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Abstract. The Ensemble of trajectories x(0 ≤ t ≤ T ) produced by the Markov generator M in a discrete
configuration space can be considered as ‘Canonical’ for the following reasons: (C1) the probability of
the trajectory x(0 ≤ t ≤ T ) can be rewritten as the exponential of a linear combination of its relevant
empirical time-averaged observables En, where the coefficients involving the Markov generator are their
fixed conjugate parameters; (C2) the large deviations properties of these empirical observables En for

large T are governed by the explicit rate function I
[2.5]
M (E.) at Level 2.5, while in the thermodynamic

limit T = +∞, they concentrate on their typical values E
typ[M ]
n determined by the Markov generator M .

This concentration property in the thermodynamic limit T = +∞ suggests to introduce the notion of the
‘Microcanonical Ensemble’ at Level 2.5 for stochastic trajectories x(0 ≤ t ≤ T ), where all the relevant
empirical variables En are fixed to some values E∗

n and cannot fluctuate anymore for finite T . The goal of
the present paper is to discuss its main properties: (MC1) when the long trajectory x(0 ≤ t ≤ T ) belongs
the Microcanonical Ensemble with the fixed empirical observables E∗

n, the statistics of its subtrajectory
x(0 ≤ t ≤ τ) for 1 � τ � T is governed by the Canonical Ensemble associated to the Markov generator M∗

that would make the empirical observables E∗
n typical; (MC2) in the Microcanonical Ensemble, the central

role is played by the number Ω
[2.5]
T (E∗

. ) of stochastic trajectories of duration T with the given empirical

observables E∗
n, and by the corresponding explicit Boltzmann entropy S[2.5](E∗

. ) = [ln Ω
[2.5]
T (E∗

. )]/T . This
general framework is applied to continuous-time Markov jump processes and to discrete-time Markov chains
with illustrative examples.

1 Introduction

1.1 Reminder on the Microcanonical Ensemble
and the Canonical Ensemble for equilibrium

The statistical physics of Equilibrium is based on the
ergodic principle: the ‘time average’ of any observable
O (C) of the configuration C over the dynamical trajec-
tory C(0 ≤ t ≤ T ) should become equivalent for large
time T → +∞ to an ‘Ensemble average’ computed with
the appropriate Ensemble probability PEnsemble

eq (C) of
the configuration C

1
T

∫ T

0

dtO (C(t)) �
T→∞

∑
C

O (C)PEnsemble
eq (C) (1)

a e-mail: cecile.monthus@cea.fr (corresponding author)

The various Ensembles probabilities PEnsemble
eq (C) are

adapted to the physical conditions that determine what
observables are fixed and what observables can fluctu-
ate. Let us recall two important Equilibrium Ensembles.

[MC] In the Microcanonical Ensemble for an iso-
lated system, where the energy E is fixed and cannot
fluctuate, the configurations having a different energy
E(C) �= E are not possible, while the configurations
having the energy E(C) = E are equiprobable (we
assume here that the configurations C and the energy E
are discrete, as in the Ising model for N classical spins
Si = ±1 for instance)

PMicrocanonical[E]
eq (C) ≡ δE,E(C)∑

C′ δE,E(C′)
(2)

[C] In the Canonical Ensemble for a system in contact
with a thermal reservoir at inverse temperature β, the
energy E can fluctuate, so that all the configurations
have now a finite weight given by the exponential form
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PCanonical[β]
eq (C) ≡ e−βE(C)∑

C′ e−βE(C′) (3)

Despite these very important physical differences
concerning the possible fluctuations of the energy E,
the two Ensembles become nevertheless equivalent in
the thermodynamic limit of the infinite size N → +∞.
This mathematical equivalence can be understood from
the physical point of view as follows:
From Canonical to Microcanonical: If the system is

in contact with a thermal reservoir and described by
the Canonical Ensemble of Eq. 3, the relative fluctua-
tions of the energy with respect to the averaged energy
Eav

β in the Canonical Ensemble will become negligible
in the thermodynamic limit N → +∞ as a consequence
of the law of large numbers. So the Canonical Ensem-
ble at inverse temperature β becomes equivalent in the
thermodynamic limit N → +∞ to the Microcanonical
Ensemble at energy E = Eav

β .
From Microcanonical to Canonical: If the system of

size N is isolated and described by the Microcanoni-
cal Ensemble of energy E, a subsystem of large size M
much smaller than N will be described by the Canoni-
cal Ensemble at the inverse temperature βE that repro-
duces the correct averaged intensive energy E

N . The
physical interpretation is that it is the complementary
system of size (N − M) � M that plays the role of the
thermal reservoir at the inverse temperature βE for the
subsystem of size M .

1.2 Analysis of non-equilibrium steady-states via
time-averaging over a large-time window T

For non-equilibrium steady states, it is natural to focus
also on time-averages over long dynamical trajectories
as in Eq. 1. However, since the analog of the Equi-
librium distribution PEnsemble

eq (C) is not known a pri-
ori, one introduces the time-empirical density ρ(C) that
measures the fraction of the time spent in each config-
uration C

ρT (C) ≡ 1
T

∫ T

0

dt δC(t),C (4)

from which one can reconstruct the time-average of any
observable O (C) as

1
T

∫ T

0

dtO (C(t)) =
∑

C
O (C) ρT (C) (5)

The goal of the large deviation theory is then to ana-
lyze how the empirical density of Eq. 4 and the time-
averaged observables of Eq. 5 fluctuate around their
typical values for large time T as we now recall.

1.3 Large deviations for Markov trajectories over a
large-time window T : standard Levels 1, 2, 3

The theory of large deviations has become the unifying
language for the statistical physics of equilibrium, non-
equilibrium and dynamical systems (see the reviews [1–
3] and references therein). It is based on the following
standard classification that involves the three nested
levels [1–3]:

(1) the Level 1 focuses on the large deviations of
the time-average of Eq. 5 for a given observable
O(C).

(2) the Level 2 concerns the large deviations of the
empirical density ρT (C) of Eq. 4 as a function of
the configuration C; since the empirical density
ρT (C) allows to reconstruct the time-average of any
observable O (C) via Eq. 5, the Level 2 can be con-
tracted to obtain the Level 1 of any observable
O(C).

(3) the Level 3 describes the large deviations of the
whole empirical dynamical process over the time-
window T , and can reproduce the Level 2 via con-
traction.

However this initial classification that was appropriate
for Equilibrium has turned out to be inappropriate for
non-equilibrium steady states for the two following rea-
sons:

(i) in the presence of steady currents, the large devia-
tions at Level 2 cannot be written in closed form,
while the Level 3 is actually far too general.

(ii) many interesting time-additive observables A, like
the currents, the activities, the entropy production,
etc... are not of the form of the observables O(C) of
the Level 1 but involve also the elementary moves
between two configurations, so that they cannot
be reconstructed from the empirical density ρT (C)
alone.

To overcome these difficulties, a new Level has been
introduced between the Level 2 and the Level 3 and
has been called 2.5 (even if it is actually much closer in
spirit to the Level 2).

1.4 Level 2.5 for the joint probability of the
empirical density ρT (C) and of the empirical flows
qT (C′, C)

The Level 2.5 concerns the joint probability of the
empirical density ρT (C) and of the empirical flows
qT (C′, C) that measure the frequency of jumps from one
configuration C to another C′ configuration during the
time-window T
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qT (C′, C) ≡ 1
T

∑
t∈[0,T ]:C(t+) �=C(t−)

δC(t+),C′ δC(t−),C (6)

The introduction of the Level 2.5 has solved the two
issues mentioned in the previous subsection as follows.

The issue (i) is now solved because the large devi-
ations at Level 2.5 are closed and explicit for gen-
eral Markov processes, including discrete-time Markov
chains [3–8], continuous-time Markov jump processes
[4,7–30] and Diffusion processes [7,8,12,13,17,27,28,
31–34]. The Level 2 concerning the empirical density
ρT (C) alone should be now obtained via the optimiza-
tion of the Level 2.5 over the empirical flows, but this
contraction is not always explicit.

The issue (ii) mentioned in the previous subsection
is also solved because any time-additive observable
A[C(0 ≤ t ≤ T )] of the Markov trajectory C(0 ≤ t ≤ T )
can be rewritten as a linear combination of the empir-
ical density ρT (C) and of the empirical flows qT (C′, C)
with appropriate coefficients f(C) and g(C′, C)

A[C(0 ≤ t ≤ T )]

=
∑

C
f(C)ρT (C) +

∑
C

∑
C′ �=C

g(C′, C)qT (C′, C)

=
1
T

∫ T

0

dtf (C(t))

+
1
T

∑
t∈[0,T ]:C(t+) �=C(t−)

g
(C(t+), C(t−)

)
(7)

As a consequence, the large deviations properties of
any time-additive observable A[C(0 ≤ t ≤ T )] can be
derived from the Level 2.5 via the appropriate contrac-
tion.

1.5 Microcanonical and Canonical Ensembles
associated to a given time-additive observable
A[C(0 ≤ t ≤ T )]

Since the famous Feymann–Kac formula, the standard
approach to analyze the statistics of a time-additive
observable A[C(0 ≤ t ≤ T )] of the Markov trajectory
C(0 ≤ t ≤ T ) is based on the evaluation of the gener-
ating function of A[C(0 ≤ t ≤ T )] via the introduction
of the appropriate deformed Markov generator. This
approach is very powerful and has been used exten-
sively in the field of non-equilibrium [17,33,35–75]. The
link with the large deviations at Level 2.5 described
in the previous subsection can be understood via the
corresponding conditioned process obtained from the
generalization of Doob’s h-transform, as explained in
particular in the very detailed complementary papers
[56,57] and in the Habilitation Thesis [17]. Within this
framework, once the trajectories probabilities P[C(0 ≤
t ≤ T )] are given by the Markov model one is inter-
ested in, one introduces for each time-additive observ-
able A[C(0 ≤ t ≤ T )] the following Microcanonical
and Canonical Ensembles (see [55–57] and references
therein):

[MC] the Microcanonical Ensemble associated to the
fixed value A of the time-additive observable A[C(0 ≤
t ≤ T )]

P
Microcanonical[A]
[A] (C(0 ≤ t ≤ T ))

≡ P[C(0 ≤ t ≤ T )]δA,A[C(0≤t≤T )]∑
C′(0≤t≤T ) P[C′(0 ≤ t ≤ T )]δA,A[C′(0≤t≤T )]

(8)

[C] the Canonical Ensemble associated to the param-
eter k conjugated to the additive observable A[C(0 ≤
t ≤ T )]

P
Canonical[k]
[A] (C(0 ≤ t ≤ T ))

≡ P[C(0 ≤ t ≤ T )]ekTA[C(0≤t≤T )]∑
C′(0≤t≤T ) P[C′(0 ≤ t ≤ T )]ekTA[C′(0≤t≤T )]

(9)

Although the mathematical analogy with the Equi-
librium Ensembles of Eqs. 2 and 3 is obvious, there are
however very important differences:

(a) Here one introduces a new Microcanonical Ensem-
ble and a new Canonical Ensemble for each new
time-additive observable A[C(0 ≤ t ≤ T )] one is
interested in, while for Equilibrium, one works with
the single Microcanonical Ensemble of Eq. 2 and
with the single Canonical Ensemble of Eq. 3 with-
out introducing new Ensembles for each observable.

(b) For most additive observable A[C(0 ≤ t ≤ T )], the
conjugated parameter k that appear in the Canon-
ical Ensemble of Eq. 9 remains a formal parameter
that has no direct physical meaning and that can-
not be controlled experimentally, in contrast to the
inverse temperature β that parametrizes the Equi-
librium Canonical Ensemble of Eq. 3.

(c) The Ensembles of Eqs. 8 and 9 involve the trajec-
tories probabilities P[C(0 ≤ t ≤ T )] determined
by the Markov generator, while the Equilibrium
Ensembles of Eqs. 2 and 3 do not contain such a
priori probabilities P (C) on their right hand-sides.
In particular, in the Microcanonical ensemble of Eq.
8, the trajectories that have the correct value of the
additive observable A[C(0 ≤ t ≤ T )] = A do not
have the same probability, in contrast to the Equi-
librium Microcanonical Ensemble of Eq. 2, where
all the configurations C that have the correct value
of the energy E(C) = E are equiprobable.

1.6 Motivation and goal of the present work

The present work has been motivated by the differences
(a) (b) (c) mentioned in the previous subsection. We
will explain how a closer analogy to the Equilibrium
Ensembles of Eqs. 2 and 3 can be obtained if, instead of
working at the level of a single time-additive observable
A[C(0 ≤ t ≤ T )], one works at the Level 2.5 as follows.
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[C2.5] The trajectories probabilities P[C(0 ≤ t ≤ T )]
determined by Markov generator M can actually be
considered as a ‘Canonical Ensemble at Level 2.5’:
indeed, the probability P[C(0 ≤ t ≤ T )] of the tra-
jectory C(0 ≤ t ≤ T ) can be rewritten as the expo-
nential of a linear combination of its relevant empiri-
cal time-averaged observables En (namely the empirical
density and the empirical flows), where the coefficients
involving the Markov generator are their fixed conju-
gate parameters.

[MC2.5] It is then natural to introduce also the corre-
sponding ‘Microcanonical Ensemble at Level 2.5’, where
all the relevant empirical variables En (namely the
empirical density and the empirical flows) are fixed to
some values E∗

n and cannot fluctuate anymore for finite
T : the trajectories C(0 ≤ t ≤ T ) that have not the
correct values E∗

n have zero weight, while all the tra-
jectories C(0 ≤ t ≤ T ) that have the correct values
E∗

n are equiprobable. In this Microcanonical Ensem-
ble at Level 2.5, the central role is thus played by
the number Ω[2.5]

T (E∗
. ) of the stochastic trajectories of

duration T with the given empirical observables E∗
n,

and by the corresponding explicit Boltzmann entropy
S[2.5](E∗

. ) = [ln Ω[2.5]
T (E∗

. )]/T .
The goal of the present paper is thus to describe

in detail the properties of these Canonical and Micro-
canonical Ensembles at Level 2.5.

1.7 Organization of the paper

The paper is organized as follows. In Sect. 2, we explain
in detail the general properties of the Canonical and
the Microcanonical Ensembles at Level 2.5 with their
links. This framework is then applied to continuous-
time Markov jump processes in Sect. 3. In Sect. 4, we
focus on the special case of undirected Markov jump
processes (where the jumps between two configurations
are either both possible or both impossible) to describe
how the entropy S[2.5](E.) at Level 2.5 as a function of
all the relevant empirical observables En can be con-
tracted to obtain the explicit entropies of many other
lower levels. Our conclusions are summarized in Sect.
5. In Appendix A, the general framework of Sect. 2 is
applied to discrete-time Markov chains.

2 Canonical and Microcanonical Ensembles
for Markov trajectories

In this section, we outline the general principles before
the specific applications to continuous-time Markov
jump processes in Sect. 3 and to discrete-time Markov
chains in Appendix A.

2.1 Canonical Ensemble of trajectories
x(0 ≤ t ≤ T ) associated to the Markov
generator M

Let us consider a Markov process in a discrete con-
figuration space converging towards some normalizable

steady state. Since the Markov generator M defines the
dynamical rules, its matrix elements can be considered
as fixed ’intensive variables’ that will govern the statis-
tics of the trajectories x(0 ≤ t ≤ T ) with probabilities
PM [x(0 ≤ t ≤ T )] normalized to unity

1 =
∑

x(0≤t≤T )

PM [x(0 ≤ t ≤ T )] ≡
∑
x(.)

PM [x(.)] (10)

where the last simplified notations will be used to ease
the read of equations.

2.1.1 Identification of the relevant empirical observables
En [x(.)] that determine the trajectories probabilities
PM [x(.)]

The information per unit time IM [x(0 ≤ t ≤ T )] of a
given trajectory x(0 ≤ t ≤ T ) of probability PM [x(.)]

IM [x(.)] ≡ − ln (PM [x(.)])
T

(11)

depends on the trajectory x(0 ≤ t ≤ T )

IM [x(.)] = IM (E. [x(.)]) (12)

only via a collection of relevant empirical observables
En [x(.)] labelled by n: they correspond to the time-
averaged density and to the time-averaged flows during
the time window T (see Eqs. 76 and 79 for continuous-
time jump processes as well as Eq. A7 for discrete-time
Markov chains).

2.1.2 The information IM (E.) as a linear combination
of the relevant empirical observables En

As a consequence of the Markov property that allows to
decompose the trajectory probability via the Chapman–
Kolmogorov Equation, the information IM (E.) is actu-
ally a linear combination of these relevant empirical
time-averaged observables En

IM (E.) =
∑

n

Enin(M) (13)

while the coefficients

in(M) ≡ ∂IM (E.)
∂En

(14)

involve the matrix elements of the Markov generator M
in a very simple way (see Eqs. 84 and 85 for continuous-
time jump processes as well as Eqs. A14 and A15 for
discrete-time Markov chains).
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2.1.3 Trajectory probability in terms of the relevant
empirical observables E. [x(.)] = E.

In summary, the probability PM [x(.)] of the trajectory
x(0 ≤ t ≤ T ) can be rewritten in terms of its relevant
empirical observables En [x(.)] as

PM [x(.)]

= e−TIM [x(.)] = e−TIM (E. [x(.)])

=
∑
E.

[∏
n

δ (En − En [x(.)])

]
e−TIM (E.)

=
∑
E.

[∏
n

δ (En − En [x(.)])

]
e

−T
∑

n

Enin(M)

(15)

where the exponential involves a linear combination of
the relevant empirical time-averaged observables En,
while the coefficients in(M) determined by the Markov
generator M can be considered as their fixed conjugate
parameters.

2.1.4 Number Ω[2.5]
T (E.) of trajectories x(0 ≤ t ≤ T )

with the same relevant empirical observables
E. [x(.)] = E.

An important consequence of Eq. 15 is that all the tra-
jectories x(0 ≤ t ≤ T ) that have the same relevant
empirical observables En = En[x(0 ≤ t ≤ T )] have the
same probability. The normalization over all possible
trajectories of Eq. 10 can be thus rewritten as a sum
over these relevant empirical observables En

1 =
∑

x(0≤t≤T )

P[x(0 ≤ t ≤ T )]

=
∑
E.

Ω[2.5]
T (E.)e−TIM (E.) (16)

where the number Ω[2.5]
T (E.) of trajectories of dura-

tion T associated to given values En of these empirical
observables

Ω[2.5]
T (E.) ≡

∑
x(0≤t≤T )

[∏
n

δ (En − En [x(.)])

]
(17)

will grow exponentially with respect to the time-
window T in the limit T → +∞

Ω[2.5]
T (E.) �

T→+∞
C [2.5](E.) eTS[2.5](E.) (18)

The prefactor C [2.5](E.) denotes the appropriate con-
stitutive constraints for the empirical observables En

(see Eq. 83 for continuous-time jump processes as well

as Eq. A13 for discrete-time Markov chains). The func-

tion S[2.5](E.) = ln Ω
[2.5]
T (E.)

T represents the Boltzmann
intensive entropy of the set of trajectories of duration
T with given intensive empirical observables En. Note
that since the Boltzmann entropy is the cornerstone of
the statistical physics of Equilibrium, the definition of
Boltzmann entropies for non-equilibrium systems has
motivated a lot of various studies (see for instance [76]
and references therein).

2.1.5 Boltzmann intensive entropy S[2.5](E.) as a
function of the relevant empirical observables En

The entropy S[2.5](E.) introduced in Eq. 18 can be eval-
uated without any combinatorial computation as fol-
lows. The normalization of Eq. 16 becomes for large
T

1 �
T→+∞

∑
E.

C [2.5](E.) e
T

[
S[2.5](E.) − IM (E.)

]
(19)

When the empirical variables En take their typical val-
ues E

typ[M ]
n for the Markov generator M , the exponen-

tial behavior in T of Eq. 19 should exactly vanish, i.e.
the entropy S[2.5](Etyp[M ]

. ) should exactly compensate
the information IM

(
Etyp[M ]

.

)

S[2.5](Etyp[M ]
. ) = IM

(
Etyp[M ]

.

)

=
∑

n

Etyp[M ]
n in(M) (20)

To obtain the intensive entropy S[2.5](E.) for other
given values En of the empirical observables, one just
needs to introduce the modified Markov generator ME.

that would make the empirical values En typical for
this modified Markov generator

En = Etyp[ME. ]
n (21)

and to use Eq. 20 for this modified Markov generator
ME. to obtain the entropy S[2.5](E.) as a function of
E.

S[2.5](E.) = S[2.5](Etyp[ME. ]
. ) = IME.

(
Etyp[ME. ]

)

= IME. (E.) (22)

Plugging the linear expression of Eq. 13 for the infor-
mation into Eq. 22 yields that the entropy

S[2.5](E.) =
∑

n

Enin(ME.) (23)

is nonlinear with respect to the empirical observables
En, since the empirical observables E. appear in the
modified Markov generator ME. involved in the coeffi-
cients in(ME.).
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However, the linearity of the information of Eq. 13
can be used to write the coefficients of Eq. 14 for the
special values E

typ[M ]
n of the empirical observables to

use Eq. 20

in(M) =
∂IM

(
Etyp[M ]

.

)
∂E

typ[M ]
n

=
∂S[2.5]

(
Etyp[M ]

.

)
∂E

typ[M ]
n

(24)

that can be now rewritten for the modified Markov
generator ME. that make the empirical values En =
E

typ[ME. ]
n typical (Eq. 21) to obtain that the derivatives

of the entropy S[2.5] (E.) with respect to the empirical
observables En

∂S[2.5] (E.)
∂En

= in(ME.) (25)

are given by the coefficients in(ME.) associated to the
modified Markov generator ME. . The comparison with
the direct derivative of Eq. 23

∂S[2.5] (E.)
∂En

= in(ME.) +
∑
m

Em
∂im(ME.)

∂En
(26)

yields that Eq. 25 requires the vanishing of the second
contribution of Eq. 26 for any n

∑
m

Em
∂im(ME.)

∂En
= 0 (27)

The property of Eq. 25 can be explicitly checked in Eq.
99 for continuous-time jump processes and in Eq. A26
for discrete-time Markov chains.

2.1.6 Large deviations at Level 2.5 for the relevant
empirical observables E.

Equation 16 can be interpreted as the normalization

1 =
∑
E.

P
[2.5]
M (E.) (28)

for the probability P
[2.5]
M (E.) to see the relevant empir-

ical observables En over the set of trajectories of dura-
tion T generated with the Markov generator M . For
large time T → +∞, the asymptotic behavior of
Ω[2.5]

T (E.) in Eq. 18 can be plugged into Eq. 16 to obtain
the large deviation properties for all the relevant empir-
ical observables En that determine the trajectories
probabilities

P
[2.5]
M (E.) �

T→+∞
C [2.5](E.) e

T
[
S[2.5](E.) − IM (E.)

]

= C [2.5](E.) e−TI
[2.5]
M (E.) (29)

where the positive rate function at Level 2.5

I
[2.5]
M (E.) = IM (E.) − S[2.5](E.)

= IM (E.) − IME. (E.) ≥ 0 (30)

is simply given by the difference between the informa-
tion IM (E.) associated to the Markov generator M and
the information IME. (E.) associated to the modified
Markov generator ME. that would make the empirical
values En typical (see Eq. 21).

The typical values E
typ[M ]
n for the Markov generator

M are the only values of the empirical observables En

that satisfy the constitutive constraints C [2.5](E.) and
that make the rate function of Eq. 30 vanish

I
[2.5]
M (Etyp[M ]

. ) = 0 (31)

For large T , the Level 2.5 of Eq. 29 describes how rare
it is to see empirical observables E. different from their
typical values Etyp[M ]

. , while in the thermodynamic
limit T = +∞, the Level 2.5 of Eq. 88 reduces to delta
functions for all the relevant empirical observables En

that determine the trajectories probabilities

P
[2.5]
M (E.) �

T=+∞

∏
n

δ
(
En − Etyp[M ]

n

)
(32)

2.1.7 Contraction of the explicit Level 2.5 to obtain large
deviations properties of all the lower Levels

As recalled in the Introduction, the explicit large devi-
ations at Level 2.5 of Eq. 29 concerning the joint dis-
tribution of all the relevant empirical observables En

allows to analyze via contraction all the large devia-
tions properties of lower levels. Let us mention some
important examples:

(i) The joint distribution of any subset of the rele-
vant empirical observables En can be obtained via the
integration of Eq. 29 over all the empirical observables
that one does not wish to keep. For instance, the distri-
bution of the empirical density ρ. alone can be obtained
via the integration of Eq. 29 over all the empirical flows
with their constitutive constraints to obtain the large
deviations at Level 2

P
[2]
M (ρ.) �

T→+∞
C [2](ρ.) e−TI

[2]
M (ρ.) (33)

where the constitutive constraint C [2](ρ.) corresponds
to the normalization of the empirical density ρ.. How-
ever the rate function I

[2]
M (ρ.) at Level 2 for the empir-

ical density alone ρ. is not always explicit when the
Markov generator M does not correspond to some
detailed-balance equilibrium dynamics.

(ii) Any intensive time-additive observable AM [x(.)]
of the trajectory x(0 ≤ t ≤ T ) can be rewritten as a lin-
ear combination of the empirical observables En [x(.)]
with appropriate coefficients an(M) that may depend
on the Markov generator M
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AM [x(.)] =
∑

n

En [x(.)] an(M) ≡ AM (E. [x(.)]) (34)

Since all the trajectories x(0 ≤ t ≤ T ) that have the
same empirical observables En = En[x(0 ≤ t ≤ T )]
have the same value for the time-additive observable
of Eq. 34, its probability distribution can be evaluated
from the Level 2.5 of Eq. 29

P
[Add]
M (A) ≡

∑
x(0≤t≤T )

P[x(0 ≤ t ≤ T )]

δ

(
A −

∑
n

En [x(.)] an(M)

)

=
∑
E.

P
[2.5]
M (E.)δ

(
A −

∑
n

Enan(M)

)

�
T→+∞

∑
E.

C [2.5](E.) e−TI
[2.5]
M (E.)

δ

(
A −

∑
n

Enan(M)

)
�

T→+∞
e−TI

[Add]
M (A)

(35)

The rate function I
[Add]
M (A) for the time-additive

observable corresponds to the minimization of the
rate function I

[2.5]
M (E.) at Level 2.5 over the empir-

ical observables En satisfying the constitutive con-
straints C [2.5](E.) and the supplementary constraint
A =

∑
n Enan(M) reproducing the correct value A of

the additive observable

I
[Add]
M (A) = min

E.:C
[2.5](E.)and∑

n Enan(M)=A

(
I
[2.5]
M (E.)

)
(36)

This contraction can be analyzed via the method of
Lagrange multipliers to impose the constraints, but
again it is not always explicit. When the additive
observable is the information IM [x(.)] of Eqs. 12 and
13, its large deviations properties can be analyzed via
the Ruelle thermodynamic formalism recently revis-
ited in [72]. Besides this example of the information
IM [x(.)], there are of course many other interesting
time-additive observables depending on the specific
models.

(iii) The Level 1 concerns the additive observables
AM [x(.)] of Eq. 34 that can be reconstructed from the
empirical density ρ. alone (i.e. that do not involve the
empirical flows) and whose large deviations can be thus
obtained from the contraction of the Level 2 of Eq. 33.

2.1.8 Relation with the Kolmogorov–Sinai entropy hKS
M

of Markov trajectories

The Kolmogorov–Sinai entropy hKS
M is defined via the

averaged value of the intensive information

IM [x(0 ≤ t ≤ T )] of Eq. 11 over the trajecto-
ries x(0 ≤ t ≤ T ) drawn with their probabilities
PM [x(0 ≤ t ≤ T )]

hKS
M ≡ lim

T→+∞

⎛
⎝∑

x(.)

PM [x(.)]IM [x(.)]

⎞
⎠

= lim
T→+∞

(
− 1

T

∑
x(0≤t≤T )

PM [x(0 ≤ t ≤ T )]

× ln (PM [x(0 ≤ t ≤ T )])

)
(37)

So it characterizes the linear growth in T of the Shan-
non entropy SShannon

M (T ) associated to the probability
distribution PM [x(0 ≤ t ≤ T )] of the trajectories

SShannon
M (T ) ≡ −

∑
x(0≤t≤T )

PM [x(0 ≤ t ≤ T )]

× ln (PM [x(0 ≤ t ≤ T )]) ∝
T→+∞

T hKS
M

(38)

The average of IM [x(0 ≤ t ≤ T )] over trajectories of
Eq. 37 can be rewritten as an average of the information
IM (E.) of Eq. 12 over the probability P

[2.5]
M (E.) of Eq.

29 for the empirical observables En

hKS
M = lim

T→+∞

(∑
E.

P
[2.5]
M (E.)IM (E.)

)
(39)

For T = +∞, only the typical values Etyp[M ]
. of the

empirical observables survive in Eq. 32 so that the
Kolmogorov–Sinai entropy hKS

M reduces to the infor-
mation IM

(
Etyp[M ]

.

)
associated to the typical values

Etyp[M ] of the empirical observables

hKS
M = IM

(
Etyp[M ]

.

)
(40)

Equation 20 yields that the Kolmogorov–Sinai entropy
hKS

M also coincides with the entropy S[2.5](Etyp[M ]
. )

associated to the typical values Etyp[M ] of the empirical
observables

hKS
M = S[2.5](Etyp[M ]

. ) (41)

The physical meaning is that the average over trajec-
tories with their probabilities P[x(0 ≤ t ≤ T )] is actu-
ally dominated in the thermodynamic limit T → +∞
by the number of Eq. 18

Ω[2.5]
T (Etyp[M ]

. ) �
T→+∞

eTS[2.5](Etyp[M]
. ) = eThKS

M (42)
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of trajectories corresponding to the information of Eq.
40

IM

(
Etyp[M ]

.

)
= hKS

M (43)

so that all these trajectories have the same probability
given by e−ThKS

M = 1

Ω
[2.5]
T (Etyp[M]

. )
. As a consequence,

it is interesting to introduce the corresponding notion
of Microcanonical Ensemble described in the next
subsection.

2.2 Microcanonical Ensemble at Level 2.5 based on
fixed relevant empirical observables E∗

n

2.2.1 Microcanonical Ensemble at Level 2.5 where the
relevant empirical observables E∗

n cannot fluctuate

The concentration property of Eq. 32 for the all the rele-
vant empirical observables in the thermodynamic limit
T = +∞ and the discussion around Eqs. 42 and 43
suggests to introduce the notion of the ’Microcanonical
Ensemble’ at Level 2.5 where the all the relevant empir-
ical variables En are fixed to some values E∗

n satisfying
the constitutive constraints C [2.5](E∗

. )

P
Micro[2.5]
E∗

.
(E.) =

∏
n

δ(En − E∗
n) (44)

and thus cannot fluctuate for finite T in contrast to the
Canonical fluctuations at Level 2.5 of Eq. 29 associated
to the Markov generator M .

Note that here the possible elementary moves of the
trajectories correspond to the empirical flows that are
fixed to non-vanishing values, while the empirical flows
that are fixed to vanishing values correspond to impos-
sible elementary moves.

2.2.2 Probabilities of trajectories x(0 ≤ t ≤ T ) in the
Microcanonical Ensemble at Level 2.5

In the Microcanonical Ensemble of Eq. 44, only the
trajectories x(0 ≤ t ≤ T ) corresponding to the given
empirical values E∗

n have a non-zero weight, and all
these allowed trajectories have the same weight given
by the inverse of their number Ω[2.5]

T (E∗
. ) of Eq. 17

PMicro[2.5]
E∗

.
[x(.)]

=
1

Ω[2.5]
T (E∗

. )

∏
n

δ (En − E∗
n[x(0 ≤ t ≤ T )])

(45)

Using the asymptotic behavior for large T of Eq. 18,
the trajectory probability of Eq. 45 involves the entropy
S[2.5](E∗

. )

PMicro[2.5]
E∗

.
[x(.)]

�
T→+∞

e−TS[2.5](E∗
. ) ∏

n

δ (E∗
n − En[x(0 ≤ t ≤ T )])

(46)

2.2.3 Statistics of the subtrajectories on [0, τ ] of the
Microcanonical Ensemble trajectories on [0, T ] for
1 � τ � T

In the Sect. 2.1.4, we have seen how the analysis of
the Canonical Ensemble associated to the Markov gen-
erator M actually involves the Microcanonical Ensem-
ble via the number Ω[2.5]

T (E.) of trajectories with given
empirical observables En. In the present subsection,
we would like to see if the Canonical Ensemble can
emerge to describe the statistics of the long subtra-
jectory x(0 ≤ t ≤ τ) belonging to the much longer
trajectory x(0 ≤ t ≤ T ) drawn with the Microcanoni-
cal distribution of Eq. 46, i.e. we are interested in the
regime

1 � τ � T (47)

Since this property would be the direct analog of the
well-known property for Equilibrium Ensembles (as
recalled at the end of the Sect. 1.1 of the Introduction),
it is interesting to try to translate step by step the
standard derivation for Equilibrium Ensembles which
is based on the Taylor expansion of the Boltzmann
entropy (see your favorite textbook on the statistical
physics of Equilibrium).

When the very long trajectory x(0 ≤ t ≤ T ) with the
fixed empirical observables E∗

n is decomposed into the
long subtrajectory x(0 ≤ t ≤ τ) of empirical observ-
ables En and its much longer complementary subtra-
jectory x(τ ≤ t ≤ T ) of empirical observables Ên, we
can use the fact that the empirical observables En are
given by time-averaged properties to write

TE∗
n = τEn + (T − τ)Ên (48)

The number Ω[2.5]
T (E∗

. ) of total trajectories can be thus
computed from the numbers Ω[2.5]

τ (E) and Ω[2.5]
T−τ (Ê) of

the two subtrajectories via the multidimensional con-
volution

Ω[2.5]
T (E∗

. )

=
∑

E.

∑

Ê.

Ω[2.5]
τ (E.)Ω

[2.5]
T−τ (Ê.)

×
∏

n

δ

(
E∗

n − τ

T
En −

(
1 − τ

T

)
Ên

)

=
∑

E.

∑

Ê.

Ω[2.5]
τ (E.)Ω

[2.5]
T−τ (Ê.)

∏

n

δ

(
Ên − E∗

n− τ
T

En

1− τ
T

)

1 − τ
T

�
τ
T

�1

∑

E.

Ω[2.5]
τ (E.)Ω

[2.5]
T−τ

(
E∗

. − τ
T

E.

1 − τ
T

)
(49)
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As a consequence, the probability pτ (E.) to see the
empirical observables En during the long subtrajectory
x(0 ≤ t ≤ τ) of duration τ reads

pτ (E.) � Ω[2.5]
τ (E.)

Ω[2.5]
T−τ

(
E∗

. − τ
T E.

1− τ
T

)

Ω[2.5]
T (E∗

. )
(50)

Since the constraints C [2.5](E∗
. ) are satisfied from

the definition of the Microcanonical Ensemble, let us
assume that the constraints C [2.5](Ê.) are satisfied
whenever the constraints C [2.5](E.) are satisfied, as can
be checked on explicit examples. Using the asymptotic
form of Eq. 18 for large τ , for large (T −τ) and for large
T , Eq. 50 becomes

pτ (E.) � C [2.5](E.)

×e
τS[2.5](E.)−TS[2.5](E∗

. )+(T−τ)S[2.5]
(

E∗
. − τ

T
E.

1− τ
T

)

(51)

Plugging the Taylor expansion at first order in the ratio
τ
T � 1

S[2.5]

(
E∗

. − τ
T E.

1 − τ
T

)

= S[2.5]

(
E∗

. +
τ

T
(E∗

. − E.) + o

(
τ2

T 2

) )

= S[2.5](E∗
. ) +

τ

T

∑
n

(E∗
n − En)

∂S[2.5](E∗
. )

∂E∗
n

+ o

(
τ2

T 2

)

(52)

into Eq. 51 yields

pτ (E.) � C [2.5](E.)eτS[2.5](E.)e
−TS[2.5](E∗

. )+(T−τ)

[

S[2.5](E∗
. )+ τ

T

∑
n(E∗

n−En)
∂S[2.5](E∗

. )
∂E∗

n
+o

(
τ2

T2

)]

�
T→+∞

C [2.5](E.)e
τ

[

S[2.5](E.)−S[2.5](E∗
. )−∑

n(En−E∗
n)

∂S[2.5](E∗
. )

∂E∗
n

]

(53)

The factor of τ in the exponential can be simplified via
the introduction of the Markov model ME∗

. that makes
the empirical observables E∗

n typical (Eq. 21)

E∗
n = Etyp[ME∗

. ]
n (54)

to use the expression of the entropy of Eq. 23

S[2.5](E∗
. ) =

∑
n

E∗
nin(ME∗

. ) (55)

and of its derivatives with respect to empirical observ-
ables of Eq. 25

∂S[2.5] (E∗
. )

∂E∗
n

= in(ME∗
. ) (56)

Plugging these two equations into Eq. 53 leads to the
final result

pτ (E.)

�
T→+∞

C [2.5](E.)

×e
τ
[
S[2.5](E.)−

∑
n E∗

nin(ME∗
. )−∑

n(En−E∗
n)in(ME∗

. )
]

�
T→+∞

C [2.5](E.)e
τ
[
S[2.5](E.)−

∑
n Enin(ME∗

. )
]

= C [2.5](E.) e
−τI

[2.5]

M
E∗

.
(E.) (57)

where one recognizes the Level 2.5 of Eqs. 29 and 30
for the distribution of the empirical observables En in
the Canonical Ensemble associated to the Markov gen-
erator ME∗

. over the time-window τ .
In conclusion, when the total trajectory x(0 ≤ t ≤

T ) belongs to the Microcanonical Ensemble of Eq. 46
corresponding to the fixed empirical observables E∗

n,
the statistical properties of the subtrajectory x(0 ≤ t ≤
τ) over the time-window τ satisfying 1 � τ � T are
governed by the Canonical Ensemble associated to the
Markov generator ME∗

.

2.2.4 Time-additive observables in the Microcanonical
Ensemble at Level 2.5

In the Canonical Ensemble associated to the Markov
generator M , the additive observables defined by Eq.
34

AM (E.) =
∑

n

Enan(M) (58)

are fluctuating with large deviations properties gov-
erned by Eq. 35.

The Markov model ME∗
. that makes the empiri-

cal observables E∗
n typical (Eq. 54) is thus also useful

to translate the definition of Eq. 58 in the Canonical
Ensemble to obtain their fixed values in the Micro-
canonical Ensemble associated to the fixed empirical
observables E∗

n

A
Micro[2.5]
E∗ (E.) =

∑
n

E∗
nan(ME∗

. ) (59)
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2.3 Maximization of the explicit entropy S[2.5](E.)
at Level 2.5 with constraints towards lower levels

For the Canonical Ensemble, we have recalled in Sect.
2.1.7 how the explicit rate function I

[2.5]
M (E.) at Level

2.5 could be contracted to obtain the large deviations
properties of all the lower levels. For the Microcanonical
Ensemble, the analog idea concerns the maximization
of the entropy S[2.5](E.) at Level 2.5 with constraints
to obtain the entropies of all the lower levels with the
following physical meaning.

From Eq. 18 giving the explicit number Ω[2.5]
T (E.) of

trajectories of duration T associated to given values
of all the relevant empirical observables En, one can
compute:

(i) the number of trajectories of duration T associ-
ated with any subset of the relevant empirical observ-
ables En via the integration of Ω[2.5]

T (E.) over all the
empirical observables that one does not wish to keep.
For instance, the number Ω[2]

T (ρ.) of trajectories of dura-
tion T associated to the given empirical density ρ. can
be obtained via the integration of Ω[2.5]

T (E.) over all
the empirical flows with their constraints to obtain the
Level 2

Ω[2]
T (ρ.) ≡

∑
x(0≤t≤T )

[∏
x

δ (ρx − ρx [x(.)])

]

�
T→+∞

C [2](ρ.) eTS[2](ρ.) (60)

where the constitutive constraint C [2](ρ.) corresponds
to the normalization of the empirical density ρ. as in Eq.
33, while S[2](ρ.) represents the entropy as a function
of the empirical density ρ. alone.

(ii) the number Ω[Add]
T (A) of trajectories of duration

T corresponding to a given value A of the additive
observable of Eq. 59 can be obtained from the integra-
tion of Ω[2.5]

T (E.) with the appropriate constraint fixing
the value of A

Ω[Add]
T (A) =

∑
E.

Ω[2.5]
T (E.)δ

(
A −

∑
n

Enan(ME.)

)

�
T→+∞

∑
E.

C [2.5](E.) eTS[2.5](E.)

δ

(
A −

∑
n

Enan(ME.)

)
�

T→+∞
eTS[Add](A)

(61)

The entropy S[Add](A) thus corresponds to the max-
imization of the entropy S[2.5](E.) at Level 2.5 over
the empirical observables En satisfying the constitu-
tive constraints C [2.5](E.) and the constraint A =∑

n Enan(ME.) reproducing the correct value A of the
additive observable

S[Add](A) = max
E.:C

[2.5](E.)and
∑

n Enan(ME. )=A

[
S[2.5](E.)

]
(62)

(iii) the Level 1 concerns the additive observables A
that can be reconstructed from the empirical density
ρ. alone, so that their number Ω[1]

T (A) can be obtained
from the integration of the Level 2 of Eq. 60.

(iii) Finally, the Level 0 concerns the total number of
trajectories of duration T when one integrates Ω[2.5]

T (E.)
over all thee empirical observables E. or when one inte-
grates Ω[2]

T (ρ.) over all possible empirical densities ρ.,
or when one integrates Ω[Add]

T (A) over all possible val-
ues A

Ω[0]
T ≡

∑
E.

C [2.5](E.) eTS[2.5](E.) �
T→+∞

eTS[0]
(63)

The entropy S[0] already appears in Ruelle the thermo-
dynamic formalism as discussed with simple examples
in [72].

3 Application to continuous-time Markov
jump processes

3.1 Canonical Ensemble of trajectories
x(0 ≤ t ≤ T ) associated to the Markov jump
generator w

3.1.1 Markov jump process converging towards some
normalizable steady state

The continuous-time jump dynamics is defined by the
Master Equation in discrete configuration space

∂tPx(t) =
∑

y

wx,yPy(t) (64)

where the off-diagonal x �= y positive matrix elements
wx,y ≥ 0 represent the jump rates per unit time from
y towards x �= y, while the corresponding diagonal ele-
ments are negative and are fixed by the conservation of
probability to be

wy,y = −
∑
x�=y

wx,y (65)

The steady-state P ∗
x of Eq. 64

0 =
∑

y

wx,yP ∗
y (66)

is assumed to be normalizable

1 =
∑

y

P ∗
y (67)
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Here the elementary jump from y towards x is possi-
ble if the corresponding off-diagonal element is positive
wx,y > 0, while it is impossible if wx,y = 0. In partic-
ular, it is important to mention the following special
cases:

(i) Directed dynamics: for any pair x �= y, the two
elementary jumps between them are never both
possible

Directed: wx,ywy,x = 0 (68)

(ii) Undirected dynamics: for any pair x �= y, the
two jumps between them are either both possible
wx,ywy,x > 0 or both impossible wx,y = wy,x = 0

Undirected: wx,ywy,x > 0 or wx,y = wy,x = 0
(69)

(iii) Equilibrium dynamics: special case of undirected
dynamics where on each link x �= y with possible
moves wx,ywy,x > 0, there is no steady current in
the steady state, i.e. the two steady flows on each
link satisfy the Detailed-Balance condition

Detailed Balance: wx,yP ∗
y = wy,xP ∗

x (70)

3.1.2 Trajectories probabilities and their normalization

A trajectory x(t) on the time interval 0 ≤ t ≤ T can
be decomposed into a certain number K ≥ 0 of jumps
k = 1, ..,K occurring at times 0 < t1 < ... < tK <
T between the successive configurations (x0 → x1 →
x2.. → xK) that are visited between these jumps. The
probability density of this trajectory for fixed initial
condition x0

x(0 ≤ t ≤ T ) = (x0; t1;x1; t2; ...;xK−1; tK ;xK) (71)

reads in terms of the matrix elements of the Markov
generator w.,.

P[x(0 ≤ t ≤ T ) = (x0; t1;x1; t2; ...;xK−1; tK ;xK)]

= e(T−tK)wxK ,xK wxK ,xK−1

×e(tK−tK−1)wxK−1,xK−1 .......wx[2],x1

×e(t2−t1)wx1,x1 wx1,x0e
t1wx0,x0

= e(T−tK)wxK ,xK

K∏
k=1

[
wxk,xk−1e

(tk−tk−1)wxk−1,xk−1

]

(72)

The normalization of over all possible trajectories on
[0, T ] involves the sum over the number K of jumps,
the sum over the K configurations (x1, ..., xK) where
xk has to be different from xk−1, and the integration

over the jump times with the measure dt1...dtK and the
constraint 0 < t1 < ... < tK < T

1 =
+∞∑
K=0

∫ T

0

dtK

∫ tK

0

dtK−1...

∫ t2

0

dt1
∑

xK �=xK−1

×
∑

xK−1 �=xK−2

...
∑

x2 �=x1

∑
x1 �=x0

= P[x(0 ≤ t ≤ T ) (x0; t1;x1; t2; ...;xK−1; tK ;xK)]
(73)

3.1.3 Identification of the relevant empirical observables
that determine the trajectories probabilities

The trajectory probability of Eq. 72 can be rewritten
more compactly without the explicit enumeration of all
the jumps as

Pw [x(0 ≤ t ≤ T )]

= exp

[ ∑
t∈[0,T ]:x(t+) �=x(t−)

ln(wx(t+),x(t−))

+
∫ T

0

dtwx(t),x(t)

]
(74)

The corresponding information per unit time
Iw [x(0 ≤ t ≤ T )] of Eq. 11

Iw [x(.)] ≡ − ln
(P[w.,.] [x(.)]

)
T

= − 1
T

∑
t∈[0,T ]:x(t+) �=x(t−)

ln(wx(t+),x(t−))

− 1
T

∫ T

0

dtwx(t),x(t) (75)

involves only the following empirical time-averaged
observables:

(a) the empirical density

ρx ≡ 1
T

∫ T

0

dt δx(t),x (76)

measures the fraction of the time spent by the trajec-
tory x(0 ≤ t ≤ T ) in each configuration x and is nor-
malized to unity

∑
x

ρx = 1 (77)

Its typical value is the steady state P ∗ of Eq. 66

ρtyp[w]
x = P ∗

x (78)
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(b) the empirical flows

qx,y ≡ 1
T

∑
t∈[0,T ]:x(t+) �=x(t−)

δx(t+),xδx(t−),y (79)

represent the density of jumps from y towards x �= y
seen in the trajectory x(0 ≤ t ≤ T ). For large T , these
empirical flows satisfy the following stationarity con-
straints: for any configuration x, the total incoming flow
into x is equal to the total outgoing flow out of x (up
to boundary terms of order 1/T that involve only the
initial configuration at t = 0 and the final configuration
at time t = T )

∑
y �=x

qx,y =
∑
y �=x

qy,x (80)

The typical values of the empirical flows are the steady
state flows of the master Eq. 66

qtyp[w]
x,y = wx,yP ∗

y = wx,yρtyp[w]
x (81)

With respect to the general formalism of Sect. 2, this
means that

(i) the relevant empirical observables E. that deter-
mine the trajectories probabilities are the empiri-
cal density ρ. and the empirical flows q.,.

E. = (ρ.; q.,.) (82)

(ii) their constitutive constraints C [2.5](E.) are given
by Eqs. 77 and 80

C [2.5] (ρ.; q.,.) = δ

(∑
x

ρx − 1

)

×
∏
x

δ

⎛
⎝∑

y �=x

qx,y −
∑
y �=x

qy,x

⎞
⎠

(83)

(iii) Eq. 75 yields that the information Iw(E.) is given
by the following linear combination of the empiri-
cal observables E. = (ρ.; q.,.)

Iw (ρ.; q.,.)

=
∑

y

∑
x�=y

(
wx,yρy − qx,y ln(wx,y)

)

≡
∑

y

ρyiy(w) +
∑

y

∑
x�=y

qx,yix,y(w) (84)

The corresponding coefficients that represent their
intensive conjugate parameters

iy(w) ≡
∑
x�=y

wx,y = −wy,y

ix,y(w) ≡ − ln (wx,y) (85)

are very simple in terms of the matrix elements w.,. of
the Markov generator.

3.1.4 Boltzmann intensive entropy S[2.5] (ρ.; q.,.) as a
function of the empirical observables E. = (ρ.; q.,.)

Eq. 81 yields that the modified Markov generator
wE that would make the empirical observables E. =
(ρ.; q.,.) typical is given by the jump rates for x �= y

wE
x,y ≡ qx,y

ρy
(86)

As a consequence, Eq. 20 yields the entropy S[2.5]

(ρ.; q.,.) as a function of the empirical observables E. =
(ρ.; q.,.) reads using Eqs. 84 and 86

S[2.5] (ρ.; q.,.) = IwE (ρ.; q.,.)

=
∑

y

∑
x�=y

[
qx,y − qx,y ln

(
qx,y

ρy

)]
(87)

As stressed after Eq. 23, it is nonlinear with respect to
the empirical observables E. = (ρ.; q.,.).

3.1.5 Rate function at level 2.5 for the empirical
observables E. = (ρ.; q.,.)

The joint probability distribution of the empirical den-
sity ρ. and the empirical flows q.,. follows the large devi-
ation form [4,7–30]

P [2.5]
w (ρ.; q.,.) �

T→+∞
C [2.5](ρ.; q.,.)e−TI[2.5]

w (ρ.;q.,.) (88)

where the constitutive constraints C [2.5](ρ.; q.,.) have
been written in Eq. 83, while the rate function at Level
2.5 is given by the difference between the information
of Eq. 84 and the entropy from Eq. 87

I [2.5]
w (ρ.; q.,.)

= Iw (ρ.; q.,.) − S[2.5] (ρ.; q.,.)

=
∑

y

∑
x�=y

[
qx,y ln

(
qx,y

wx,yρy

)
− qx,y + wx,yρy

]

(89)

3.1.6 Kolmogorov–Sinai entropy hKS
w

The Kolmogorov–Sinai entropy hKS
w of Eqs. 40 and 41

reads using the typical values of Eqs. 78 and 81

hKS
w =

∑
y

P ∗
y

∑
x�=y

wx,y

(
1 − ln(wx,y)

)
(90)
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so that it can be computed whenever the steady state
P ∗(y) associated to the generator w is known (see [72]
for more discussions with examples).

3.2 Microcanonical Ensemble at Level 2.5 with
fixed empirical density and flows

3.2.1 Microcanonical Ensemble at Level 2.5 where the
empirical density and flows cannot fluctuate for finite T

In the Microcanonical Ensemble of Eq. 44

P
Micro[2.5]

(ρ∗
. ;q∗

.,.)
(ρ.; q.,.)

=

[∏
x

δ (ρx − ρ∗
x)

] ⎡
⎣∏

y

∏
x�=y

δ
(
qx,y − q∗

x,y

)
⎤
⎦ (91)

the empirical observables (ρ.; q.,.) are fixed to given val-
ues

(
ρ∗

. ; q
∗
.,.

)
satisfying the constitutive constraints of

Eq. 83

C [2.5]
(
ρ∗

. ; q
∗
.,.

)

= δ

(∑
x

ρ∗
x − 1

) ∏
x

δ

⎛
⎝∑

y �=x

q∗
x,y −

∑
y �=x

q∗
y,x

⎞
⎠ (92)

and cannot fluctuate for finite T , in contrast to Eq. 88
in the Canonical Ensemble associated to the Markov
generator w.

Here the jump from y towards x �= y is possible if the
corresponding fixed empirical flow is positive q∗

x,y > 0,
while it is impossible if q∗

x,y = 0.
In particular, the two special cases of Eqs. 68 and 69

mentioned at the end of Sect. 3.1.1 translate into:

(i) Directed dynamics: for any pair x �= y, the two
jumps between them are never both possible

Directed: q∗
x,yq∗

y,x = 0 (93)

(ii) Undirected dynamics: for any pair x �= y, the
two jumps between them are either both possible
q∗
x,yq∗

y,x > 0 or both impossible q∗
x,y = q∗

y,x = 0

Undirected: q∗
x,yq∗

y,x > 0 or q∗
x,y = q∗

y,x = 0

(94)

(iii) Equilibrium dynamics: special case of undirected
dynamics where on each link x �= y with possible
flows q∗

x,yq∗
y,x > 0, these two empirical flows on

each link satisfy the Detailed-Balance condition

Detailed Balance: q∗
x,y = q∗

y,x (95)

3.2.2 Probabilities of trajectories x(0 ≤ t ≤ T ) in the
Microcanonical Ensemble

In the Microcanonical Ensemble of Eq. 45, only the tra-
jectories [x(0 ≤ t ≤ T )] corresponding to the empirical
values

(
ρ∗

. ; q
∗
.,.

)
have a non-zero weight, and all these

allowed trajectories have the same weight given by the
inverse of their number Ω[2.5]

T

(
ρ∗

. ; q
∗
.,.

)
of Eq. 17

PMicro[2.5]

(ρ∗
. ;q∗

.,.)
[x(.)]

=
1

Ω[2.5]
T

(
ρ∗

. ; q∗
.,.

)
[∏

x

δ (ρ∗
x − ρx [x(.)])

]

⎡
⎣∏

y

∏
x�=y

δ
(
q∗
x,y − qx,y [x(.)]

)
⎤
⎦ (96)

For large T , Eq. 45 reads

PMicro[2.5]

(ρ∗
. ;q∗

.,.)
[x(.)] �

T→+∞
e−T S[2.5]

(
ρ∗

. ; q
∗
.,.

)

[∏
x

δ

(
ρ∗

x − ρx [x(.)]

) ]⎡
⎣∏

y

∏
x�=y

δ
(
q∗
x,y − qx,y [x(.)]

)
⎤
⎦

(97)

with the entropy S[2.5]
(
ρ∗

. ; q
∗
.,.

)
of Eq. 87

S[2.5]
(
ρ∗

. ; q
∗
.,.

)
=

∑
y

∑
x�=y

[
q∗
x,y − q∗

x,y ln
(

q∗
x,y

ρ∗
y

)]
(98)

3.2.3 Statistics of the subtrajectories on [0, τ ] of the
Microcanonical Ensemble trajectories on [0, T ] for
1 � τ � T

As explained in details in Sect. 2.2.3, the fact that
the Canonical Ensemble emerges to describe the statis-
tics of the subtrajectories is based on the property
of Eq. 25 concerning the derivatives of the entropy
S[2.5] (E.) with respect to the empirical observables
En. For Markov jump processes, the derivatives of the
entropy S[2.5] (ρ.; q.,.) of Eq. 87 with respect to the
empirical density ρy and with respect to the empiri-
cal flows qx,y can be indeed rewritten in terms of the
modified generator wE of Eq. 86 and correspond to the
coefficients of Eq. 85

∂S[2.5] (ρ.; q.,.)
∂ρy

=
1
ρy

∑
x�=y

qx,y

=
∑
x�=y

wE
x,y = −wE

y,y = iy(wE)

∂S[2.5] (ρ.; q.,.)
∂qx,y

= − ln
(

qx,y

ρy

)
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= − ln
(
wE

x,y

)
= ix,y(wE) (99)

in agreement with the general property of Eq. 25.

3.3 Simple example of continuous-time directed
trajectories on a ring: entropies at various levels

The simplest example of continuous-time directed tra-
jectories is based on a ring of L sites with periodic
boundary conditions x + L ≡ x : the empirical flow
qx,y is non-vanishing only for x = y + 1

qx,y = δx,y+1qy+1,y (100)

and the stationarity constraints of Eq. 80 yields that
the L elements qx+1,x take the same value j along the
ring x = 1, 2, .., L, that represents the current j flowing
through each link of the ring

qx+1,x = j (101)

3.3.1 Number Ω[2.5]
T (ρ., j) of trajectories with the

empirical density ρ. and the current j

Since the empirical flows q.,. of Eqs. 100 and 101 involve
a single positive parameter j ∈ [0,+∞[, the entropy of
Eq. 87 reduces to

S[2.5] (ρ.; j) =
L∑

y=1

[
j − j ln

(
j

ρy

)]
= L [j − j ln(j)]

+j

L∑
y=1

ln(ρy) (102)

and the number Ω[2.5]
T (ρ., j) of trajectories reads

Ω[2.5]
T (ρ., j) �

T→+∞
δ

(
L∑

x=1

ρx − 1

)
θ(j)eTS[2.5] (ρ., j)

(103)

3.3.2 Number Ω[2]
T (ρ.) of trajectories with the empirical

density ρ.

The number of trajectories Ω[2]
T (ρ.) with the empirical

density ρ. can be computed via the integration of Eq.
103 over the current j

Ω
[2]
T (ρ.) =

∫
djΩ

[2.5]
T (ρ., j) �

T→+∞
δ

(
L∑

x=1

ρx − 1

)

×
∫ +∞

0

djeTS[2.5] (ρ., j)

�
T→+∞

δ

(
L∑

x=1

ρx − 1

)
eTS[2] (ρ.) (104)

The optimization of the entropy S[2.5] (ρ., j) of Eq. 102
over the current j

0 =
∂S[2.5] (ρ., j)

∂j
= −L ln(j) +

L∑
y=1

ln(ρy) (105)

leads to the optimal current

jopt = e

1
L

L∑
y=1

ln(ρy)
=

[
L∏

y=1

ρy

] 1
L

(106)

that can be plugged into Eq. 102 to obtain the entropy
at Level 2 that governs Eq. 104

S[2] (ρ.) = S[2.5]
(
ρ., j

opt
)

= Ljopt = L

[
L∏

y=1

ρy

] 1
L

(107)

3.3.3 Number Ω[Curr]
T (j) of trajectories with the

empirical current j

The number of trajectories Ω[Current]
T (j) with the

empirical current j can be computed via the integra-
tion of Eq. 103 over the empirical density ρ.

Ω[Current]
T (j) =

∫
dρ.Ω

[2.5]
T (ρ., j) �

T→+∞
θ(j)

×
∫

dρ.δ

(
L∑

x=1

ρx − 1

)
eTS[2.5] (ρ., j)

�
T→+∞

θ(j)eTS[Current] (j) (108)

To optimize the entropy S[2.5] (ρ., J) of Eq. 102 over the
empirical density ρ. satisfying the normalization con-
straint, one introduces the following Lagrangian con-
taining the Lagrange multiplier μ

Lj(ρ.) ≡ S[2.5] (ρ., j) − μ

(
L∑

y=1

ρy − 1

)

= L [j − j ln(j)] + j

L∑
y=1

ln(ρy) − μ

(
L∑

y=1

ρy − 1

)

(109)

The optimization over ρy

0 =
∂Lj(ρ.)

∂ρy
=

j

ρy
− μ (110)

yields that the optimal density ρopt
y = j

μ does not
depend on the position y, so that its value is actually
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fixed by the normalization constraint

ρopt
y =

1
L

(111)

Plugging this uniform optimal solution into Eq. 102
leads to the entropy S[Current] (j) that governs Eq. 108

S[Current] (j) = S[2.5]
(
ρopt

. , j
)

= jL [1 − ln(jL)]
(112)

3.3.4 Total number Ω[0]
T of trajectories

The total number Ω[0]
T of trajectories can be computed

from the integration of Eq. 108 over the current j

Ω[0]
T =

∫
djΩ[Current]

T (j) �
T→+∞

×
∫ +∞

0

djeTS[Current] (j) �
T→+∞

eTS[0]
(113)

The optimization of Eq. 112 over the current j

0 =
∂S[Current] (j)

∂j
= −L ln(jL) (114)

yields the optimal value

jopt =
1
L

(115)

that can be plugged into Eq. 112 to obtain the entropy
at Level 0

S[0] = S[Current]
(
jopt

)
= Ljopt = 1 (116)

This simple value can be understood from the integra-
tion of the measure on the first line of Eq. 73, where
the sums over the positions disappear as a consequence
of the one-dimensional directed character of the present
model

+∞∑

K=0

∫ T

0

dtK

∫ tK

0

dtK−1...

∫ t2

0

dt1 =

+∞∑

K=0

1

K!

K∏

k=1

[∫ T

0

dtk

]

=

+∞∑

K=0

T K

K!
= eT = eTS[0]

(117)

in agreement with the entropy found in Eq. 116.

4 Undirected Markov jump processes:
explicit entropies at various levels

In this section, we focus on the case of undirected jump
processes satisfying Eq. 94, where the contraction of

the entropy at Level 2.5 can be implemented to obtain
explicit expressions for many entropies of lower levels.

4.1 Replacing the empirical flows q.,. by the
empirical currents j.,. and the empirical
activities a.,.

On each link x �= y where the two flows are possible
qx,yqy,x > 0, it is convenient to choose an order x > y
and to introduce the corresponding neighborhood nota-
tions N±

.

Order on each link qx,yqy,x > 0:

x ∈ N+
y and y ∈ N−

x (118)

while the total neighborhood Ny of y is the reunion of
N+

y and N−
y .

The two non-vanishing empirical flows qx,y and qy,x

can be replaced by their antisymmetric and symmetric
parts called respectively the empirical current jx,y and
the empirical activity ax,y

jx,y = qx,y − qy,x = −jy,x

ax,y = qx,y + qy,x = ay,x (119)

The constitutive constraints of Eq. 83 do not contain
the activities a.,. and are factorized

C [2.5] (ρ.; j.,.) = C [2] (ρ.) Cstatio (j.,.) (120)

into the normalization constraint for the empirical den-
sity ρ.

C [2] (ρ.) = δ

(∑
x

ρx − 1

)
(121)

and into the stationarity constraints for the empirical
currents j.,.

Cstatio (j.,.) =
∏
x

δ

⎛
⎝ ∑

y∈Nx

jx,y

⎞
⎠

=
∏
x

δ

⎛
⎝ ∑

y∈N+
x

jx,y +
∑

y∈N−
x

jx,y

⎞
⎠ (122)

4.2 Number Ω[2.5]
T (ρ.; j.,.; a.,.) of trajectories x(.)

with the empirical density ρ., currents j.,. and
activities a.,.

Via the change of variables of Eq. 119, the number
Ω[2.5]

T (ρ.; j.,.; a.,.) of trajectories x(0 ≤ t ≤ T ) with the
empirical density ρ., the empirical currents j.,. and the
empirical activities a.,. is given by
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Ω[2.5]
T (ρ.; j.,.; a.,.) �

T→+∞
C [2] (ρ.) Cstatio (j.,.)

eTS[2.5](ρ.; j.,.; a.,.) (123)

where the constraints have been written in Eqs. 121 and
122, while the entropy S[2.5](ρ.; j.,.; a.,.) at Level 2.5 of
Eq. 98 becomes using the choice of some ordering x > y
on each link (Eq. 118)

S[2.5] (ρ.; j.,.; a.,.) =
∑

y

∑
x∈N+

y

[
ax,y

−ax,y + jx,y

2
ln

(
ax,y + jx,y

2ρy

)

−ax,y − jx,y

2
ln

(
ax,y − jx,y

2ρx

) ]

=
∑

y

∑
x∈N+

y

[
ax,y

−ax,y

2
ln

(
a2

x,y − j2
x,y

4ρxρy

)

−jx,y

2
ln

(
(ax,y + jx,y)ρx

(ax,y − jx,y)ρy

) ]

(124)

To see more clearly how the entropy S[2.5] (ρ.; j.,.; a.,.)
depends on the empirical currents j.,., let us rewrite Eq.
124 as a sum

S[2.5] (ρ.; j.,.; a.,.) =
∑

y

∑
x∈N+

y

S
[2.5]
[x,y] (ρx; ρy; jx,y; ax,y)

(125)

of the contributions associated to the links [x, y]

S
[2.5]
[x,y] (ρx; ρy; jx,y; ax,y) ≡ ax,y − ax,y

2
ln

(
a2

x,y − j2
x,y

4ρxρy

)

−jx,y

2
ln

(
(ax,y + jx,y)ρx

(ax,y − jx,y)ρy

)
(126)

The contribution of the link [x, y] can be decomposed
into its even and its odd parts with respect to the link
current jx,y

S
[2.5]
[x,y] (ρx; ρy; jx,y; ax,y) = S

[2.5]
[x,y]even (ρx; ρy; jx,y; ax,y)

+S
[2.5]
[x,y]odd (ρx; ρy; jx,y; ax,y) (127)

The even contribution reads

S
[2.5]
[x,y]even (ρx; ρy; jx,y; ax,y)

=
S

[2.5]
[x,y] (ρx; ρy; jx,y; ax,y) + S

[2.5]
[x,y] (ρx; ρy;−jx,y; ax,y)

2

= ax,y − ax,y

2
ln

(
a2

x,y − j2
x,y

4ρxρy

)

−jx,y

2
ln

(
ax,y + jx,y

ax,y − jx,y

)
(128)

while the odd contribution

S
[2.5]
[x,y]odd (ρx; ρy; jx,y; ax,y)

=
S

[2.5]
[x,y] (ρx; ρy; jx,y; ax,y) − S

[2.5]
[x,y] (ρx; ρy;−jx,y; ax,y)

2

=
jx,y

2
ln

(
ρy

ρx

)
(129)

is simply linear in the current jx,y. The sum of all these
odd links contributions vanishes as a consequence of the
antisymmetry of the current jx,y = −jy,x of Eq. 119 and
of the stationarity constraint Cstatio(j.,.) of Eq. 122

∑
y

∑
x∈N+

y

S
[2.5]
[x,y]odd (ρx; ρy; jx,y; ax,y)

=
∑

y

∑
x∈N+

y

jx,y

2
ln(ρy)

−
∑

y

∑
x∈N+

y

jx,y

2
ln(ρx)

= −
∑

x

ln(ρx)
2

⎡
⎣ ∑

y∈N+
x

jx,y +
∑

y∈N−
x

jx,y

⎤
⎦

= −
∑

x

ln(ρx)
2

⎡
⎣ ∑

y∈Nx

jx,y

⎤
⎦ = 0 (130)

As a consequence, the entropy of Eq. 125 reduces to the
sum of the even contributions of the links

S[2.5] (ρ.; j.,.; a.,.) =
∑

y

∑

x∈N+
y

S
[2.5]

[x,y]even (ρx; ρy; jx,y; ax,y)

=
∑

y

∑

x∈N+
y

[
ax,y − ax,y

2
ln

(
a2

x,y − j2x,y

4ρxρy

)

− jx,y

2
ln

(
ax,y

+
jx,yax,y − jx,y

)]
(131)

The physical meaning is that once the empirical density
ρ. and the empirical activity a.,. are given, any realiza-
tion of the empirical links currents jx,y that satisfies the
stationary constraints of Eq. 122 has the same entropy
as the configuration with the reversed empirical link
currents (−jx,y) that also satisfies the stationary con-
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straints

S[2.5] (ρ.; j.,.; a.,.) = S[2.5] (ρ.;−j.,.; a.,.) (132)

4.3 Number Ω[2.25]
T (ρ.; a.,.) of trajectories x(.) with

the empirical density ρ. and the empirical activities
a.,.

The number Ω[2.25]
T (ρ.; a.,.) of trajectories x(0 ≤ t ≤

T ) with given empirical density ρ. and given empirical
activities a.,. can be obtained via the integration of Eq.
123 over the currents j.,.

Ω
[2.25]
T (ρ.; a.,.) ≡

∫
dj.,.Ω

[2.5]
T (ρ.; j.,.; a.,.)

�
T→+∞

C [2] (ρ.)

∫
dj.,.C

statio (j.,.)

eTS[2.5](ρ.; j.,.; a.,.)

�
T→+∞

C [2] (ρ.) eTS[2.25](ρ.; a.,.) (133)

The behavior of the even link contribution of Eq. 128
with respect to the link current jx,y ∈] − ax,y,+ax,y[.
can be analyzed as follows: the first partial derivative
with respect to the current jx,y

∂S
[2.5]
[x,y]even (ρx; ρy; jx,y; ax,y)

∂jx,y
= −1

2
ln

(
ax,y + jx,y

ax,y − jx,y

)

(134)

is of the opposite sign of the current jx,y, while the
second partial derivative remains negative

∂2S
[2.5]
[x,y]even (ρx; ρy; jx,y; ax,y)

∂2jx,y
= − 2ax,y

a2
x,y − j2

x,y

< 0

(135)

Since the link entropy S
[2.5]
[x,y]even (ρx; ρy; jx,y; ax,y) is

maximal for vanishing current

jopt
x,y = 0 (136)

the conclusion is that, for any given empirical density
ρ. and any given empirical activities a,.,, the vanish-
ing of the empirical currents jopt

x,y = 0 on all the links
[x, y] allows to maximize the entropy S[2.5] (ρ.; j.,.; a.,.)
of Eq. 131 over the currents, while the stationary con-
straints of Eq. 122 are trivially satisfied. So the entropy
S[2.25](ρ.; a.,.) governing Eq. 133 is given by Eq. 131
with Eq. 128 for vanishing currents jopt

.,. = 0

S[2.25](ρ.; a.,.) = S[2.5](ρ.; j
opt
.,. = 0; a.,.)

=
∑

y

∑

x∈N+
y

S
[2.5]

[x,y]even

(
ρx; ρy; jopt

x,y = 0; ax,y

)

=
∑

y

∑

x∈N+
y

[
ax,y − ax,y

2
ln

(
a2

x,y

4ρxρy

)]

(137)

4.4 Number Ω[2.25′]
T (ρ.; j.,.) of trajectories x(.)

with the empirical density ρ. and the empirical
currents j.,.

The number Ω[2.25′]
T (ρ.; j.,.) of trajectories x(0 ≤ t ≤ T )

with the given empirical density ρ. and the given empir-
ical currents j.,. can be obtained from the integration
of Eq. 123 over the activities a.,.

Ω[2.25′]
T (ρ.; j.,.) ≡

∫
da.,.Ω

[2.5]
T (ρ.; j.,.; a.,.)

�
T→+∞

C [2] (ρ.) Cstatio (j.,.)∫
da.,. eTS[2.5](ρ.; j.,.; a.,.)

�
T→+∞

C [2] (ρ.) Cstatio (j.,.)

eTS[2.25′](ρ.; j.,.) (138)

The maximization of the entropy S[2.5](ρ.; j.,.; a.,.) of
Eq. 131 over ax,y

0 =
∂S[2.5] (ρ.; j.,.; a.,.)

∂ax,y
= −1

2
ln

(
a2

x,y − j2
x,y

4ρxρy

)
(139)

leads to the optimal values

aopt
x,y =

√
j2
x,y + 4ρxρy (140)

that can be plugged into the entropy S[2.5](ρ.; j.,.; a.,.)
of Eq. 131 to obtain the entropy S[2.25′](ρ.; j.,.) at Level
2.25’ governing Eq. 138

S[2.25′](ρ.; j.,.) = S[2.5]
(
ρ.; j.,.; aopt

.,.

)

=
∑

y

∑
x∈N+

y

⎡
⎣√

j2
x,y + 4ρxρy

−jx,y

2
ln

⎛
⎝

√
j2
x,y + 4ρxρy + jx,y√

j2
x,y + 4ρxρy − jx,y

⎞
⎠

⎤
⎦

(141)
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4.5 Number Ω[2]
T (ρ.) of trajectories x(.) with the

empirical density ρ.

The number Ω[2]
T (ρ.) of trajectories x(.) with the empir-

ical density ρ. of Eq. 60 can be computed via the inte-
gration of Eq. 133 over the empirical activities a.,.

Ω
[2]
T (ρ.) =

∫
da.,.Ω

[2.25]
T (ρ.; a.,.) �

T→+∞
C [2] (ρ.)

∫
da.,.e

TS[2.25](ρ.; a.,.) �
T→+∞

C [2] (ρ.) eTS[2](ρ.)

(142)

The optimization of the entropy S[2.25](ρ.; a.,.) of Eq.
137 over the activity ax,y

0 =
∂S[2.25](ρ.; a.,.)

∂ax,y
= −1

2
ln

(
a2

x,y

4ρxρy

)
(143)

leads to the optimal values

aopt
x,y =

√
4ρxρy (144)

can be plugged into the entropy S[2.25](ρ.; a.,.) of Eq.
137 to obtain the explicit entropy S[2](ρ.) at Level 2
governing Eq. 142

S[2](ρ.) = S[2.25′](ρ.; aopt
.,. ) = 2

∑
y

∑
x∈N+

y

√
ρxρy

=
∑

y

∑
x∈Ny

√
ρxρy (145)

This entropy S[2](ρ.) can be also recovered as the opti-
mal value of the entropy S[2.25′](ρ.; j.,.) of Eq. 141 for
the optimal vanishing currents jopt

x,y = 0

S[2](ρ.) = S[2.25′](ρ.; jopt
.,. = 0) = 2

∑
y

∑
x∈N+

y

[√
ρxρy

]

=
∑

y

∑
x∈Ny

√
ρxρy (146)

4.6 Total number Ω[0]
T of trajectories x(.)

Let us now consider the Level 0 of Eq. 63 via the inte-
gration of the explicit Level 2 of Eq. 142 over the empir-
ical density ρ.

Ω[0]
T ≡

∫
dρ.C

[2](ρ.) eTS[2](ρ.) �
T→+∞

eTS[0]

(147)

To optimize the entropy S[2](ρ.) at Level 2 over the
empirical density ρ. in the presence of the normalization

constraint C [2](ρ.) of Eq. 121, let us introduce the fol-
lowing Lagrangian containing the Lagrange multiplier
μ

L2(ρ.) = S[2](ρ.) − μ

(∑
x

ρx − 1

)
=

∑
y

∑
x∈Ny

√
ρxρy

−μ

(∑
x

ρx − 1

)
(148)

The optimization over ρx

0 =
∂L2(ρ.)

∂ρx
=

∑
y∈Nx

√
ρy√
ρx

− μ (149)

can be rewritten as the following eigenvalue equation for
the positive eigenvector

√
ρ. of the symmetric neighbor-

hood matrix satisfying Nx,y = 1 if x and y are neigh-
bors

μ
√

ρx =
∑

y∈Nx

√
ρy =

∑
y

Nx,y
√

ρy (150)

while μ is the corresponding highest Perron–Frobenius
eigenvalue. The entropy S[0] corresponds to the opti-
mal value of the Lagrangian obtained for the optimal
density ρ. satisfying the eigenvalue Eq. 150 and the nor-
malization constraint

S[0] = Lopt
2 =

∑
y

√
ρy

⎡
⎣ ∑

x∈Ny

√
ρx

⎤
⎦ =

∑
y

√
ρy

[
μ
√

ρy

]

= μ
∑

y

ρy = μ (151)

The conclusion is that the entropy S[0] reduces to the
eigenvalue μ of Eq. 150, so that it will be explicit only
when the eigenvalue equation of Eq. 150 can be solved
for the symmetric neighborhood matrix N.,. one is inter-
ested in.

Simplest example of the finite regular lattice in dimension
d with periodic boundary conditions

The simplest example is the case of a finite regular lat-
tice in dimension d with periodic boundary conditions,
where each site has (2d) neighbors: then the eigenvector
of Eq. 150 takes the same value on each site, so that the
eigenvalue reduces to μ = 2d and leads to the entropy

S[0] = μ = 2d (152)

This simple value can be understood from the integra-
tion of the measure on the first line of Eq. 73, where
the sums over the K positions xk simply produce the
factor (2d)K
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+∞∑
K=0

∫ T

0

dtK

∫ tK

0

dtK−1...

∫ t2

0

dt1(2d)K

=
+∞∑
K=0

(2d)K

K!

K∏
k=1

[∫ T

0

dtk

]

=
+∞∑
K=0

(2dT )K

K!
= e2dT (153)

in agreement with the entropy of Eq. 152.

4.7 Number Ω[T otalActivity ]
T (A) of trajectories x(.)

with a given total activity A

As a simple example of additive observable, let us now
consider the total activity

A ≡
∑

y

∑
x∈N+

y

ax,y =
∑

y

∑
x∈Ny

ax,y

2
(154)

The number Ω[TotalActivity]
T (A) of trajectories x(.) with

a given total activity A can be obtained via the inte-
gration of Ω[2.25]

T (ρ.; a.,.) of Eq. 133 over the empirical
density and the empirical activities with the constraint
imposing the value A of Eq. 154

Ω
[TotalActivity]
T (A) =

∫
dρ.

∫
da.,.δ

⎛

⎝A −
∑

y

∑

x∈Ny

ax,y

2

⎞

⎠

Ω
[2.25]
T (ρ.; a.,.)

�
T→+∞

∫
dρ.

∫
da.,.δ

(
∑

x

ρx − 1

)
δ

⎛

⎜⎝A −
∑

y

∑

x∈N+
y

ax,y

⎞

⎟⎠

eTS[2.25](ρ.; a.,.) �
T→+∞

eTS[TotalActivity](A) (155)

To optimize the entropy S[2.25](ρ.; a.,.) over the empir-
ical density and the empirical activities in the presence
of the two constraints, let us introduce the following
Lagrangian with the two Lagrange multipliers (λ, ν)

LA(ρ.; a.,.) = S[2.25](ρ.; a.,.) − λ

(
∑

x

ρx − 1

)

−ν

⎛

⎜⎝
∑

y

∑

x∈N+
y

ax,y − A

⎞

⎟⎠

=
∑

y

∑

x∈N+
y

[
ax,y − ax,y

2
ln

(
a2

x,y

4ρxρy

)]

−λ

(
∑

x

ρx − 1

)
− ν

⎛

⎜⎝
∑

y

∑

x∈N+
y

ax,y − A

⎞

⎟⎠

(156)

The optimization over ρy

0 =
∂LA(ρ.; a.,.)

∂ρy
=

1
ρy

∑
x∈Ny

ax,y

2
− λ (157)

gives

∑
x∈Ny

ax,y

2
= λρy (158)

The summation over y yields using the two constraints

A =
∑

y

∑
x∈Ny

ax,y

2
= λ

∑
y

ρy = λ (159)

so that the Lagrange multiplier λ is simply given by
the value A of the total activity. The optimization over
ax,y

0 =
∂LA(ρ.; a.,.)

∂ax,y
= −1

2
ln

(
a2

x,y

4ρxρy

)
− ν (160)

yields

ax,y = 2e−ν√
ρxρy (161)

that can be plugged into Eq. 158 using λ = A of Eq.
159

Aρy =
∑

x∈N+
y

2e−ν√
ρxρy = e−ν√

ρy

∑
x∈Ny

√
ρx

(162)

to obtain that the optimal density should satisfy

(Aeν)
√

ρy =
∑

x∈Ny

√
ρx (163)

where one recognizes the eigenvalue problem already
discussed in Eq. 150, so that the Lagrange multiplier
ν can be rewritten in terms of A and in terms of the
eigenvalue μ = S[0] of Eq. 150

ν = ln
(

S[0]

A

)
(164)

The entropy S[TotalActivity](A) of Eq. 155 corresponds
to the optimal value of the entropy S[2.25](ρ.; a.,.)

S[TotalActivity](A) = S[2.25](ρopt
. ; aopt

.,. ) = A(1 + ν)

= A

[
1 + ln

(
S[0]

A

)]
(165)
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Simplest example of the finite regular lattice in dimension
d with periodic boundary conditions

Let us consider again the simplest case of a finite reg-
ular lattice in dimension d with periodic boundary
conditions discussed around Eq. 152, so that Eq. 165
becomes

S[TotalActivity](A) = A

[
1 + ln

(
2d

A

)]
(166)

This simple entropy function can be understood the
number of trajectories (2dT )K

K! with the total number of
jumps K = TA in Eq. 153 using the Stirling formula
for the factorial K! = (TA)! for large T

(2dT )TA

(TA)!
�

T→+∞
(2dT )TA

(
TA
e

)TA
=

(
2de

A

)TA

= eTA[1+ln( 2d
A )] = eTS[T otalActivity](A) (167)

in agreement with the entropy of Eq. 166.

4.8 Number Ω[F lows]
T (j.,. , a.,.) of trajectories x(.)

with the empirical currents j.,. and the empirical
activities a.,.

The number Ω[Flows]
T (j.,., a.,.) of trajectories x(.) with

the empirical currents j.,. and the empirical activities
a.,. can be obtained via the integration of Eq. 123 over
the empirical density ρ.

Ω
[Flows]
T (j.,., a.,.) =

∫
dρ.Ω

[2.5]
T (ρ.; j.,.; a.,.) �

T→+∞

Cstatio (j.,.)

∫
dρ.δ

(
∑

x

ρx − 1

)

eTS[2.5](ρ.; j.,.; a.,.)

�
T→+∞

Cstatio (j.,.) eTS[Flows](j.,.; a.,.)

(168)

where the entropy of Eq. 131 can be rewritten as

S[2.5] (ρ.; j.,.; a.,.) =
∑

y

∑

x∈N+
y

[
ax,y − ax,y

2
ln

(
a2

x,y − j2x,y

4

)

− jx,y

2
ln

(
ax,y + jx,y

ax,y − jx,y

)]

+
∑

y

∑

x∈N+
y

ax,y

2
[ln(ρx) + ln(ρy)]

=
∑

y

∑

x∈N+
y

[
ax,y − ax,y

2
ln

(
a2

x,y − j2x,y

4

)

− jx,y

2
ln

(
ax,y + jx,y

ax,y − jx,y

)]

+
∑

x

Ax ln(ρx) (169)

where we have introduced the notation

Ax ≡
∑

y∈Nx

ax,y

2
(170)

for the activity related to the point x, while the total
activity of Eq. 154 studied in the previous subsection
corresponds to

A =
∑

x

∑
y∈Nx

ax,y

2
=

∑
x

Ax (171)

To optimize the entropy S[2.5] (ρ.; j.,.; a.,.) over the
empirical density ρ. satisfying the normalization con-
straint, one introduce the following Lagrangian contain-
ing the Lagrange multiplier η

L[j.,.,a.,.](ρ.) = S[2.5] (ρ.; j.,.; a.,.) − η

(∑
x

ρx − 1

)

=
∑

y

∑
x∈N+

y

[
ax,y − ax,y

2
ln

(
a2

x,y − j2
x,y

4

)

−jx,y

2
ln

(
ax,y + jx,y

ax,y − jx,y

)]

+
∑

x

Ax ln(ρx) − η

(∑
x

ρx − 1

)
(172)

The optimization over ρx

0 =
∂L[j.,.,a.,.](ρ.)

∂ρx
=

Ax

ρx
− η (173)

leads to the optimal value

ρx =
Ax

η
(174)

The summation over x yields using the normalization

1 =
∑

x

ρx =
1
η

∑
x

Ax =
A

η
(175)

so that the Lagrange multiplier η is simply given by the
total activity A.

Plugging the optimal solution

ρx =
Ax

A
(176)

into S[2.5] (ρ.; j.,.; a.,.) of Eq. 169 yields the entropy
S[Flows](j.,.; a.,.) governing Eq. 123

S[Flows](j.,.; a.,.) = S[2.5]
(
ρopt

. ; j.,.; a.,.

)
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=
∑

y

∑
x∈N+

y

[
ax,y − ax,y

2
ln

(
a2

x,y − j2
x,y

4

)

−jx,y

2
ln

(
ax,y + jx,y

ax,y − jx,y

) ]

+
∑

y

Ay ln
(

Ay

A

)

=
∑

y

∑
x∈N+

y

[
ax,y − ax,y

2
ln

(
a2

x,y − j2
x,y

4

)

−jx,y

2
ln

(
ax,y + jx,y

ax,y − jx,y

) ]

+
∑

y

∑
x∈Ny

ax,y

2
ln

( ∑
z∈Ny

az,y

2∑
z′

∑
z′′∈Nz′

az′,z′′
2

)

(177)

where we have replaced Ay and A by their expressions
of Eqs. 170 and 171 in terms of the link activities a.,..

4.9 Number Ω[Activities]
T (a.,.) of trajectories x(.)

with the empirical activities a.,.

The number Ω[Activities]
T (a.,.) of trajectories x(.) with

the empirical activities a.,. can be obtained via the inte-
gration of Eq. 168 over the empirical currents j.,.

Ω[Activities]
T (a.,.) =

∫
dj.,.Ω

[Flows]
T (j.,., a.,.) �

T→+∞∫
dj.,.C

statio (j.,.) eTS[Flows](j.,.; a.,.)

�
T→+∞

eTS[Activities](a.,.) (178)

As in Eq. 136, one obtains that the optimal currents
vanish

jopt
x,y = 0 (179)

so that the entropy S[Activities](a.,.) is directly obtained
from the entropy of Eq. 177

S[Activities](a.,.) = S[Flows](jopt
.,. = 0; a.,.)

=
∑

y

∑

x∈Ny

[ax,y

2
− ax,y

2
ln

(ax,y

2

)]

+
∑

y

∑

x∈Ny

ax,y

2
ln

( ∑
z∈Ny

az,y

2∑
z′

∑
z′′∈Nz′

az′,z′′
2

)

(180)

5 Conclusions

In this paper, we have revisited the statistical physics
of Markov trajectories x(0 ≤ t ≤ T ) via the notion of
the Canonical Ensemble at Level 2.5 associated to the
Markov generator M and the notion of the Microcanon-
ical Ensemble at Level 2.5 associated to fixed values of
all the relevant empirical observables En.

We have first explained why the Ensemble of trajec-
tories x(0 ≤ t ≤ T ) produced by the Markov generator
M can be considered as ’Canonical’:

(C1) The probability of the trajectory x(0 ≤ t ≤ T )
can be rewritten as the exponential of a linear combi-
nation of its relevant empirical observables En, where
the coefficients involving the Markov generator are their
fixed conjugate parameters.

(C2) The large deviations properties of these relevant
empirical observables En for large T are governed by
the explicit rate function I

[2.5]
M (E.) at Level 2.5, while in

the thermodynamic limit T = +∞, they concentrate on
their typical values E

typ[M ]
n determined by the Markov

generator M .
We have then analyzed the properties of the ’Micro-

canonical Ensemble’ at Level 2.5 for stochastic trajec-
tories x(0 ≤ t ≤ T ), where all the relevant empirical
variables En are fixed to some values E∗

n and cannot
fluctuate anymore for finite T :

(MC1) When the long trajectory x(0 ≤ t ≤ T )
belongs the Microcanonical Ensemble at Level 2.5 with
the fixed empirical observables E∗

n, the statistics of its
subtrajectory x(0 ≤ t ≤ τ) for 1 � τ � T is governed
by the Canonical Ensemble at Level 2.5 associated to
the Markov generator M∗ that would make the empir-
ical observables E∗

n typical.
(MC2) In the Microcanonical Ensemble at Level 2.5,

the central role is played by the number Ω[2.5]
T (E∗

. ) of
stochastic trajectories of duration T with the given
empirical observables E∗

n, and by the corresponding
explicit Boltzmann entropy S[2.5](E∗

. ) = [ln Ω[2.5]
T (E∗

. )]
/T at Level 2.5.

We have described in detail how this general frame-
work can be applied to continuous-time Markov jump
processes and to discrete-time Markov chains, with
the simple examples of directed trajectories on a ring.
Finally for the special case of undirected Markov jump
processes (where the jumps between two configurations
are either both possible or both impossible), we have
shown how the entropy S[2.5](ρ., j.,., a.,.) at Level 2.5
as a function of the empirical density ρ., the empirical
currents j.,. and the empirical activities a.,. can be con-
tracted to obtain the explicit entropies of many other
lower levels.

Data availability statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: This manuscript has no associated data (theoret-
ical work).]

123



  139 Page 22 of 26 Eur. Phys. J. B          (2022) 95:139 

Appendix A: application to discrete-time
Markov chains

In this Appendix, we describe how the general framework
of section 2 can be applied to discrete-time Markov chains
in a discrete configuration space.

A.1 Canonical Ensemble of trajectories
x(0 ≤ t ≤ T ) associated to a Markov chain
generator W

A.1.1 Discrete-time Markov chain converging towards
some normalizable steady state

Let us now consider the discrete-time Markov chain dynam-
ics for the probability Py(t) to be in configuration y at time
t

Px(t + 1) =
∑

y

Wx,yPy(t) (A1)

where the Markov Matrix elements are positive Wx,y ≥ 0
and satisfy the normalization

∑

x

Wx,y = 1 (A2)

The steady-state solution P ∗
x of Eq. A1

P ∗
x =

∑

y

Wx,yP ∗
y (A3)

is assumed to be normalizable

1 =
∑

y

P ∗
y (A4)

A.1.2 Identification of the relevant empirical observables
that determine the trajectories probabilities

The probability of the whole trajectory x(0 ≤ t ≤ T ) start-
ing at the fixed configuration x0 at time t = 0 reads

P[x(0 ≤ t ≤ T )] = δx(0),x0

[
T∏

t=1

Wx(t),x(t−1)

]
(A5)

The corresponding information per unit time IW [x(0 ≤ t
≤ T )] of Eq. 11 reads

IW [x(.)] ≡ −P[W.,.] [x(.)]

T
= − 1

T

T∑

t=1

ln
(
Wx(t),x(t−1)

)

(A6)

so that it depends only the empirical time-averaged 2-point
density

ρx,y ≡ 1

T

T∑

t=1

δx(t),xδx(t−1),y (A7)

The empirical 2-point density allows to reconstruct the
empirical 1-point density via the summation over the first

or the second index (up to a boundary term of order 1/T
that is negligible for large time T → +∞)

ρx ≡ 1

T

T∑

t=1

δx(t),x =
∑

y

ρx,y =
∑

y

ρy,x (A8)

with the normalization
∑

x

ρx = 1 (A9)

The typical value of the empirical 1-point density is the
steady state of Eq. A3

ρtyp[W ]
x = P ∗

x (A10)

while the typical value of the empirical 2-point density is
given by the steady-state flows of Eq. A3

ρtyp[W ]
x,y = Wx,yP ∗

y = Wx,yρtyp[W ]
y = Wx,y

∑

z

ρtyp[W ]
z,y

(A11)

With respect to the general formalism of Sect. 2, this
means that

(i) the relevant empirical observables En that determine
the trajectories probabilities are given by the empirical
2-point density ρx,y

E. = (ρ.,.) (A12)

(ii) their constitutive constraints C [2.5](E.) are given by Eqs.
A8 and A9

C [2.5] (ρ.,.) = δ

(
∑

x,y

ρx,y − 1

)

∏

x

[
δ

(
∑

y

ρx,y −
∑

y

ρy,x

)]

(A13)

(iii) the information IW (E.) obtained from Eq. A6 corre-
sponds to the following linear combination of the empir-
ical observables E. = (ρ.,.)

IW (ρ.,.) = −
∑

x,y

ρx,y ln (Wx,y) ≡
∑

x,y

ρx,yix,y(W )

(A14)

where the coefficients representing their intensive conjugate
parameters

ix,y(W ) ≡ − ln (Wx,y) (A15)

are very simple in terms of the Markov matrix elements
Wx,y.

A.1.3 Boltzmann intensive entropy S[2.5] (ρ.,.) as a
function of the empirical 2-point density ρ.,.

Eq. A11 yields that the modified Markov matrix W E that
would make the empirical observables E. = (ρ.,.) typical is
given by

W E
x,y ≡ ρx,y

ρy
=

ρx,y∑
z ρz,y

(A16)
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As a consequence, Eq. 20 yields that the entropy S[2.5] (ρ.,.)
as a function of the empirical observables E. = (ρ.,.) reads
using Eqs. A14 and A16

S[2.5] (ρ.,.) = IW E (ρ.,.) = −
∑

x,y

ρx,y ln

(
ρx,y

ρy

)

= −
∑

x,y

ρx,y ln

(
ρx,y∑
z ρz,y

)
(A17)

As stressed after Eq. 23, it is non-linear with respect to the
empirical observables E. = (ρ.,.).

A.1.4 Rate function I
[2.5]
W (ρ.,.) at level 2.5 for the

empirical observables E. = (ρ.,.)

For large T , the probability to see the empirical 2-point
density ρ.,. follows the large deviation form at Level 2.5 [3–
8]

P
[2.5]
W (ρ.,.) �

T→+∞
C [2.5](ρ.,.)e

−TI
[2.5]
W

(ρ.,.) (A18)

where the constitutive constraints C(ρ.,.) have been written
in Eq. A13, while the rate function is given by the difference
between the information of Eq. A14 and the entropy from
Eq. A17

I
[2.5]
W (ρ.,.; ρ.) = IW (ρ.,.) − S[2.5] (ρ.,.)

=
∑

x

∑

y

ρx,y ln

(
ρx,y

Wx,y

∑
z ρz,y

)
(A19)

A.1.5 Kolmogorov–Sinai entropy hKS
W

The Kolmogorov-Sinai entropy hKS
w of Eqs. 40 and 41 reads

using the typical values of Eq. A11

hKS
W = −

∑

x,y

ρtyp[W ]
x,y ln (Wx,y) = −

∑

x,y

Wx,yP ∗
y ln (Wx,y)

(A20)

so that it can be thus evaluated whenever the steady state
P ∗(y) associated to the Markov matrix W is known (see [72]
for simple examples in relation with the Ruelle thermody-
namic formalism).

A.2 Microcanonical Ensemble at Level 2.5 with
fixed empirical 2-point density ρ∗

.,.

A.2.1 Microcanonical Ensemble at Level 2.5 where the
empirical 2-point density ρ∗

.,. cannot fluctuate for finite T

In the Microcanonical Ensemble of Eq. 44

P
Micro[2.5]

(ρ∗
.,.)

(ρ.,.) =
∏

x,y

δ
(
ρx,y − ρ∗

x,y

)
(A21)

the empirical 2-point density ρ.,. is fixed to ρ∗
.,. satisfying

the constitutive constraints of Eq. A13

C[2.5] (
ρ∗

.,.

)
= δ

(
∑

x,y

ρ∗
x,y − 1

)
∏

x

[
δ

(
∑

y

ρ∗
x,y −

∑

y

ρ∗
y,x

)]

(A22)

and cannot fluctuate for finite T , in contrast to Eq. A18 con-
cerning the Level 2.5 in the Canonical Ensemble associated
to the Markov matrix W .

A.2.2 Probabilities of trajectories x(0 ≤ t ≤ T ) in the
Microcanonical Ensemble

In the Microcanonical Ensemble of Eq. 45, only the trajec-
tories [x(0 ≤ t ≤ T )] corresponding to the empirical 2-point
density ρ∗

.,. have a non-zero weight, and all these allowed
trajectories have the same weight given by the inverse of

their number Ω
[2.5]
T

(
ρ∗

.,.

)
of Eq. 17

PMicro[2.5]

(ρ∗.,.) [x(.)] =
1

Ω
[2.5]
T

(
ρ∗

.,.

)
∏

x,y

δ
(
ρ∗

x,y − ρx,y [x(.)]
)

(A23)

For large T , Eq. 45 reads

PMicro[2.5]

(ρ∗
.,.)

[x(.)] �
T→+∞

e−TS[2.5] (ρ∗
.,.

)

∏

x,y

δ
(
ρ∗

x,y − ρx,y [x(.)]
)

(A24)

with the entropy S[2.5]
(
ρ∗

.,.

)
of Eq. A17

S[2.5] (ρ∗
.,.

)
= −

∑

x,y

ρ∗
x,y ln

(
ρ∗

x,y∑
z ρ∗

z,y

)
(A25)

A.2.3 Statistics of the subtrajectories on [0, τ ] of the
Microcanonical Ensemble trajectories on [0, T ] for
1 � τ � T

As explained in details in Sect. 2.2.3, the fact that the
Canonical Ensemble emerges to describe the statistics of the
subtrajectories is based on the property of Eq. 25 concern-
ing the derivatives of the entropy S[2.5] (E.) with respect to
the empirical observables En.

For Markov chains, the derivative of the entropy S[2.5] (ρ.,.)
of Eq. A17 with respect to the empirical 2-point density ρx,y

indeed involves the coefficients ix,y(W E) of Eq. A15 associ-
ated to the modified Markov matrix W E

x,y of Eq. A16

∂S[2.5] (ρ.,.)

∂ρx,y
= − ln

(
ρx,y∑
z ρz,y

)
− 1 + 1 = − ln

(
ρx,y∑
z ρz,y

)

= − ln
(
W E

x,y

)
= ix,y(W E) (A26)

in agreement with the general property of Eq. 25.

A.3 Simple example of discrete-time directed
trajectories on a ring: entropies at various levels

The simplest example of directed trajectories is based on a
ring of L sites with periodic boundary conditions x+L ≡ x:
when the particle is on site y at time t, it can either jump
to the right neighbor (y + 1) or it remains on site y, so that
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the empirical 2-point density ρx,y is non-vanishing only for
x = y and x = y + 1

ρx,y = δx,yρy,y + δx,y+1ρy+1,y (A27)

A.3.1 Parametrization of the 2-point empirical density
ρ.,. in terms of the 1-point density ρ. and of the global
current J

The empirical 1-point density ρ. can be computed from the
empirical 2-point density ρx,y of Eq. A27 via the two possi-
ble sums of Eq. A8

ρx =
∑

y

ρx,y = ρx,x + ρx,x−1

ρx =
∑

y

ρy,x = ρx,x + ρx+1,x (A28)

The compatibility between the two equations yields that
the L elements ρx+1,x take the same value J along the ring
x = 1, 2, .., L, that represents the current J flowing through
each link of the ring

ρx+1,x = J (A29)

The remaining diagonal elements ρx,x can be then computed
from the 1-point density ρx and the current J via Eq. A28

ρx,x = ρx − J (A30)

In summary, the 2-point empirical density of Eq. A27 is now
parametrized by

ρx,y = δx,y (ρx − J) + δx,y+1J (A31)

where the current J should be positive J ≥ 0 and smaller
J ≤ ρx than the empirical density ρx for any x = 1, .., L. In
summary, the remaining constitutive constraints read

C [2.5] (ρ., J) = δ

(
L∑

x=1

ρx − 1

)
θ(J)

[
L∏

x=1

θ(ρx − J)

]

(A32)

A.3.2 Number of Trajectories Ω[2.5]
T (ρ., J) with the

empirical density ρ. and the current J

Via the parametrization of Eq. A31, the entropy of Eq. A17
reduces to

S[2.5] (ρ., J) =
L∑

x=1

[
− (ρx − J) ln

(
ρx − J

ρx

)
− J ln

(
J

ρx

)]

=
L∑

x=1

[
−ρx ln

(
ρx − J

ρx

)
+ J ln

(
ρx − J

J

)]

(A33)

and the number of trajectories Ω
[2.5]
T (ρ., J) reads

Ω
[2.5]
T (ρ., J) �

T→+∞
C [2.5] (ρ., J) eTS[2.5] (ρ., J) (A34)

A.3.3 Number of Trajectories Ω[2]
T (ρ.) with the empirical

density ρ.

The number of trajectories Ω
[2]
T (ρ.) with the empirical den-

sity ρ. can be obtained via the integration of Eq. A34 over
the current J

Ω
[2]
T (ρ.) =

∫
dJΩ

[2.5]
T (ρ., J) �

T→+∞
δ

(
L∑

x=1

ρx − 1

)

∫ +∞

0

dJ

[
L∏

x=1

θ(ρx − J)

]
eTS[2.5] (ρ., J)

�
T→+∞

δ

(
L∑

x=1

ρx − 1

)
eTS[2] (ρ.) (A35)

The optimization of the entropy S[2.5] (ρ., J) at Level 2.5
over the current J

0=
∂S[2.5] (ρ., J)

∂J
=

L∑

x=1

ln

(
ρx − J

J

)
=ln

[
L∏

x=1

(
ρx − J

J

)]

(A36)

yields that the optimal current Jopt = Jopt[ρ.] as a function
of the given empirical density ρ. is given by the solution of

1 =
L∏

x=1

(
ρx − Jopt

Jopt

)
(A37)

It should be plugged into the entropy at Level 2.5 to obtain
the entropy at Level 2

S[2] (ρ.) = S[2.5] (ρ., J
opt[ρ.]

)
= −

L∑

x=1

ρx ln

(
ρx − Jopt[ρ.]

ρx

)

(A38)

A.3.4 Number of Trajectories Ω[Current]
T (J) with the

empirical current J

The number of trajectories Ω
[Current]
T (J) with the empirical

current J can be obtained via the integration of Eq. A34
over the empirical density ρ.

Ω
[Current]
T (J) =

∫
dρ.Ω

[2.5]
T (ρ., J) �

T→+∞
θ(J)

∫
dρ.δ

(
L∑

x=1

ρx − 1

) [
L∏

x=1

θ(ρx − J)

]

eTS[2.5] (ρ., J) (A39)

To optimize the entropy S[2.5] (ρ., J) over the empirical den-
sity ρ. satisfying the normalization constraint, one intro-
duces the following Lagrangian containing the Lagrange
multiplier μ

LJ(ρ.) ≡ S[2.5] (ρ., J) − μ

(
L∑

x=1

ρx − 1

)

=
L∑

x=1

[
−ρx ln

(
ρx − J

ρx

)
+ J ln

(
ρx − J

J

)]
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−μ

(
L∑

x=1

ρx − 1

)
(A40)

The optimization over ρx

0 =
∂LJ(ρ.)

∂ρx
= − ln

(
ρx − J

ρx

)
− μ (A41)

yields that the optimal density ρopt
x is a function of J and μ,

so that it does not depend on the position x, and its value
is thus fixed by the normalization constraint

ρopt
x =

1

L
(A42)

that can be plugged into the entropy at Level 2.5 to obtain
the entropy S[Current] (J) for the current alone

S[Current] (J) = S[2.5] (ρopt
. , J

)

= −(1 − LJ) ln(1 − LJ) − LJ ln(LJ)

(A43)

that governs Eq. A39

Ω
[Current]
T (J) =

∫
dρ.Ω

[2.5]
T (ρ., J) �

T→+∞
θ(J)θ

(
1

L
− J

)

eTS[Current] (J) (A44)

A.3.5 Total number of Trajectories Ω[0]
T at Level 0

The total number Ω
[0]
T of trajectories can be obtained from

the integration of Eq. A44 over the current J

Ω
[0]
T =

∫
dJΩ

[Current]
T (J) �

T→+∞
∫ 1

L

0

dJeTS[Current] (J) �
T→+∞

eTS[0]

(A45)

The optimization of the entropy S[Current] (J) of Eq. A43
over the current J

0 =
∂S[Current] (J)

∂J
= L ln

(
1 − LJ

LJ

)
(A46)

yields the optimal value

Jopt =
1

2L
(A47)

that can be plugged into the entropy S[Current] (J) of Eq.
A43 to obtain the entropy at Level 0

S[0] = S[Current] (Jopt) = ln 2 (A48)

i.e. one recovers that the number of trajectories of Eq. A45
is simply

Ω
[0]
T �

T→+∞
eTS[0]

= eT ln 2 = 2T (A49)

as it should.
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versité de Nice, Laboratoire J.A, 2018)

18. C. Monthus, J. Stat. Mech. 023206 (2019)
19. C. Monthus, J. Phys. A: Math. Theor. 52, 135003 (2019)
20. A. Lazarescu, T. Cossetto, G. Falasco, M. Esposito, J.

Chem. Phys. 151, 064117 (2019)
21. C. Monthus, J. Phys. A: Math. Theor. 52, 025001 (2019)
22. C. Monthus, J. Phys. A: Math. Theor. 52, 485001 (2019)
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