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Abstract

In this article, we fully characterize the measurable Gaussian processes pUpxqqxPD whose
sample paths lie in the Sobolev space of integer order Wm,p

pDq, m P N0, 1 ă p ă `8,
where D is an arbitrary open set of Rd. The result is phrased in terms of a form of Sobolev
regularity of the covariance function on the diagonal. This is then linked to the existence
of suitable Mercer or otherwise nuclear decompositions of the integral operators associated
to the covariance function and its cross-derivatives. In the Hilbert case p “ 2, additional
links are made w.r.t. the Mercer decompositions of the said integral operators, their trace
and the imbedding of the RKHS in Wm,2

pDq. We provide simple examples and partially
recover recent results pertaining to the Sobolev regularity of Gaussian processes.

1 Introduction

Sobolev spacesWm,ppDq are central tools in modern mathematics, most notably in the study of
partial differential equations (PDEs). These spaces are built upon the notion of weak derivative:
v is the weak derivative of u in the direction xi if for all smooth compactly supported function
φ P C8

c pDq,

ż

D
upxq

Bφ

Bxi
pxqdx “ ´

ż

D
vpxqφpxqdx (1.1)

Weak derivatives generalize classical, pointwise defined derivatives. In particular, there are
cases where weak derivatives are well defined and pointwise differentiation otherwise fails (see
e.g. [19], Examples 3 and 4 p. 260). The popularity of Sobolev spaces is justified by a number
of reasons: first, they have good topological and geometrical properties. They are separable
reflexive Banach spaces when 1 ă p ă `8, and separable Hilbert spaces when p “ 2 ( [34],
Theorem 3.6 p. 61). Through duality, this allows for geometrical interpretations of PDEs
which in turn lead to numerous quantitative theoretical results in the study of PDEs [19].
Second, as the Sobolev norm is defined through integrals of powers of the function and its weak
derivatives, it is easily interpreted as an energy functional of the said function, which complies
with physical interpretations of PDEs. This is a desirable feature as PDEs are generally used
for describing physical phenomena. Finally, Sobolev spaces are useful for practical purposes as
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they are the natural mathematical framework for the celebrated finite element method when
seeking numerical solutions to PDEs ( [6], Chapter 1).

When a function of interest u : D Ñ R is unknown, it may be modelled as a sample path of
a random field pUpxqqxPD, say a Gaussian process, whose realizations lie in a suitable function
space. This is e.g. frequent in Bayesian inference of functions [43]. Such suitable spaces can
indeed happen to be Sobolev spaces, e.g. when u describes a physical quantity. The question
at hand in this article is thus the following: when do the sample paths of a given Gaussian
process lie in some Sobolev space? This question is closely linked to the recent attention
that Gaussian processes have drawn for tackling machine learning problems arising from PDE
models; see e.g. [30,33,44]. Notably (see [9]), Gaussian processes seem to provide a numerically
competitive and mathematically tractable alternative to the now widespread ”physics informed
neural networks” (PINNs, [32]). For the moment though, the machine learning techniques
involving Gaussian processes have only been studied within the framework of spaces of functions
with classical smoothness : C0, C1, etc. As argued before, these spaces are often not as well-
suited for studying PDEs as Sobolev spaces.

Though weak differentiability is more general, it is less direct to check than classical dif-
ferentiability. Weak derivatives are defined implicitly and in the most general case, ensuring
Sobolev regularity is not usually done by directly verifying that an integral or a series is finite,
as would be the case in Lp spaces. One reason for this is that the existence of the weak deriva-
tive has to ensured beforehand. To do so, variational or boundedness criteria are used instead
(see Proposition 2.1).

In many important particular cases however, handy characterizations of such regularity do
exist, which have effectively been used to bypass the implicit definition of Sobolev regularity and
generate results on the sample path regularity of Gaussian processes. When D “ Rd, the space
Wm,ppRdq can be characterized in terms of a sufficient decay of of the Fourier transform ( [38],
Theorem 3 p. 135; [19], Section 5.8.5; [34], Section 7.63). Still in the case D “ Rd, Sobolev
regularity is equivalent to the convergence of its de la Vallée Poussin expansion in a suitable
space ( [29], Section 8.9). This fact has been the first to be employed for characterizing the
Sobolev regularity of stationary Gaussian processes indexed by the unit cube of Rd in [13,23], in
terms of the spectral measure of its covariance. For some Banach spaces, explicit Schauder bases
are known and lying in such spaces can be translated as the convergence of some coordinate
series. This has been exploited in [12] for studying the Besov and Besov-Orlicz regularity of one
dimensional Gaussian processes (they are natural generalizations of Sobolev regularity, [34]).
Wavelet analysis is also available for describing Sobolev regularity ( [34], Section 7.70) and
has been used for studying the smoothness of the Brownian motion [11, 36]. More complex
notions such as the existence of an underlying Dirichlet structure have aptly been put to use
in [26]. The latter work deals with Besov Bs8,8 regularity, s ą 0, on compact metric spaces, and
relies on a convergence analysis of suitable spectral coefficients, using the so called Littlewood-
Paley decomposition. In [39], Karhunen-Loève expansions are used to study whether or not
the sample paths of a general second order random process lie in interpolation spaces between
the reproducing kernel Hilbert space (RKHS, Section 4.1 below) of the process and L2pνq,
where ν is a σ-finite measure. This is then applied to study Hs-regularity properties of the
corresponding sample paths when s ą d{2 (Corollary 4.5 and 5.7 in [39]), with applications to
Gaussian processes in particular. Using the notion of mean square derivatives, [37] shows that
the sample paths of a general second order random field lie in Wm,2pDq under an integrability
condition of the symmetric cross derivatives of the kernel over the diagonal (Theorem 1). This
result strongly suggests that a purely spectral criteria for Sobolev regularity of a random process
should exist as the integrals appearing in Theorem 1 of [37] exactly correspond to the trace
of specific integral operators which are naturally linked to the covariance of the process; in
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fact, we provide such a criteria in Proposition 4.4. For the suitable definition and use of the
mean square derivatives of the process, [37] additionally requires that the covariance function
be continuous over the diagonal as well as its symmetric cross derivatives.

The purpose of this article is to uncover necessary and sufficient characterizations of the
Sobolev regularity of positive integer order of a given Gaussian process, in terms of its covariance
function. In an attempt to make them both as general and concise as possible, we set the
following targets and assumptions.

• The covariance function of the Gaussian process will only be assumed measurable, as in [39].
This contrasts with some of the previously mentioned works [12, 26, 37], where the covariance
function is assumed continuous. It seems though that assuming the continuity of the covariance
(and thus more or less that of the sample paths, [2] p. 31) to examine some Sobolev regularity
of potentially low order is an unnatural hypothesis. This is especially true as the dimension
of D increases, since Wm,ppDq is embedded in C0

BpDq, the Banach space of continuous and
bounded functions over D, only when m ą d{p ( [34], Theorems 4.12 and 7.34).

• We will not make any regularity or shape assumptions on the open set D. Indeed, Sobolev
spaces of integer order are easily defined over arbitrary open sets D Ă Rd, and thus some results
should exist within this general setting. As a result though, we will not deal with fractional
Sobolev spaces nor Besov spaces. Indeed, minimal imbedding properties of fractional Sobolev
and Besov spaces can only be ensured under additional hypotheses on D, namely enjoying a
Lipschitz boundary or the cone condition ( [34], Theorems 4.12 and 7.34; see also Remark
6.47(1)). For example, one may inconveniently have W s,ppDq Ć W 1,ppDq for some 0 ă s ă 1
when the boundary of Ω is not Lipschitz ( [15], Example 9.1). We will see that elementary
characterizations of Sobolev regularity (Lemmas 2.1 and 2.4) will prove to be enough for our
purpose.

• Our results should lie outside of the assumption that m ą d{p, where m, p and d correspond
to the notation Wm,ppDq, D Ă Rd. Indeed, many previous results concerning the Sobolev
regularity of a given Gaussian process concern the spaces HmpDq “ Wm,2pDq, D Ă Rd, only in
the case m ą d{2. This is convenient because it ensures that HmpDq is continuously embedded
in C0

BpDq when D is smooth enough, which suppresses the ambiguity of choosing a representer
of a function in HmpDq. More specifically, the spaces HmpDq are actually reproducing kernel
Hilbert spaces. But m ą d{2 excludes the spaces H1pR2q and H1pR3q, which are central in
the study of many important second order PDEs such as the wave equation, the heat equation,
Laplace’s equation or Schrödinger’s equation.

Our characterization of measurable Gaussian processes with sample paths in Wm,ppDq is
phrased in terms of a form of Sobolev regularity of the covariance function on the diagonal. It
is then linked to the existence of suitable Mercer or otherwise nuclear decompositions of the in-
tegral operators associated to the covariance function and its symmetric weak cross-derivatives.
In the Hilbert case p “ 2, additional links are made w.r.t. the Mercer decompositions of the said
integral operators, their trace and the Hilbert-Schmidt nature of the imbedding of the RKHS
in Wm,2pDq. Our results are strongly reminiscient of those found in [37]. In particular, this
shows that contrarily to what is suggested in [39], p. 370, the Sobolev regularity of the sample
paths of a given Gaussian process is not about d{2 less than that of the functions of its RKHS.
This regularity is rather characterized by purely spectral properties of the covariance operator
of the associated Gaussian measure. It just happens that in many standard cases such as with
the Matérn kernels of order ν on ”nice” bounded domain D Ă Rd, their RKHS turns out to be
Hν`d{2pDq ( [39], Example 4.8) and the imbedding of Hν`d{2pDq in HspDq is Hilbert-Schmidt
when s ă ν. See Example 4.5 for further details.
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The article is organized as follow. In section 2, we introduce the necessary notions for
properly stating our results as well as some useful lemmas directly related to these notions. In
sections 3 and 4, we state and prove the main results of this article, which treat the general
case p P p1,`8q and the special case p “ 2 respectively. In section 5, we conclude and provide
some further outlooks. In section 6, we prove the intermediary lemmas used in the main proofs.

Notations Given a Banach space X, X˚ denotes its topological dual. Given x P X and
l P X˚, we denote the duality bracket as follow: lpxq “ xl, xyX˚,X . BpXq denotes the Borel σ-
algebra of X for its norm topology. Given two linear operators A : X1 Ñ Y1 and B : X2 Ñ Y2,
A b B : X1 b X2 Ñ Y1 b Y2 denotes their tensor product which verifies pA b Bqpa b bq “

pAaq b pBbq. Given two real valued functions f and g, f b g denotes their tensor product
defined by pf b gqpx, yq “ fpxqgpyq. Given h P Rd, |h| denotes its Euclidean norm. Given
p P p1,`8q, q will always denote its conjugate: 1{p`1{q “ 1 i.e. q “ p{pp´1q. As usual, when
D is an open set of Rd, we identify the dual of LppDq with LqpDq. Explicitly, if f P LppDq and
g P LqpDq, we have

xf, gyLp,Lq “

ż

D
fpxqgpxqdx “ xg, fyLq,Lp (1.2)

When there is no risk of confusion, we will write ||f ||p :“ ||f ||LppDq. If H is a Hilbert space,
x¨, ¨yH denotes its inner product. We denote N :“ t1, 2, ...u the set of natural numbers and
N0 :“ N Y t0u. Given an open set D Ă Rd, we write D0 Ť D if D0 Ă D and D0 is compact.
λd denotes the Lebesgue measure over Rd. L1

locpDq denotes the space of equivalence classes of
locally integrable functions over D, i.e. such that

ş

K
|fpxq|dx ă `8 for all K Ť D. Elements

of L1
locpDq are identified when they are equal almost everywhere w.r.t. the Lebesgue measure

(L1
locpDq is a large space: LppDq Ă L1

locpDq for all p P r1,`8s). Given an equivalence class

f P L1
locpDq, a representer of f is a function pf : D Ñ R such that the equivalence class of pf

in L1
locpDq is f . We will sometimes denote f and pf with the same symbol, e.g. f . Given a

function k defined over D ˆ D, Ek denotes the associated integral operator (if well defined):

pEkfqpxq “

ż

D
kpx, yqfpyqdy (1.3)

The input and output spaces of Ek will be specified on a case-by-case basis.

2 Preliminary notions and results

In Sections 2.1, 2.2 and 2.3, we define the notion of Sobolev regularity through the prisms
of weak derivatives and generalized functions, and provide handy characterizations of this
regularity. We present key notions from operator theory in Section 2.4. In Section 2.5, we
define and provide some useful results related to Gaussian processes and Gaussian measures.

2.1 Definition of weak derivatives and Sobolev spaces

Let α “ pα1, ..., αdq P Nd. Denote Bα “ Bα1
x1
...Bαd

xd
the αth derivative, and |α| :“

řd
i“1 |αi|. In

this article, the statement ”let |α| ď m” will mean ”let α “ pα1, ..., αdq P Nd be such that
|α| ď m”. Given a function k defined on D ˆ D, Bα,αk denotes its symmetric cross derivative:
Bα,αkpx, yq :“ Bα1

x1
...Bαd

xd
Bα1
y1 ...B

αd
yd
kpx, yq (formally, Bα,α “ Bα b Bα). A function u P L1

locpDq has
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v P L1
locpDq for its αth weak derivative if ( [34], section 1.62)

@φ P C8
c pDq,

ż

D
upxqBαφpxqdx “ p´1q|α|

ż

D
vpxqφpxqdx (2.1)

v is then unique in L1
locpDq and is denoted v “ Bαu. Let p P r1,`8s. The Sobolev space

Wm,ppDq is defined as ( [34], section 3.2)

Wm,ppDq “ tu P LppDq : @ |α| ď m, Bαu P LppDqu (2.2)

Sobolev spaces are Banach spaces for the norm ||u||Wm,p :“ p
ř

|α|ďm ||Bαu||ppq1{p; they are

separable when p ‰ `8 ( [34], Theorem 3.6 p. 61). When p “ 2, Wm,p is usually denoted
HmpDq and is a Hilbert space for the following inner product

xu, vyHmpDq :“
ÿ

|α|ďm

xBαu, BαvyL2pDq (2.3)

Note that we made no assumptions on the regularity of the open set D.

2.2 Characterization of Wm,p-regularity for locally integrable func-
tions

As for pointwise derivatives, finite difference operators can be used for characterizing Sobolev
regularity. Given h P Rd, introduce the translation operator pτhuqpxq “ upx ` hq, which is
bounded over LppRdq. Introduce the associated ”finite difference operator”:

∆h “ τh ´ Id (2.4)

The linear subspace of bounded operators over LppRdq induced by the translation operators is
commutative, as τh1

˝ τh2
“ τh1`h2

“ τh2
˝ τh1

. Let h “ ph1, ..., hmq P pRdqm, we define the
mth order finite difference operator associated to h to be ∆h :“

śm
i“1 ∆hi where the product

symbol denotes the composition of operators. When h P Rd, the adjoint of ∆h is also a finite
difference operator, which is computable using the change of variable formula. If h P Rd, then

∆˚
h “ τ´h ´ Id (2.5)

Finally, when α “ pα1, ..., αdq P Nd and h “ ph1, ..., hdq P pR˚
`qd, we denote by δαh the finite

difference approximation of Bα defined by

δαh “

d
ź

i“1

ˆ

∆hiei

hi

˙αi

“

ˆ

∆h1e1

h1

˙α1

¨ ¨ ¨

ˆ

∆hded

hd

˙αd

(2.6)

Above, pe1, ..., edq is the canonical basis of Rd. Depending on which one is the most convenient,
we will either use ∆h or δαh . We shall use the following characterizations of Wm,p-regularity,
which are straightforward generalizations of Proposition 9.3 from [7] to multiple derivatives.

Lemma 2.1. Suppose that u P L1
locpDq. Let m P N0, p P p1,`8s and introduce q ě 1 the

conjugate of p : 1{p` 1{q “ 1. Then the following statements are equivalent

(i) u P Wm,ppDq
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(ii) (Variational control) for all α such that |α| ď m, there exists a constant Cα such that

@φ P C8
c pDq,

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ
ď Cα||φ||LqpDq (2.7)

In this case, the Lp norm of Bαu is given by

||Bαu||LppDq “ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||Lq

dx

ˇ

ˇ

ˇ

ˇ

(2.8)

(iii) (Finite difference control) there exists a constant C such that for all open set D0 Ť D, for
all l ď m and all h “ ph1, ..., hlq P pRdql such that

ř

i |hi| ă distpD0, BDq,

||∆hu||LppD0q ď C|h1| ˆ ...ˆ |hl| (2.9)

Moreover, ||Bαu||LppDq ď C for any C verifying equation (2.9) and one can actually take C “

||u||Wm,ppDq in equation (2.9).

In Point piiiq above, the assumption that
ř

i |hi| ă distpD0, BDq is only there to ensure that
the quantity ∆hupxq makes sense when x P D0.

2.3 Sobolev regularity and generalized functions

The theory of generalized functions (or distributions) provides a flexible way of characterizing
Sobolev regularity, by building a larger space in which weak derivatives are always defined.
Given an open set D, denote C8

c pDq the space of smooth functions with compact support in
D. Endow it with its usual LF topology, defined e.g. in [41], Chapter 13. This topology is
such that the sequence pφnq converges to φ in C8

c pDq if and only if there exists a compact set
K Ă D such that Supppφnq Ă K for all n and

@α “ pα1, ..., αdq P Nd, sup
xPK

|Bαφnpxq ´ Bαφpxq| ÝÑ 0 (2.10)

Here, Bα :“ Bα1
x1
. . . Bαd

xd
. With C8

c pDq endowed with this topology, the space of generalized
functions, or distributions, is then defined as the topological dual of C8

c pDq i.e. the vector
space of all continuous linear forms over C8

c pDq. It is traditionally denoted as follow: D 1pDq :“
C8
c pDq1 ( [41], Notation 21.1). A generalized function T P D 1pDq is said to be regular ( [41], p.

224) if it is of the form

@φ P C8
c pDq, T pφq “

ż

D
upxqφpxqdx (2.11)

for some u P L1
locpDq, in which case one writes T “ Tu. Given any function u P L1

locpDq and
α P Nd0, its distributional derivative Dαu is defined by the following formula ( [41], pp. 248-250):

Dαu : φ ÞÝÑ p´1q|α|

ż

D
Bαφpxqupxqdx (2.12)

Dαu then also lies in D 1pDq. Sobolev regularity can now be rephrased as follow : u lies in
Wm,ppDq iff for all |α| ď m, the distributional derivative Dαu is in fact a regular generalized
function represented by some vα P LppDq i.e. Dαu “ Tvα . Then vα is unique in LppDq and
Bαu “ vα in LppDq, where Bαu is the αth weak derivative of u.
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Moreover, the control equation (2.7) shows that Bαu exists and lies in LppDq if and only
if Dαu : C8

c pDq Ñ R can be extended as a continuous linear form over LqpDq. Ensuring the
existence of such extensions will thus be of prime interest for us, and is the topic of the next
lemma. Specifically, the next result states that given continuous linear or bilinear forms over
C8
c pDq, the existence of extensions of these maps to LqpDq can be ensured by obtaining suitable

estimates on a well chosen countable set Eq Ă C8
c pDq. Restricting ourselves to Eq will allow

us to eliminate any measurability issues when introducing the supremum of certain random
variables indexed by Eq, as a countable supremum of random variables remains a random
variable. Below, we write || ¨ ||q :“ || ¨ ||LqpDq for short.

Lemma 2.2 (Extending continuous linear and bilinear forms over C8
c pDq to LppDq). Let

p P p1,`8q. There exists a countable Q´vector space Eq “ tΦqn, n P N0u Ă C8
c pDq with the

following property.

(i) A distribution T P D 1pDq is a regular distribution, T “ Tv, for some v P LppDq iff it verifies
the countable estimate for some constant C ą 0

@φ P Eq, |T pφq| ď C||φ||q (2.13)

or equivalently, supnPN |T pΦqnq|{||Φqn||q ă `8 (here, setting Φp0 “ 0 without loss of generality).
This is equivalent to T admitting an extension over LqpDq which is then uniquely given by
T pfq “

ş

D fpxqvpxqdx. Moreover,

sup
nPN

|T pΦqnq|

||Φqn||q
“ sup
φPC8

c pDq

|T pφq|

||φ||q
(2.14)

whether these quantities are finite or not.

(ii) Let b be a continuous bilinear form over C8
c pDq. Then b can be extended to a continuous

bilinear form over LqpDq iff it verifies the countable estimate

@φ,ψ P Eq, |bpφ,ψq| ď C||φ||q||ψ||q (2.15)

In this case, such an extension is unique and there will exist a unique bounded operator B :
LqpDq Ñ LppDq verifying the following identity

@φ,ψ P C8
c pDq, bpφ,ψq “ xBφ,ψyLp,Lq (2.16)

The proof of this result can be found in the appendix. It is based on Lemma 2.3 below,
which is interesting in itself. Recall that a topological space X is separable if there exists a
countable subset Y Ă X which is dense in X for the topology of X. Then the following holds.

Lemma 2.3. C8
c pDq endowed with its LF-topology is separable.

A short proof of this result can be found in [22], p. 16. See also [21], p. 73, (3) for a
statement of this result, or [20], Corollaire (1).2, p. 78 for a reference in French. Given the set
Eq provided by Lemma 2.2, we next define the countable set Fq to be

Fq :“ tφ{||φ||q, φ P Eq, φ ‰ 0u “ tfqn, n P Nu Ă Sqp0, 1q (2.17)

Above, pfqnqnPN is an enumeration of Fq and Sqp0, 1q is the unit sphere of LqpDq. The next
lemma is then a direct consequence of Lemmas 2.1 and 2.2.
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Lemma 2.4 (Countable characterization of Sobolev regularity). Let p P p1,`8q. For any
u P L1

locpDq, u lies in Wm,ppDq iff for all multi index α such that |α| ď m, there exists a
constant Cα such that

@φ P Eq,

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ

ˇ

ď Cα||φ||q (2.18)

Or equivalently,

sup
φPFq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
nPN

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαfqnpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ă `8 (2.19)

Moreover,

sup
φPFq

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxqBαφpxqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||q
dx

ˇ

ˇ

ˇ

ˇ

ˇ

(2.20)

whether these quantities are finite or not. If one of them is finite, then it is equal to ||Bαu||LppDq.

This lemma provides us with a somewhat explicit countable criteria for Sobolev regularity,
which is valid whatever the open set D. This result is not surprising because the spaces
Wm,ppDq, p P p1,`8q, are separable.

2.4 Tools from operator theory

The following reminders may be found in [4], Section A.2. Let H1 and H2 be two Hilbert
spaces, and X and Y two Banach spaces.

(i) A linear operator T : X Ñ Y is bounded if ||T || :“ sup||x||X“1 ||Tx||Y ă `8. A bounded

operator T : X Ñ Y is compact if T pBq is a compact set of Y , where B is the closed unit
ball of X. When X “ Y , the spectrum of a compact operator is purely discrete, and can be
reordered as a sequence pλnqnPN which converges to 0.

(ii) If T : H1 Ñ H2 is compact, then T˚T : H1 Ñ H1 is compact, self-adjoint and positive
p@x P H1, xx, T

˚TxyH1
ě 0q. If H1 is separable, T˚T can be diagonalized in an orthonormal

basis penq ofH1. The positive eigenvalues of T
˚T , ps2nq, are called the singular values of T . IfH1

is separable, T is said to be Hilbert-Schmidt if
ř

nPN ||Ten||2H2
ă `8 for one (equivalently, all)

orthonormal basis penq of H1. Every Hilbert-Schmidt operator is compact, and every Hilbert-
Schmidt operator T acting on L2pDq can be written in integral form ( [4], Lemma A.2.13):
there exists a ”kernel” k P L2pD ˆ Dq such that for all f P L2pDq,

pTfqpxq “

ż

D
kpx, yqfpyqdy “ pEkfqpxq (2.21)

If T is symmetric, positive and Hilbert-Schmidt, there exists an orthonormal basis pϕnq of
L2pDq comprised of eigenvectors of T with positive eigenvalues pλnq, such that in L2pD ˆ Dq,
we have

kpx, yq “
ÿ

nPN
λnϕnpxqϕnpyq (2.22)
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We will refer to decompositions of f of the form of equation (2.22) as Mercer decompositions,
in reference to the celebrated Mercer’s theorem ( [8], Theorem 1.2). If H1 is separable, T is
said to be trace-class (or nuclear) if

ÿ

nPN
sn ă `8 (2.23)

One can then define its trace as the following linear functional, which is independent of the
choice of basis penq, and equal to the series of the eigenvalues of T (Lidskii’s theorem)

TrpT q :“
ÿ

nPN
xTen, eny “

ÿ

nPN
λn (2.24)

Any trace-class operator is Hilbert-Schmidt, and T is Hilbert-Schmidt if and only if T˚T is
trace-class. If H1 “ H2 “ L2pDq, if T is trace class with kernel k and if k is sufficiently smooth
(say continuous), then the trace of T “ Ek is given by

TrpT q “

ż

D
kpx, xqdx (2.25)

Extensions of the formula (2.25) to general Hilbert-Schmidt kernels k P L2pD ˆ Dq of trace
class operators is studied in [8]; see also Proposition 2.9 below. If T : H1 Ñ H1 is bounded,
self-adjoint and positive, then we define its trace as the possibly infinite series of positive scalars
TrpT q :“

ř

nPNxTen, eny.

(iii) ( [28], p. 160) A bounded operator T : X Ñ Y is nuclear if there exists sequences
pxnq Ă X˚ and pynq Ă Y with

ř`8

n“1 ||xn||X˚ ||yn||Y ă `8 such that

@x P X, Tx “

`8
ÿ

n“1

xxn, xyX˚,Xyn (2.26)

In this case, we write abusively T “
ř`8

n“1 xn b yn. The nuclear norm of T is then defined as

νpT q :“ inf

" `8
ÿ

n“1

||xn||X˚ ||yn||Y such that T “

`8
ÿ

n“1

xn b yn

*

(2.27)

A bounded operator K : X˚ Ñ X is said to be symmetric if for all x, y P X˚, xx,Ryy “ xy,Rxy

and positive if xx,Rxy ě 0. When X “ Y “ H, where H is a separable Hilbert space, the
sets of trace class and nuclear operators coincide; moreover, the same can be said for the trace
functional (2.24) and the nuclear norm (2.27) if T has a positive spectrum : νpT q “ TrpT q.

2.5 Gaussian processes and Gaussian measures over Banach spaces

Throughout this article, pΩ,F ,Pq denotes the same probability space.

(i) The law PX of a random variable X : Ω Ñ R, is the pushforward measure of P through X,
which is defined by PXpBq :“ PpX´1pBqq for all Borel set B P BpRq ( [5], Section 3.7).

(ii) A Gaussian process ( [1], Section 1.2) pUpxqqxPD is a family of Gaussian random vari-
ables defined over pΩ,F ,Pq such that for all n P N, pa1, ..., anq P Rn and px1, ..., xnq P

Dn,
řn
i“1 aiUpxiq is a Gaussian random variable. The law it induces over the function space

RD endowed with its product σ-algebra is uniquely determined by its mean and covariance
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functions, mpxq “ ErUpxqs and kpx, x1q “ CovpUpxq, Upx1qq ( [24], Section 9.8). We then
write pUpxqqxPD „ GP pm, kq. The covariance function k is positive definite over D, which
means that for all non negative integer n and px1, ...xnq P Dn, the matrix pkpxi, xjqq1ďi,jďn

is non negative definite. Conversely, given a positive definite function over an arbitrary set
D, there exists a centered Gaussian process indexed by D with the this function as its co-
variance function ( [1], p. 11). We shall often denote σpxq “ kpx, xq1{2. Given ω P Ω, the
corresponding sample path (or realization) of pUpxqqxPD is the following deterministic function
Uω : D Ñ R defined by Uωpxq :“ Upxqpωq. A Gaussian process is said to be measurable if
the map pΩ ˆ D,F b BpDqq Ñ pR,BpRqq, pω, xq ÞÑ Upxqpωq is measurable. If pUpxqqxPD is
measurable, then from Fubini’s theorem the maps of the form x ÞÑ kpx, x1q, x ÞÑ kpx, xq, etc,
are measurable. We further discuss this assumption in Remark 2.10.

We shall need the following lemma pertaining to the sample path-wise integration of Gaus-
sian processes.

Lemma 2.5. Let D Ă Rd be an open set. Let pUpxqqxPD „ GP p0, kq be a measurable centered
Gaussian process such that its standard deviation function σ lies in L1

locpDq. Then the sample
paths of U lie in L1

locpDq almost surely and given φ P C8
c pDq, the map defined by

Uαφ : Ω Q ω ÞÝÑ p´1q|α|

ż

D
UpxqpωqBαφpxqdx (2.28)

is a Gaussian random variable. Moreover, for all p P p1,`8q, pUαφ qφPFq is a centered Gaussian
sequence (i.e. a Gaussian process indexed by Nq.

We will also use the following fact about bounded Gaussian sequences, which can be seen
as a weak form of Fernique’s theorem ( [4], Theorem 2.8.5, p. 75).

Lemma 2.6 ( [1], Theorem 2.1.2). Let pUnqnPN be a Gaussian sequence and set |U | :“ supn |Un|.
Suppose that Pp|U | ă `8q “ 1. Then there exists ε ą 0 such that

Erexppε|U |2qs ă `8 (2.29)

In particular, Er|U |ps ă `8 for all p P N.

(iii) A Gaussian measure µ ( [4], Definition 2.2.1) over a Banach space X is a measure over
its Borel σ-algebra such that given any x P X˚, the pushforward measure of µ through the
functional x is a Gaussian measure over R (see Section 2.5piq for a definition of the pushforward).
Gaussian measures are equipped with a mean vector aµ P X˚˚ and a covariance operator
Kµ : X˚ Ñ X˚˚, defined in [4], Definition 2.2.7. When X is separable, µ is Radon ( [4], p.
125). This implies that aµ lies in X and that the covariance operator Kµ maps X˚ to X ( [4],
Theorem 3.2.3). The vector aµ and the covariance operator Kµ are defined by the following
formulas

@x P X˚, xaµ, xy “

ż

X

xx, zyµpdzq (2.30)

@x, y P X˚, xy,Kµxy “

ż

X

xx´ aµ, zy xy ´ aµ, zyµpdzq (2.31)

In Propositions 2.7 and 2.8, we present useful characterizations of Gaussian measures µ over two
important classes of Banach spaces: spaces of type 2 and cotype 2 respectively. For a definition
of spaces of type 2 and cotype 2, see e.g. [10]. In this article, we will only use the fact that
LppDq is of type 2 and cotype p when p ě 2, and cotype 2 and type p when 1 ď p ď 2 (see [4],
p. 152). Moreover we shall restrict ourselves to the case where X is separable. This implies
that µ is Radon, which removes extension problems otherwise considered in [28] and [10].
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Proposition 2.7 ( [28], Theorem 4). Let X be a separable Banach space of type 2, and let µ
be a Gaussian measure over X. Then its covariance operator is nuclear. Conversely, given any
a P X and any nuclear, symmetric, positive operator K : X˚ Ñ X, there exists a Gaussian
measure over X with mean vector a and covariance operator K.

Denote l2 the Hilbert space of square summable sequences.

Proposition 2.8 ( [10], Theorem 4.1 and Corollary 4.1). Let X be a separable Banach space
of cotype 2, and let µ be a Gaussian measure over X. Then there exists a continuous linear
map A : l2 Ñ X and a trace-class operator S over l2 such that covariance operator of µ is
given by ASA˚ (in particular, the covariance operator of µ is nuclear). In other words, µ is
the pushforward measure of a Gaussian measure µ0 over l2 through a bounded linear map A.
Conversely, given any a P X and any operator of the form ASA˚ where A : l2 Ñ X is a
bounded linear map and S a trace class operator over l2, there exists a Gaussian measure over
X with mean vector a and covariance operator K.

In practice, we shall replace l2 with L2pDq, which are isomorphic Hilbert spaces. The
propositions 2.7 and 2.8 generalize the case where X is a separable Hilbert space, which can
be found in [4], Theorem 2.3.1. We finish with the following handy result describing centered
Gaussian measures over Lp-spaces.

Proposition 2.9 ( [4], Proposition 3.11.15). Let µ be a centered Gaussian measure over LppDq

where 1 ď p ă `8 and D Ă Rd is an open set. Then there exists a positive definite function
k P LppD ˆ Dq such that the covariance operator of µ is Ek : LqpDq Ñ LppDq, the integral
operator associated to k. Moreover, there exists a representer k̃ of k in LppD ˆ Dq which is
the covariance function of a measurable Gaussian process pUpxqqxPD whose sample paths lie in
LppDq a.s.. Additionally, setting σpxq “ k̃px, xq1{2, k̃ verifies

ż

D
k̃px, xqp{2dx “

ż

D
σpxqpdx ă `8 (2.32)

Finally, PU “ µ, where PU is the pushforward of P through the Borel-measurable map ω ÞÑ

Uω P LppDq. Conversely, given any measurable positive definite function k verifying (2.32), the
corresponding integral operator Ek : LqpDq Ñ LppDq is the covariance operator of a centered
Gaussian measure µ over LppDq.

This result is quite strong, as it ensures the existence of a representer in LppD ˆ Dq of the
kernel of any Gaussian covariance operator, which is the covariance function of a measurable
Gaussian process. This will enable us to remove awkward measurability issues w.r.t. σ and
equation (2.32). Without the use of an underlying measurable Gaussian process, these issues
are not trivial to deal with, see e.g. [8] for an analysis of the Hilbert case p “ 2.

Remark 2.10. Proposition 2.9 shows that the assumption that a given Gaussian process is
measurable is slightly less demanding that it might seem. Ensuring the existence of a measurable
modification of a general random process is difficult outside of it being continuous in probability
( [17], Theorem 2.6 p. 61). Tedious extensions of this result exist ( [16], Theorem 2.3). For a
Gaussian process pUpxqqxPD „ GP p0, kuq however, Proposition 2.9 shows that the measurability
of its covariance function over D ˆ D and the integrability of its standard deviation in LppDq

(or equivalently, suitable nuclear decompositions of its associated integral operator Ek, see
Propositions 2.7 and 2.8) ensure the existence of a measurable Gaussian process pV pxqqxPD „

GP p0, kvq with the same covariance function in L1
locpD ˆ Dq. Consequently, ku “ kv a.e. on

DˆD. Note though that the process V need not be a modification of U . Since ku “ kv a.e., we
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only have that U and V have ”λd-almost” the same finite dimensional marginals : for all n P N
and almost every px1, ..., xnq P Dn (in the sense of the Lebesgue measure), pUpx1q, ..., Upxnqq

and pV px1q, ..., V pxnqq have the same law.

Throughout this article, we will only consider centered Gaussian processes pErUpxqs ” 0q

and Gaussian measures paµ “ 0q. Generalizations of the results of this article to non centered
Gaussian processes are straightforward.

3 Sobolev regularity for Gaussian processes : the general
case, 1 ă p ă `8

We can now state our first result, which deals with Wm,ppDq-regularity of Gaussian processes,
given any p P p1,`8q and any open set D Ă Rd.

Proposition 3.1 (Sample path Banach-Sobolev regularity for Gaussian processes). Let D Ă Rd
be an open set. Let pUpxqqxPD „ GP p0, kq be a measurable centered Gaussian process, defined
on a probability set pΩ,F ,Pq, such that its standard deviation function σ lies in L1

locpDq. Let
p P p1,`8q. The following statements are equivalent :

(i) (Sample path regularity) The sample paths of pUpxqqxPD lie in Wm,ppDq almost surely.

(ii) (Integral criteria) For all |α| ď m, the distributional derivative Bα,αk lies in LppD ˆ Dq

and admits a representer kα in LppD ˆ Dq which is the covariance function of a measurable
Gaussian process. Note σαpxq :“ kαpx, xq1{2, then additionally

ż

D
σαpxqpdx ă `8 (3.1)

(iii) (Covariance structure) For all |α| ď m, the distributional derivative Bα,αk lies in LppD ˆ

Dq and the associated integral operator Eαk : LqpDq Ñ LppDq defined by

Eαk fpxq “

ż

D
Bα,αkpx, yqfpyqdy (3.2)

is symmetric, positive and nuclear: there exists pλαnqnPN ě 0 and pψαnqnPN Ă LppDq such that

$

’

’

’

’

&

’

’

’

’

%

`8
ÿ

n“0

λαn||ψαn ||2LppDq ă `8 (3.3)

Bα,αkpx, yq “

`8
ÿ

n“0

λαnψ
α
npxqψαnpyq in LppD ˆ Dq (3.4)

If 1 ď p ď 2, then one can choose pλαnq such that
ř

n λ
α
n ă `8, and there exists a bounded

operator Aα : L2pDq Ñ LppDq and an orthonormal basis pϕαnq of L2pDq such that ψαn “ Aαϕ
α
n

for all n ě 0 (in particular, we have the uniform bound ||ψαn ||p ď ||Aα||).

The proposition above shows that a suitable Lp control of the function Bα,αk over the
diagonal is necessary and sufficient for ensuring the Sobolev regularity of the sample paths of
the Gaussian process with covariance function k. Formally speaking, the function px, yq ÞÑ

Bα,αkpx, yq is the covariance function of the differentiated process, pω, xq ÞÑ BαUωpxq. This is
formal only, as the weak derivative of the sample paths are only defined up to a set of Lebesgue
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measure zero, and thus there is no obvious way of defining the joint map pω, xq ÞÑ BαUωpxq. Note
also that the idea of ensuring a suitable control of this covariance function near its diagonal is
not with reminding more standard results pertaining to the differentiability in the mean square
sense of a random process (see e.g. [1], Section 1.4.2). See [37] for similar remarks on the
Sobolev regularity of random fields.

Remark 3.2. In Proposition 3.1, there is an asymmetry between Point piiq and Point piiiq: one
depends on whether p is lower or greater than 2 while the other does not. Moreover, Points piiq
and piiiq rely on the finiteness of some quantity, so explicit bounds should be sought so that
Point piiq controls Point piiiq and conversely. This is the content of Proposition 3.5.

Remark 3.3. Under the assumption that pUpxqqxPD is measurable, the statement that its sample
paths lie in some Sobolev space is not up to a modification of the process. This is a consequence
of Lemmas 2.4, 2.5 and 2.6, which show that the Sobolev regularity of its paths is fully deter-
mined by the finite dimensional marginals of the process (see equation (3.7)). This contrasts
with more classical results, e.g. pertaining to the continuity of the process ( [2], Section 1.4.1).
Still, ensuring the measurability of the process is not really straightforward (see Remark 2.10).

Example 3.4 (Finite rank covariance functions). Let p P p1,`8q, m P N0 and N P N.
Consider f1, ..., fN P Wm,ppDq and choose once and for all representers of those functions in
LppDq, also denoted by f1, ..., fN , so that they may be understood as functions in the classical

sense. Consider the covariance function kpx, x1q :“
řN
i“1 fipxqfipx

1q. Then obviously, for all
|α| ď m, the weak derivative Bα,αk is given by

Bα,αkpx, x1q “

N
ÿ

i“1

BαfipxqBαfipx
1q in LppD ˆ Dq (3.5)

and the associated integral operators fulfill the criteria piiiq of Proposition 3.1. Thus the
corresponding measurable Gaussian process has its sample paths in Wm,ppDq almost surely.
Note that this was obvious in the first place, since this Gaussian process can be written as
Upxq “

řN
i“1 ξifipxq where pξ1, ..., ξN q are independent standard Gaussian random variables

(checking that the covariance function is the right one is trivial). Still, this example fell out of
the scope of the previous results pertaining to the Sobolev regularity of Gaussian processes.

Proof. (Proposition 3.1) We show piq ùñ piiq & piiiq, piiq ùñ piq and piiiq ùñ piiq.
piq ùñ piiq & piiiq : Suppose piq and let |α| ď m. We first prove that the mapNα : pΩ,F ,Pq Ñ

pR,BpRqq, ω ÞÑ ||BαUω||LppDq is measurable. Indeed, given φ P Fq, the map

Uαφ : ω ÞÝÑ

ż

D
BαUωpxqφpxqdx “ p´1q|α|

ż

D
UωpxqBαφpxqdx (3.6)

is a real valued random variable. This follows from Lemma 2.5. Note now that from Lemma
2.4,

ˆ

ω ÞÑ ||BαUω||LppDq

˙

“ sup
φPFq

|Uαφ | (3.7)

The supremum being taken over a countable set, Nα is indeed a measurable map. Given
any f P LppDq, a slight modification of this proof shows that ω ÞÑ ||BαUω ´ f ||LppDq is also
measurable. We can now show the map Tα : pΩ,F ,Pq Ñ pLppDq,BpLppDqqq, ω ÞÑ BαUω is
measurable. Let f P LppDq, r ą 0 and B “ Bpf, rq be an open ball in LppDq. Then from the
measurability of ω ÞÑ ||BαUω ´ f ||LppDq,

T´1
α pBq “ tω P Ω : ||Bαu´ f ||LppDq ă ru P F (3.8)
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Since LppDq is a separable metric space, its Borel σ-algebra is generated by the open balls of
LppDq (see e.g. [5], Exercise 6.10.28). Thus Tα is Borel-measurable and the pushforward of P
through Tα induces a (centered) probability measure µα over the Banach space LppDq. We
show that it is Gaussian. Let f P LqpDq and denote Tf the associated linear form over LppDq.
Let pϕnq Ă C8

c pDq be such that ϕn Ñ f in LqpDq and ω P Ω be such that Uω lies in L1
locpDq:

Tf pBαUωq “

ż

D
BαUωpxqfpxqdx “ lim

nÑ8

ż

D
BαUωpxqϕnpxqdx (3.9)

“ lim
nÑ8

p´1q|α|

ż

D
UωpxqBαϕnpxqdx (3.10)

For each value of n, Lemma 2.5 shows that the map ω ÞÑ p´1q|α|
ş

D UωpxqBαϕnpxqdx is a
Gaussian random variable. Thus ω ÞÑ Tf pBαUωq is a Gaussian random variable as an a.s. limit
of Gaussian random variables. This shows that the pushforward of µα through Tf is Gaussian,
since for all Borel set B P BpRq,

µαpT´1
f pBqq “ µαptg P LppDq : Tf pgq P Buq “ Pptω P Ω : Tf pBαUωq P Buq (3.11)

Hence, µα is Gaussian. We next show that Bα,αk P LppDˆDq and that the covariance operator
of µα is the integral operator Eαk : LqpDq Ñ LppDq with kernel Bα,αk. Let D0 Ť D ˆ D
and K0 Ť D such that D0 Ă K0 ˆ K0 (for example, set K1 :“ tx P D : Dy P D, px, yq P Ku,
K2 :“ ty P D : Dx P D, px, yq P Ku which are both compact subsets of D and K0 :“ K1 Y K2).
Let h “ ph1, ..., hdq P pR˚

`qd be such that
ř

i |hi| ă distpK0,D0q. Use then the bilinearity of the
covariance operator:

ż

D0

|pδαh b δαh qkpx, yq|pdxdy “

ż

D0

|ErδαhUpxqδαhUpyqs|pdxdy (3.12)

ď

ż

K0ˆK0

|ErδαhUpxqδαhUpyqs|pdxdy (3.13)

ď

ż

K0ˆK0

Er|δαhUpxqδαhUpyq|psdxdy (3.14)

ď E
„ˆ

ż

K0

|δαhUpxq|pdx

˙2ȷ

“ Er||δαhU ||p{2
p s (3.15)

ď Er||U ||
p{2
Wm,ppDq

s “: Cp ă `8 (3.16)

The expectation in equation (3.16) is indeed finite because of the following. Given |α| ď m,
equation (3.7) shows that the map ω ÞÑ ||BαUω||p is the supremum of a Gaussian sequence which
is finite a.s. by assumption; Lemma 2.6 then implies that all the moments of this supremum are
finite. Writing then ||U ||Wm,p in terms of these Lp norms yields equation (3.16). To see that the
control (3.16) implies that Bα,αk P LppD ˆ Dq, we copy the steps of equations (6.2)-(6.3)-(6.4)
in the proof of Lemma 2.1. Let φ P C8

c pDˆDq. Since it is compactly supported in DˆD, find
an open set D0 Ť D such that Supppφq Ă D0. Use Hölder’s inequality and equation (3.16):

ˇ

ˇ

ˇ

ˇ

ż

DˆD
pδαh b δαh qkpx, yqφpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

ď ||pδαh b δαh qk||p||φ||q ď C||φ||q (3.17)

Next, use the discrete integration by parts formula:
ż

DˆD
pδαh b δαh qkpx, yqφpx, yqdxdy “

ż

D
kpx, yqpδαh b δαh q˚φpx, yqdxdy (3.18)

14



When h Ñ 0, observe that pδαh b δαh q˚φpx, yq Ñ Bα,αφpx, yq pointwise. Use Lebesgue’s domi-
nated convergence theorem and equation (3.17) to obtain

ˇ

ˇ

ˇ

ˇ

ż

DˆD
kpx, yqBα,αφpx, yqdxdy

ˇ

ˇ

ˇ

ˇ

ď C||φ||q (3.19)

which indeed shows that Bα,αk P LppD ˆ Dq, from Riesz’ lemma. We now identify Kα, the
covariance operator of µα, in terms of Bα,αk. Let f, g P LqpDq and using the density of C8

c pDq

in LqpDq ( [34], Corollary 2.30), let pfnq, pgnq Ă C8
c pDq be two sequences such that fn Ñ f in

LqpDq and likewise for gn and g. Then (explanation below),

xf,KαgyLq,Lp “ lim
nÑ8

xfn,KαgnyLq,Lp (3.20)

“ lim
nÑ8

ż

LppDq

xfn, hyLq,Lpxgn, hyLq,Lpdµαphq

“ lim
nÑ8

ż

Ω

xfn, B
αUωyLq,Lpxgn, B

αUωyLq,LpdPpωq (3.21)

“ lim
nÑ8

ż

Ω

xBαfn, UωyLq,LpxBαgn, UωyLq,LpdPpωq

“ lim
nÑ8

ż

DˆD
BαfnpxqBαgnpyqkpx, yqdxdy (3.22)

“ lim
nÑ8

ż

DˆD
fnpxqgnpyqBα,αkpx, yqdxdy

“

ż

DˆD
fpxqgpyqBα,αkpx, yqdxdy “ xf, Eαk gyLq,Lp (3.23)

We used the sequential continuity ofKα in equation (3.20), the transfer theorem for pushforward
measure integration ( [5], Theorem 3.6.1) in equation (3.21) and Fubini’s theorem in equation
(3.22). According to Proposition 2.9, since µα is a Gaussian measure over LppDq, there exists a
representer kα of Bα,αk in LppDˆDq which is the covariance function of a measurable Gaussian
process. Note σαpxq “ kαpx, xq1{2. Then the same proposition shows that

ż

D
σαpxqpdx ă `8 (3.24)

which shows piiq. By Proposition 3.5.11 from [4], Eαk is nuclear and admits a symmetric non-
negative representation as the one in equation (3.4). if 1 ď p ď 2, then LppDq is of cotype 2
and since Eαk is a Gaussian covariance operator, from Proposition 2.8 there exists a bounded
operator Aα : L2pDq Ñ LppDq and a trace class operator Sα : L2pDq Ñ L2pDq such that
Eαk “ AαSαA

˚
α (l2 and L2pDq are isomorphic Hilbert spaces). Introduce a Mercer decomposi-

tion of Sα (equation (2.22)): Sα “
ř

n λ
α
nϕ

α
n b ϕαn. Use the continuity of Aα and A˚

α to obtain
that Bα,αkpx, yq “

ř

n λ
α
npAαϕ

α
nqpxqpAαϕ

α
nqpyq in LppD ˆ Dq, which yields piiiq.

piiq ùñ piq : from Proposition 2.9, let pV αq be a centered measurable Gaussian process with
covariance function kα. Then its sample paths lie in LppDq a.s. and the Gaussian measure it
induces over LppDq through the map ω ÞÑ V αω P LppDq is the centered Gaussian measure with
covariance operator Eαk . Given φ P C8

c pDq, denote V αφ the following random variable

ω ÞÑ

ż

D
V αω pxqφpxqdx (3.25)
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From Lemma 2.5, pV αφ qφPFq
is a Gaussian sequence. It is also centered and using Fubini’s

theorem to permute E and
ş

, we have that

ErV αφ V
α
ψ s “

ż

DˆD
φpyqψpxqkαpx, yqdxdy “

ż

DˆD
φpyqψpxqBα,αkpx, yqdxdy

“

ż

DˆD
BαφpyqBαψpxqkpx, yqdxdy (3.26)

ErUαφU
α
ψ s “

ż

DˆD
BαφpyqBαψpxqkpx, yqdxdy (3.27)

Having the same mean and covariance, the two Gaussian sequences pV αφ qφPFq and pUαφ qφPFq

have the same finite dimensional marginals. One checks in an elementary fashion that their
countable supremums over Fq then have the same law (e.g. by showing that they have the same
cumulative distribution function). Recalling from Lemma 2.4 that ||V αω ||p “ supφPFq

|V αφ pωq|,
we obtain that

1 “ Pp||V αω ||p ă `8q “ Pp sup
φPFq

|V αφ | ă `8q “ Pp sup
φPFq

|Uαφ | ă `8q (3.28)

which shows that BαU P LppDq almost surely. This is true for all |α| ď m, which shows piq.
piiiq ùñ piiq : if piiiq, then from either Proposition 2.7 or 2.8 depending on whether p ď 2 or
p ě 2, there exists a Gaussian measure over LppDq whose covariance operator is Eαk as defined
in equation (3.2). Proposition 2.9 yields piiq.

The following proposition deals with the issues raised in Remark 3.2 (asymmetry between
Points piiq and piiiq of Proposition 3.1). We recall that the nuclear norm νpT q of a nuclear
operator T is defined in equation (2.27). Contrarily to Proposition 3.1, we do not exclude p “ 1.

Proposition 3.5. Let µ be a centered Gaussian measure over LppDq, where 1 ď p ă `8.
Let k P LppD ˆ Dq be the kernel of its covariance operator pKµ “ Ekq, chosen such that k is
also the covariance function of the measurable Gaussian process provided by Proposition 2.9.
Define σpxq “ kpx, xq1{2 and set Cp “ 2p{2Γp

p`1
2 q{

?
π p“ Er|X|ps where X „ N p0, 1qq. Then

the following holds.

• if 2 ď p ă `8, then Ek is nuclear and

C
´ 2

p
p νpEkq ď ||σ||2p ď νpEkq (3.29)

• if 1 ď p ď 2, there exists a nuclear operator S over L2pDq and a bounded operator A :
L2pDq Ñ LppDq such that Ek “ ASA˚. Moreover,

νpEkq ď inf
A,S s.t.

Ek“ASA˚

||A||2νpSq ď ||σ||2p ď C
´ 2

p
p inf

A,S s.t.
Ek“ASA˚

||A||2νpSq (3.30)

• if p “ 2 then ||σ||22 “ νpEkq “ TrpEkq.

It is expected that the nuclear norm of Ek cannot directly appear on the right hand side of
equation (3.30), as not all nuclear operators are Gaussian covariance operators when 1 ď p ă 2.
This proposition in fact suggests that for general Banach spaces X of cotype 2, the following
map defined over the set of Gaussian covariance operators B : X˚ Ñ X,

B ÞÑ inf
A,S s.t.
B“ASA˚

||A||2νpSq (3.31)
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is the natural measurement of the ”size” of such operators. When X is of type 2, this would
be the case for the nuclear norm B ÞÑ νpBq.

Remark 3.6. Proposition 3.5 is interesting from an application point of view because it strongly
suggests that the operator norms appearing in this proposition, as well as the Lp norm of the
standard deviation function σ, are the correct quantities for quantitatively controlling the Lp

norm of the sample paths of the underlying Gaussian process. For instance, we have the fol-
lowing Lp control in expectation: Er||U ||pps “ Cp||σ||pp (see equation (3.37)). Applying this fact
recursively, we obtain that the Wm,p-Sobolev norm of the sample paths of the Gaussian pro-
cess in question is controlled as follow, denoting σαpxq “ Bα,αkpx, xq1{2 (temporarily discarding
definition and measurability issues w.r.t. σα)

E
“

||U ||
p
Wm,p

‰

“ Cp
ÿ

|α|ďm

||σα||pp (3.32)

If such a control cannot be obtained, then it means that the sample paths of U do not lie in
Wm,ppDq in the first place. Additional ”sharp” controls can then be obtained from equation
(3.32) using Proposition 3.5 and other elementary inequalities involving the expectation. Fi-

nally, we have the following asymptotic behaviour of the constant when p Ñ `8 : C
´2{p
p „

expp1q{pp´ 1q.

Proof. (Proposition 3.5) Suppose first that p ě 2. Let k “
ř

n µnψn b ϕn, µn ě 0, be a nuclear
representation of k (rather, Ek), with ||ψn||p “ ||ϕn||p “ 1 and S :“

ř

n |µn| ă `8. Then, using
the discrete Jensen’s inequality on the weights |µn|{S and the function x ÞÑ |x|p{2 (p{2 ě 1)

||σ||pp “

ż

D
σpxqpdx “

ż

D

ˆ `8
ÿ

n“0

µnψnpxqϕnpxq

˙p{2

dx (3.33)

“ Sp{2

ż

D

ˆ `8
ÿ

n“0

|µn|

S

µn
|µn|

ψnpxqϕnpxq

˙p{2

dx (3.34)

ď Sp{2

ż

D

`8
ÿ

n“0

|µn|

S

ˇ

ˇ

ˇ

ˇ

µn
|µn|

ˇ

ˇ

ˇ

ˇ

p{2

|ψnpxq|p{2|ϕnpxq|p{2dx “ Sp{2´1
`8
ÿ

n“0

|µn| ˆ ||ψnϕn||
p{2
p{2 (3.35)

ď Sp{2´1
`8
ÿ

n“0

|µn| ˆ ||ψn||p{2
p ||ϕn||p{2

p “ Sp{2´1
`8
ÿ

n“0

|µn| “ Sp{2 (3.36)

We used the Cauchy-Schwarz inequality on ||ψnϕn||
p{2
p{2 in equation (3.36). Since equation (3.36)

holds whatever the nuclear decomposition of k, taking the infimum over S in equation (3.36)
yields ||σ||p ď νpEkq1{2. Conversely, consider the measurable Gaussian process pUpxqqxPD
provided by Proposition 2.9 with covariance function k. Fubini’s theorem yields

Er||U ||pps “ E
„

ż

D
|Upxq|pdx

ȷ

“

ż

D
Er|Upxq|psdx “

ż

D
Cpσpxqpdx “ Cp||σ||pp (3.37)

where Cp “ 2p{2Γp
p`1
2 q{

?
π. Indeed, given X „ N p0, σ2q, then Er|X|ps “ Cpσ

p. Moreover,
introduce µ “ PU the Gaussian measure over LppDq induced by U , whose covariance operator
is Ek (see Proposition 2.9). We successively use the transfer theorem for pushforward mea-
sure integration, Jensen’s inequality for probability measures pp{2 ą 1q and the nuclear norm

17



estimate from [28], Theorem 3:

Er||U ||pps “

ż

Ω

||Uω||ppPpdωq “

ż

LppDq

||f ||ppµpdfq “

ż

LppDq

||f ||2ˆp{2
p µpdfq (3.38)

ě

ˆ
ż

LppDq

||f ||2pµpdfq

˙p{2

ě νpEkqp{2 (3.39)

To conclude, when 2 ď p ă `8,

C
´ 1

p
p

a

νpEkq ď ||σ||p ď
a

νpEkq (3.40)

Suppose now that 1 ď p ă 2. Let µ0 be a Gaussian measure on L2pDq and A : L2pDq Ñ LppDq

a bounded operator such that µ “ µ0A (pushforward of µ0 through A) and S the trace class
covariance operator associated to µ0 (see Proposition 2.8). pUpxqqxPD remains the Gaussian
process of Proposition 2.9 and we have µ “ PU . Then (explanation below),

Cp||σ||pp “ Er||U ||pps “

ż

Ω

||Uω||ppPpdωq “

ż

LppDq

||f ||ppµpdfq (3.41)

“

ż

L2pDq

||Ag||ppµ0pdgq ď ||A||p
ż

L2pDq

||g||
p
2µ0pdgq (3.42)

ď ||A||p
ż

L2pDq

xg, gy
p{2
L2 µ0pdgq ď ||A||p

ˆ
ż

L2pDq

xg, gyL2µ0pdgq

˙p{2

(3.43)

ď ||A||p TrpSqp{2 “ ||A||pνpSqp{2 (3.44)

In equation (3.41), we used equation (3.37) and pushforward integration to write the integral
w.r.t. P as an integral w.r.t. µ “ PU . Likewise in equation (3.42) where we write the integral
w.r.t. µ as an integral w.r.t. µ0 using the pushforward identity µ “ µ0A. In equation (3.43), we
used Jensen’s inequality for concave functions (0 ă p{2 ă 1). In equation (3.44), we used the
trace identity from [4], equation 2.3.2 and the one following p. 49. Equation (3.44) then yields

||σ||p ď C
´1{p
p ||A||νpSq1{2. In the last equation, taking the infimum over all representations

Ek “ ASA˚ yields:

||σ||p ď C
´ 1

p
p inf

A,S s.t.
Ek“ASA˚

||A||
a

νpSq (3.45)

To prove the other inequality, we use an explicit decomposition Ek “ ASA˚ by first setting

Afpxq “ fpxqσpxq1´p{2 (3.46)

Use Hölder’s inequality with a “ 2{p, 1{a` 1{b “ 1 (notice that a ą 1)

||Af ||pp “

ż

D
|fpxq|pσpxqpp1´p{2qdx (3.47)

ď

ˆ
ż

D
|fpxq|2dx

˙p{2ˆ
ż

D
σpxqbpp1´p{2qdx

˙1{b

(3.48)

But b “ a
a´1 “

2{p
2{p´1 “ 1

1´p{2 and bp1 ´ p{2q “ 1, which together with equation (3.47) yields

||Af ||pp ď ||f ||
p
2||σ||pp1´p{2q

p (3.49)
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Thus A : L2pDq Ñ LppDq is bounded and ||A|| ď ||σ||
1´p{2
p . One also verifies that A˚ :

LqpDq Ñ L2pDq is given by A˚fpxq “ fpxqσpxq1´p{2, with ||A|| “ ||A˚||. Define the measurable
function k0px, yq :“ kpx, yqσpxqp{2´1σpyqp{2´1, and σ0pxq “ k0px, xq1{2. It is positive definite
and measurable positive on the diagonal. It verifies

||σ0||22 “

ż

D
σ0pxq2dx “

ż

D
k0px, xqdx “

ż

D
σpxqpdx “ ||σ||pp ă `8 (3.50)

Therefore Ek0 , the integral operator over L2pDq associated to k0, is trace class (Proposition
3.1piiq). Observing that k “ pA b Aqk0 also yields that Ek “ AEk0A˚. Thus, from the nuclear
norm estimate of [41], Proposition 47.1 pp. 479-480,

νpEkq “ νpAEk0A˚q ď ||A||νpEk0q||A˚|| ď ||A||2νpEk0q ď ||σ||2´p
p ||σ||pp “ ||σ||2p (3.51)

Therefore,

νpEkq ď inf
A,S s.t.

Ek“ASA˚

||A||2νpSq ď ||σ||2p (3.52)

To finish, note that C2 “ 1: therefore, when p “ 2 in equation (3.40), we recover the fact that
||σ||22 “

ş

D kpx, xqdx “ νpEkq “ TrpEkq.

4 Sobolev regularity for Gaussian processes : the Hilbert
space case, p “ 2

In the case p “ 2, we provide an alternative proof of the integral and spectral criteria of
Proposition 3.1, based on the study of the ”ellipsoids” of Hilbert spaces (see Section 4.2).
These geometrical objects are well understood in relation with Gaussian processes (see [18]
or [40], Section 2.5). Compared with the general case p P p1,`8q, we draw additional links
between the different Mercer decompositions of the kernels Bα,αk, the trace of Eαk and the
Hilbert-Schmidt nature of the imbedding of the reproducing kernel Hilbert space (see Section
4.1 below) associated to k in HmpDq.

4.1 Reproducing Kernel Hilbert Spaces (RKHS, [3])

Consider a general set D and a positive definite function k : D ˆ D Ñ R, i.e. such that given
any n P N and px1, ..., xnq P Dn, the matrix pkpxi, xjqq1ďi,jďn is non negative definite. One
can then build a Hilbert space Hk of functions defined over D which contains the functions
kpx, ¨q, x P D and verifies the reproducing identities

xkpx, ¨q, kpx1, ¨qyHk
“ kpx, x1q @x, x1 P D (4.1)

xkpx, ¨q, fyHk
“ fpxq @x P D, @f P Hk (4.2)

Hk is the RKHS of k. This space is exactly the set of functions of the form fpxq “
ř`8

i“1 aikpxi, xq

such that ||f ||2Hk
“

ř`8

i,j“1 aiajkpxi, xjq ă `8. If for all x P D, kpx, ¨q is measurable, then Hk

only contains measurable functions. One may then consider imbedding Hk in some Sobolev
space HmpDq. Recall that in HmpDq, functions are equal up to a set of Lebesgue measure zero.
If such an imbedding i : Hk Ñ HmpDq is well-defined (i.e. if f P Hk then its weak derivatives
Bαf exist and lie in L2pDq for all |α| ď m), we will sometimes use the same notation for f P Hk

and its equivalence class f P HmpDq; strictly speaking, the latter should be denoted ipfq. It
may then happen that i is not injective, as with the RKHS associated to the Kronecker delta
kpx, x1q “ δx,x1 (in this case, we even have ipHkq “ t0uq.
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Remark 4.1. In Proposition 4.4, we will be interested in the Hilbert-Schmidt nature of the
imbedding i. However, it may happen that Hk is not separable, such as with the RKHS
associated to the Kronecker delta δx,x1 . This results in additional care required for defining the
notion of Hilbert Schmidt operators, as the definition from Section 2.4 cannot hold. Still, this
case is dealt with in Proposition 4.4pivq. See [31] and [4], Remark 3.2.9 p. 103 for discussions
on non separable RKHS.

4.2 Ellipsoids of Hilbert spaces and canonical Gaussian processes [18]

Let pH; x, yHq be a separable Hilbert space. We introduce pVxqxPH the canonical Gaussian
process of H, defined as the centered Gaussian process whose covariance function is the inner
product of H :

ErVxVys “ xx, yyH (4.3)

A subset K of H is said to be Gaussian bounded (GB) if

Ppsup
xPK

|Vx| ă `8q “ 1 (4.4)

The GB property was first introduced for studying the compact sets of Hilbert spaces, see [18] on
that topic. In equation (4.4), the random variable is defined as supxPK |Vx| :“ supxPA |Vx| where
A is any countable subset of K, dense in K. Different choices of A only modify supxPK |Vx| on
a set of probability 0 ( [18], p. 291), which leaves equation (4.3) unchanged. We will use the
two following results below, taken from [18].

Proposition 4.2 ( [18], p. 293 and [18], Proposition 3.4). We have the two following facts.

(i) If K is a GB-set, then its closed, convex, symmetric hull is a GB-set.

(ii) The closure of a GB-set is compact.

Given a self-adjoint compact operator T : H Ñ H, introduce a basis of eigenvectors xn and
its real, positive eigenvalues λn, λn Ñ 0. The image of the closed unit ball of H, B “ BHp0, 1q

is the following ”ellipsoid” ( [18], p. 312)

T pBq “

"

ÿ

λną0

anxn s.t.
ÿ

λną0

a2n{λ2n ď 1

*

(4.5)

The main result we will use is the following.

Proposition 4.3 ( [18], Proposition 6.3). Suppose that T is compact and self-adjoint. Then
T pBq is a GB-set if and only if

ř

nPN λ
2
n ă 8, i.e. T pBq is a ”Schmidt ellipsoid”.

We can now state our result pertaining to the HmpDq-regularity of Gaussian processes,
given an arbitrary open set D Ă Rd.

Proposition 4.4 (Sample path Hilbert-Sobolev regularity for Gaussian processes). Let D Ă Rd
be an open set. Let pUpxqqxPD „ GP p0, kq be a measurable centered Gaussian process, defined
on a probability set pΩ,F ,Pq, such that its standard deviation function σ lies in L1

locpDq. The
following statements are equivalent:

(i) (Sample path regularity) The sample paths of U lie in HmpDq almost surely.
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(ii) (Spectral structure) For all |α| ď m, the distributional derivative Bα,αk lies in L2pD ˆ Dq

and the associated integral operator

Eαk fpxq “

ż

D
Bα,αkpx, yqfpyqdy (4.6)

is trace class. Equivalently, there exists a representer kα of Bα,αk in L2pD ˆ Dq which is
the covariance function of a measurable Gaussian process. Note σαpxq :“ kαpx, xq1{2, then
additionally

ż

D
kαpx, xqdx ă `8 (4.7)

(iii) (Mercer decomposition) The kernel k has the following Mercer decomposition

kpx, yq “

`8
ÿ

n“0

λnϕnpxqϕnpyq in L2pD ˆ Dq (4.8)

where pλnq is a non negative sequence and pϕnq is an orthonormal basis of L2pDq. Moreover,
for all n P N such that λn ‰ 0, Bαϕn P L2pDq, Bα,αk P L2pD ˆ Dq, the following equalities hold

$

’

’

’

’

&

’

’

’

’

%

TrpEαk q “

`8
ÿ

n“0

λn||Bαϕn||22 ă `8 (4.9)

Bα,αkpx, yq “

`8
ÿ

n“0

λnBαϕnpxqBαϕnpyq in L2pD ˆ Dq (4.10)

(iv) (imbedding of the RKHS) Hk Ă HmpDq, the corresponding natural imbedding i : Hk Ñ

HmpDq is continuous and ii˚ : HmpDq Ñ HmpDq is trace class. Equivalently, kerpiqK endowed
with the topology of Hk is a separable Hilbert space and i| kerpiqK : kerpiqK Ñ HmpDq is Hilbert-
Schmidt. Moreover,

Trpii˚q “
ÿ

|α|ďm

TrpEαk q (4.11)

Before proving this result, we discuss Proposition 4.4 in relation with previous results from
the literature. First, point pivq is not without reminding Driscoll’s theorem ( [25], Theorem
4.9) which is widely spread in the machine learning/RKHS community; this theorem states the
following. Let k and r be two positive definite functions defined over D, and let U „ GP p0, kq.
Suppose that Hk Ă Hr with a Hilbert-Schmidt imbedding, then the sample paths of U lie in
Hr almost surely.

Second, Proposition 4.4 and equation (4.7) in particular, is a generalization of Theorem
1 from [37] in the case of Gaussian processes; By removing the assumption in [37] that the
covariance function be continuous on its diagonal as well as its symmetric cross derivatives,
the sufficient condition found in [37] becomes also necessary. Finally, Proposition 4.4 shows
that if p “ 2, then in the nuclear decomposition of Eαk (see Proposition 3.1piiiqq one can choose
λαn “ λn and ψαn “ Bαψn. It is not obvious that this should hold when p ‰ 2.

Example 4.5 (Hilbert-Schmidt imbeddings of Sobolev spaces). Proposition 4.4 can be com-
pared with the results found in [39] and its Corollary 4.5 in particular. This corollary states
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that if D Ă Rd is sufficiently smooth, if Hk Ă HtpDq with a continuous imbedding and if
t ą d{2, then the sample paths of the centered Gaussian process with covariance function k lie
in HmpDq for all real number m P r0, t ´ d{2q. For example, this is the case if k is a Matérn
covariance function of order t´ d{2; its RKHs is then exactly HtpDq ( [39], Example 4.8).

In the particular case where in addition m is an integer, we recover this result from Propo-
sition 4.4. Indeed, it is known that when m P p0, t ´ d{2q, the imbedding of HtpDq in HmpDq

is Hilbert-Schmidt. When the involved indexes are non negative integers, this is known as
Maurin’s theorem ( [34], Theorem 6.61, p. 202). Maurin’s theorem is generalized to frac-
tional indices in [42], Folgerung 1 p. 310 (in German) or [27], Proposition 7.1 (in French). if
Hk Ă HtpDq with a continuous imbedding, then the inclusion map of Hk in HmpDq is Hilbert-
Schmidt for all m P r0, t ´ d{2q X N0. From Proposition 4.4, we obtain that the sample paths
of the corresponding Gaussian process indeed lie in HmpDq.

However, not all RKHS that are subspaces of HmpDq with a Hilbert-Schmidt imbedding
are contained in some HtpDq with t ą m ` d{2, as the following trivial example shows. Fix
any ε ą 0 and consider the rank one kernel kpx, x1q “ fpxqfpx1q where f is chosen such that
f P HmpDq and f R Hm`εpDq (choose once and for all a representer of f in L2pDq so that f
is a function in the classical sense). Then Hk “ Spanpfq and the imbedding of Hk in HmpDq

is Hilbert-Schmidt since it is rank one; but Hk Ć Hm`εpDq. Proposition 4.4 yields that the
associated trivial Gaussian process Upxqpωq “ ξpωqfpxq where ξ „ N p0, 1q has its sample paths
in HmpDq (it was obvious in the first place).

Example 4.6 (One dimensional case). We build a covariance function which is not pointwise
differentiable at any pq, q1q P Q ˆ Q, and such that the corresponding Gaussian process has its
sample paths in H1pRq. Let hapxq :“ maxp0, 1 ´ |x ´ a|q be the hat function centered around
a P R. It lies in H1pRq but it is not differentiable at x “ a, a ´ 1 and a ` 1. Let pqnq be an
enumeration of Q. Then the following positive definite function over R

kpx, x1q :“
`8
ÿ

n“0

1

2n
hqnpxqhqnpx1q (4.12)

is not differentiable in the classical sense at each point px, x1q of the form pqn, qmq, but the
map ii˚, with i : Hk Ñ H1pRq the canonical imbedding, is trace-class (use equations (4.9) and
(4.11)):

Trpii˚q “ TrpEkq ` TrpE1
kq (4.13)

ď

`8
ÿ

n“0

1

2n
||hqn ||22 `

`8
ÿ

n“0

1

2n
||h1

qn ||22 (4.14)

ď

`8
ÿ

n“0

1

2n
`

`8
ÿ

n“0

1

2n
ˆ 22 “ 10 (4.15)

Before proving Proposition 4.4, we shall require a number of lemmas concerning the Mercer
decomposition of Hilbert-Schmidt operators over L2pDq. They are proved in Section 6.

Lemma 4.7. Let k be a measurable positive definite function defined on an open set D. Suppose
that σ P L1

locpDq. Then k P L1
locpD ˆ Dq. Given a multi-index α, its distributional derivative

Dα,αk exists and we can introduce the associated continuous bilinear form over C8
c pDq

bαpφ,ψq :“ Dα,αkpφb ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy (4.16)
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Suppose that it verifies the estimate

@φ,ψ P E2, |bαpφ,ψq| ď Cα||φ||2||ψ||2 (4.17)

where E2 is the set given in Lemma 2.2. Then bα can be extended to a continuous bilinear form
over L2pDq and there exists a unique bounded, self-adjoint and positive operator Eαk : L2pDq ÝÑ

L2pDq such that

@φ,ψ P C8
c pDq, bαpφ,ψq “ xEαk φ,ψyL2pDq (4.18)

Lemma 4.8. Let k P L2pD ˆ Dq be a be a positive definite function and α a multi-index.
Suppose that the weak derivative Bα,αk exists and lies in L2pD ˆ Dq. Then the associated
Hilbert-Schmidt integral operator defined on L2pDq

pEαk fqpxq “

ż

D
Bα,αkpx, yqfpyqdy (4.19)

is self-adjoint and positive.

Lemma 4.9. Let k P L2pDˆDq be a positive definite function and Ek be its associated Hilbert-
Schmidt operator. Let

kpx, yq “

`8
ÿ

i“1

λiϕipxqϕipyq (4.20)

be a symmetric, positive expansion of k in L2pDˆDq where pλiq is a positive sequence decreasing
to 0; it may or may not be its Mercer expansion (i.e. pϕiq may or may not be an orthonormal
basis of L2pDq; they are still assumed to be elements of L2pDq though). Then

(i) if the partial mixed weak derivative Bα,αk exists and lies in L2pD ˆ Dq, then for all i P N
such that λi ‰ 0, Bαϕi P L2pDq.

(ii) if for all i P N such that λi ‰ 0, Bαϕi P L2pDq, then

TrpEαk q “

`8
ÿ

i“1

λi||B
αϕi||

2
L2pDq (4.21)

whether these quantities are finite or not. If in equation (4.21), either one of them is finite,
then the series of functions

ř

iPN λiB
αϕipxqBαϕipyq is norm convergent in L2pD ˆ Dq (i.e.

ř

iPN λi||B
αϕi b Bαϕi||L2 ă `8), Bα,αk lies in L2pD ˆ Dq and we have the following equality:

Bα,αkpx, yq “

`8
ÿ

i“1

λiB
αϕipxqBαϕipyq in L2pD ˆ Dq (4.22)

Equation (4.22) then holds for asymmetric derivatives, as for all |α|, |β| ď m, we also have
ř

iPN λi||B
βϕi b Bαϕi||L2 ă `8.

We can now prove Proposition 4.4.

Proof. (Proposition 4.4) We successively prove piiq ùñ piq, piq ùñ piiq, piiq ðñ piiiq,
piiiq ùñ pivq and pivq ùñ piiiq.
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Before all things, the assumptions and Lemma 2.5 show that the sample paths of U lie in
L1
locpDq, that the random variable given by the formula

Uαφ : Ω Q ω ÞÝÑ p´1q|α|

ż

D
UpxqpωqBαφpxqdx (4.23)

is well defined and that pUαφ qφPF2
is a Gaussian sequence.

piiq ùñ piq : From Lemma 4.8, Eαk is a self-adjoint, positive Hilbert-Schmidt operator; it is

actually trace-class by assumption. We can thus define Aα :“
a

Eαk , which is a Hilbert-Schmidt,
self-adjoint, positive operator. From Proposition 4.3, AαpBq is a GB-set (B is the closed unit
ball of L2pDq). Therefore, using the canonical Gaussian process of L2pDq,

Pp sup
ψPAαpBq

|Vψ| ă `8q “ 1 (4.24)

which yields in particular that

Pp sup
φPF2

|VAαpφq| ă `8q “ 1 (4.25)

We now observe that the two Gaussian sequences pVAαpφqqφPF2
and pUαφ qφPF2

have the same
finite dimensional marginals. Indeed, they are both centered Gaussian sequences with the same
covariance:

ErVAαpφqVAαpψqs “ xAαpφq, AαpψqyL2 “ xA2
αpφq, ψyL2 “ xEαk φ,ψyL2 (4.26)

ErUαφU
α
ψ s “ E

„
ż

D
UpxqBαφpxqdx

ż

D
UpyqBαψpyqdy

ȷ

“

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy

“

ż

DˆD
Bα,αkpx, yqφpxqψpyqdxdy “ xEαk φ,ψyL2 (4.27)

As in the proof of Proposition 3.1, we deduce that the two random variables supφPF2
|Uαφ | and

supφPF2
|VAαpφq| have the same law, and from equation (4.25), we obtain that

Pp sup
φPF2

|Uαφ | ă `8q “ Pp sup
φPF2

|VAαpφq| ă `8q “ 1 (4.28)

Since equation (4.28) holds for all |α| ď m, this provides a set of probability 1 on which all the
sample paths of U lie in HmpDq, which proves piq.
piq ùñ piiq : From Lemma 2.4 and the assumption from piq,

Pp sup
φPF2

|Uαφ | ă `8q “ 1 (4.29)

From Proposition 2.6, we have that

Cα :“ E
“

sup
φPF2

|Uαφ |2
‰

ă `8 (4.30)

Introduce bα, the continuous bilinear form over C8
c pDq given by

bαpφ,ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy (4.31)
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Consider now φ and ψ in F2. Then,

|bαpφ,ψq| “

ˇ

ˇ

ˇ

ˇ

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy

ˇ

ˇ

ˇ

ˇ

“ |ErUαφU
α
ψ s|

ď Er|Uαφ0
Uαψ0

|s ď
1

2
E

“

pUαφ0
q2 ` pUαψ0

q2
‰

ď E
“

sup
φ0PF

pUαφ0
q2

‰

“ Cα (4.32)

From Lemma 4.7, bα can be extended to a continuous bilinear form over L2pDq and there exists
a unique bounded, self-adjoint and positive operator Eαk which verifies

@φ,ψ P C8
c pDq,

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy “ bαpφ,ψq “ xEαk φ,ψyL2 (4.33)

Since Eαk is self-adjoint and positive, we can introduce its square root Aα :“
a

Eαk , which is also
a bounded, self-adjoint and positive operator. As before, we can introduce pVAαpφqqφPF2

and
observe that pVAαpφqqφPF2

and pUαφ qφPF2
have the same law. Thus,

Pp sup
φPF2

|VAαpφq| ă `8q “ Pp sup
φPF2

|Uαφ | ă `8q “ 1 (4.34)

Therefore, AαpF2q is a GB-set. From Proposition 4.2(ii), ConvpAαpF2qq is compact. One then
checks by elementary considerations that ConvpAαpF2qq “ AαpBq, where B is the unit ball
of L2pDq. This shows that Aα is a compact operator. But from Proposition 4.2(i), AαpBq “

ConvpAαpF2qq is also a GB-set. From Proposition 4.3, Aα is Hilbert-Schmidt and Eαk is trace-
class. In particular, Eαk is a Hilbert-Schmidt operator with a kernel kα that lies in L2pD ˆ Dq:

@φ,ψ P C8
c pDq, Dα,αkpφb ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy (4.35)

“

ż

DˆD
kαpx, yqφpxqψpyqdxdy “ Tkαpφb ψq (4.36)

Equation (4.36) shows that the distributional derivative Dα,αk and the regular distribution Tkα
coincide on the set DpDq b DpDq. From the Schwartz kernel theorem ( [41], Theorem 51.7),
Dα,αk “ Tkα in D 1pD ˆ Dq, which shows that Bα,αk exists in L2pD ˆ Dq and that Bα,αk “ kα.
For the existence of a representer kα with the desired properties, we refer to the previous
Proposition 3.1. This finishes to prove piiq.
piiq ðñ piiiq: this equivalence is fully given by Lemma 4.9.
piiiq ùñ pivq: we first study how finite difference operators behave on elements of Hk in order
to use Lemma 2.1piiiq. First, using the reproducing formula (4.2), observe that for suitable x
and h P D,

∆hfpxq “ fpx` hq ´ fpxq “ xf, kpx` h, ¨q ´ kpx, ¨qyHk
“ xf,∆hkpx, ¨qyHk

(4.37)

More generally, for any finite difference operator ∆h of order l ď m, h “ ph1, ..., hlq and any
open set D0 Ť D such that

ř

i |hi| ă distpD0, BDq,

∆hfpxq “ xf,∆hkpx, ¨qyHk
(4.38)

The Cauchy-Schwarz inequality in Hk yields

∆hfpxq2 ď ||f ||2Hk
||∆hkpx, ¨q||2Hk

(4.39)
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Furthermore, using the bilinearity of x, ¨, ¨yHk
, we have that

||∆hkpx, ¨q||2Hk
“ rp∆h b ∆hqkspx, xq (4.40)

We then deduce that (explanation below)

@f P Hk, ||∆hf ||2L2pD0q “

ż

D0

`

∆hf
˘

pxq2dx ď ||f ||2Hk

ż

D0

rp∆h b ∆hqkspx, xqdx (4.41)

ď ||f ||2Hk

`8
ÿ

i“1

λi

ż

D0

p∆hϕiqpxq2dx (4.42)

ď ||f ||2Hk

`8
ÿ

i“1

λi

´

||ϕi||
2
Hm |h1|2 ¨ ¨ ¨ |hl|

2
¯

(4.43)

ď ||f ||2Hk

ˆ

ÿ

|α|ďm

TrpEαk q

˙

`

|h1|2 ¨ ¨ ¨ |hl|
2
˘

(4.44)

We used equations (4.39) and (4.40) to obtain equation (4.41). In equation (4.42), we dis-
tributed ∆h b ∆h on the Mercer decomposition of k (which exists by the assumption piiiq).
In equation (4.43), we used the fact that ϕi P HmpDq (see Lemma 4.9piq) conjointly with the
finite difference control of Lemma 2.1piiiq. In equation (4.44), the we used the trace equality
from Lemma 4.9piiq. From equation (4.44) and Lemma 2.1piiiq again, we obtain that f lies in
HmpDq. Consider now any open set D0 Ť D. Equation (4.44) applied to δαh , the finite difference
approximation of Bα from equation (2.6) with suitably chosen h “ ph1, ..., hlq P pR˚

`qd, yields
that

@f P Hk, ||δαhf ||2L2pD0q ď ||f ||2Hk

ˆ

ÿ

|α|ďm

TrpEαk q

˙

(4.45)

From Lemma 2.1piiiq, we then obtain that

@f P Hk, ||Bαf ||2L2pDq ď ||f ||2Hk

ˆ

ÿ

|α|ďm

TrpEαk q

˙

(4.46)

Summing the inequality (4.46) for all |α| ď m, we obtain that

||f ||Hm ď C||f ||Hk
(4.47)

with C “
`

N
ř

|α|ďm TrpEαk q
˘1{2

and N is the number of indexes α such that |α| ď m. Therefore

Hk Ă HmpDq and the corresponding imbedding i : Hk Ñ HmpDq is continuous. Using the
reproducing formula (4.2), its transpose i˚ : HmpDq Ñ Hk is given by

i˚pfqpxq “ xi˚pfq, kxyHk
“ xf, ipkxqyHm “

ÿ

|α|ďm

ż

D
Bαy kpx, yqBαfpyqdy (4.48)

Above, Bαy denotes differentation w.r.t. the y coordinate (note that i˚pfq is indeed defined
pointwise, since i˚pfq P Hk). Let pψjq be an orthonormal basis of HmpDq and k “

ř

i λiψibψi
be the Mercer decomposition of k provided by the assumption piiiq. The trace of the positive

26



self-adjoint operator ii˚ is given by (explanation below)

Trpii˚q “
ÿ

j

xψj , ii
˚pψjqyHm “

ÿ

j

ÿ

|β|ďm

xBβψj , B
βii˚pψjqyL2

“
ÿ

j

ÿ

|β|ďm

ż

D
BβψjpxqBβii˚pψjqpxqdx

“
ÿ

j

ÿ

|β|ďm

ż

D
BβψjpxqBβx

ÿ

|α|ďm

ż

D
Bαy kpx, yqBαψjpyqdydx (4.49)

“
ÿ

j

ÿ

i

λi
ÿ

|α|ďm

ÿ

|β|ďm

ż

DˆD
BβϕipxqBαϕipyqBβψjpxqBαψjpyqdydx (4.50)

“
ÿ

j

ÿ

i

λi

ˆ

ÿ

|α|ďm

ż

D
BαϕipxqBαψjpxqdx

˙2

“
ÿ

j

ÿ

i

λi

ˆ

ÿ

|α|ďm

xBαϕi, B
αψjyL2

˙2

“
ÿ

i

λi
ÿ

j

xϕi, ψjy
2
Hm “

ÿ

i

λi||ϕi||
2
Hm “

ÿ

|α|ďm

ÿ

i

λi||B
αϕi||

2
L2 “

ÿ

|α|ďm

TrpEαk q (4.51)

In equation (4.49), we used the fact that i˚pψjq given by equation (4.48) is a representer of
ii˚pψjq in H

mpDq. In equation (4.50), we used the fact that the series of functions
ř

i λiB
βϕi b

Bαϕi is norm convergent (Lemma 4.9piiq) to distribute the partial derivatives over to the Mercer
decomposition of k. We also used Fubini’s and Tonelli’s theorems ad libitum, as all the series
ř

i λiB
βϕi b Bαϕi are norm convergent. Since

ř

|α|ďm TrpEαk q is finite by assumption, equation

(4.51) finishes to prove pivq when Hk is separable.
WhenHk is not separable, observe that kerpiq is closed inHk since i is continuous. Therefore

Hk “ kerpiq‘kerpiqK and kerpiqK endowed with the topology ofHk is a Hilbert space. Moreover,
i˚ : HmpDq Ñ Hk is compact since ii˚ is trace class. Thus its closed range impi˚q is separable
( [14], Exercise 3 p. 176). Finally, observe that impi˚q “ kerpiqK ( [14], Theorem 4.12) so that
kerpiqK is a separable Hilbert space. Consider now j :“ i| kerpiqK , the restriction of i to kerpiqK.
Then ii˚ “ jj˚, so that equation (4.51) indeed yields that j is Hilbert-Schmidt.
pivq ùñ piiiq: by assumption, ii˚ is a compact self-adjoint positive operator acting on the
Hilbert space HmpDq. There exists a decreasing positive sequence pµjqjPN and a orthonormal
basis of eigenvectors of ii˚, pψjqjPN such that for all f P HmpDq,

ii˚pfq “

`8
ÿ

j“1

µjxψj , fyHmψj in HmpDq (4.52)

Since ii˚ is assumed trace class,

ÿ

|α|ďm

`8
ÿ

j“1

µj ||B
αψj ||

2
L2 “

`8
ÿ

j“1

µj ||ψj ||
2
Hm “

`8
ÿ

j“1

µj ă `8 (4.53)

We now show that the following equality holds in L2pD ˆ Dq:

kpx, yq “

`8
ÿ

j“1

µjψjpxqψjpyq (4.54)

In conjunction with equation (4.53), this equation will allow us to use Lemma 4.9piiq, which
will imply the point piiq.
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First, one easily shows that
ř`8

j“1 µjψjbψj , the right-hand side of equation (4.54), is indeed

in L2pD ˆ Dq (e.g. use that
ř

j µj ă `8). Equation (4.64) will then show that k is indeed in

L2pD ˆ Dq. Now, decompose ipkxq P HmpDq on the basis pψjqjPN given any x P D:

ipkxq “

`8
ÿ

j“1

xψj , ipkxqyHmψj in HmpDq (4.55)

In equation (4.55), the scalar xψj , ipkxqyHm is obtained through the reproducing formula (4.2):

xψj , ipkxqyHm “ xi˚pψjq, kxyHk
“ i˚pψjqpxq (4.56)

Moreover, ψj is an eigenvector of ii˚: µjψj “ ii˚pψjq in HmpDq. In particular,

||µjψj ´ ii˚pψjq||L2pDq “ 0 (4.57)

But the pointwise defined function i˚pψjq is a representer of ii˚pψjq in HmpDq, since i is the
imbedding of Hk in HmpDq. Setting S “

ř

j µj “ Trpii˚q, one has (explanation below)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k ´

`8
ÿ

j“1

µjψj b ψj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

L2pDˆDq

“

ż

DˆD

´

kpx, yq ´

`8
ÿ

j“1

µjψjpxqψjpyq

¯2

dxdy (4.58)

“

ż

D

ż

D

´

kxpyq ´

`8
ÿ

j“1

µjψjpxqψjpyq

¯2

dydx (4.59)

“

ż

D

ż

D

´

ipkxqpyq ´

`8
ÿ

j“1

µjψjpxqψjpyq

¯2

dydx (4.60)

“

ż

D

ż

D

ˆ `8
ÿ

j“1

µjψjpyq
`

µj
´1i˚pψjq ´ ψjpxq

˘

˙2

dydx (4.61)

ď

ż

D

ż

D
S

`8
ÿ

j“1

µjψjpyq2
`

µj
´1i˚pψjq ´ ψjpxq

˘2
dydx (4.62)

ď S
`8
ÿ

j“1

µj

ż

D
ψjpyq2dy

ż

D

`

µj
´1ii˚pψjq ´ ψjpxq

˘2
dx (4.63)

ď S
`8
ÿ

j“1

µj ||ψj ||
2
L2pDq||µj

´1ii˚pψjq ´ ψj ||
2
L2pDq “ 0 (4.64)

Above, we used Tonelli’s theorem in equation (4.59). We imbedded kx in HmpDq in equation
(4.60). We used equations (4.55) and (4.56) in equation (4.61). We used Jensen’s discrete
inequality on the squaring function p¨q2 with the weights µj{S (µj{S ě 0,

ř

j µj{S “ 1) in
equation (4.62). We imbedded i˚pψjq in H

mpDq and used Tonelli’s theorem in equation (4.63).
We used equation (4.57) in equation (4.64).

Therefore we have proved that equation (4.54) holds. By the assumption that ii˚ is trace
class and using Lemma 4.9piiq,

ÿ

|α|ďm

TrpEαk q “
ÿ

|α|ďm

`8
ÿ

j“1

µj ||B
αψj ||

2
L2 “

`8
ÿ

j“1

µj ||ψj ||
2
Hm “

ÿ

i

µj “ Trpii˚q ă `8 (4.65)

Therefore, Lemma 4.9piiq implies that every Eαk is indeed trace-class, which shows piiq.
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5 Concluding remarks and perspectives

Given p P p1,`8q and m P N0, we showed that the Wm,p-Sobolev regularity of integer order
of a measurable Gaussian process ppUpxqqxPD „ GP p0, kq is fully equivalent to the fact that
Bα,αk lies in LppD ˆ Dq combined with the integrability in LppDq of the associated standard
deviation. Using general results on Gaussian measures over Banach spaces of type 2 and
cotype 2, we translated this criteria as the existence of suitable nuclear decompositions of the
covariance. These can be understood as generalizations to Banach spaces of the eigenfunction
expansion of symmetric, positive and trace class operators. In the Hilbert space case p “ 2,
we linked this property with the Hilbert-Schmidt nature of the imbedding of the RKHS in
HmpDq, and gave explicit formulas for the traces of the involved integral operators in terms of
the Mercer decomposition of the kernel.

The results presented in this article provide a theoretical background w.r.t. the use of
Gaussian processes for solving physics-related machine learning problems, in particular when
modelling solutions of PDEs as sample paths of some Gaussian process. These results also
come along with certain key quantities for controlling the Sobolev norm of the corresponding
sample paths (see Remark 3.6). The application of the Gaussian process principles identified
here to PDE-related machine learning problems is certainly an interesting continuation of the
results of this article.

The following directions are interesting for generalizing the results presented here. First,
similar spectral/integral criteria should be obtained for fractional Sobolev and Besov spaces.
Second, similar results should be sought to tackle the cases p “ 1 and p “ `8. Linked to the
case p “ 1, results should be sought for the space of functions of bounded variations ( [7], p.
269), which are important in many problems related to physics. The following open questions
are also relevant for Gaussian process theory: piq Can the small ball problem for Gaussian
processes whose sample paths lie in a Sobolev spaces be tackled only using spectral properties
of the covariance operator, e.g. its nuclear norm? piiq Are all Gaussian measures overWm,ppDq

induced by some Gaussian process? Proposition 2.9 shows that it is the case for m “ 0, i.e.
LppDq.

6 Appendix : proof of intermediary results and lemmas

Proof. (Lemma 2.1) This proof follows exactly the lines of the proof of Proposition 9.3 from [7].
piq ðñ piiq: suppose that u P Wm,ppDq, use the fact that the distributional derivative Dαu is
a regular distribution represented by a function that lies in LppDq, denoted by Bαu :

@φ P C8
c pDq,

ż

D
upxqBαφpxqdx “ p´1q|α|

ż

D
Bαupxqφpxqdx (6.1)

Hölder’s inequality yields (2.7) with Cα “ ||Bαu||Lp . Conversely, suppose that (2.7) holds and
consider any |α| ď m. Since C8

c pDq is dense in LqpDq (whatever the open set D, [34], section
2.30), equation (2.7) shows that the linear form Lα : φ ÞÝÑ p´1q|α|

ş

D upxqBαφpxqdx, φ P

C8
c pDq, can be extended to a continuous linear form over LqpDq. From Riesz’ representation

lemma, there exists vα P LppDq such that Lαpφq “ xvα, φyLp,Lq for all φ P LqpDq. In particular,
this is valid for all φ P C8

c pDq, which shows that for all |α| ď m, Bαu exists and is equal to vα.
Thus u P Wm,ppDq. Finally, Hölder’s inequality and the density of C8

c pDq in LqpDq yield

||Bαu||LppDq “ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||LqpDq

dx

ˇ

ˇ

ˇ

ˇ

ˇ
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piiiq ùñ piiq: suppose piiiq, let us show piiq. Let |α| ď m and let φ P C8
c pDq. Note K :“

Supppφq its compact support and consider an open set D0 such that K Ă D0 Ť D. Let α$inNd0
and h “ ph1, ..., hdq P pR˚

`qd be such that
ř

i αihi ă distpD0, BDq. Recall that δαh from equation
(2.6) is a finite difference approximation of Bα and from piiiq,

ˇ

ˇ

ˇ

ˇ

ż

D
δαhupxqφpxqdx

ˇ

ˇ

ˇ

ˇ

ď ||φ||LqpD0q||δαhu||LppD0q ď C||φ||LqpDq (6.2)

Note also that we have the discrete integration by parts formula since h is suitably chosen:
ż

D
δαhupxqφpxqdx “

ż

D
upxqpδαh q˚φpxqdx (6.3)

Therefore,
ˇ

ˇ

ˇ

ˇ

ż

D
upxqpδαh q˚φpxqdx

ˇ

ˇ

ˇ

ˇ

ď C||φ||LqpDq (6.4)

The Lebesgue dominated convergence theorem yields that the left hand side converges to
ˇ

ˇ

ş

D upxqBαφpxqdx
ˇ

ˇ. We therefore have piiq.
piq ùñ piiiq: We will use recursively the fact that if f P W 1,ppDq, then for all D0 Ť D and

h P Rd such that |h| ă distpD0, BDq, there exists an open set D1 Ť D which verifies D0`th Ă D1

for all t P r0, 1s and

||∆hf ||
p
LppD0q

“ ||τhf ´ f ||
p
LppD0q

ď |h|p||∇f ||
p
LppD1q

“ |h|p
d

ÿ

j“1

||Bxj
f ||

p
LppD1q

(6.5)

(this is equation 4 p. 268 in [7], found in the proof of Proposition 9.3 in [7]). First, one easily
checks that weak partial derivatives and finite difference operators all commute together. Let
l ď m, D0 Ť D and h “ ph1, ..., hlq P pRdql such that

ř

i |hi| ă distpD0, BDq. Recall that

∆h “

l
ź

i“1

∆hi
(6.6)

Note now that
śl
i“2 ∆hiu lies in W 1,ppDq. Since |h1| ď

ř

i |hi| ă distpD0, BDq, from equation
(6.5) there exists an open set D1 Ť D such that D0 ` th1 Ă D1 for all t P r0, 1s. Moreover, one

can choose D1 small enough so that distpD1, BDq ă
řl
i“2 |hi|.

||∆hu||
p
LppD0q

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∆h1

l
ź

i“2

∆hi
u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD0q
ď |h1|p

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇

l
ź

i“2

∆hi
u

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD1q
(6.7)

ď |h1|p
d

ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Bxj

l
ź

i“2

∆hiu
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD1q
ď |h1|p

d
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

l
ź

i“2

∆hi

`

Bxju
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

LppD1q
(6.8)

We used equation (6.5) in equation (6.7) which then yields equation (6.8). But note that for all
j, Bxj

u P W 1,ppDq. One can then proceed by induction and perform the above step sequentially
over i P t2, ..., lu, which yields a sequence of open sets D0 Ă D1 Ă ... Ă Dl Ť D such that

||∆hu||
p
LppD0q

ď |h1|p ˆ ...ˆ |hl|
p

ÿ

|β|ďl

||Bβu||
p
LppDlq

(6.9)

ď |h1|p ˆ ...ˆ |hl|
p||u||

p
W l,ppDq

ď |h1|p ˆ ...ˆ |hl|
p||u||

p
Wm,ppDq

(6.10)

30



which shows equation (2.9) with C “ ||u||Wm,ppDq. We finally show that ||Bαu||LppDq ď C given
any C which verifies equation (2.9). For this, copy the previous steps of piiiq ùñ piiq, which
prove that for all φ P C8

c pDq, the control from equation (2.7) holds for this C. Using the
extremal equality case of Hölder’s inequality in equation (2.7) indeed yields

||Bαu||LppDq “ sup
φPC8

c pDqzt0u

ˇ

ˇ

ˇ

ˇ

ż

D
upxq

Bαφpxq

||φ||LppDq

dx

ˇ

ˇ

ˇ

ˇ

ď C (6.11)

Proof. (Lemma 2.4) We begin by explicitly constructing the family pΦqnq. First, use the fact
that LqpDq is a separable Banach space ( [34], Theorem 2.21) : let pfnqnPN Ă LqpDq be
a dense countable subset of LqpDq. For all n P N, let pϕnmqmPN Ă C8

c pDq be such that
ϕnm ÝÑ fn for the LqpDq topology (recall that C8

c pDq is dense in LqpDq, [34], Corollary 2.30).
We relabel the countable family pϕnmqn,mPN as pφnqnPN, which is thus dense in LqpDq. Second,
let phnqnPN Ă C8

c pDq be a dense subset of C8
c pDq for its LF-space topology (see Lemma 2.3).

We then define Eq to be the set of all finite linear combinations of elements of pφnq and phnq

with rational coefficients :

Eq “ SpanQtφn, n P Nu ` SpanQthm,m P Nu (6.12)

“
ď

n,mPN

!

n
ÿ

i“1

qiφi `

m
ÿ

j“1

rjhj , pq1, ..., qn, r1, ..., rmq P Qn`m
)

(6.13)

Note that Eq is countable, as a countable union of countable sets. We then define the family
pΦqnq to be an enumeration of Eq : Eq “ tΦqn, n P Nu.
Proof of piq: Suppose that T “ Tv for some v P LppDq. Then the control (2.13) is obviously
true. Now, suppose that this countable control holds : let us show that T “ Tv for some
v P LppDq.

We begin by showing that the map T|Eq
,the restriction of T to the set Eq, can be uniquely

extended to a continuous linear form T̃ over LqpDq. Begin with the fact that for all f, g P Eq,
then f ´ g P Eq and from equation (2.18),

|T pfq ´ T pgq| “ |T pf ´ gq| ď C||f ´ g||q (6.14)

Equation (6.14) shows that T|Eq
is Lipschitz over Eq and therefore uniformly continuous on

Eq. Since R is complete and Eq is dense in LqpDq, T|Eq
can be uniquely extended by a map

T̃ defined over LqpDq, which is itself uniformly continuous ( [35], Problem 44, p. 196). We
briefly recall the construction procedure of T̃ over LqpDq. Given f P LqpDq and pfnq Ă Eq any
sequence such that ||fn ´ f ||Lq Ñ 0, one shows that the sequence pT pfnqqnPN is Cauchy, thus
convergent and one sets T̃ pfq :“ limn T pfnq. One proves that the value T̃ pfq does not depend
on the sequence pfnq, which implies that T̃ is well defined and coincides with T on Eq.

We now check that T̃ remains linear. Let f, g P LqpDq and λ P R. Let pfnq, pgnq Ă Eq
and pλnq Ă Q be sequences such that fn Ñ f, gn Ñ g both in LqpDq and λn Ñ λ. Then
λnfn ` gn Ñ λf ` g in LqpDq, and the sequence pλnfn ` gnq is contained in Eq. Since T̃ is well
defined, we have that

T̃ pλf ` gq “ lim
nÑ8

T pλnfn ` gnq “ lim
nÑ8

λnT pfnq ` T pgnq “ λT̃ pfq ` T̃ pgq (6.15)

Thus, T̃ is a (uniformly) continuous linear form over LqpDq. Riesz’ representation lemma yields
a function v P LppDq such that

@f P LqpDq, T̃ pfq “

ż

D
fpxqvpxqdx (6.16)
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We now need to check that in fact T̃ pφq “ T pφq if φ P C8
c pDq, to show that T̃ is indeed

an extension of T . For this, notice that T and T̃ both define continuous linear forms over
C8
c pDq, w.r.t. its LF-topology (v lies in L1

locpDq). Note also that T and T̃ coincide on Eq, by

construction of T̃ :

@n P N, T pΦnq ´ T̃ pΦnq “ 0 (6.17)

But Eq is chosen so that it contains phnq, which is a dense subset of C8
c pDq. Given φ P C8

c pDq,
consider pjnq a subsequence of phnq such that jn ÝÑ φ for the topology of C8

c pDq. Then,

pT ´ T̃ qpφq “ lim
nÑ8

pT ´ T̃ qpjnq “ lim
nÑ8

0 “ 0 (6.18)

which shows that in fact, T̃ pφq “ T pφq.
Proof of piiq: if b can be extended to a continuous linear form over LqpDq, then the estimate
(2.15) is obviously true, by continuity over LqpDq of the said extension. Suppose now that
(2.15) holds. Let φ P Eq. Then Lφ, the continuous linear form over C8

c pDq defined by

@ψ P C8
c pDq, Lφpψq “ bpφ,ψq (6.19)

verifies

@ψ P Eq, |Lφpψq| ď C||φ||q||ψ||q (6.20)

From the point piq, Lφ is a regular distribution with a representer vφ P LppDq which is unique
in LppDq. Define the map B : Eq Ñ LppDq by Bφ “ vφ. Then B verifies

@φ P Eq,@ψ P LqpDq, |xBφ,ψyLp,Lq | “ |Lφpψq| ď C||φ||q||ψ||q (6.21)

Taking the supremum w.r.t. ψ P LqpDq yields

@φ P Eq, ||Bφ||p ď C||φ||q (6.22)

Observe now that the bilinearity of b yields Bpφ ` λψq “ Bφ ` λBψ if φ,ψ P Eq and λ P Q.
Taking the exact same steps as for the proof of point piq and using equation (6.22), B : Eq Ñ

LppDq is Lipschitz continuous over Eq, and can thus be uniquely extended as a uniformly

continuous map B̃ : LqpDq Ñ LppDq. This relies on the fact that Eq is dense in L
qpDq and that

LqpDq is complete. As above, one checks that B̃ is linear. Being uniformly continuous, it is
then a bounded operator from LqpDq to LppDq (its adjoint B̃˚ is then automatically bounded).
Denote by b̃ the continuous bilinear form over LqpDq defined by

b̃pf, gq “ xB̃f, gyLp,Lq @f, g P LqpDq (6.23)

We now need to check that b̃ indeed coincides with b over C8
c pDq, so that it is indeed an

extension of b. For this, let φ,ψ P C8
c pDq and pφnq, pψnq two sequences of elements of Eq that

converge to φ and ψ respectively. Then b and b̃ coincide on Eq:

bpφn, ψmq “ b̃pφn, ψmq (6.24)

Observe the following chain of equalities, which rely on the sequential continuity (for the LF
topology of C8

c pDq) of the linear forms φ ÞÑ bpφ,ψq, ψ ÞÑ bpφ,ψq and Tv : φ ÞÑ Tvpφq “
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xv, φyLq,Lp for any v P LqpDq, as well equation (6.24).

bpφ,ψq “ lim
nÑ8

bpφn, ψq “ lim
nÑ8

lim
mÑ8

bpφn, ψmq “ lim
nÑ8

lim
mÑ8

b̃pφn, ψmq

“ lim
nÑ8

lim
mÑ8

xB̃φn, ψmyLp,Lq “ lim
nÑ8

lim
mÑ8

TB̃φn
pψmq “ lim

nÑ8
TB̃φn

pψq

“ lim
nÑ8

xB̃φn, ψyLp,Lq “ lim
nÑ8

xφn, B̃
˚ψyLq,Lp “ lim

nÑ8
TB̃˚ψpφnq “ TB̃˚ψpφq

“ xφ, B̃˚ψyLq,Lp “ xB̃φ, ψyLp,Lq “ b̃pφ,ψq (6.25)

The uniqueness of b follows from the uniqueness of B̃ as an extension of B.

Proof. (Lemma 2.5) Let pKnq be an increasing sequence of compact subsets of D such that
Ť

nKn “ D. From the measurability of U and Tonelli’s theorem, ω ÞÑ
ş

Kn
|Uωpxq|dx is mea-

surable and we have that

E
„

ż

Kn

|Upxq|dx

ȷ

“

ż

Kn

Er|Upxq|sdx “

c

2

π

ż

Kn

σpxqdx ă `8 (6.26)

From equation (6.26), ω ÞÑ
ş

Kn
|Uωpxq|dx is finite almost surely. Since the family pKnq is

countable, one obtains a set Ω0 Ă Ω of probability one such that for all ω P Ω0 and for all
n P N,

ş

Kn
|Uωpxq|dx ă `8. Given now any compact subset K of D, there exists N P N such

that K Ă KN and thus for all ω P Ω0,
ş

K
|Uωpxq|dx ă `8. Therefore, the sample paths of U

lie in L1
locpDq almost surely. From this fact and Fubini’s theorem, we next obtain that given

any φ P C8
c and |α| ď m, the following map

Uαφ : Ω Q ω ÞÝÑ

ż

D
UωpxqBαφpxqdx (6.27)

is a well defined random variable (i.e. it is measurable; see e.g. [17], Theorem 2.7, p. 62).
Moreover, one can show that it is a limit in probability of suitably chosen Riemann sums of the
integrand ( [17], Theorem 2.8, p. 65). But here, those Riemann sums are all Gaussian random
variables because U is a Gaussian process. Thus Uαφ is a Gaussian random variable. a a limit
in probability of Gaussian random variables. This also shows that tUαφ , φ P C8

c pDqu is in fact
a Gaussian process, since the linearity of Bα yields

n
ÿ

i“1

aiU
α
φi

“ Uαp
řn

i“1 aiφiq (6.28)

and thus
řn
i“1 aiU

α
φi

is a Gaussian random variable. An alternative proof is found in [4],
Example 2.3.16. p. 58-59.

Proof. (Lemma 4.7) First, the map k is measurable over D ˆ D. Then, given a compact set
K Ă D ˆ D, there exists a compact set K0 Ă D such that K Ă K0 ˆ K0 (see e.g. the text
before equation (3.12)). Then, using the Cauchy-Schwarz inequality for k,

ż

K

|kpx, yq|dxdy ď

ż

K0ˆK0

σpxqσpyqdxdy “

ˆ
ż

K0

σpxqdx

˙2

ă `8 (6.29)

Therefore, k P L1
locpD ˆ Dq and for all mutli-index α, bα is a bilinear continuous form over

C8
c pDq. From Lemma 2.2, bα can be uniquely extended to a continuous bilinear form over
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L2pDq. Denote by Eαk the associated bounded operator over L2pDq. We now need to show that
Eαk is self-adjoint and positive. First note that for all φ,ψ P C8

c pDq,

xEαk φ,ψyL2 “

ż

DˆD
kpx, yqBαφpxqBαψpyqdydx “ xφ, Eαk ψyL2 (6.30)

Equation (6.30), conjoined with the density of C8
c pDq in L2pDq and the continuity of the bilinear

form pf, gq ÞÑ xEαk f, gyL2 yields that xEαk f, gyL2 “ xf, Eαk gyL2 for all f, g P L2pDq. Therefore
Eαk is self-adjoint. For the positivity, consider again φ P C8

c pDq. Then from Fubini’s theorem
(justified below),

xEαk φ,φy “

ż

DˆD
kpx, yqBαφpxqBαφpyqdydx “

ż

DˆD
ErUpxqUpyqsBαφpxqBαφpyqdydx

“ E
„ˆ

ż

D
UpxqBαφpxqdx

˙2ȷ

ě 0 (6.31)

Indeed the following integrability condition holds, setting K “ Supppφq :

E
„

ż

DˆD
|BαφpxqBαφpyqUpxqUpyq|dxdy

ȷ

“

ż

KˆK

|BαφpxqBαφpyq|Er|UpxqUpyq|sdxdy

ď

ż

KˆK

|BαφpxqBαφpyq|σpxqσpyqdxdy “

ˆ
ż

K

|Bαφpxq|σpxqdx

˙2

ď sup
xPK

|Bαφpxq|2
ˆ

ż

K

σpxqdx

˙2

ă `8 (6.32)

Equation (6.32), conjoined with the density of C8
c pDq in L2pDq and the continuity of the

quadratic form f ÞÑ xEαk f, fyL2 yields that xEαk f, fyL2 ě 0 for all f P L2pDq. Therefore Eαk is
positive.

Proof. (Lemma 4.8) Introduce bα the continuous bilinear map over C8
c pDq defined by

bαpφ,ψq “

ż

DˆD
kpx, yqBαφpxqBαψpyqdxdy “

ż

DˆD
Bα,αkpx, yqφpxqψpyqdxdy

“ xEαk φ,ψyL2 (6.33)

From Cauchy-Schwarz’s inequality, it verifies

@φ,ψ P C8
c pDq, |bαpφ,ψq| ď ||Bα,αk||2||φ||2||ψ||2 (6.34)

From Lemma 4.7, there exists a unique bounded, self-adjoint and positive operator Bα over
L2pDq such that bαpφ,ψq “ xBαφ,ψyL2 for all φ,ψ P C8

c pDq. The uniqueness of Bα and
equation (6.33) yield Bα “ Eαk , and thus Eαk is self-adjoint and positive.
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Proof. (Lemma 4.9) piq : first, let j be such that λj ‰ 0. Let φ P C8
c pDq. Then

λj

ˆ
ż

D
ϕjpxqBαφpxqdx

˙2

ď

`8
ÿ

i“1

λi

ˆ
ż

D
ϕipxqBαφpxqdx

˙2

ď

`8
ÿ

i“1

λi

ż

DˆD
ϕipxqϕipyqBαφpxqBαφpyqdxdy

ď

ż

DˆD
kpx, yqBαφpxqBαφpyqdxdy

ď

ż

DˆD
Bα,αkpx, yqφpxqφpyqdxdy

ď ||Bα,αk||L2pDˆDq||φ||2L2pDq (6.35)

Therefore, from Lemma 2.1, Bαϕj P L2pDq.
piiq : introduce the finite rank kernel kn defined by

knpx, yq “

n
ÿ

i“1

λiϕipxqϕipyq (6.36)

Then its mixed derivative Bα,αknpx, yq is equal to
řn
i“1 λiB

αϕipxqBαϕipyq in L2pDˆDq and the
associated operator Eαkn is trace class, with

TrpEαknq “

`8
ÿ

j“1

xEαknϕj , ϕjyL2 “

`8
ÿ

j“1

n
ÿ

i“1

λixBαϕi, ϕjy
2
L2 (6.37)

“

n
ÿ

i“1

λi

`8
ÿ

j“1

xBαϕi, ϕjy
2
L2 “

n
ÿ

i“1

λi||B
αϕi||

2
L2 (6.38)

Now, observe that Eαkn ď Eαk in the sense of the Loewner order. Indeed, let first φ P C8
c pDq:

xpEαk ´ Eαknqφ,φyL2 “ xpEk ´ EknqBαφ, BαφyL2 “

`8
ÿ

i“n`1

λixϕi, B
αφy2L2 ě 0 (6.39)

The density of C8
c pDq in L2pDq and the continuity of the quadratic form f ÞÑ xpEαk ´Eαknqf, fyL2

over L2pDq yields indeed that Eαkn ď Eαk . Taking the trace :

n
ÿ

i“1

λi||B
αϕi||

2
L2 “ TrpEαknq “

`8
ÿ

j“1

xEαknϕj , ϕjyL2 ď

`8
ÿ

j“1

xEαk ϕj , ϕjyL2 “ TrpEαk q (6.40)

Taking the limit when n goes to infinity yields
ř`8

i“1 λi||B
αϕi||

2
L2 ď TrpEαk q. Suppose now that

TrpEαk q ă `8. Equation (6.40) shows that the series of functions
ř

i λiB
αϕi b Bαϕi converges

in norm in L2pD ˆ Dq. Moreover, we check that it is equal to Bα,αk : taking φ P C8
c pD ˆ Dq,

then
ż

DˆD
kpx, yqBα,αφpx, yqdxdy “

ÿ

i

λi

ż

DˆD
ϕipxqϕipyqBα,αφpx, yqdxdy (6.41)

“
ÿ

i

λi

ż

DˆD
BαϕipxqBαϕipyqφpx, yqdxdy (6.42)

“

ż

DˆD

ˆ

ÿ

i

λiB
αϕipxqBαϕipyq

˙

φpx, yqdxdy (6.43)
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We can then write,, following the steps of equation (6.37)

TrpEαk q “

`8
ÿ

j“1

xEαk ϕj , ϕjyL2 “

`8
ÿ

j“1

ÿ

i

λixBαϕi, ϕjy
2
L2 “

`8
ÿ

i“1

λi||B
αϕi||

2
L2 (6.44)

Suppose now that
ř`8

i“1 λi||B
αϕi||

2
L2 ă `8. Then as observed before, the series of functions

ř

i λiB
αϕi b Bαϕi converges in norm in L2pD ˆ Dq, one verifies that Bα,αk exists in L2pDq and

is in fact given by

Bα,αk “
ÿ

i

λiB
αϕi b Bαϕi in L2pD ˆ Dq (6.45)

Finally,

`8
ÿ

i“1

λi||B
αϕi||

2
L2 “

`8
ÿ

i“1

λi
ÿ

j

xBαϕi, ϕjy
2
L2 (6.46)

“
ÿ

j

`8
ÿ

i“1

λi

ˆ
ż

D
Bαϕipxqϕjpxqdx

˙2

(6.47)

“
ÿ

j

ż

DˆD

ÿ

i

λiB
αϕipxqBαϕipyqϕjpxqϕjpyqdxdy (6.48)

“
ÿ

j

xEαk ϕj , ϕjyL2 “ TrpEαk q (6.49)

Therefore Eαk is trace class and TrpEαk q “
ř`8

i“1 λi||B
αϕi||

2
L2 . For asymmetric derivatives, simply

observe that for all |α|, |β| ď m,

||Bαϕi b Bβϕi||2 “ ||Bαϕi||2||Bβϕi||2 ď
||Bαϕi||

2
2 ` ||Bβϕi||

2
2

2
(6.50)

Therefore the norm convergence of the series
ř

iPN λi||B
αϕi b Bαϕi||L2 for all |α| ď m implies

that of all the series of the form
ř

iPN λi||B
αϕi b Bβϕi||L2 converge, provided that |α| ď m and

|β| ď m. As previously, one readily checks that Bα,βk “
ř8

i“0 λiB
αϕi b Bβϕi.
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