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Highlights
Technological developments are open-
ing new possibilities for biodiversity mon-
itoring, but – especially for insects –

they come with their own unique set
of limitations.

Due to the vast diversity of insects, of
which at least 80% remain undescribed,
traditional monitoring is unable to provide
even basic knowledge of the state of
most insect species in most places.
Insects are the most diverse group of animals on Earth, but their small size and
high diversity have always made them challenging to study. Recent technologi-
cal advances have the potential to revolutionise insect ecology and monitoring.
We describe the state of the art of four technologies (computer vision, acoustic
monitoring, radar, andmolecular methods), and assess their advantages, current
limitations, and future potential. We discuss how these technologies can adhere
to modern standards of data curation and transparency, their implications for
citizen science, and their potential for integration among different monitoring
programmes and technologies. We argue that they provide unprecedented
possibilities for insect ecology and monitoring, but it will be important to foster
international standards via collaboration.
We appraise four emerging tools and
technologies (computer vision, acoustic
monitoring, radar, and molecular
methods) that provide unprecedented
opportunities for insect ecology.

These technologies can enhance spatial,
temporal, and taxonomic coverage of
monitoring, but none can monitor all
insects at all scales, and each comes
with a set of limitations.

Technological integration, open data,
and international standards are needed
to harness the full potential of novel tech-
nologies for insect monitoring.
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Technological advancement for insect monitoring
Insects are the most diverse group of eukaryotic organisms on Earth, comprising an estimated
80% of all animal life [1]. This staggering diversity (with at least 80% of insect species remaining
undescribed), combined with our poor knowledge of their distributions and ecology [2] and the
spatiotemporal heterogeneity of their occurrence [3], form major challenges to the study of
insects and their responses to environmental changes. Recent reports of long-term declines in
insect biomass and abundances [4,5], in combination with the emergence of new technologies
[6–8], have led to calls for [9], and the establishment of, new research projects for monitoring
populations and assemblages of insects and other invertebrates [10,11].

Traditionally, the monitoring of insects usually involves the killing of insects, followed by time-
consuming sorting and species identification by specialists [12]. Often the number of individuals
and the taxonomic diversity within a sample are so large that only a subset of taxa are identified, or
taxa are only identified to a coarse taxonomic level. Hence, there is a heavy bias towards well-
resolved groups, such as butterflies, whereas other taxa (e.g., most Diptera) are often ignored
(e.g., [13]), since taxonomic expertise is lacking. Additionally, the required human labour for
both data collection and processing limits the number of locations and the frequency of sampling
in traditional monitoring (see Glossary) programmes.

Recent development of technologies that employ novel detection and identification methods,
often in combination with citizen science, has opened up exciting new avenues for tracking
insect populations and assemblages [6–8,14]. These technologies – which include automated
image and sound recognition, radar, and molecular methods – have the potential to radically
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Box 1. Seeing the unseen using new technologies

Species interaction networks

Interactions between species are often hard to detect due to the time, place, or scale at which interactions take place, but
modern technologies can reveal interactions that would otherwise be missed. Molecular methods can identify predators,
food, and foraging sites (including flower visitation [65]) of insects by analysing faeces [95], gut contents [96], or parasite
presence [97].

Quantifying ecosystem services

Ecosystem services are notoriously difficult to quantify, but technologies offer a way forward. For instance, technologies
are already being used to quantify insect pollination. Computer vision is applied to images taken by cameras fixed above
plants [15,98], and metabarcoding can be used on pollen or flowers to identify flower visitors [65]. Computer vision or
acoustic monitoring may also prove useful in studying the decomposition of dung, carrion, or dead plant matter, but to
our knowledge this has not yet been applied.

Tracking species movements and occurrences from local to continental scales

For many ecological questions, as well as for biodiversity conservation, public health, and crop protection, it is necessary to
track the location of specific insect species. Several new technologies can help to do this, at spatial scales otherwise
impossible. At the smallest scales, computer vision can track insects (e.g., pollinators) as they forage for resources
[15,98]. Technologies can also be used to detect large-scale insect movements, so far applied to pollinators [49], crop
pests [50,52], disease vectors [57], invasive species [69,99], and protected species [61].

Energy and biomass fluxes within and across habitats

The movement of insects creates fluxes of nutrients and energy across large distances and across ecosystem boundaries
(e.g., linking aquatic and terrestrial systems). Tracking these fluxes is now possible in four dimensions in a noninvasive and
unbiased way [53,92]. Vertically looking radar has been used to quantify high-altitude insect migrations [48], and vertical
photography and LiDAR can show insect biomass fluxes at closer ranges [92,100].
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increase the spatial, temporal, and taxonomic coverage of monitoring programmes. They also
allow new questions to be asked about insect population dynamics, phenology, and biotic inter-
actions (Box 1). At the same time, these technologies come with their own sets of limitations, and
are in parallel development in different projects and countries. To ensure efficient progress, there
is a need for large-scale collaboration to develop international databases and metadata stan-
dards, and open communication on hardware and software development, to ensure adherence
to FAIR data principles.

This review aims to evaluate four emerging tools and technologies (computer vision, acoustic
sensors, radar, and molecular methods) for insect monitoring, and outline ways to harness
their potential. We review (i) the state of the art of these technologies, their advantages, current
limitations, and future potential, (ii) how the data collected using these technologies can adhere
to modern standards of data curation and transparency, (iii) how citizens can participate in
projects using these new technologies, and (iv) the potential for integration and synergies
among technologies.

Four technologies that are revolutionising entomology
Computer vision
Computer vision is a field of computer science that develops algorithms to extract information from
digital images and video (Figure 1A). In ecology, computer vision is being used to automatically
collect observations and provide species identifications. For instance, cameras have been aimed
at an environmental feature [15] or at a screen placed in the field (Box 2), often in combination
with traps (e.g., light traps [16], sticky traps [17], or pheromone traps [18]) to increase detection
rates. Computer vision is also helping to digitise the vast museum collections of specimens
to mobilise historic occurrence records [19,20]. Images are also being collected by citizen
scientists and uploaded to web portals [21], several of which support automated identification
(e.g., www.iNaturalist.org, www.observation.org/apps/obsidentify/, and www.pictureinsect.com).
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Glossary
Acoustic sensor: a device that detects
and records sounds.
Artificial intelligence (AI): scientific
field of computer science involved in
(partially) reproducing human skills –
such as thinking, acting, or interpreting
data – with computational algorithms.
Often used as a synonym for machine
learning (q.v.).
Citizen science: the participation of
the general public in scientific processes.
Participation can occur at different levels
of involvement and expertise, and at
different stages of the process
(study design, data collection and/or
interpretation).
Computer vision: scientific field of
computer science that develops
algorithms for analysing image or video
data to produce descriptions of the
depicted content, for example, a
categorisation via numerical
representations.
Convolutional neural networks
(CNNs): group of machine learning
methods that require large datasets for
training, often used for image analysis
and pattern recognition, where each
network consists of connected nodes
and layers that process input data to
obtain desired outputs.
Edge computing: data processing
done on the site of data collection, instead
of transferring the data to a central
location for processing and analysis.
eDNA (environmental DNA): DNA
obtained from environmental samples
such as water, soil, air, faeces, and
stomach contents. This term is
sometimes also used to refer to DNA
derived from the preservative of insect
bulk samples (e.g., ethanol).
FAIR data: data that are findable,
accessible, interoperable, and reusable.
Machine learning: scientific field of
computer science for developing
predictive algorithms that learn patterns
in data to make predictions. The
algorithms learn from example training
data rather than being programmed
explicitly.
Metabarcoding: identification of
taxa from mixed samples using
high-throughput DNA sequencing of
one ormultiple genes (DNA barcodes). A
common genetic region used for
barcoding of insects is a part of the
mitochondrial cytochrome c oxidase
subunit 1 (CO1) gene.
Radar: device emitting radio waves in a
certain direction to record the time,
While the technology has yet to be applied on a large scale for insect monitoring, the first applica-
tions show promising results (Box 2).

Computer vision can be applied to both live and dead insects to count and classify insects with
less human labour and observer bias, reducing the necessity for taxonomic expertise and
creating opportunities for the engagement of citizen scientists (Box 3). When applied to live
insects, advantages are that the method is nondestructive and can be completely automatized,
providing information on species’ occurrences, abundances, individual size, biomass, and
movement [22,23], as well as behaviour and interactions [15]. Imaging of dead specimens allows
control of lighting conditions and minimises background variation to achieve impressive classifi-
cation performance and biomass estimation, and allows independent validation of species
identity [24,25].

Computer vision usesmachine learning algorithms, such as convolutional neural networks
(CNNs), trained to identify insects using a library of preclassified images, and is thus limited to
morphologically classifiable objects (i.e., the objects detected in an image are assigned to a
known class). Accuracy rates can be over 90% at the species level for some taxa, but heavily
depend on taxon group size and morphological similarity, and only family or genus levels are
possible in some contexts [26–31].

Several technical challenges currently hinder the widespread application of computer vision in
entomological research. A major challenge is the large amount of training data (reference libraries)
needed for CNNs, which may need to be specific for taxon, sensor, region, and background,
depending on the extent of morphological variation as well as quality and typical backgrounds
of the images. CNNs tend to perform poorly in identification of species with limited training data
(typically rare species), and tend to overpredict species with a disproportionately large amount
of training data (typically common and conspicuous species). Expanding reference libraries
could be done by developing apps for local experts and citizens to submit training image data
of species from different angles [32]. However, undescribed species will remain a challenge,
since by definition they will not be present in the training dataset. An approach called open-set
classification may to some extent solve this problem, but remains to be tested for insect monitor-
ing [7]. Another challenge is camera power consumption and data transfer. This difficulty may be
reduced by using solar panels (Box 2), but this increases logistical challenges and risk of theft.
Edge computing (local data processing) enables classification directly on the device (e.g., the
Seek app by iNaturalist, https://www.inaturalist.org/pages/seek_app) with the potential for real-
time monitoring.

Acoustic monitoring
A diverse range of insect taxa emit sounds that can be used for efficient monitoring. Acoustic
monitoring uses a field sensor to collect information (i.e., sounds), in combination with machine
learning algorithms for species identification (Figure 1B). Insect sounds may be sampled using
stationary acoustic sensors or by mobile transects from cars or trains [33,34]. So far, these
methods have mostly been applied to detect orthopterans and cicadas (Box 2), but have also
been tested on freshwater insects [35,36] and bees, hornets, and mosquitoes based on their
flight sounds [37,38].

Although limited to insects that emit sounds, acoustic monitoring has the advantage that insects
can be detected over much longer distances compared to other methods, sometimes more than
100 m [34], although for flight sounds the recording distance will be much smaller. Acoustic sam-
pling is nondestructive and inexpensive [39], and can be fully automatised whenmachine learning
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 3
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intensity, and other features of the
electromagnetic pulses that return from
objects.
Traditional monitoring: observations,
usually by sight or trap, combined with
morphological species identification in
the field or in the laboratory.
is applied to the recorded sound [40]. In addition to species presence, acoustic signals contain
information on behaviour, such as phenology, activity, and courtship [33,34,41], and can provide
direct measures of ecological functions, such as wood-boring [42]. Recordings of composite en-
vironmental sounds [43] (soundscapes) also contain rich information about the state of biological
assemblages related to species diversity [44], can be applied in regions where sound libraries are
absent, and can include undescribed species.

Identification of species from their sounds is still limited by the size of the reference libraries, which
are poorly developed for insects compared to those for vertebrates [40]. Currently, libraries are
only sufficiently large in temperate regions for some terrestrial vocalising insect groups, and are
largely lacking for other insect sounds (especially flight sounds) (but see [37]). Citizen science
schemes could, however, help build these acoustic reference libraries [45]. There is also a strong
need for research into the factors that influence the detectability of insect sounds – including
microphone type, weather, and vegetation attenuation – to understand the sampling ranges.
Nevertheless, acoustic monitoring has underexplored potential for low-cost large-scale monitor-
ing (Figure 2B and Box 2).
Electromagnetic waves emitted
by a transmitter are reflected by 
insects. 
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Figure 1. Workflows from data collection to end product of each of the four technologies covered in this review.
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Radar
The application of remote sensing technologies for biodiversity monitoring has rapidly expanded over
the past decade. In entomology, radarmonitoring uses radiowaves (including those fromweather sur-
veillance systems) to detect insects in the airspace (Figure 1C). It has long been known that radar can
detect large swarms of insects, but modern radar can provide detailed information on flying insects,
including size, shape, speed, trajectory, and (for larger species) wing beat frequency [46]. Specialised
entomological radars can detect insects far above the ground, from 150 m above ground level, with
the potential to detect larger insects (i.e., >15 mg) up to 1.2 km above ground level [47].

Advantages of monitoring insects by radar are that it is noninvasive, has a large detection radius,
and can operate day and night. Hence, radar observations are especially useful to study biomass
fluxes [48], migratory behaviour [47], andmovement of some species [49] (Box 1). Radar can also
be used to reveal insect presence indirectly by detecting signs of vegetation damage [50] or nest
structures [46]. Data from weather surveillance radars have already been combined with local
monitoring programmes to document population declines in mayflies [51] and the movement of
locust swarms [52].

Radar technologies have significant potential for large-scale monitoring of insects, even at the
continental scale, using the existing networks of weather surveillance radars [53], but are limited
Box 2. Case in point: pioneering monitoring projects

Case study I: Suivi des Orthoptères Nocturnes (France)

In France, nocturnally vocalising bush crickets have been monitored by citizen scientists since 2006, as an add-on to the
acoustic bat monitoring scheme Vigie-Chiro (Figure IA). Tadarida software was developed to detect both bat and insect
calls and classify them into 79 classes, including all common bat and bush cricket species, using a random forest algorithm
[101]. This nationwide monitoring scheme, with (so far) 16 349 individual sampling locations, has detected significant
declines of several bush cricket species [34].

Case study II: DIOPSIS (The Netherlands)

DIOPSIS (digital identification of photographically sampled insect species) (Figure IB) takes regular photos of a yellow
screen that attracts insects and uses machine learning to recognize, count and identify the photographed insects [16].
Photos are taken every time movement is detected or at least each minute. Photos are stored locally and/or sent to a
server through the 4G network. Individual tracking across pictures is applied to remove duplicates. Since 2019, 80–100
DIOPSIS cameras have been deployed each year in The Netherlands.

Case study III: Australian acoustic observatory (https://acousticobservatory.org/) (Figure IC)

For this 5-year project, the world’s largest acoustic sensor network was set up, recording wildlife sounds (including
insects) across Australia [102]. The continuously recording solar-powered recorders are installed at 90 sites, covering
all Australian ecoregions, including remote places. All raw data are stored for future reprocessing.

Case study IV: AMMOD (Germany)

AMMODs (automated multisensor stations for monitoring of species diversity) [10] (Figure ID) are analogous to weather
stations; they are autonomous samplers that monitor plants, birds, mammals and insects. The technology consists of
six modules: (i) automatised visual monitoring and image analyses (mammals and moths), (ii) detection of smellscapes
using volatile organic compounds, (iii) malaise and pollen traps for metabarcoding, (iv) automated bioacoustic monitoring
(birds and bats), (v) development of a base station, and (vi) data management and cross-platform analysis. Since 2020,
AMMOD is being tested at three sites in Germany.

Case study V: BIOSCAN (worldwide)

BIOSCAN (https://ibol.org/programs/bioscan/) is a global DNA barcoding project of the International Barcode of Life
(iBOL) consortium (Figure IE), coordinated by the University of Guelph, Canada. It currently focuses on catching insects
using malaise traps; it aims to barcode 10 million specimens and characterise their parasitic, mutualistic, and symbiotic
relationships. It also aims to characterise species assemblages at 2000 locations around the world, including in half of
the 867 terrestrial ecoregions.

Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 5

https://acousticobservatory.org/
https://ibol.org/programs/bioscan/
CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. (A) Suivi des Orthoptères Nocturnes, the French nation-wide monitoring scheme for bush crickets.
(B) The DIOPSIS (digital identification of photographically sampled insect species) automatic insect
monitoring device. (C) The Australian Acoustic Observatory used automatic acoustic sensors to record
all environmental sounds. (D) The BIOSCAN project of the International Barcode of Life consortium aims
to collect DNA barcodes of 10 million insect specimens and characterise their parasitic, mutualistic, and
symbiotic relationships at over 2000 locations worldwide. (E) Illustration of the modular AMMOD
(automated multisensor stations for monitoring of species diversity) monitoring station design. (1)
Acoustic monitoring. (2) Smellscapes (plant volatile organic compounds). (3) Visual monitoring: Moth
scanner, (4) Visual monitoring: Wildlife camera trap, (5) Base station, (6) Data transfer and management,
(7) Metabarcoding: Automated Malaise trap, (8) Metabarcoding: Automated pollen sampler. Figure draft
and design: J. Wolfgang Wägele.
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to detecting flying insects, and taxonomic classification remains limited. Also, monitoring would
benefit from improved algorithms for filtering biological targets from other airborne particles, as
well as increased knowledge of the reflective properties of insect taxa [54,55].

LiDAR (light detection and ranging) uses lasers to detect objects and has only recently been
applied in entomology; it can be used to detect insects much closer to the ground than most
radar systems, over sampling ranges of 10–600 m. New LED-based methods can detect flying
insects at distances shorter than 1 m [56]. LiDAR and LED-based methods have the potential
to use spectral reflectance to identify insects to genus or species level [57–59]. As the technology
develops, better taxonomic classification can be achieved as libraries on spectral scatter become
available for more taxa [14].

Molecular methods
Of the modern technologies, molecular methods using genetic information are the most widely used
so far. Thesemethods can be used formany goals, including the quick discovery of new species [60],
the detection of endangered [61], invasive, or pest species [62], the characterisation of species
interaction networks [63,64], and the assessment of taxonomic [65] and genetic diversity of whole
assemblages [66,67]; however, the methods still depend on human labour for sample collection.

The most common use of genetic information is based on DNA barcoding, that is, amplification of a
short section of DNA from a specific gene or genes, providing adequate separation between focal
taxa. Barcoding was originally proposed for the identification of individual specimens [68]. However,
advancements in laboratory protocols and high-throughput sequencing technologies now enable
DNA isolation and amplification and taxon identification from complex mixture samples (DNA
metabarcoding) (Figure 1D) [69]. Compared to traditional monitoring, metabarcoding can be
6 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Box 3. New technologies as opportunities to advance citizen science

About 25% of insect species records globally are collected by volunteers, and this number may be as high as 80% in
Europe (www.gbif.org). Historically, most insect monitoring was organised outside academia, especially by taxonomic
specialists and natural history societies [103], and there is a long tradition of including lay people in the scientific data
collection process for various insect taxa [104]. Recent technological developments have increased the opportunities
for people, including nonspecialists, to get involved, for example, helping with digitisation of museum collections.

Out of the new technologies, computer vision has been most often integrated into citizen science (Figure I); for example, a
range of smartphone applications use computer vision to help users identify species (e.g., www.iNaturalist.org, https://
observation.org/apps/obsidentify/). Many of these applications use a so-called ‘human-in-the-loop’ approach: the tech-
nology helps users narrow down the likely species by suggesting the most visually similar species. Citizens have also
helped to compile the training data needed for machine learning, for example, in the PollinatorWatch project (https://
www.zooniverse.org/projects/tokehoye/pollinatorwatch). In projects using DNA technology, some rely on citizen scien-
tists for the collection of the insect samples [105], which are subsequently processed by scientists. A few citizen science
projects are starting to include citizens in the analysis steps (e.g., the DNA&life project in Denmark) [106].

Ecologists often debate the reliability of species observations from citizen science. However, the development of artificial
intelligence (AI)-based apps [107] and DNA-based methods [99] may help to increase identification accuracy. For
instance, AI tools could be used to provide feedback on observation likelihood. Some citizen science platforms already
use crowd-sourced expert identification for validation of observation (e.g., iNaturalist); however, manual validation is un-
able to keep pace with the rapidly growing number of submissions. Technologies could help by using active learning AI
algorithms that select only a subset of images for human validation for (i) groundtruthing or training of the AI classifier,
and (ii) where the AI classifier wasmost uncertain in its decision. Citizenswith taxonomic expertise may also help to compile
the training datasets by identifying species on the basis of images or sounds.

New technologies have the potential to increase the accessibility and diversity of entomological citizen science. For
instance, citizen science activities could be extended to volunteers with expertise in joint software development and data
visualisation. Care, however, needs to be taken to avoid access barriers and unintended exclusion due to possible
technology barriers or a disconnect of data, people, and wildlife. Overall, there could be considerable benefits from
involving citizen scientists in the development and application of the tools through cocreated projects and community
partnerships [103].

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Using automated identification technology to monitor insects can be a win–win situation for citizens
and scientists. Using such tools, citizens can learn about species identity and ecology, and scientists can use the data
collected to study, for example, species interactions, such as this lady beetle (Coccinella septempunctata) feeding on
aphids on their host plant. Photo: Helen E. Roy.
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time- and cost-efficient [60] and is highly scalable, enabling simultaneous processing of many sam-
ples and species. DNA metabarcoding methods can be applied directly to organismal samples,
using the storage medium [70] or homogenised bulk samples of collected insects [71]. It is also pos-
sible to detect the presence of species from DNA fragments in environmental samples (eDNA), such
as water [61], soil [72], or air [73]. Interactions between insects and other taxa can be identified using
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Figure 2. Current and potential future scope of the four technologies A nonexhaustive list of current, in development, and expected future possibilities
for insect ecology and monitoring using the four technological developments discussed in this review. Colours refer to different aspects of each technology:
taxonomic precision and groups (orange), themetrics for biodiversity that can be obtained (light blue), the size, scale, and type of samples that can be processed (gold), and
the technological challenges for data processing (dark blue). Terms that transgress the borders between technologies are applicable to both. Abbreviations: eDNA,
environmental DNA; eRNA, environmental RNA.
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samples derived from animals’ guts, blood, or faeces [63] (Box 1). One of themost recent advances is
the use of eRNA [74] to distinguish the presence of living from dead individuals, since RNA is present
only in metabolically active cells, whereas DNA may be derived from the remains of dead individuals.

Metabarcoding facilitates the identification of a larger portion of the species in a sample com-
pared to traditional methods that are limited by taxonomic expertise. However, differences in
8 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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DNA amounts and extractability among insect taxa [70], or taxa-specific variation in PCR am-
plification [75,76], may result in some species not being detected even when present in the
sample, and commonly used markers, such as the c oxidase subunit 1 (CO1) gene, sometimes
fail to detect some taxa such as Hymenoptera [77]. Yet, size sorting within a sample can help
DNA amplification of small and rare species [78], and amplification biases may also be
circumvented by bypassing the PCR step and directly sequencing the complete extracted
DNA [79,80] or RNA (metatranscriptomics). RNA sequencing also has the potential to detect
metabolic capacities and gene expression in individuals or assemblages at the moment of
sampling [77].

The primary outputs of metabarcoding are amplicon sequence variants (ASVs) and/or operational
taxonomic units (OTUs), depending on the bioinformatics used. To link with existing species
knowledge, these units must be mapped to reference databases, such as the Barcode of Life
Data System (BOLD) or GenBank. BOLD now contains genetic data on 214 390 publicly available
insect species, which, nevertheless, represents only about 4% of the expected 5.5million species
of insects on earth [1]. When using these reference libraries, sequencing errors, synonymy,
misidentifications, and missing species can cause misclassifications. Nevertheless, international,
national, and taxon-specific initiatives are improving the taxonomic coverage of such reference
libraries [71,81].

The road forward
The development of new technologies for insect ecology and monitoring is no goal in itself, but
must be guided by the needs of society, policy makers, and the scientific questions scientists ad-
dress (Box 1). Furthermore, they must meet the demands of modern science in terms of data
curation and transparency [82], and consider the possibility of involvement of other stakeholders,
such as citizens (Box 3) [83]. There are also un(der)explored possibilities for integration among
technologies. In the following sections, we will outline the opportunities for how these technolo-
gies can revolutionise insect ecology and monitoring.

Open science
Insect data collected by traditional monitoring schemes or derived from museum specimens are
becoming increasingly accessible via data discovery platforms such as the Global Biodiversity
Information Facility (www.GBIF.org). However, for data collected using the discussed technologies,
the norms and practices of open science, as well as standards for data publishing, have yet to
evolve and to be agreed upon. To make these new technologies open and reproducible, both
the underlying data and processing steps must be FAIR: findable, accessible, interoperable, and
reusable [82].

Data openness for DNA-based technologies has been fostered through International Nucleotide
Sequence Database Collaboration (www.INSDC.org) data portals such as the Sequence Read
Archive (https://submit.ncbi.nlm.nih.gov/about/sra/). The GBIF has also led the development of
protocols to handle sequence data to improve discoverability of DNA-derived data [84]. For
sharing species images there are various citizen scientist platforms, but fewer for audio recordings
(but see www.iNaturalist.org), and the large quantities of automated monitoring data can currently
only be stored institutionally.

New technologies face practical problems about which form of data to store due to the typically
large file sizes or novel data attributes. To ensure comparability over time, data should be stored
in their original form, so the data can be reprocessed when reference libraries or technologies
improve and enable better species detection and/or classification.
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Standardisation and quality assurance of data and metadata are key for interoperability and reus-
ability. Among the most widespread are the Ecological Metadata Language (EML) [85] and Dar-
win Core [86]. However, it is still unclear what metadata would be sufficient for reproducibility of
data collected by different technologies or different protocols [87]. Technological reproducibility
also needs to involve openness of hardware (type, model, as well as mechanical, electrical and
optical settings), and software (version, documentation), and the availability of an analytical
code as a community norm. For DNA technologies, specific steps of the laboratory protocols –

such as preservation buffer, DNA polymerase, and PCR enhancer – are essential for reproducibility
[88], and automated workflows are being proposed for standardisation [84,89].

The potential and challenges of technological integration
Each of the reviewed technologies has its own strengths and weaknesses, and new studies
should combine the strengths of the different technologies, as well as with traditional monitoring
methods. Combining different technologies could bring a range of benefits: increased spatial,
temporal, or taxonomic coverage, a broader range of biodiversity metrics, or simply more
confident taxonomic assignment. Integration is also likely to be the optimal solution for effective
large-scale and long-term insect monitoring. Some examples of complementary use of methods
already exist. We outline some possibilities in the following sections.

Quantification of different biodiversity metrics in insect bulk samples
A combination of technologies applied to the same sample can increase the range of biodiversity
metrics produced. While molecular methods can provide estimates of taxon richness, they do not
easily provide information on the number of individuals of each species, although new methods
are being tested [90]. Traditional methods [91] and computer vision [25] provide more robust
quantitative metrics such as biomass and (relative) abundances, but are more taxonomically
limited.

Robotic techniques for the processing of individual insects from bulk samples [24] may potentially
replace the laborious work of manual species identification. Together, computer vision, robotic
sorting, and DNA-based identification of samples may add both images and DNA sequences
of previously unencountered taxa to reference libraries, provide all desired biodiversity metrics,
and discover new and rare species for further processing by taxonomic specialists. So far, only
prototypes or components of this approach exist [24,25], but this combination of technologies
can significantly upscale species discovery and biodiversity monitoring.

Increasing confidence of species identification
The integration of different technologies may improve identification accuracy and coverage
of the insects in a sample. Integration could occur during the taxonomic classification
step, as a multisensor input for the neural networks (so-called cross-modal perception),
which may work especially well for combined visual and acoustic monitoring. Alternatively,
integration may occur after each technology has independently classified taxa, to check
for concordance. The combination of DNA analysis and computer vision can even reveal
new morphological characteristics for identification [29]. Integrating optical and acoustic
sensors may be especially useful for monitoring pollinators, which is especially urgent
given their key role in ecosystems.

Filling the gaps: increased spatial, temporal, and taxonomic coverage
Due to the decreased human labour needed, new technologies can increase the spatial, tem-
poral, and taxonomic coverage of monitoring programmes. To align with existing schemes,
new technologies could be initially set up to target current spatial and temporal gaps, for
10 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Outstanding questions
If upscaled, these technologies could
provide data on insect population at
high spatial and temporal resolution,
but choices still have to be made
about sampling design. How can we
design monitoring schemes to ensure
that the outputs of these technologies
produce outputs that are relevant for
modelling and policy making?

Most insect biodiversity is found in low-
to middle-income countries, but re-
mains undescribed. How can these
technologies be made accessible and
useful across the world, for the good
of biodiversity conservation and for
local communities?

Ideally, data generated in different
monitoring programmes and countries
should be interoperable, reusable,
and comparable. What international
standards are needed to ensure
interoperability of data and reproducibility
of methods using each technology?

Biodiversity data are compiled by data
aggregators, such as the GBIF, for use
in research and conservation. Meta-
data that describe the data, including
uncertainties about taxonomic assign-
ment, are important to ensure that the
data are understood by end-users.
What metadata are needed for each
technology to ensure that the data,
and uncertainties within it, are appro-
priately communicated?
example, when and where fewer people are active, such as in remote areas. Another way of
upscaling monitoring to large spatial scales with great potential is the use of (weather) radar.
Although radar currently lacks certainty about species identity, it could be combined with
short-range LiDAR, vertical photography [92], and aerial eDNA [73] to sample the same
aerospace.

For assessment of whole ecological assemblages within a region, multisensor biodiversity
‘weather’ stations [10] may become particularly useful. These stations simultaneously use multiple
technologies and trap types to monitor a broad range of organisms, including insects, plants, and
vertebrates [see the AMMOD (automated multisensor stations for monitoring of species diversity)
project in Box 2]. Suchmonitoring is especially useful to understand trophic links and for monitoring
multitaxon biodiversity.

Ongoing role of traditional monitoring
Regardless of technological developments, new technologies cannot replace specialist taxonomic
knowledge and traditional methods [93]. Instead, new technologies should seek to complement
traditional monitoring, to reduce workload, to automate the most taxonomically trivial tasks, and
to fill gaps in existing monitoring schemes.

Entomological expertise is still needed for describing new species, for building and improving
reference libraries, and for validating results from automated monitoring. Moreover, there
are still insect groups that are poorly distinguishable by modern technology, for example, mor-
phologically similar taxa or taxa that are poorly distinguishable by commonly used barcoding
genes [94].

Another area where human labour will remain essential is the detection of protected species,
which are rare and not allowed to be trapped, such as those under the European Commission
Habitats Directive for Annex I. For aquatic species, eDNAmay be a viable option, but for monitor-
ing rare terrestrial habitat specialists, such as the hermit beetle Osmoderma eremita or the Great
Capricorn Beetle Cerambyx cerdo, human observations will remain essential.

Concluding remarks
The technological developments described in this paper provide unprecedented possibilities for
entomological research and monitoring. However, most of them are still in a proof-of-concept
stage and are not ready for large-scale deployment, and none of them is free of biases (see
Outstanding questions). While these technologies cannot replace specialist taxonomic knowledge,
they can help save time on species identification, and some can enable nonlethal monitoring.
Existing monitoring programmes using traditional methods have proven invaluable for understand-
ing the extent of recent insect declines and should be maintained to extend historic time-series.
Before new technologies can be deployed for large-scale insectmonitoring, international standards
need to be developed via collaboration across borders, projects, and technologies. It will also be
crucial to involve different stakeholders to develop policy-relevant indicators so that the data
collected can be truly and broadly useful. The future of entomology will be a collaboration between
human and machine.
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