
peF, | JD neN | JD

Moreover,
sup j u(z)0“p(z)dx| = sup J u(ac)a (p(x)dx, (2.20)
weF, | JD peC®(D)\{0} | JD llellq

whether these quantities are finite or not. If one of them is finite, then it is equal to ||0“u|| 1r(p).

This lemma provides us with a somewhat explicit countable criteria for Sobolev regularity,
which is valid whatever the open set D.



2.4 Tools from operator theory

The following reminders may be found in [4], Section A.2. Let H; and Hy be two Hilbert
spaces, and X and Y two Banach spaces.

(i) A linear operator 7' : X — Y is bounded if ||T'[| := sup), =1 |[Tz]ly < +00. A bounded

operator T : X — Y is compact if T(B) is a compact set of Y, where B is the closed unit
ball of X. When X =Y, the spectrum of a compact operator is purely discrete, and can be
reordered as a sequence (A, )neny Which converges to 0.

(ii) If T': Hy — H is compact, then T*T : H; — H; is compact, self-adjoint and nonnegative
(Vo € Hy,{x,T*Txyy, = 0). If Hy is separable, T*T can be diagonalized in an orthonormal
basis (e, ) of Hy. The nonnegative eigenvalues of T*T, (s2), are called the singular values of T'.
If H, is separable, T is said to be Hilbert-Schmidt if 3} [|Ten ||, < +00 for one (equivalently,
all) orthonormal basis (e, ) of H;. Its Hilbert-Schmidt norm, defined as the sum above, is then
also the sum of its singular values:

IT|5rs = D5 [1Tenlllr, = D) 5% (2.21)

neN neN

Every Hilbert-Schmidt operator is compact, and every Hilbert-Schmidt operator T' acting on
L?(D) can be written in integral form ( [4], Lemma A.2.13): there exists a "kernel” k €
L?(D x D) such that for all f e L?(D),

(Tf)(x) = J k() F)dy = (Ecf)(@). (2.22)

D

If T is symmetric, nonnegative and Hilbert-Schmidt, there exists an orthonormal basis (¢,,) of
L?(D) of eigenvectors of T with nonnegative eigenvalues (\,), such that in L%(D x D), we have

k(@) = ). Andn(2)én(y). (2.23)

neN

We will refer to decompositions of f of the form of equation (2.23) as Mercer decompositions,
in reference to the celebrated Mercer’s theorem ( [8], Theorem 1.2).

(ili) If H, is separable, T is said to be trace-class (or nuclear) if }} _ s, < 400. One can then
define its trace as the following linear functional, which is independent of the choice of basis
(en), and equal to the series of the eigenvalues of T' (Lidskii’s theorem)

Te(T) = > (Ten,en) = . An. (2.24)

neN neN

Any trace-class operator is Hilbert-Schmidt, and T is Hilbert-Schmidt if and only if T*T is
trace-class, in which case Tr(T*T) = ||T|%,5 = ||T*||%s. If H = Hy = L*(D), if T is trace
class with kernel k& and if k is sufficiently smooth (say continuous), then the trace of T' = &, is
given by Tr(T) = {, k(x,z)dz. Extensions of this formula to general Hilbert-Schmidt kernels
k € L?(D x D) of trace class operators is studied in [8]; see also Proposition 2.9 and Lemma
3.7 below. If T : H; — H; is bounded, self-adjoint and nonnegative, then we define its trace
as the possibly infinite series of nonnegative scalars Tr(T) := >} (Ten, ey).

iv , D- ounded operator 7' : X — Y is nuclear if there exists sequences
i 29 160) A bounded T:X Y i 1 if th i
(zn) € X* and (y,) € Y with 375 ||z || x# ||yn|ly < +o0 such that Tz = 375 (xn, 2) x5 x Un



for all x € X. In this case, we write abusively T = ZZfl Zp, ® Yr,. The nuclear norm of T is
then defined as

+00 100
v(T) = inf{ 2 [lZn]|x#||ynl]y such that T = Z Tn, ®yn}. (2.25)

n=1 n=1

A bounded operator K : X* — X is symmetric if for all z,y € X*, (x, Ry) = {y, Rz), and
nonnegative if (x, Rxy > 0. When X =Y = H where H is a separable Hilbert space, the
sets of trace class and nuclear operators coincide; moreover, the same can be said for the trace
functional (2.24) and the nuclear norm (2.25) if T’ has a nonnegative spectrum : v(T') = Tr(T).

2.5 (Gaussian processes and Gaussian measures over Banach spaces

Throughout this article, (Q2, F,P) denotes the same probability space. Given p € (1, +00), LP(IP)
denotes the space of real valued random variables X such that E[| X |P] < +o0.

(i) If (E, B) is a measurable space, the law Px of a random variable X : Q — FE is the push-
forward measure of P through X, which is defined by Px (B) := P(X~1(B)) for all measurable
set B € B ( [5], Section 3.7).

(ii) A Gaussian process ( [1], Section 1.2) (U(z))zep is a family of Gaussian random vari-
ables defined over (Q,F,P) such that for all n € N, (a1,...,a,) € R and (z1,...,x,) €
D™, 37" a;U(x;) is a Gaussian random variable. The law it induces over the function space
R? endowed with its product o-algebra is uniquely determined by its mean and covariance
functions, m(z) = E[U(z)] and k(z,2') = Cov(U(x),U(a’)) ( [24], Section 9.8). We then
write (U(z))zep ~ GP(m, k). The covariance function k is positive definite over D, which
means that for all nonnegative integer n and (z1,...x,) € D", the matrix (k(x;,%;))1<i,j<n
is nonnegative definite. Conversely, given a positive definite function over an arbitrary set
D, there exists a centered Gaussian process indexed by D with the this function as its co-
variance function ( [1], p. 11). We shall often denote o(x) := k(z,z)"/2. Given w € , the
corresponding sample path (or realization) of (U(z))zep is the following deterministic function
U, : D — R defined by U, (z) := U(z)(w). A Gaussian process is said to be measurable if
the map (Q x D,F ® B(D)) — (R,B(R)), (w,z) — U(x)(w) is measurable. If (U(x))zep is
measurable, then from Fubini’s theorem the maps of the form = — k(x,2),z — k(x,z), etc,
are measurable. We further discuss this property in Remark 2.10.

We shall need the following lemma pertaining to the sample path-wise integration of Gaus-
sian processes.

Lemma 2.5. Let D < R? be an open set. Let (U(z))zep ~ GP(0,k) be a measurable centered
Gaussian process such that its standard deviation function o lies in L}OC(D). Then the sample
paths of U lie in L} (D) almost surely and given o € C* (D), the map defined by

loc

Uy : Qswr— (—1)led JD U(x)(w)d“p(z)dx (2.26)

is a Gaussian random variable. Moreover, for allp € (1,+0), (Ug)eer, is a centered Gaussian
sequence (i.e. a Gaussian process indexed by a countable set), where Fy is defined in equation
(2.17).

We will also use the following fact about bounded Gaussian sequences, which can be seen
as a weak form of Fernique’s theorem ( [4], Theorem 2.8.5, p. 75).



Lemma 2.6 ( [1], Theorem 2.1.2). Let (U, )nen be a Gaussian sequence and set |U| := sup,, |Up|.
Suppose that P(|U| < +0) = 1. Then there exists € > 0 such that

E[exp(e|U|?)] < +o0. (2.27)
In particular, E[|UP] < 40 for all p € N.

(iii) A Gaussian measure p ( [4], Definition 2.2.1) over a Banach space X is a measure over
its Borel o-algebra such that given any z* € X*, the pushforward measure of p through
the functional z* is a Gaussian measure over R (see Section 2.5(i) for a definition of the
pushforward). Gaussian measures are equipped with a mean vector a, € X** and a covariance
operator K, : X* — X** defined in [4], Definition 2.2.7. When X is separable, u is Radon
( [4], p- 125). This implies that a, lies in X and that the covariance operator K, maps X*
to X ( [4], Theorem 3.2.3). The vector a, and the covariance operator K, are defined by the
following formulas

Vo e X*, {a,,x) = L{(m, 2yu(dz), (2.28)

Vae,ye X*, (y, K, x) = JX@ —ay,z) Yy — ay, z2yp(dz). (2.29)

Any operator K : X* — X** which is the covariance operator of a Gaussian measure is called a
Gaussian covariance operator. In Propositions 2.7 and 2.8, we present useful characterizations
of Gaussian measures p over two important classes of Banach spaces: spaces of type 2 and
cotype 2 respectively. For a definition of spaces of type 2 and cotype 2, see e.g. [10]. In this
article, we will only use the fact that LP(D) is of type 2 when p > 2, and cotype 2 when
1 < p <2 (see [4], p. 152). Moreover we shall restrict ourselves to the case where X is
separable. This implies that p is Radon, which removes problems pertaining to extensions of
measures otherwise considered in [29] and [10].

Proposition 2.7 ( [29], Theorem 4). Let X be a separable Banach space of type 2, and let y
be a Gaussian measure over X. Then its covariance operator is symmetric, nonnegative and
nuclear. Conversely, given any a € X and any symmetric, nonnegative and nuclear operator
K : X* — X, there exists a Gaussian measure over X with mean vector a and covariance
operator K.

Denote 2 the Hilbert space of square summable sequences.

Proposition 2.8 ( [10], Theorem 4.1 and Corollary 4.1). Let X be a separable Banach space
of cotype 2, and let p be a Gaussian measure over X. Then there exists a continuous linear
map A : 1> - X and a symmetric, nonnegative and trace-class operator S : 1> — 1> such
that covariance operator of u is given by ASA* (in particular, the covariance operator of
is nuclear). In other words, y is the pushforward measure of a Gaussian measure jig over I
through some bounded linear map A. Conversely, given any a € X and any operator of the
form ASA* where A : 12 — X is a bounded linear map and S a symmetric, nonnegative and
trace class operator over 12, there exists a Gaussian measure over X with mean vector a and
covariance operator K.

In practice, we shall replace [? with L?(D), which are isomorphic Hilbert spaces. The
propositions 2.7 and 2.8 generalize the case where X is a separable Hilbert space, which can
be found in [4], Theorem 2.3.1. We finish with the following handy result describing centered
Gaussian measures over LP-spaces.
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Proposition 2.9 ( [4], Proposition 3.11.15 and Example 2.3.16).

o Let 1 be a centered Gaussian measure over LP(D) where 1 < p < 4+ and D < RY is
an open set. Then there exists a function k € LP(D x D) such that the covariance operator
of wis & : LY(D) — LP(D), the integral operator associated to k. Moreover, there exists a
centered measurable Gaussian process (U(x))zep whose covariance function k verifies k = k in
LP(D x D), and whose sample paths lie in LP(D) a.s.. Setting o(x) = k(z,x)'/?, k verifies

f k(x,z)Pdx :f o(z)Pdx < +00. (2.30)
D D

Additionally, Py = p, where Py is the pushforward of P through the Borel-measurable map
w +— U, € LP(D). Conversely, given any measurable nonnegative definite function k verifying
(2.30), the corresponding integral operator & : L1(D) — LP(D) is the covariance operator of a
centered Gaussian measure p over LP(D).

e Given a centered measurable Gaussian process (U(x))zep whose covariance function we de-
note k, the condition (2.30) is equivalent to (U(x))zep having its sample paths lie in LP(D)
a.s..

This result is quite strong, as it ensures the existence of a representative in L? (D x D) of the
kernel of any Gaussian covariance operator, which is the covariance function of a measurable
Gaussian process. This will enable us to remove awkward measurability issues w.r.t. k over its
diagonal and equation (2.30). Without the use of an underlying measurable Gaussian process,
these issues are not trivial to deal with, see e.g. [8] for an analysis of the Hilbert case p = 2.

Remark 2.10. Proposition 2.9 shows that the assumption that a given Gaussian process is
measurable is slightly less demanding that it might seem. Ensuring the existence of a measurable
modification of a general random process is difficult outside of it being continuous in probability
( [17], Theorem 2.6 p. 61). Tedious extensions of this result exist ( [16], Theorem 2.3). For
a Gaussian process (U(x))zep ~ GP(0, k,) however, Propositions 2.7, 2.8 and 2.9 shows that
the measurability of its covariance function over D x D and the integrability of its standard
deviation in LP(D) (or equivalently, suitable nuclear decompositions of its associated integral
operator &) ensure the existence of a measurable Gaussian process (V(z))zep ~ GP(0,k,)
with the same covariance function in L}, .(D x D). Consequently, k, = k, a.e. on D x D. Note
though that the process V' need not be a modification of U. Since k, = k, a.e., we only have
that U and V have the same finite dimensional marginals ”almost everywhere” in the sense of
the Lebesgue measure: for all n € N and almost every (1, ...,x,) € D", (U(x1),...,U(x,)) and
(V(x1),...,V(2,)) have the same law.

Throughout this article, we will only consider centered Gaussian processes (E[U(z)] = 0)
and Gaussian measures (a, = 0). Generalizations of the results of this article to non centered
Gaussian processes are straightforward.

3 Sobolev regularity for Gaussian processes : the general
case, l <p <+

We can now state our first result, which deals with W™P(D)-regularity of Gaussian processes,
given any p € (1, +00) and any open set D < R9.

Proposition 3.1 (Sample path Banach-Sobolev regularity for Gaussian processes). Let D < RY
be an open set. Let (U(zx))zep ~ GP(0,k) be a measurable centered Gaussian process, defined
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on a probability set (Q, F,P), such that its standard deviation function o lies in L}, (D). Let
€ (1,+). The following statements are equivalent :

(i) (Sample path regularity) The sample paths of (U(x))zep lie in WP (D) almost surely.

(ii) (Integral criteria) For all |a| < m, the distributional derivative 0%k lies in LP(D x D)
and admits a representative ko in LP(D x D) which is the covariance function of a measurable
Gaussian process. Note oo (z) := ko (z,2)"/?, then additionally

JD oo(2)Pdr < +00. (3.1)

(#ii) (Covariance structure) For all |a| < m, the distributional derivative 0%k lies in LP(D x
D) and the associated integral operator E : L(D) — LP(D) defined by

(e j " k(z,y) () dy (3.2)

is symmetric, nonnegative and nuclear: there exists (A% )nen = 0 and (Y )nen < LP(D) such
that

+a0
DX s 7y <+, (3.3)
n=0
+0
k() = Y A (@) (y) in LP(D x D). (3.4)
n=0

If 1 < p < 2, then one can choose (XS) such that ), A% < +00, and there exists a bounded
operator A, : L?(D) — LP(D) and an orthonormal basis (¢%) of L*(D) such that ¥ = Ay¢%
for alln = 0 (in particular, we have the uniform bound ||V% ||, < ||Aall)-

The proposition above shows that a suitable LP control of the function 0*“k over the
diagonal is necessary and sufficient for ensuring the Sobolev regularity of the sample paths of
the Gaussian process with covariance function k. Formally speaking, the function (z,y) —
0%*k(x,y) is the covariance function of the differentiated process, (w,z) — 0*U,(x). This is
formal only, as the weak derivative of the sample paths are only defined up to a set of Lebesgue
measure zero, and thus there is no obvious way of defining the joint map (w, z) — 0*U,(x). Note
also that the idea of ensuring a suitable control of this covariance function near its diagonal is
not with reminding more standard results pertaining to the differentiability in the mean square
sense of a random process (see e.g. [1], Section 1.4.2). See [39] for similar remarks on the
Sobolev regularity of random fields.

Observe also that there is an asymmetry between Point (i7) and Point (i) of Proposition
3.1, as one depends on whether p is lower or greater than 2 while the other does not. Moreover,
both points rely on the finiteness of some quantity, so explicit bounds should be sought so that
Point (44) controls Point (#i7) and conversely. This is the content of Proposition 3.5.

Finally, observe that the integrability criteria (i7) cannot be expected to hold for any positive
definite representative ko of 0%k, even if k. is measurable on its diagonal. For example, set
ko(x,y) := ka(x,y) + 0., where 8, is the Kronecker delta, which verifies k = 0%% in
LP(D x D). But if D has infinite Lebesgue measure, it is also clear that SD (z,2)Pdx >
SD 0z zdx = +00. Lemma 3.7 describes a natural set of “admissible” representatives for which
Point (i¢) holds, in the case p = 2.
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Remark 3.2. Under the assumption that (U(x)),ep is measurable, the statement that its sample
paths lie in some Sobolev space is not up to a modification of the process. This is a consequence
of Lemmas 2.4, 2.5 and 2.6, which show that the Sobolev regularity of its paths is fully deter-
mined by the finite dimensional marginals of the process (see equation (3.7)). This contrasts
with more classical results, e.g. pertaining to the continuity of the process ( [2], Section 1.4.1).
Still, ensuring the measurability of the process is not really straightforward (see Remark 2.10).

Example 3.3 (Finite rank covariance functions). Let p € (1,+®), m € Ny and N € N.
Consider fy, ..., fx; € W™P(D) and choose once and for all representatives of those functions in
L?(D), also denoted by fi, ..., fn, so that they may be understood as functions in the classical
sense. Consider the covariance function k(x,2’) := Zfil fi(x)fi(z"). Then obviously, for all
|a| < m, the weak derivative 0%k is given by

0k (z, ') 2 0% fi(x)0% fi(z') in LP(D x D), (3.5)

and the associated integral operators fulfill the criteria (i4i) of Proposition 3.1. Thus the
corresponding measurable Gaussian process has its sample paths in W™P?(D) almost surely.
Note that this was obvious in the first place, since this Gaussian process can be written as
U(z) = Zf\il & fi(x) where &,...,&n are independent standard Gaussian random variables
(checking that the covariance function is the right one is trivial). Still, this example fell out of
the scope of the previous results pertaining to the Sobolev regularity of Gaussian processes.

Proof. (Proposition 3.1) We show (i) = (ii) & (idi), (4d) = (i) and (i#d) = (i3).

(i) = (i) & (i4i) : Suppose () and let |a| < m. We first prove that the map N, : (Q, F,P) —
(R, B(R)), w > [[0°U,||»(p) is measurable. Indeed, given ¢ € Fy; (see equation (2.17) for the
definition of Fy), the map

Ug twr—> J-D U, (z)p(z)dz = (—1)°! L) U, (2)0%p(x)dx (3.6)

is a real valued random variable (this follows from Lemma 2.5). From Lemma 2.4, one also has

(o.) — ||5an|Lp(D)> = sup |Ug|. (3.7)
pEFy

The supremum being taken over a countable set, IV, is indeed a measurable map. Given
any f € LP(D), a slight modification of this proof shows that w ~— [|0%U,, — f||p»(p) is also
measurable. We can now show the map T, : (Q,F,P) — (LP(D),B(L?(D))), w — ¢°U, is
measurable. Let f € LP(D),r > 0 and B = B(f,r) be an open ball in LP(D). Then from the
measurability of w — [[0“Uy, — f||r (D),

T, (B) ={weQ:||0%u— f|lo(py <7} € F. (3.8)

Since L?(D) is a separable metric space, its Borel o-algebra is generated by the open balls of
LP(D) (see e.g. [5], Exercise 6.10.28). Thus T, is Borel-measurable and the pushforward of P
through T, induces a (centered) probability measure p, over the Banach space LP(D). We
show that it is Gaussian. Let f € L9(D) and denote Ty the associated linear form over L?(D).
Let (¢,) = C*(D) be such that ¢, — f in L4(D) and w € Q be such that U, lies in L}, (D):

f Vafa) f(@)da = lim, | V(@) (x)dz (3.9)
— lim (— 1)l f Us (2)0% 60 () da (3.10)
n—0o0 D
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For each value of n, Lemma 2.5 shows that the map w — (=1)I* § U, (2)0%¢,(z)dz is a
Gaussian random variable. Thus w — T¢(0“U,,) is a Gaussian random variable as an a.s. limit
of Gaussian random variables. This shows that the pushforward of 11, through T is Gaussian
(see Section 2.5(4) for the pushforward), since for all Borel set B € B(R),

1a(T7H(B) = palfg € IP(D) : Ty(g) € BY) = P{w e Q: Ty(e°U.) € BY).  (3.11)

Hence, p,, is Gaussian. We next show that 0%k € LP(D x D) and that the covariance operator
of o is the integral operator £F : LY(D) — LP(D) with kernel 0**k. Let Dy € D x D and
Ky € D be such that Dy ¢ Ky x Ky (for example, set K; := {x € D:3ye D, (z,y) € K},
Ky :={yeD:3xz e D,(x,y) € K} which are both compact subsets of D and Ky := K; u K3).
Let h = (hq, ..., hq) € (R%)? be such that Y, |h;| < dist(Kp, Do). Use then the bilinearity of the
covariance operator:

| 167 @ o)kt pdady = [ BGRU @S0G Pdsdy (3.12)
Do Do
<|  EHRU@SUGIPddy (313)
<[ BIGU@RUGP Iy (3.14)

<z( [ |5,%U<x>|f’dm)2] SE(ERUIEY (315)

<E[|[U][53, )] =t CP < +o0. (3.16)
The expectation in equation (3.16) is indeed finite because of the following. Given |a| < m,
equation (3.7) shows that the map w — ||0*U,||, is the supremum of a Gaussian sequence which
is finite a.s. by assumption; Lemma 2.6 then implies that all the moments of this supremum are
finite. Writing then ||U||wm» in terms of these LP norms yields equation (3.16). To see that the
control (3.16) implies that 0%k € LP(D x D), we copy the steps of equations (6.2)-(6.3)-(6.4)
in the proof of Lemma 2.1. Let ¢ € C¥(D x D). Since it is compactly supported in D x D, find
an open set Dy € D such that Supp(p) < Dy. Use Holder’s inequality and equation (3.16):

[ 6o et s < 6 @HblIell < Cllgll. (37
Next, use the discrete integration by parts formula:
|Gt osk npteadndy - | ke @) plwdady. (39

When h — 0, observe that (67 ® d5)*p(z,y) — 0%%p(x,y) pointwise. Use Lebesgue’s domi-
nated convergence theorem and equation (3.17) to obtain

| Dk(x,ym%(x,y)dmy\ < Cllella (3.19)

which indeed shows that 0%k € LP(D x D), from Riesz’ lemma. We now identify K, the
covariance operator of i, in terms of 0%®k. Let f, g € LY(D) and using the density of CF(D)
in L9(D) ( [36], Corollary 2.30), let (fy), (gn) = CP(D) be two sequences such that f, — f in
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L%(D) and likewise for g, and g. Then (explanation below),

<f» Ka9>L<1,LP = nlgréo<fm Kagn>Lq,LP (320)

= lim <fn,h>Lq,Lp<gn7h>Lq7Lpd,uo((h)
n— 00 LP(D)

= lim | (fns 0 Uudra,10(gn, *Usdro,1rdP(w) (3.21)
n— Q

- lim f (@ fos U 10(0% gy U 1. 1o dP(w)

= lim 0% [r(2)0%gn (y) (2, y)dady (3.22)
n=%0 Jpxp

= lim fn(2)gn(y)0"“k(z,y)drdy
n=%0 Jpxp

- L  I@)g)o k. y)dady = (L& n (3.23)

We used the sequential continuity of K, in equation (3.20), the transfer theorem for pushforward
measure integration ( [5], Theorem 3.6.1) in equation (3.21) and Fubini’s theorem in equation
(3.22). THus K, = &. According to Proposition 2.9, since p, is a Gaussian measure over
L?(D), there exists a representative k, of 0%k in LP(D x D) which is the covariance function
of a measurable Gaussian process. Note () = ko (z, )"/, then the same proposition shows
that

j oo(x)Pdr < +o0, (3.24)
D

which shows (27). By Proposition 3.5.11 from [4], £ is nuclear and admits a symmetric non-
negative representation as the one in equation (3.4). if 1 < p < 2, then LP(D) is of cotype 2 and
since &' is a Gaussian covariance operator, from Proposition 2.8 there exists a bounded operator
Ay 2 L*(D) — LP(D) and a trace class operator Sy, : L?(D) — L?(D) such that £ = A, S, A¥.
Introduce a Mercer decomposition of S, (equation (2.23)): S, = >, A\a¢s ® ¢5. Use the con-
tinuity of A, and A¥ to obtain that 0““k(x,y) = >, A% (Aad%)(x)(Aadd)(y) in LP(D x D),
which finishes to prove (#i1).

(i14) = (i) : from Proposition 2.9, let (V) be a centered measurable Gaussian process with
covariance function k,. Then its sample paths lie in LP(D) a.s. and the Gaussian measure it
induces over LP(D) through the map w — V.% € LP(D) is the centered Gaussian measure with
covariance operator . Given ¢ € C*(D), denote V' the following random variable

W — J V¥ (x)p(x)dx. (3.25)
D

From Lemma 2.5, (V')yer, is a Gaussian sequence. It is also centered and using Fubini’s

theorem to permute E and §, we have that

E[VZV{] = J () (@)ka(z,y)dedy = J p(y)¢(2)0"k(z, y)dady

DxD DxD
_ J 9% o (y)2* (@) k(x, y)dady. (3.26)
DxD
E[UZU;] = L) D&“(p(y)ao‘w(x)k(:r,y)dzdy. (3.27)
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Having the same mean and covariance, the two Gaussian sequences (V') per, and (Ug) ger, have
the same finite dimensional marginals. One checks in an elementary fashion that their countable
suprema over Fy, then have the same probability law (e.g. by showing that they have the same
cumulative distribution function). Recalling from Lemma 2.4 that [|[V]|, = supgep, [V (W),
we obtain that

L=P(||VJ[lp < +o0) = P(sup |V| < +o0) = P(sup [Ug| < +0), (3.28)
pely pEF,

which shows that 0*U € LP(D) almost surely. This is true for all |a| < m, which shows (i).

(#91) = (@) : if (i4¢), then from either Proposition 2.7 or 2.8 depending on whether p < 2 or
p = 2, there exists a Gaussian measure over LP(D) whose covariance operator is £ as defined
in equation (3.2). Proposition 2.9 yields (i). O

Remark 3.4. In Point (ii4) of Proposition 3.1, it is very tempting to distribute the cross
derivative 0*® on the nuclear decomposition of k (i.e. when a = 0, setting A, := A and
thy, 1= 2), thus setting A2 = )\, and 9@ = 0%),. While we can show that 0%, € LP(D)
(copy the proof of Lemma 4.9, Point (7)), it is not clear whether the obtained decomposition
converges in LP(D x D), or that it corresponds to a nuclear one, i.e. Y, An|[0¢n|[2 < +o0 (it
is not even clear in what sense this derivative can be distributed, apart from the distributional
sense). Assume formally that the derivative can be suitably distributed, and introduce the
functions v, () := Y, M\0%P,(2)? and o4 (2) := va(z)Y/2. From Proposition 3.1, we expect
that ||oa|l, < +00. When 1 < p < 2, the reverse Minkowski inequality in LP/?(D) (see [36],
Theorem 2.13 p. 28) then yields

= [[vallp2 = lloally < +o0,  (3.29)

400 400
DT AlloYnll2 = D Anll0 2 <
n=0 n=0 p/2

+o0

D Andp}
n=0

so that the series Y Ap||0%¢y||3 converges. From this, it is then readily checked that the
equality 0%k = Y An0%9, ®0%,, holds in LP(D x D), which is then a nuclear decomposition
of d%%k (it is rigorously proved in the upcoming Proposition 4.4 shows that this holds with
equality for p = 2). When p > 2 though, the usual Minkowski inequality in L?/?(D) yields
the converse inequality in equation (3.29), which then states nothing about the convergence
of the series Y}, An|[0%¢n |2 w.r.t. the finiteness of ||oa||,. Yet, from Proposition 3.1, nuclear
expansions of 0%%k do exist if p > 2.

The following proposition deals with the apparent asymmetry in p between Points (i¢) and
(#91) of Proposition 3.1. We recall that the nuclear norm v(7T) is defined in equation (2.25).
Contrarily to Proposition 3.1, we do not exclude p = 1.

Proposition 3.5. Let p be a centered Gaussian measure over LP(D), where 1 < p < 4+00. Let
ke LP(D x D) be the kernel of its covariance operator (K, = ), chosen such that k is also the
covariance function of a measurable Gaussian process (U(x))zep, from Proposition 2.9. Define
o(z) = k(z,2)Y? and set C, = 2P/2T((p +1)/2)/v/7 (= E[|X|P] where X ~ N(0,1)). Then the
following bounds hold.

o if 1 < p < 2, there exists a symmetric, nonnegative and trace class operator S over L?(D)
and a bounded operator A : L*(D) — LP(D) such that & = ASA*. Moreover,

. 2 2 —2/p . 2
v(&) < i [JAIPVES) <ol <GP inf - [JAIPV(S), (3.30)
Ex=ASA* Ex=ASA*
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o if 2 < p< +ow0, then & is symmetric, nonnegative and nuclear, and

CoPu (&) < |lol2 < v(E). (3.31)

Observe that if p = 2 then Cy = 1 and equation (3.31) yields ||o||3 = v(E) = Tr(&).
It is expected that the nuclear norm of &£, cannot directly appear on the right hand side of
equation (3.30), as not all nuclear operators are Gaussian covariance operators when 1 < p < 2
(Proposition 2.8). Proposition 3.5 in fact suggests that for general Banach spaces X of cotype
2, the following map defined over the set of Gaussian covariance operators B : X* — X

: 2
B~ A7gn£.t. [|A]*v(S) (3.32)
B=ASA¥*

is the natural measurement of the ”size” of such operators. When X is of type 2, this would
be the case for the nuclear norm B — v(B).

Remark 3.6. Proposition 3.5 is interesting from an application point of view because it states
that the operator norms appearing in this proposition, as well as the L” norm of the standard
deviation function o, are suitable quantities for quantitatively controlling the LP norm of the
sample paths of the underlying Gaussian process. For instance, we have the following LP control
in expectation: E[||U|[F] = Cp||o|[b (see equation (3.34)). Applying this fact recursively, we
obtain that the W™ P-Sobolev norm of the sample paths of the Gaussian process in question
is controlled as follow, denoting o, (z) = 0%“k(z,x)"? (choosing the representative of 0%k
which is the covariance of a measurable Gaussian process)

E[||U||€Vmp] =Cp Z ||0'a||£~ (333)

lal<m

If such a control cannot be obtained, then it means that the sample paths of U do not lie in
W™P(D) in the first place. Finally, we have the following asymptotic behaviour of the constant

when p — +00 : Cp 7% ~ exp(1)/(p — 1).

Proof. (Proposition 3.5) We begin with the following general fact concerning the measurable
Gaussian process (U(x))zep, observing from Fubini’s theorem that

BlI01g) - B| [ wepa]| - [ sw@rii - [ Gowrae-clol, @30

where C, = 2P/2T'((p + 1)/2)/+/7. Indeed, given X ~ N(0,02), then E[| X |P] = CpoP.

Suppose now that 1 < p < 2. Let po be a Gaussian measure on L?(D) and A : L?(D) —
L?(D) a bounded operator such that p = g 4 (pushforward of po through A, see Section 2.5(7))
and S the trace class covariance operator associated to g (see Proposition 2.8). Recall also
that from Proposition 2.9, 4 = Py. Then (explanation below),

Cyllo|2 = E[[U]7] = j V.| [BP(dw) = j £ () (3.35)
Q Lr(D)
= |, 1M 0t0) < 141 | () (330
L*(D L?(D
) /2
< ||A||pf (9 9 i0(dg) < ||A||P(j <g,g>L2M0(d9)) (3.37)
L2(D) L2(D)
< ||AIIP Te(S)P = || A|Pu(S)2. (3.38)
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In equation (3.35), we used equation (3.34) and pushforward integration to write the integral
w.r.t. P as an integral w.r.t. p = Py. Likewise in equation (3.36) where we write the integral
w.r.t. p as an integral w.r.t. po using the pushforward identity u = po 4. In equation (3.37),
we used Jensen’s inequality for concave functions (0 < p/2 < 1). In equation (3.38), we used
the the trace identity for Gaussian measures over Hilbert spaces from [4], equation 2.3.2 and
the one following p. 49. Moreover, from the nuclear norm estimate of [43], Proposition 47.1
pp. 479-480,

V(&) = v(ASA*) < [|Al[v(9)|A%]| < [|AIPv(S) (3.39)
. In equations (3.38) and (3.39), taking the infimum over all representations & = ASA* yields
: 2 2 -5 2
e < ot AIPS), Tl <G 7 nt | 1AIP(S) (3.40)
Er=ASA* Er=ASA*

To prove the remaining inequality (infe, —ag4% ||A]|*v(S) < ||o]]2), we use an explicit decom-
position & = ASA* by first setting

Af(z) = [()o(z) P2, (3.41)
Using Holder’s inequality with a = 2/p,1/a + 1/b = 1 (notice that a > 1), we obtain
1—p/2
lAfE = [ 15@Pe(rt— (3.42)
p/2 1/b
< (J |f(x)|2dx) (f U(a:)bp(lp/Q)da:> . (3.43)
D D
But b= 45 = % = ﬁ and b(1 — p/2) = 1, which together with equation (3.42) yields
IASIE < NIF1B o572, (3.44)
Thus A : L*(D) — LP(D) is bounded and ||A|| < ||0H117_p/2. One also verifies that A* :
LY(D) — L?(D) is given by A*f(x) = f(x)o(x)'"P/2, with ||A|| = ||A*||. Introduce the
functions ko(z,y) := k(z,y)o(x)P> Lo (y)P/?~1, and oo(x) = ko(z,2)"?; ko is the covariance

function of the measurable Gaussian process V() := o(z)?/?>~'U(z), and verifies

oo 2 =f oo(x)de=f ko(x,x)dx=f o(@)Pdz = ||o|E < +oo. (3.45)
D D D

Therefore &, the integral operator over L?(D) associated to ko, is trace class (Proposition
3.1(4i)). Observe also that k = (A® A)kg also yields that &, = A&, A*. Thus,

Jnf (AIPv(S) < AIPv(ER,) < llollloll = [lo]3- (3.46)
Sk;ASA*

Combining equations (3.40) and (3.46) yields the desired result of equation (3.30).

Suppose now that p > 2. Recall that 4 = Py;. We successively use the transfer theorem for
pushforward measure integration, Jensen’s inequality for probability measures (p/2 = 1) and
the nuclear norm estimate from [29], Theorem 3:

BV = [ Wlgpee) = | s = | ISt @an

p/2
> (J ||f|§u<df>) > u(E)?, (3.48)
Lr (D)
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which together with equation (3.34) yields ||o]|2 > Cp *Pu(&). We now prove the last remain-
ing inequality, i.e. ||o||2 < v(&). For this, consider k(z,y) = X, tin¥n(x)dn(y), a nuclear
representation of k in LP(D x D), with |9 ||, = ||¢n|[p = 1 and S := 3] |pn| < +00. Denote
by v the function v : x — ZZZOO fintn () (x). Minkowski’s inequality in LP/?(D) shows that
x> 3% | tn (2) ¢ (z)| is finite a.e. and in fact that v e LP/2(D):

400
D bnthnén
n=0

+o0 iy
< Z lttn] x H%%HP/Q < Z [tn| < |[Ynllpl|dnll, = 5. (3.49)
n=0 n=0

[vl]p2 =
p/2

In equation (3.49) above, we used used the Cauchy-Schwarz inequality on ||¢ntn|[,/2. From
the nuclear decomposition of k, it is very tempting to write ||o||2 = |[v]|,/2, but unfortunately
the diagonal of D x D has a null Lebesgue measure. This equality turns out to be true but
this fact is non trivial and deferred to Lemma 3.7 below. From this lemma and equation (3.49)
which holds whatever the nuclear decomposition of &, taking the infimum over all nuclear
representations of £ in equation (3.49) yields ||o||2 < v/(&k). This finishes the proof. O

The next lemma, which was key in the proof of equation (3.31), states that evaluating the
LP?-norm of the diagonal of a nuclear representation of a Gaussian covariance operator K in
L?(D),p = 2, yields the same result as evaluating LP/2-norm of the diagonal of the covariance
function & of any measurable Gaussian process (U(z))zep such that & = K. This fact is not
obvious at all, as the diagonal of D x D has null Lebesgue measure and different representatives
of k in LP(D x D) have no reason a priori to agree on sets of null measure. However, the
assumptions that the representation is nuclear and that U is measurable turn out to be strong
enough to yield the desired conclusion. The proof ideas for this result should largely be credited
to [8]; we generalized them in a straightforward fashion from L?(D) to LP(D) and applied them
to the Gaussian process (U(z))zep of Proposition 3.5. They are based on the Hardy-Littlewood
maximal inequality.

Lemma 3.7. Let 2 < p < 4+, D < R? be an open set and (U(z))gep ~ GP(0,k) be a
measurable Gaussian process whose sample paths lie in LP(D) a.s.. Then & : LY(D) — LP(D)
is nuclear and there exists sequences (f1n) C R, (¢), (¢pn) < LP(D) such that k = Y pinthn @ ¢,
in LP(D x D), with ||[Yn|lp = ||onllp = 1 and 3, |un| < +00 (Propositions 2.9 and 2.7). Then
x> 2 | n (2)dn (2)] ds finite a.e. and vz — Y pntn(T)Pn(z) is nonnegative a.e..
Moreover,

+00 p/2 )
lolly = [ #eapas = [ (S maniont@)) do= ol (350)
n=0

A remarkable consequence of this result is that the L?/2-norm of the diagonal of a nuclear
representation of & = Y pntn ® ¢y, is invariant w.r.t. said nuclear decomposition, while
its finiteness fully characterizes the nuclearity of & (Proposition 3.5(i7)); the same invariance
property does not hold for ». ||, hence the need to define the nuclear norm of & as the
infimum over such quantities.

Proof of Lemma 3.7. We first prove the statement when D = R?. We begin with some defini-
tions and observations. For r > 0, denote C,. := [~r,7]? and C,(z) := = + C,.. For f € LP(R?)
(resp. g € LP(R? x R?)), denote its average over C,.(z) (resp. C,(z) x C,(x)) as

1 1
Agnd)f(lt) = |C ‘ J; ( )f(t)dt, Ag?d)g(x) = |C |2 J; ( )fc ( )g(s,t)dsdt (351)
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The functions Aid) f and Agd) g are defined pointwise and continuous. The point of averaging
over cubes rather than balls is that we have Agd) = Aﬁfl) ® Agd). One then introduces the
Hardy-Littlewood maximal functions of f and g, as

1 1
MO (@) i=sup o [ (@l MOOg(oy)i=sup o | [ gl tldsd
r>0 | ‘ C,(x) r>0 | 7”| Cyr(z) JC-(2)

M@ f (resp. M(2¥g) is measurable, nonnegative and defined pointwise over R? (resp. R% x R%).
For all € R%, we obviously have the pointwise majoration

A f(a)| < MY f (), (3.52)

and likewise for M%g. A key point for us will be the Hardy-Littlewood maximal theorem

( [40], Theorem 1 p. 5), which states that there exists a constant S, > 0 such that for all
feLP(RY),

IMDf1l, < Spll 1], (3.53)

This theorem allows a first general observation, given f € LP(R?). Indeed, the Lebesgue

differentiation theorem ( [40], Corollary 1 p. 5) states that AP f(x) = f(z) a.e.; but we also
have the pointwise domination

A f(@) — ()] < ADF@)] + [f@)] < MD (@) + [£(@)] ae. (3.5)

From equation (3.53), the function on the right-hand side of equation (3.54) lies in LP(R¢) and
Lebesgue’s dominated convergence theorem in LP(D) yields that we also have convergence:

|AD f — fllLe®e) P 0. (3.55)

We will also use that the nonlinear operator M is submutliplicative and subadditive:

M) () @ o) (2,y) < MDy(z) M Dyp(y), (3.56)
MD () + @) (z) < MDip(z) + MDp(z). (3.57)

With equations (3.55), (3.56) and (3.57), we now prove the desired result. We first focus on
the decomposition k = ) pnt, ® ¢p, for which the following pointwise equality holds ( [8],
Corollary 2.2 and Lemma 2.3, or equation 3.6 from [8])

ACDE (2, ) ZO:O W ADY () AD b, (y)  V(z,y) € RY x RY (3.58)
We now prove that from this decomposition, we can deduce a first important fact, which is
hm ACD 2 tnPn (X)Pn(x) a.e.. (3.59)
For this, first observe that for all 2 € R? and n € Ny, the following domination holds:

|l % [AD Yy, (2)AD b ()] < |pn] x M Dty (2) M D, (). (3.60)
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But the series obtained by summing the right-hand side term of equation (3.60) is an a.e. finite
function of z, as Minkowski’s inequality in LP/2(R?) and equation (3.53) yield:

+a0
M Dy, M D,

n=0

+00
< Y inl x [ MOy, D
p/2 n=0 p/2

+0
< D7 il X HM(d)wn‘ (3.61)
n=0

1@,
P

p

400 +00
< Z |pn| % SglwanH(anp = 512; Z |tn| < +o0. (3.62)
n=0

n=0

We used the Cauchy-Schwarz inequality in equation (3.61). Choose now a conull set T' = R%,
on which the Lebesgue differentiation theorem applies for all ¢,, and ¢,, and on which z —
3 | M D, () M D, () is finite (such a set exists from the finiteness of its LP/?-norm).
For all z € T, the Lebesgue dominated convergence theorem for the discrete measure ZneNO On
(using the domination (3.60)) yields the equality (3.59).

We now focus on the Gaussian process (U(z)),ega. Since its sample paths U,, lie in LP(R9)
almost surely, equation (3.55) yields that for almost every w € €,

AUy = U — 0. (3.63)
We also have that for every such w € 2 and r > 0,
141Uy = Usllp < ISPV lp + 10allp < 1MVl + 10allp < (Sp + D[Usllp,  (3.64)

and from Fubini’s theorem, the right-hand side of equation (3.64) lies in L?(P):
Elw — [|Us|l5] = E[IJU[Z] = fRd E[|U(2)["ldz = Gyllo]|f; < +0 (3.65)

Thus, from equations (3.63), (3.64), (3.65) and Lebesgue’s dominated convergence in LP(P),
E[||AYU - U||7] — 0. (3.66)

In particular, using the reverse triangle inequality on the norm V — E[||V[[5]'/?, we have
E[||ASU[5] — E[[[UI[5] = Cyllo]l}. (3.67)

We then wish to use equations (3.67) and (3.59) to prove the desired result. For this, observe
that from the linearity of the operator Agd), (Agd)U (2))zep is a centered measurable Gaussian

process whose covariance function is given by

Cov(ADU (x), ADU () = (AD @ AV k(z,y) = APV k(z,y) V(z,y) e R xR?  (3.68)

r

(Note then that Agd)k(x, x) = Var(Aid)U(m)) > 0, which also shows that the limit in equation
(3.59) is nonnegative a.e.) The proof of the Gaussianity of (ASd)U(x))mD is carried out similarly
as for Lemma 2.5, and the expression of its covariance function follows from the measurability
of U and Fubini’s theorem. Fubini’s theorem and the fact that E[| X |P] = CpsP if X ~ N(0, s?)
then lead to

/2
BAYVI) = | BIAOU@Pe =, [ (4kw) T (369)
Rd

Rd
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We will finally apply Lebesgue’s dominated convergence theorem on equation (3.69) when r goes
to zero, using the limit given in equation (3.59). For this, observe that equation (3.52) together
with the sublinear properties of M (9 (equations (3.56) and (3.57)) lead to the domination

|ACD (2, 2)| < MPDk(z, 2) Z |pin| M Dy, ()M D g, () Vo e RY, (3.70)

n=

and the right-hand side of equation (3.70) indeed lies in LP/?(D), from equation (3.62). We
finally conclude from Lebesgue’s dominated convergence theorem that

p/2 +00 P/2
T—’ R T RY \ 20

which, together with equation (3.67), finishes the proof.

To deal with the general case where D is only an open subset of Rd, extend any function
f € LP(D) to a function f € LP(R?) by setting f(z) = f(x) if z € D, f(z) = 0 elsewhere. f
remains measurable, and all the arguments and results stated above are preserved. O

4 Sobolev regularity for Gaussian processes : the Hilbert
space case, p = 2

In the case p = 2, we provide an alternative proof of the integral and spectral criteria of
Proposition 3.1, based on the study of the ”ellipsoids” of Hilbert spaces (see Section 4.2).
These geometrical objects are well understood in relation with Gaussian processes (see [18]
r [42], Section 2.5). Compared with the general case p € (1,+00), we draw additional links
between the different Mercer decompositions of the kernels 0““k, the trace of £ and the
Hilbert-Schmidt nature of the imbedding of the reproducing kernel Hilbert space (see Section
4.1 below) associated to k in H™ (D).

4.1 Reproducing Kernel Hilbert Spaces (RKHS, [3])

Consider a general set D and a positive definite function k& : D x D — R, i.e. such that given
any n € N and (x1,...,2,) € D", the matrix (k(x;,2;))1<i,j<n 1S nonnegative definite. One
can then build a Hilbert space Hj of functions defined over D which contains the functions
k(z,-),x € D and verifies the reproducing identities

<k’($,~),k(l‘/,~)>Hk = k(xvxl) Vm,x'eD, (41)
k(zy ), fom, = f(x) Ve e D, Vf e H. (4.2)

Hy, is the RKHS of k. This space is exactly the set of functions of the form f(z) = 3% a;k(z;, x)
such that ||f|, = Z:r;il a;a;k(x;,x;) < +o0. If for all z € D, k(z,-) is measurable, then Hy,
only contains measurable functions. One may then consider imbedding Hj in some Sobolev
space H™ (D). Recall that in H™ (D), functions are equal up to a set of Lebesgue measure zero.
If such an imbedding i : Hy, — H™(D) is well-defined (i.e. if f € Hj, then its weak derivatives
0 f exist and lie in L2(D) for all |a| < m), we will sometimes use the same notation for f € Hj,
and its equivalence class f € H™(D); strictly speaking, the latter should be denoted i(f). It
may then happen that ¢ is not injective, as with the RKHS associated to the Kronecker delta

k(x,x') = 04 4 (in this case, we even have i(Hy) = {0}).
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Remark 4.1. In Proposition 4.4, we will be interested in the Hilbert-Schmidt nature of the
imbedding i. However, it may happen that Hj is not separable, such as with the RKHS
associated to the Kronecker delta ¢, .. This results in additional care required for defining
the notion of Hilbert Schmidt operators, as the definition from Section 2.4(i7) cannot hold.
Still, this case is dealt with in Proposition 4.4(iv). See [33] and [4], Remark 3.2.9 p. 103 for
discussions on non separable RKHS.

4.2 Ellipsoids of Hilbert spaces and canonical Gaussian processes [18]

Let (H;{,)r) be a separable Hilbert space. We introduce (V,).en the canonical Gaussian
process of H, defined as the centered Gaussian process whose covariance function is the inner
product of H :

E[VaVy] =<z, 9)n- (4.3)
A subset K of H is said to be Gaussian bounded (GB) if

P(sup |Vz| < +0) = 1. (4.4)
zeK

The GB property was first introduced for studying the compact sets of Hilbert spaces, see [18] on
that topic. In equation (4.4), the random variable is defined as sup ¢z |Va| := sup,e 4 | V| where
A is any countable subset of K, dense in K. Different choices of A only modify sup,cx |Vz| on
a set of probability 0 ( [18], p. 291), which leaves equation (4.3) unchanged. We will use the
two following results below, taken from [18].

Proposition 4.2 ( [18], p. 293 and [18], Proposition 3.4). We have the two following facts.
(i) If K is a GB-set, then its closed, convex, symmetric hull is a GB-set.
(ii) The closure of a GB-set is compact.

Given a self-adjoint compact operator T : H — H, introduce a basis of eigenvectors x,, and
its real eigenvalues A,, A, — 0. The image of the closed unit ball of H, B = Bg(0,1) is the
following ”ellipsoid” ( [18], p. 312)

T(B) = { D anza st Y ar /A< 1}. (4.5)

An>0 An>0
The main result we will use is the following.

Proposition 4.3 ( [18], Proposition 6.3). Suppose that T is compact and self-adjoint. Then
T(B) is a GB-set if and only if Y, A2 < ©, i.e. T(B) is a "Schmidt ellipsoid”.

neN 'n
We can now state our result pertaining to the H™(D)-regularity of Gaussian processes,

given an arbitrary open set D R

Proposition 4.4 (Sample path Hilbert-Sobolev regularity for Gaussian processes). Let D < RY
be an open set. Let (U(x))zep ~ GP(0,k) be a measurable centered Gaussian process, defined
on a probability set (Q, F,P), such that its standard deviation function o lies in L}, (D). The
following statements are equivalent:

(i) (Sample path regularity) The sample paths of U lie in H™ (D) almost surely.
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(ii) (Spectral structure) For all |a| < m, the distributional derivative 0%k lies in L*(D x D)
and the associated integral operator

& (@) = [ o k)i Wiy (16)
D
is trace class. Equivalently, there exists a representative ko of 0%k in L*(D x D) which is
the covariance function of a measurable Gaussian process. Note oo(x) := ko(x,2)Y?, then
additionally
f ko(x,z)dr < +00. (4.7
D

(iii) (Mercer decomposition) The kernel k has the following Mercer decomposition
400
n=0

where (\,) is a nonnegative sequence and (¢y,) is an orthonormal basis of L?(D). Moreover,
for all n € N such that \,, # 0, 0%¢,, € L*(D), 0““k € L?(D x D), the following equalities hold

+0
Tr(ER) = Y Aallo“dnlls < +o0, (4.9)
n=0
+0
0*k(z,y) = D And%Gn(2)3Gn(y) in L*(D x D). (4.10)
n=0

(iv) (imbedding of the RKHS) Hy, — H™(D), the corresponding natural imbedding i : Hj —
H™(D) is continuous and ii* : H™ (D) — H™(D) is trace class. Equivalently, ker(i)* endowed
with the topology of Hy is a separable Hilbert space and j := i|yer(i). ker(i)t — H™(D) is
Hilbert-Schmidt. Moreover, the Hilbert-Schmidt norm of j (see Section 2.4(ii) and (iii)) is
given by

13llfs = Tr@*) = >, Tr(ER). (4.11)

lal<m

Before proving this result, we discuss Proposition 4.4 in relation with previous results from
the literature. First, point (iv) is not without reminding Driscoll’s theorem ( [25], Theorem
4.9) which is widely spread in the machine learning/RKHS community; this theorem states the
following. Let k and r be two positive definite functions defined over D, and let U ~ GP(0, k).
Suppose that Hp ¢ H, with a Hilbert-Schmidt imbedding, then the sample paths of U lie in
H, almost surely.

Second, Proposition 4.4 and equation (4.7) in particular, is a generalization of Theorem
1 from [39] in the case of Gaussian processes; By removing the assumption in [39] that the
covariance function be continuous on its diagonal as well as its symmetric cross derivatives,
the sufficient condition derived in [39] becomes also necessary. Finally, Proposition 4.4 shows
that if p = 2, then in the nuclear decomposition of £ (see Proposition 3.1(4i7)) one can choose
A% = A\, and Y& = 0%, It is not obvious that this should hold when p # 2 (see Remark 3.4).

Example 4.5 (Hilbert-Schmidt imbeddings of Sobolev spaces). Proposition 4.4 can be com-
pared with the results found in [41] and its Corollary 4.5 in particular. This corollary states
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that if D < R? is sufficiently smooth, if H;, < H!(D) with a continuous imbedding and if
t > d/2, then the sample paths of the centered Gaussian process with covariance function k lie
in H™(D) for all real number m € [0,¢t — d/2). For example, this holds when k is a Matérn
covariance function of order ¢ — d/2; its RKHs is then exactly H*(D) ( [41], Example 4.8).

In the particular case where in addition m is an integer, we recover this result from Propo-
sition 4.4. Indeed, it is known that when m € (0,¢ —d/2), the imbedding of H*(D) in H™(D) is
Hilbert-Schmidt. When the involved indexes are nonnegative integers, this is known as Mau-
rin’s theorem ( [36], Theorem 6.61, p. 202). Maurin’s theorem is generalized to fractional
exponents in [44], Folgerung 1 p. 310 (in German) or [27], Proposition 7.1 (in French). if
Hy « HY(D) with a continuous imbedding, then the inclusion map of Hj, in H™(D) is Hilbert-
Schmidt for all m € [0,¢ — d/2) n Ng. From Proposition 4.4, we obtain that the sample paths
of the corresponding Gaussian process indeed lie in H™ (D).

However, not all RKHS that are subspaces of H™(D) with a Hilbert-Schmidt imbedding
are contained in some H!(D) with ¢ > m + d/2, as the following trivial example shows. Fix
any € > 0 and consider the rank one kernel k(x,2’) = f(x)f(z') where f is chosen such that
fe H™(D) and f ¢ H™¢(D) (choose a representative of f in L?(D) so that f is a function
in the classical sense). Then Hjy = Span(f) and the imbedding of Hy in H™(D) is Hilbert-
Schmidt since it is rank one; but Hy ¢ H™" (D). Proposition 4.4 yields that the associated
trivial Gaussian process U (z)(w) = £(w) f(z) where £ ~ A(0,1) has its sample paths in H™ (D)
(it was obvious in the first place).

Example 4.6 (One dimensional case). We build a covariance function which is not pointwise
differentiable at any (q,¢’) € Q x Q, and such that the corresponding Gaussian process has its
sample paths in H!(R). Let h,(z) := max(0,1 — |z — a|) be the hat function centered around
a € R. Tt lies in H'(R) but it is not differentiable at = a,a — 1 and a + 1. Let (g,) be an
enumeration of Q. Then the following positive definite function over R

+ool

k(z,2') = ) o ha (@)hg, (27) (4.12)

n=0

is not differentiable in the classical sense at each point (z,z’) of the form (g,,¢m), but the
map i*, with i : H;, — H'(R) the canonical imbedding, is trace-class (use equations (4.9) and
(4.11)):

Tr(ii*) = Tr(E) + Tr(E}) (4.13)
+o0 1 +o0 1
< 2 gallhad B+ 35 5l 113 (4.14)
n=0 n=0
+o0 1 400 1
< — — x 22 = 10. 4.15

Before proving Proposition 4.4, we shall require a number of lemmas concerning the Mercer
decomposition of Hilbert-Schmidt operators over L?(D). They are proved in Section 6.

Lemma 4.7. Let k be a measurable positive definite function defined on an open set D. Suppose
that o € L}, (D). Then k € L}, .(D x D). Given a multi-index o, its distributional derivative

loc
D>k exists and we can introduce the associated continuous bilinear form over CP (D)

ba(p, ) = D™ (p® ) = J Kz, 9)0% ()0 y)drdy. (4.16)

DxD
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Suppose that it verifies the estimate

Vi, € Ea,  [ba(p,¥)| < Callpll2|lell2, (4.17)

where Ey is the set given in Lemma 2.2. Then b, can be extended to a continuous bilinear
form over L*(D) and there exists a unique bounded, self-adjoint and nonnegative operator E

L?(D) —> L?*(D) such that

v@a ¢ € CSO(D)7 ba(QO, ¢) = <€I(:<p7 w>L2(D)- (418)

Lemma 4.8. Let k € L?>(D x D) be a be a positive definite function and o a multi-index.
Suppose that the weak derivative 0%k exists and lies in L*(D x D). Then the associated
Hilbert-Schmidt integral operator defined on L?(D)

8 f)(@) = J‘ k(. ) (y)dy (4.19)

D

is self-adjoint and nonnegative.

Lemma 4.9. Let k € L?(D x D) be a positive definite function and &, be its associated Hilbert-
Schmidt operator. Let

+00
K y) = 3, \ien(@)6i(y) (120)

be a symmetric, nonnegative expansion of k in L*(D x D) where ()\;) is a nonnegative sequence
decreasing to 0; it may or may not be its Mercer expansion (i.e. (¢;) may or may not be an
orthonormal basis of L*(D); they are still assumed to be elements of L?(D) though). Then

(i) if the partial mived weak derivative 0%k exists and lies in L?(D x D), then for all i € N
such that \; # 0,0%¢; € L*(D).

(ii) if for all i € N such that \; # 0,0%¢; € L*(D), then
+0o0
THER) = D Aillo“ Gl 72y (4.21)
i=1

whether these quantities are finite or not. If in equation (4.21), either one of them is finite,
then the series of functions Y.y Ai0%¢i(x)0%P;i(y) is norm convergent in L*(D x D) (i.e.
Dien Aill 0% ® 0%¢i| |12 < +0), 0%k lies in L*(D x D) and we have the following equality:

+00
0k (x,y) = Z \i0%¢i(1)0%pi(y) in  L*(D x D). (4.22)
i=1

Equation (4.22) then holds for asymmetric derivatives, as for all |al,|8] < m, we also have
Sien Aill0P ¢ ® 0% |2 < +o0.

We can now prove Proposition 4.4.

Proof. (Proposition 4.4) We successively prove (ii) = (i), (i) = (i), (11) <= (i),
(#i1) = (i) and (iv) = (iid).
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Before all things, the assumptions and Lemma 2.5 show that the sample paths of U lie in

L},.(D), that the random variable given by the formula
U2 : Q3w (1)l L Ul(z)(w)o%p(z)dz (4.23)

is well defined and that (U$)ger, is a Gaussian sequence (see equation (2.17) for the definition
of FQ)

(13) = (i) : From Lemma 4.8, £ is a self-adjoint, nonnegative Hilbert-Schmidt operator; it is
actually trace-class by assumption. We can thus define A, := \/% , which is a Hilbert-Schmidt,
self-adjoint, nonnegative operator. From Proposition 4.3, A,(B) is a GB-set (B is the closed
unit ball of L?(D)). Therefore, using the canonical Gaussian process of L?(D),

P( sup |Vy] <+4w) =1, (4.24)
YeAa(B)

which, since F» c B, yields in particular that

]P)( sup |VAQ(¢)| < +OO) =1. (4.25)
pEF,

We now observe that the two Gaussian sequences (Vi (,))per, and (U3)ger, have the same
finite dimensional marginals. Indeed, they are both centered Gaussian sequences with the same
covariance:

E[VA“ () VA(,( (’L,D)] = <Aa(@)a A()I (¢)>L2 = <Ai<(,0), w>L2 = <£l?907 1/)>L2' (426)

E[USUS] = E[ [ v@eewa [ U(y)aawy)dy]
_ f Kz, 9)0% () (y)dady
DxD

_ f 20k, y) (@) (y)dady = (Ef o, e, (4.27)
DxD

As in the proof of Proposition 3.1 (e.g. equation (3.28)), we deduce that the two random
variables sup cp, [Ug| and sup,ep, [Va, (,)| have the same law, and from equation (4.25), we
obtain that

P(sup |UZ| < +0) = P(sup [Vy, ()] < +o0) = 1. (4.28)
LpEFQ LPEF2

Since equation (4.28) holds for all |o| < m, this provides a set of probability 1 on which all the
sample paths of U lie in H™ (D), which proves (7).
(i) = (4i) : From Lemma 2.4 and the assumption from (i),

P(sup [UZ| < +0) = 1. (4.29)

pEF?
From Proposition 2.6, we have that

Co = E[ sup |Ug|2] < +o00. (4.30)

PEFS

Introduce b,, the continuous bilinear form over C (D) given by

ba(p, ) = f Kz, )% ()2 (y)ddy. (4.31)

DxD
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Consider now ¢ and % in Fy. Then,

b0, )] = fD  Ha) (@)oo (p)dody| = [BIUZUS]
1
<E[UL UL < 5H«:[(U;;O)2 +(UL)?] < JE[SOuG%(UgO)Q] =C,. (4.32)

From Lemma 4.7, b, can be extended to a continuous bilinear form over L?(D) and there exists
a unique bounded, self-adjoint and nonnegative operator &' which verifies

v@,wec;ﬂw),j k(e 4)0% (@) (y)dedy = ba(p,) = (ER@. W02, (433)

DxD

Since &} is self-adjoint and nonnegative, we can introduce its square root A, := /&Y, which is
also a bounded, self-adjoint and nonnegative operator. As in equation (4.28), we can introduce
(Vau(¢))per, and observe that (Va, (,))per, and (UZ)ger, have the same law. Thus,

P(sup [Va, (o] < +00) = P(sup US| < +o0) = 1. (4.34)
peFy pEF>

Therefore, A, (F>) is a GB-set. From Proposition 4.2(ii), Conv(A,(F3)) is compact. One then
checks by elementary considerations that Conv(Aq(F2)) = Ao(B), where B is the unit ball
of L?(D). This shows that A, is a compact operator. But from Proposition 4.2(i), A,(B) =
Conv(A,(F?)) is also a GB-set. From Proposition 4.3, A, is Hilbert-Schmidt and & is trace-
class. In particular, £ is a Hilbert-Schmidt operator with a kernel k, that lies in L*(D x D):

Vo, € CF(D), D*k(p @ ) :fp k) (@) ()dedy (4.35)
| halee@udady =T (o0 v). (@430)

Equation (4.36) shows that the distributional derivative D*®k and the regular distribution T},
coincide on the set 2(D) ® 2(D). From the Schwartz kernel theorem ( [43], Theorem 51.7),
D>k =Ty, in 9'(D x D), which shows that 0%k exists in L?(D x D) and that 0%k = k.
For the existence of a representative k., with the desired properties, we refer to the previous
Proposition 3.1(¢4). This finishes to prove (ii).

(ii) <= (vi1): this equivalence is fully given by Lemma 4.9.

(1it1) = (iv): we first study how finite difference operators behave on elements of Hy, in order
to use Lemma 2.1(7i¢). First, using the reproducing formula (4.2), observe that for suitable
and h e D,

Anf(x) = fle+h) = f(x) = f k(@ +h, ) = k@, m, = Bnk(e, ) m, - (4.37)

More generally, for any finite difference operator Ay, of order I < m, h = (hq,..., h;) and any
open set Dy € D such that Y}, |h;| < dist(Dy, 0D),

Anpf(z) = {f, Ank(z, ), - (4.38)
The Cauchy-Schwarz inequality in Hy yields

Anf(@)® < [Ifll [ Ank(, ), - (4.39)
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Furthermore, using the bilinearity of {, -, g, , we have that
|Ank(z, )|F, = [(Ar ® Ap)k](z, z). (4.40)

We then deduce that (explanation below)

W€ i 8nflfiamy = | (nf)@Pde <A1 | (Br@ A0k oz (4

0

|\f|\Hk2 f (Andi)(a (4.4)
HfHHkZA(H@HHmmlF m?) (443)

<|f|%1k( 3 Tr(e,?>)(|h1|2-~-m|2). (4.44)

lal<m

We used equations (4.39) and (4.40) to obtain equation (4.41). In equation (4.42), we dis-
tributed A, ® Ay, on the Mercer decomposition of k (which exists by the assumption (ii7)).
In equation (4.43), we used the fact that ¢; € H™(D) (see Lemma 4.9(¢)) conjointly with the
finite difference control of Lemma 2.1(i%i). In equation (4.44), the we used the trace equality
from Lemma 4.9(i7). From equation (4.44) and Lemma 2.1(4i7) again, we obtain that f lies in
H™ (D). Consider now any open set Dy € D. Equation (4.44) applied to 05, the finite difference
approximation of 0% from equation (2.6) with suitably chosen h = (hi,...,h;) € (R%)?, yields
that

VF € Hiy 1957 oo, < 171, (| ) THe) ) (1.49)
alsm
From Lemma 2.1(4i7), we then obtain that
Vf e i 1101y < 110 <| % Tep) ). (4.46)
alsm
Summing the inequality (4.46) for all |&| < m, we obtain that

Al < ClIf ] (4.47)

with C = (N lal<m Tr(é';j‘))l/2 and N is the number of multi-indexes « such that || < m
Therefore H, < H™(D) and the corresponding imbedding 7 : H, — H™(D) is continuous.
Using the reproducing formula (4.2), its transpose i* : H™ (D) — Hj, is given by

(1)) = (), By, = foilha)ypm = 3 faa (2.9)0° f(y)dy.  (4.48)
lal<m

Above, 0y denotes differentation w.r.t. the y coordinate (note that i*(f) is indeed defined
pointwise, since i*(f) € Hy). Let (1;) be an orthonormal basis of H™ (D) and k = Y}, \it); ®1;
be the Mercer decomposition of k provided by the assumption (7i7). The trace of the nonnegative
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self-adjoint operator #i* is given by (explanation below)

Tr(ii*) = Z<w]7“ (W) b —Z Z <aﬁ¢j7aﬁ“ (¥3))r2

7 1Bl<m
—ZZJW%awa>
J |Blsm
=2 J M@)ol )] f Oy k(2,y)0%; (y)dydz (4.49)
J |Blsm |a]<m

RNy S | o000 @)% () dyds (4.50)

lal<m |B|<m VP*P

_ZZA< D Jaa@ e dx) ZZA( D <aa¢i,aa¢j>w>2

la|<m lal<m

= D DX bt = D Aillulltm = D5 D Nillo%eullza = D) Te(€). (4.51)
i j i

la|lsm @ la)<m

In equation (4.49), we used the fact that i*(¢);) given by equation (4.48) is a representative of
ii*(1;) in H™(D). In equation (4.50), we used the fact that the series of functions Y, \;0’¢; ®
0%¢; is norm convergent (Lemma 4.9(i7)) to distribute the partial derivatives over to the Mercer
decomposition of k. We also used Fubini’s and Tonelli’s theorems ad libitum, as all the series
> XidP¢; ® 0“¢; are norm convergent. Since Z\a\sm Tr(&y) is finite by assumption, equation
(4.51) finishes to prove (iv) when Hj, is separable.

When Hj, is not separable, observe that ker() is closed in Hy, since ¢ is continuous. There-
fore Hj, = ker(i) @ ker(i)* and ker(i)! endowed with the topology of Hj is a Hilbert space.
Moreover, i* : H™(D) — Hj, is compact since #* is trace class. Thus its closed range im(i*)
is separable ( [14], Exercise 3 p. 176). Finally, observe that im(i*) = ker(i)* ( [14], Theorem
4.12) so that ker(i)* is a separable Hilbert space. Consider now j := i ker(i) L » the restriction of
i to ker(7). Then 4i* = jj*, so that equation (4.51) indeed yields that j is Hilbert-Schmidt.
(iv) = (i#4): by assumption, #4* is a compact self-adjoint nonnegative operator acting on the
Hilbert space H™ (D). There exists a decreasing nonnegative sequence (u;);en and a orthonor-
mal basis of eigenvectors of it*, (1) jen such that for all f e H™(D),

+oo
£ =X wiy, frami; in H™(D). (4.52)

Jj=1

Since i1* is assumed trace class,

+00 +00 +00
DU wille sl = > millwilFem = Y my < 4. (4.53)

lalsm j=1 Jj=1 Jj=1

We now show that the following equality holds in L?(D x D):

z,y) = Y it () (y). (4.54)
j=1

In conjunction with equation (4.53), this equation will allow us to use Lemma 4.9(i7), which
will imply the point (ii7). First, one easily shows that Z _1 %5 @ ;, the right-hand side of
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equation (4.54), is indeed in L?(D x D) (e.g. use that 2. j < +00). The upcoming equation
(4.64) will then show that k is indeed in L*(D x D). Now, decompose i(k,) € H™(D) on the
basis (1) en given any z € D:

2@/@, )ymmi; in H™(D). (4.55)

In equation (4.55), the scalar (1;,i(k;))pm is obtained through the reproducing formula (4.2):

Wy i(ke )y m = G (1)), kapm, = % (1) (). (4.56)
Moreover, 1, is an eigenvector of 4i*: p;1; = #i*(¢;) in H™(D). In particular,
155 — i* ()]l L2 (D) = 0. (4.57)

But the pointwise defined function i*(1);) is a representative of 4i* (¢;) in H™ (D), since ¢ is the
imbedding of Hy in H™ (D). Setting S = >}, y1; = Tr(i7*), one then has (explanation below)

_ LM)( Z e ) dxdy (4.58)
_ L; L (ke (o) Z (@ ) dydz (4.59)
_ L; L; (ike)( Z e ) dydz (4.60)
= L JD (2#3‘%@) (h 1% () — %‘(m)))zdydx (4.61)

Hk_ Z Hs¥; ®1/’J

L2(DxD)

S fp JD S]Z:ll pi (y)° (g~ (5) — wj(x))2dydx (4.62)

<5y o [ sy | (it ) - vy e (163)
o o D

400

< S pillsl17 ey 1y~ 6% () — ¥j132) = O (4.64)

j=1

Above, we used Tonelli’s theorem in equation (4.59). We imbedded k, in H™(D) in equation
(4.60). We used equations (4.55) and (4.56) in equation (4.61). We used Jensen’s discrete
inequality on the squaring function ()2 with the weights w;/S (u;/S = 0,2;1/S = 1) in
equation (4.62). We imbedded i*(1;) in H™ (D) and used Tonelli’s theorem in equation (4.63).
We used equation (4.57) in equation (4.64).

Therefore we have proved that equation (4.54) holds. By the assumption that #* is trace
class and using Lemma 4.9(ii),

+00
> Te(ER) = ), Z pillo®sl7e = D7 millel|Fm = Y uy = Tr(id*) < +o0.  (4.65)
j=1 i

laf<m laj<m j=1

Therefore, Lemma 4.9(i7) implies that every & is indeed trace-class, which shows (4ii). O
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5 Concluding remarks and perspectives

Given p € (1, +0) and m € Ny, we showed that the W P-Sobolev regularity of integer order of
a measurable Gaussian process ((U(z))zep ~ GP(0, k) is fully equivalent to the fact that 0%k
lies in LP (D x D) combined with the integrability in L? (D) of the associated standard deviation.
Using general results on Gaussian measures over Banach spaces of type 2 and cotype 2, we
translated this criteria as the existence of suitable nuclear decompositions of the covariance.
These can be understood as generalizations to Banach spaces of the eigenfunction expansion of
symmetric, nonnegative and trace class operators. In the Hilbert space case p = 2, we linked
this property with the Hilbert-Schmidt nature of the imbedding of the RKHS in H™(D), and
gave explicit formulas for the traces of the involved integral operators in terms of the Mercer
decomposition of the kernel.

The results presented in this article provide a theoretical background w.r.t. the use of
Gaussian processes for solving physics-related machine learning problems, in particular when
modelling solutions of PDEs as sample paths of some Gaussian process. These results also come
along with suitable quantities for controlling the Sobolev norm of the corresponding sample
paths (see Remark 3.6). The application of the Gaussian process principles identified here
to PDE-related machine learning problems, e.g. following the approach of [9], is certainly an
interesting continuation of the results of this article. Controlling the small ball probability (see
e.g. [30] for further details) of the Sobolev norm of a Gaussian process, perhaps in terms of some
nuclear norm, is also a relevant question for further applications of Gaussian process techniques
in such machine learning problems. Finally, the following question (which was implicit in this
article) is interesting for probability theory: are all Gaussian measures over W™ P (D) induced
by some Gaussian process? Proposition 2.9 states that this is true for m = 0, i.e. L?(D).

The following directions are interesting for generalizing the results presented here. First,
similar spectral/integral criteria should be obtained for fractional Sobolev and Besov spaces.
Second, similar results should be sought to tackle the limit cases p = 1 and p = +00. Linked to
the case p = 1, results should be sought for the space of functions of bounded variations ( [7],
p. 269), which are important in many problems related to physics.

Ackowledgements This work was funded by the SHOM (Service Hydrographique et Océano-
graphique de la Marine). The author warmly thanks Pascal Noble, Olivier Roustant and Rémy
Baraille for fruitful discussions.

6 Proofs of intermediary results and lemmas

Proof. (Lemma 2.1) This proof follows exactly the lines of the proof of Proposition 9.3 from [7].
(i) <= (i1): suppose that u € W™P(D), use the fact that the distributional derivative D*u is
a regular distribution represented by a function that lies in LP(D), denoted by 0%u :

Vo e CX(D), L) u(z)0%p(z)dz = (—1)1 J.D 0%u(x)p(z)dz. (6.1)

Holder’s inequality yields (2.7) with C,, = ||0%u||». Conversely, suppose that (2.7) holds and
consider any |a| < m. Since CP(D) is dense in L?(D) (whatever the open set D, [36], section
2.30), equation (2.7) shows that the linear form L, : ¢ —— (—1)l $pu(z)o®o(x)de, o €
C¥ (D), can be extended to a continuous linear form over L4(D). From Riesz’ representation
lemma, there exists v, € LP(D) such that L, (@) = (va, ¢)rr ra for all ¢ € LY(D). In particular,
this is valid for all ¢ € CP(D), which shows that for all |a| < m, 0%u exists and is equal to v,
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Thus v € W™P(D). Finally, Holder’s inequality and the density of C%°(D) in L1(D) yield

J u(z) 2@
D |\90||LQ(D)

(#91) = (ii): suppose (iii), let us show (i7). Let |a| < m and let ¢ € CX(D). Note K :=

[[0%u||pr(py = sup
peCP(D)\{0}

Supp(¢) its compact support and consider an open set Dy such that K < Dy € D. Let a$inNg
and h = (hi, ..., hq) € (R*)? be such that Y, a;h; < dist(Dy, D). Recall that §f from equation
(2.6) is a finite difference approximation of ¢ and from (i),

JD Spu(@)p(@)dr| < |ellLa o) 10h ul[Le (Do) < Cllol|La(p)- (6.2)

Note also that we have the discrete integration by parts formula since h is suitably chosen:

[ sru@stade = [ w@en e (6.3)
D D
Therefore,

\ [ w6y oterte] < el (6.4)

The Lebebgue dominated convergence theorem yields that the left hand side converges to
| §pu( (z)dz|. We therefore have (id).
(i) = (zzz) We will use recursively the fact that if f € W1P(D), then for all Dy € D and

h € R? such that |h| < dist(Dg, 0D), there exists an open set D; € D which verifies Dy +th < D;
for all t € [0,1] and

1ARFIE ppyy = I1f = £ pny < IRPIV A, ) = Ih\pZH@ Aipy (65)

(this is equation 4 p. 268 in [7], found in the proof of Proposition 9.3 in [7]). First, one easily
checks that weak partial derivatives and finite difference operators all commute together. Let
I <m, Dy €D and h = (hi, ..., k) € (RY)! such that Y, |h;| < dist(Dy, dD). Recall that

A, = HA,”. (6.6)

Note now that Hi:g Ap,u lies in WHP(D). Since |hi| < Y, |hi| < dist(Dy, 0D), from equation
(6.5) there exists an open set D; € D such that Dy + thy < D; for all t € [0, 1]. Moreover, one
can choose D; small enough so that dist(D;,0D) < Zi=2 [hi.

v 1_[ B Lr(Dy)

Lo < [P Z HnAh (O, ) ‘

1Akl B ) = || s ﬂAh I (6.7)

L»(D

(6.8)

i

< |h1|p

L»(Dy)
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We used equation (6.5) in equation (6.7) which then yields equation (6.8). But note that for all
J> Oz, u € WLP(D). One can then proceed by induction and perform the above step sequentially
over i € {2,...,1}, which yields a sequence of open sets Dy € D; < ... € D; € D such that

||Ahu||Lp (Do) = |h1‘p |hl|p 2 ||55u||LP(D (6'9)
|B]<l
< hal? oo Pl By < [l e Bl Bypys (6.10)

which shows equation (2.9) with C' = ||u||ym.»(py. We finally show that |[0%ul|p»p) < C given
any C which verifies equation (2.9). For this, copy the previous steps of (i4i) = (i), which
prove that for all ¢ € C(D), the control from equation (2.7) holds for this C. Using the
extremal equality case of Holder’s inequality in equation (2.7) indeed yields

f u(x)mdx <C. (6.11)

[0%ul|Lr (D) = sup
" ||§0HLP(D)

peC (D)\{0}

O

Proof. (Lemma 2.4) We begin by explicitly constructing the family (®%). First, use the fact
that LY(D) is a separable Banach space ( [36], Theorem 2.21) : let (fyn)nen < L9(D) be
a dense countable subset of LY(D). For all n € N, let (¢nm)men < CL(D) be such that
¢Grnm —> fn for the LY(D) topology (recall that CP(D) is dense in LI(D), [36], Corollary 2.30).
We relabel the countable family (@nm )n,men a8 (¢r)nen, which is thus dense in L4(D). Second,
let (hn)neny € CF(D) be a dense subset of CF (D) for its LF-space topology (see Lemma 2.3).
We then define E, to be the set of all finite linear combinations of elements of (¢,,) and (h,,)
with rational coeflicients :

E, = Spang{yn,n € N} + Spang{h,,, m € N} (6.12)

= U {Zqz%-l-Z?“ hj, (q1, - ,qn,rl,...,rm)e(@""'m}. (6.13)

n,meN =1

Note that E, is countable, as a countable union of countable sets. We then define the family
(®%) to be an enumeration of E, : E, = {®%,n € N}.
Proof of (i): Suppose that T = T for some v € LP(D). Then the control (2.13) is obviously
true. Now, suppose that this countable control holds : let us show that T" = T, for some
v e LP(D).

We begin by showing that the map 7|z, ,the restriction of T" to the set E,, can be uniquely
extended to a continuous linear form T over L9(D). Begin with the fact that for all f,g € E,,
then f — g € E, and from equation (2.18),

() =T =1T(f =9I < Cllf = gllq- (6.14)

Equation (6.14) shows that 7jg_ is Lipschitz over E, and therefore uniformly continuous on
E,. Since R is complete and E, is dense in LY(D), Tjg, can be uniquely extended by a map
T defined over L?(D), which is itself uniformly continuous ( [37], Problem 44, p. 196). We
briefly recall the construction procedure of T over L4(D). Given f € L9(D) and (f,) ¢ E, any
sequence such that ||f, — f||r« — 0, one shows that the sequence (T'(f,))nen is Cauchy, thus
convergent and one sets T(f) := lim, T(f,,). One proves that the value T'(f) does not depend
on the sequence (f,), which implies that T is well defined and coincides with 7" on E,.
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We now check that 7' remains linear. Let f,g € LI(D) and A € R. Let (fn),(9n) < E,
and (\,) < Q be sequences such that f, — f,¢g, — ¢ both in L4(D) and A, — A. Then
Anfn +gn — Af +gin LY(D), and the sequence (A, fy, + g) is contained in E,. Since T is well
defined, we have that

TS +¢) = lim T(Aufo +ga) = i \T(fa) +T(gn) = NT(f) + T(9). (6.15)

Thus, T is a (uniformly) continuous linear form over L(D). Riesz’ representation lemma yields
a function v € LP(D) such that

Vfe LY(D), T(f) = JD f(2)v(x)dz. (6.16)

We now need to check that in fact T(p) = T(p) if ¢ € C®(D), to show that T is indeed

an extension of 7. For this, notice that T" and T both define continuous linear forms over
C*(D), w.r.t. its LF-topology (v lies in L}, .(D)). Note also that T and T coincide on E,, by

loc
construction of T :

VneN, T(®,)—T(d,)=0. (6.17)

But E, is chosen so that it contains (h,,), which is a dense subset of C° (D). Given ¢ € CX(D),
consider (j,) a subsequence of (h,) such that j, — ¢ for the topology of C°(D). Then,

(T —T)(p) = lim (T —T)(jn) = lim 0 =0, (6.18)

n—0o0 n—ao0

which shows that in fact, T(¢) = T(¢).

Proof of (ii): if b can be extended to a continuous linear form over L4(D), then the estimate
(2.15) is obviously true, by continuity over L4(D) of the said extension. Suppose now that
(2.15) holds. Let ¢ € E,;. Then L, the continuous linear form over C*(D) defined by

Vi e CF(D), Ly(¥) = ble, ) (6.19)

verifies

Ve By, |Lo(¥)] < Cllollgll®lg- (6.20)

From the point (¢), L, is a regular distribution with a representer v, € L?(D) which is unique
in LP(D). Define the map B : E;, — LP(D) by By = v,. Then B verifies

Vo€ B,V € LU(D), (B, ¢yre,ra| = [Le()] < Cllpllgld]lq- (6.21)
Taking the supremum w.r.t. 1 € LY(D) yields
Vpe By, |[Bollp < Cllellq- (6.22)

Observe now that the bilinearity of b yields B(¢ + M) = By + ABy if p,¢ € E;, and A € Q.
Taking the exact same steps as for the proof of point (i) and using equation (6.22), B : E;, —
LP(D) is Lipschitz continuous over E;, and can thus be uniquely extended as a uniformly
continuous map B : LY(D) — LP(D). This relies on the fact that E, is dense in L9(D) and that
L%(D) is complete. As above, one checks that B is linear. Being uniformly continuous, it is
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then a bounded operator from L4(D) to LP(D) (its adjoint B* is then automatically bounded).
Denote by b the continuous bilinear form over L?(D) defined by

b(f,9) = (Bf.g)rr.Ls Vf,ge LYD). (6.23)

We now need to check that b indeed coincides with b over CP(D), so that it is indeed an
extension of b. For this, let ¢, ¢ € CX(D) and (¢y), (¢¥n) two sequences of elements of E, that
converge to ¢ and v respectively. Then b and b coincide on Ej:

b(@nﬂbm) = 5(@nawm) (624)

Observe the following chain of equalities, which rely on the sequential continuity (for the LF
topology of C¥(D)) of the linear forms ¢ — b(p,¥), ¥ — b(p,v¥) and T, : ¢ — T,(p) =
(v, oypa e for any v e LI(D), as well equation (6.24).

b, ) = 1im bpn, ) = lim Tim b(on, Ym) = T T b(pn, ton)
= lim lim (Byn, ¥n)pr,re = lim lim Tp, ($) = lim Tg, (¥)
= lim (By, ¥)re,pe = lm (pn, B*9)parr = i Ty (0n) = Ty (9)
= (@, B*$)ra.10 = (B, ¥)re.10 = b9, ¥)- (6.25)
The uniqueness of b follows from the uniqueness of B as an extension of B. O

Proof. (Lemma 2.5) Let (K,) be an increasing sequence of compact subsets of D such that
U, Kn = D. From the measurability of U and Tonelli’s theorem, w +— §,. |U,(z)|dz is mea-
surable and we have that

EUKn U(a:)|da:] _ J E[|U (z)[Jdz \ff 2)dz < +o0. (6.26)

From equation (6.26), w +— SKn |U, (x)|dx is finite almost surely. Since the family (K,) is
countable, one obtains a set 5 < 2 of probability one such that for all w € )y and for all
neN, SKn |U,(z)|dz < +00. Given now any compact subset K of D, there exists N € N such
that K < Ky and thus for all w € Qg, SK |U,, (z)|dx < 4+00. Therefore, the sample paths of U
lie in L} (D) almost surely. From this fact and Fubini’s theorem, we next obtain that given

loc
any ¢ € C¥ and |a| < m, the following map

Ug : Q3w— L) U, (2)0%p(x)dx (6.27)

is a well defined random variable (i.e. it is measurable; see e.g. [17], Theorem 2.7, p. 62).
Moreover, one can show that it is a limit in probability of suitably chosen Riemann sums of the
integrand ( [17], Theorem 2.8, p. 65). But here, those Riemann sums are all Gaussian random
variables because U is a Gaussian process. Thus Ug is a Gaussian random variable. a a limit
in probability of Gaussian random variables. This also shows that {Ug, ¢ € C(D)} is in fact
a Gaussian process, since the linearity of 0% yields

D aUS = Uk aions (6.28)

i=1

and thus Y a;Ug, is a Gaussian random variable. An alternative proof is found in [4],
Example 2.3.16. p. 58-59. O
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Proof. (Lemma 4.7) First, the map k is measurable over D x D. Then, given a compact set
K < D x D, there exists a compact set Ky < D such that K < Ky x Ky (see e.g. the text
before equation (3.12)). Then, using the Cauchy-Schwarz inequality for k,

fK |k(z, y)|dedy < L{OXKO o(z)o(y)dzdy = (JKO a(:zc)dnc)2 < +o00. (6.29)

Therefore, k € Li, (D x D) and for all mutli-index «, b, is a bilinear continuous form over
C¥(D). From Lemma 2.2, b, can be uniquely extended to a continuous bilinear form over
L?(D). Denote by £ the associated bounded operator over L?(D). We now need to show that
&y is self-adjoint and nonnegative. First note that for all ¢, € CX(D),

(2o by = L K@) (@0 (u)dyde = (o, £ (6.30)

Equation (6.30), conjoined with the density of C%(D) in L?(D) and the continuity of the bilinear
form (f,g) — (E2f,g)r2 yields that (E&f, )12 = {f,EFg)r2 for all f,g € L?(D). Therefore
&y is self-adjoint. For the positivity, consider again ¢ € C (D). Then from Fubini’s theorem
(justified below),

ERp, ) = k(x,y)0%p(x)0%p(y)dyds = f E[U(x)U(y)]0%p(2)0”p(y)dydx

_ ]E[( L U(x)&“g&(w)dm)Q] > 0. X (6.31)

Indeed the following integrability condition holds, setting K = Supp(y) :

E[ j a%(m)&%(y)U(m)U(y)|dmdy]=f 1% 0(2)0 () [T (2)U ()|l dedy
DxD K

x K

<[ @ pwlototdsr - ( | a%(xno(x)dx)Q
< 2161}13 6“(,0(35)2(JK a(x)dx)2 < 0. (6.32)

Equation (6.32), conjoined with the density of C*(D) in L?*(D) and the continuity of the
quadratic form f — (EXf, f)r2 yields that (€2 f, fyr2 = 0 for all f € L?(D). Therefore £ is
nonnegative. O

Proof. (Lemma 4.8) Introduce b, the continuous bilinear map over C°(D) defined by

bale ) = | K)o @ ul)dady = | ok, y)ple)vly)dady
DxD DxD
=&, )2, (6.33)
From Cauchy-Schwarz’s inequality, it verifies
Vip,1p € CL(D), [ba(p,¥)] < |[0Kll2]loll2][¥]]2 (6.34)

From Lemma 4.7, there exists a unique bounded, self-adjoint and nonnegative operator B,
over L?(D) such that b, (o, 1) = (Bap, )2 for all ¢, € C*(D). The uniqueness of B, and
equation (6.33) yield B, = &y, and thus & is self-adjoint and nonnegative. O
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Proof. (Lemma 4.9) (i) : Let n € Ng be such that A, # 0. Let ¢ € C(D). Then

)\n< L) gbn(x)(?aga(z)dx)Q < 2 /\<f gbi(x)(?ago(a:)d:c)

Z Ai f )i (y) 0% ()0 o (y)daxdy

i=1 DXD

< j k(1) ()0 p(y)dzdy
DxD

<J 0% k(x, y)p(x)p(y)drdy
DxD

< |\5a’ak||L2(D><D)||</9H2L2(D)- (6.35)

Therefore, from Lemma 2.1, 0%¢,, € L*(D).
(i4) : introduce the finite rank kernel k,, defined by

) = 3 Mn(@):(y). (6.36)
=1

Then its mixed derivative 0%k, (z,y) is equal to Y. ; A\;0%®;(2)0*¢;(y) in L*(D x D) and the
associated operator £ is trace class, with

400 +0 n
)= DCER G5 0ne = Y DMK 9 (6.37)
j=1 j=1li=1
n —+00 n
= DTN D% ddie = Y Aill0%gil[Te (6.38)
=1 j=1 i=1
Now, observe that & < & in the sense of the Loewner order. Indeed, let first p € C°(D):
+oo
(&R = E2) e o1 = {(Ek — &, ) 0%, 0%y = Y Aildi, 0%¢)72 = 0. (6.39)
i=n+1

The density of C(D) in L*(D) and the continuity of the quadratic form f — ((EF =& ) f, o>
over L?(D) yields indeed that £ < &. Taking the trace :

n +00 400
DNl illTe = TH(ER,) = Y (ER ¢, 6pp1e < D (ERDs di)re = TH(ER). (6.40)
i=1 j=1 j=1

Taking the limit when n goes to infinity yields >3, Xi|[0%¢;]|2. < Tr(€2). Suppose now that

Tr(&y) < +. Equation (6.40) shows that the serles of functions }}; \i0%¢; ® 0%¢; converges
in norm in L?(D x D). Moreover, we check that it is equal to 0%k : taking ¢ € C*(D x D),
then

f k(a,y)0™p(a, y)dady = Alf i ()i (y) 0™, y)dwdy (6.41)
DxD 2 DxD
= Z/\ L Daaéﬁz z)0%¢i(y)p(x,y)dzdy (6.42)

L;xp (ZA T ¢il@)0%9uly )) (2, y)dudy. (6.43)
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We can then write, following the steps of equation (6.37)

+o +0 +o0
Tr(ER) = D (ER b dipre = D, Y A0%bi, 65072 = D Nille 6|72 (6.44)
j=1 j=1 1 i=1

Suppose now that Y% A;||0%¢;||2. < +00. Then as observed before, the series of functions
> Aid%¢; ® 0“¢; converges in norm in L*(D x D), one verifies that 0%k exists in L?(D) and
is in fact given by

0%k = Y Xid"¢; ®0%¢; in L*(D x D). (6.45)
Finally,
+x +0
Z Adl|0%ill72 = Z Ai Z@a@, 007 (6.46)
=1 1=1 i
+00 ’ 2
=X\ (J 0% ¢i(2)o; (x)dx> (6.47)
joi=1 D
- Z J Z Ai0%¢i(2)0%di(y)¢j ()b (y)dzdy (6.48)
j DxD
= D XERDs dire = TH(ER). (6.49)
J

Therefore £ is trace class and Tr(£) = Y17 Ai|[0%4]|2,. For asymmetric derivatives, simply
observe that for all |al,|3| < m,

[10°6:l[3 + 1|07 :l5

1090 ® 0P il = 1|0 ®s|2]|0° ¢4]]> < 3

(6.50)

Therefore the norm convergence of the series Y, Ai|[0%®; ® 0%¢;|| 2 for all |a| < m implies
that of all the series of the form Y}, Ai||0%¢; ® 0”¢;|| 12 converge, provided that || < m and
|B| < m. As previously, one then deduces that 0#k = Z;'O:o \i0%p; ® 0P ;. O
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