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This work considers high order discretizations for the intrusive stochastic Galerkin and polynomial moment method. Applications to hyperbolic systems result in solutions that typically involve a large number of wave interactions that must be resolved numerically. In order to reduce numerical oscillations, analytical and numerical entropy indicators are used to perform CWENO-type reconstructions in characteristic variables, when and where non-smooth solutions arise. The proposed method is analyzed for random isentropic Euler equations. In particular, a semi-conservative scheme is employed for non-polynomial pressure in order to reduce the computational cost, while still ensuring correct shock speeds.

This paper is devoted to describing high order accurate and computationally efficient numerical schemes for hyperbolic stochastic Galerkin formulations to random isentropic Euler equations. Those are analyzed theoretically in a conservative and non-conservative form. We distinguish between shallow water equations that have the quadratic term p(h) = g 2 h 2 and isentropic Euler equations with the non-polynomial pressure law p(ρ) = κρ γ for κ, γ ∈ R + . Although the considered numerical methods can be used in the deterministic case for both systems, a different numerical treatment is necessary in the stochastic case. Namely, the quadratic relations yield a stochastic Galerkin formulation for shallow water equations without any numerically expensive transform, while non-polynomial pressure laws require the moment method that envolves numerical quadrature in each time step and optimization problems to compute the transform into entropy variables.

The main building blocks of the numerical scheme are CWENO-type reconstructions [START_REF] Cravero | CWENO: Uniformly accurate reconstructions for balance laws[END_REF][START_REF] Pidatella | Semi-conservative finite volume schemes for conservation laws[END_REF]. Those reconstruct cell averages of the solution to the conservative form and pointvalues of auxiliary variables that are obtained by non-conservative forms. The semi-conservative scheme [START_REF] Pidatella | Semi-conservative finite volume schemes for conservation laws[END_REF] is applied to the polynomial moment method which significantly reduces computational cost as expensive transforms are circumvented by considering non-conservative forms in the internal Runge-Kutta stages. The ratio between the numerical entropy production [START_REF] Puppo | Numerical entropy and adaptivity for finite volume schemes[END_REF] and the analytical entropy production [START_REF] Leveque | Numerical Methods for Conservation Laws, 2nd Edition[END_REF]Sec. 3.8.1] is used as an indicator that signals non-smooth solutions. It scales independently of the spatial discretization and it takes different magnitudes of wave packages into account, which result from intrusive formulations. This allows to perform characteristic projections only in those regions where shock solutions arise. This paper is structured as follows: Section 1 reviews intrusive formulations. In particular, the stochastic Galerkin method is presented for Burgers' and shallow water equations. Furthermore, the polynomial moment method is introduced for general hyperbolic systems that are endowed with a strictly convex entropy and isentropic Euler equations with non-polynomial pressure laws are analyzed. Section 2 describes high order CWENO reconstructions for conservative and semiconservative high order schemes, where entropy indicators are used to perform local characteristic decompositions for non-smooth flows. Section 3 shows the corresponding numerical results.

Intrusive and semi-intrusive methods for hyperbolic conservation laws

We consider hyperbolic systems

∂ t u(t, x) + ∂ x f u(t, x) = 0 (1) 
that describe an unknown u(t, x) ∈ R m . The hyperbolic system is endowed with an entropyentropy flux pair (η, ψ) that satisfies in the weak sense the entropy inequality

∂ t η(u) + ∂ x ψ(u) ≤ 0. ( 2 
)
Let T : R m → R m , λ → T (λ) = u be a bijective mapping. Then, a non-conservative form to the system (1) is given by ∂ t λ(t, x) + A λ(t, x) ∂ x λ(t, x) = 0.

The Cauchy problem (1) is extended with initial conditions that depend on a random parameter ξ, which is defined on the probability space Ω, F(Ω), P . We look for L 1 loc (R m )-valued random solutions according to the following definition. 

T 0 R ϕ T t (t, x)u(t, x; ξ) + ϕ T x (t, x)f u(t, x; ξ) dx dt = 0 P-a.s.
as well as the entropy inequality

T 0 R η u(t, x; ξ) ϕ t (t, x) + ψ u(t, x; ξ) ϕ x (t, x) dx dt ≥ 0 P-a.s. for every testfunction ϕ ∈ C 1 c (0, T ) × R; R + 0 with compact support.
Furthermore, we assume there exists a time horizon T > 0 such that for each fixed point in time t ∈ [0, T ] the solution u(t, x; •) belongs to the L 2 -space

L 2 (Ω, P) := u(t, •; •) : Ω, F(Ω) → L 1 loc (R m ), B L 1 loc (R m ) , ω → u t, •; ξ(ω)
with u(t 

P := … u(t, x; •), u(t, x; •) P < ∞ .
The integrals and inner products are understood component wise. Note that this assumption is relatively restrictive, since it requires a tensor structure

u ∈ C 0 [0, T ]; L 1 loc R; A L 2 (Ω, P).
For instance, uncertainties in the size of the spatial domain are excluded, which would arise for wave runups modelled by shallow water equations. Unique random entropy solutions to scalar hyperbolic Cauchy problems exist [START_REF] Mishra | Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data[END_REF]Th. 3.3]. This result can be extended to random flux functions [START_REF] Tokareva | Numerical solution of scalar conservation laws with random flux functions[END_REF]. However, results for scalar equations do not necessarily hold for general hyperbolic systems.

In the sequel, we will analyze approximations of the random system based on a dimensional reduction in the stochastic space. The functional dependence on the random input is prescribed a priori in terms of a generalized polynomial chaos (gPC) expansion with associated orthogonal basis functions φ k (ξ) k∈N0 , i.e.

E φ i (ξ)φ j (ξ) = φ i (ξ)φ j (ξ) dP =: φ i , φ j P = δ i,j ,
where δ i,j denotes the Kronecker delta. More precisely, the solution to the non-conservative form is replaced by the truncated gPC expansion

Π K î λ ó (ξ) := K k=0 λ k φ k (ξ) satisfying Π K î λ ó -λ P → 0 for K → ∞. (3) 
Depending on the approaches that will be introduced in Section 1.1 and Section 1.2, the solution to the conservative form is also expanded in terms of a gPC expansion or indirectly given by the nonconservative formulation with the corresponding transform T (λ) = u. In the sequel, we consider Haar-type expansions [START_REF] Resnikoff | Wavelet Analysis: The Scalable Structure of Information[END_REF][START_REF] Pratt | Digital Image Processing: PIKS Scientific Inside[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF]. These are defined in terms of Haar-type matrices

H = Ç 1 0 T 0 O H å H c for H c = á 1 1 • • • 1 h d 1 h r 1 . . . h r 1 . . . . . . . . . h d K h r K ë and 
s i := -(K + 1 -i), h r i := K + 1 s 2 i + s i , h d i := s i h r i
with 0 := (0, . . . , 0) T , where H c ∈ R (K+1)×(K+1) is the canonical Haar matrix [START_REF] Resnikoff | Wavelet Analysis: The Scalable Structure of Information[END_REF]Th. 4.1,Cor. 4.4] and O H ∈ R K×K is an orthogonal matrix. All of these Haar-type matrices H generate in turn a wavelet sytem

W H := χ [0,1] (ξ), φ 1 (ξ), . . . , φ K (ξ) for φ k (ξ) := K =0 H k, χ [0,1] (K + 1)ξ - (4) 
that allows to approximate any square-integrable function [START_REF] Resnikoff | Wavelet Analysis: The Scalable Structure of Information[END_REF]Th. 5.1,Th. 5.2]. Here, we use the classical Haar matrix and the discrete cosine transform matrix [START_REF] Resnikoff | Wavelet Analysis: The Scalable Structure of Information[END_REF]Ex. 4.7] defined by

H J = Å H J-1 ⊗ (1, 1) 1 ⊗ (1, -1)
ã for H 0 = Å 1 1 1 -1 ã , (H cos ) i,j = 1 if i = 1, √ 2 cos (i+1)(2j-1) 2(K+1) if i > 1,
where ⊗ denotes the Kronecker product and 1 := diag{1, . . . , 1} the identity matrix.

Intrusive stochastic Galerkin formulations

In the classical stochastic Galerkin framework the gPC expansions are substituted into the random system. A system of equations for the gPC coefficients u can be in principle derived by making the residues orthogonal to the basis functions, i.e.

∂ t Π K [ u](t, x; •) + ∂ x f Π K [ u](t, x; •) , φ k P = 0 for k = 0, . . . , K.
(

Hence, a differential equation of the form u t + f ( u) x = 0 is obtained. The ansatz (5), however, may include integrals that are difficult to compute. For instance, the Euler equations require the term q2 /ρ, φ k P . This issue can be circumvented for some systems by exploiting quadratic relations. Those can be expressed by Galerkin matrices [START_REF] Debusschere | Numerical challenges in the use of polynomial chaos representations for stochastic processes[END_REF][START_REF] Maître | Spectral Methods for uncertainty quantification[END_REF][START_REF] Sullivan | Introduction to uncertainty quantification, 1st Edition[END_REF][START_REF] Ernst | Stochastic Galerkin matrices[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF] which are defined by1 

P 1 ( λ) := Π K [ λ], φ i φ j i,j=0,...,K = K k=0 λ k M (1) k for M (1) k := φ k , φ i φ j P i,j=0,...,K , P 2 ( λ) := Π 2 K [ λ], φ i φ j i,j=0,...,K = K k, =0 λ k λ M (2) k, for M (2) 
k, := φ k φ ,φ i φ j P i,j=0,...,K .

Then, the orthogonal Galerkin projection of a random product Π K u (ξ)Π K q (ξ) ∈ L 2 (Ω, P) reads as u * q := P 1 ( u) q and is called Galerkin product. Its Jacobian is D u u * q = P 1 ( q) and moments are expressed by the recursion u * m := P 1 ( u) m e 1 , where e 1 := (1, 0, . . . , 0) T denotes the unit vector. This yields the following stochastic Galerkin formulation for Burgers' equation.

Burgers' equation

conservative form: ∂ t u(t, x) + ∂ x u * 2 (t, x) 2 = 0 quasilinear form: ∂ t u(t, x) + P 1 u(t, x) ∂ x u(t, x) = 0
entropy-entropy flux pair:

η( u), ψ( u) = Ç u 2 2 2 , u T P 1 ( u) u 3 å
In particular, Haar-type expansions have an eigenvalue decomposition P 1 ( λ) = HD( λ)H T with constant eigenvectors [START_REF] Pettersson | A stochastic Galerkin method for the Euler equations with Roe variable transformation[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF]. This choice has been used to endow the following stochastic Galerkin formulations with an entropy-entropy flux pair [START_REF] Gerster | Entropies and symmetrization of hyperbolic stochastic Galerkin formulations[END_REF][START_REF] Gerster | Stabilization and uncertainty quantification for systems of hyperbolic balance laws[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF].

Theorem 1.2 (Similarly to [START_REF] Gerster | Entropies and symmetrization of hyperbolic stochastic Galerkin formulations[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF]). Consider a Haar-type expansion. Then, a stochastic Galerkin formulation to random shallow water equations is

∂ t Å ĥ(t, x) q(t, x) ã + Ç q(t, x) β * 2 (t, x) + g 2 ĥ * 2 (t, x) å = 0 for β := P -1 ( α)q, α := H » D ĥ H T e 1 .
An entropy-entropy flux pair and the Jacobian of the flux function are given by ) is the zero block-matrix and 1 := diag{1, . . . , 1} the identity matrix. The quasilinear form that describes Roe variables λ = ( α, β) T reads as

η( u) = 1 2 β 2 2 + g 2 ρ 2 2 , ψ( u) = 1 2 β T P ν ( λ) β + g ρ T q, D u f ( u) = Ç O 1 gP 1 ( ĥ) -P 2 ν ( λ) 2P ν ( λ) å for P ν ( λ) := P -1 1 ( α)P 1 ( β), where O ∈ R (K+1)×(K+1
∂ t λ(t, x) + A λ(t, x) ∂ x λ(t, x) = 0 for A( λ) = Ç 1 /2P ν ( λ) 1 /21 -1 /2P 2 ν ( λ) + 2gP 2 1 ( α) 3 /2P ν ( λ) å .
Proof. The stochastic Galerkin formulation, its Jacobian and the entropy-entropy flux pair have been deduced in [START_REF] Gerster | Entropies and symmetrization of hyperbolic stochastic Galerkin formulations[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF]. Therein, the expressions

" T λ = Ç α * α α * β å , D λ " T λ -1 = Ç 1 2 P -1 1 ( α) O -1 2 P -1 1 ( α)P 1 ( β)P -1 1 ( α) P -1 1 ( α) å , " F λ := f " T -1 ( u) = Ç α * β β 2 * + α 4 * å , D λ " F λ = Ç P 1 ( β) P 1 ( α) g /2P 1 ( α) * 3 2P 1 ( β)
å are found. Hence, the quasilinear form is obtained by rewriting the conservative form in Roe variables, i.e.

0 = " T λ t + f " T -1 ( u) x = D λ " T λ λ t + D λ " F λ λ x ⇔ λ t + A λ λ x = 0 for A λ := D λ " T λ -1 " F λ .
Both formulations do not require computations of integrals, because the matrices M k are precomputed, which makes these formulations truly intrusive. The formulation for Burgers' equation has an entropy for all basis functions, since the Jacobian of the flux function is symmetric [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF]Ex. 3.2]. The corresponding result for shallow water equations, however, has been only proven for Haar-type expansions [START_REF] Gerster | Entropies and symmetrization of hyperbolic stochastic Galerkin formulations[END_REF][START_REF] Gerster | Haar-type stochastic Galerkin formulations for hyperbolic systems with Lipschitz continuous flux function[END_REF]. Furthermore, the ansatz (5) typically leads to a loss of hyperbolicity [START_REF] Després | Uncertainty quantification for systems of conservation laws[END_REF][START_REF] Jin | A study of hyperbolicity of kinetic stochastic Galerkin system for the isentropic Euler equations with uncertainty[END_REF][START_REF] Gerster | Stabilization and uncertainty quantification for systems of hyperbolic balance laws[END_REF]. Hence, stochastic Galerkin formulations are in general not endowed with entropies.

Semi-intrusive polynomial moment method

Since the classical stochastic Galerkin approach cannot always be applied, the idea of an extended framework has been proposed [START_REF] Müller | Rational extended thermodynamics[END_REF][START_REF] Després | Uncertainty quantification for systems of conservation laws[END_REF][START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF]. Similarly to the classical Galerkin framework, the underlying PDE is projected, but more general expansions are stated by an entropy closure. The solution, denoted as u (ec) (t, x; ξ), minimizes a given convex function constrained by the first K + 1 gPC modes. The coupled system reads as

∂ t u (ec) (t, x; ξ)φ k (ξ) dP + ∂ x f u (ec) (t, x; ξ) φ k (ξ) dP = 0 (6) such that u (ec) (t, x; ξ) := argmin ũ(t,x;•) ß η ũ(t, x; ξ) dP ™ , ũ(t, x; ξ)φ k (ξ) dP = u k (t, x) for k = 0, . . . , K.
(entropy closure)

The mapping to entropy variables

N : R m → R m , u → ∇ u η(u) is bijective provided that the Hessian ∇ 2 u η(u)
is strictly positive definite. For each fixed point in time and space (t, x), the solution to the entropy closure ( 6) is given by

u (ec) (t, x; ξ) = ũ(ec) λ(t, x); ξ := N -1 Å K k=0 λ k (t, x)φ k (ξ) ã , (7) 
where λ denotes the Lagrange multipliers in the constrained minimization problem [START_REF] Carrillo | Particle based gPC methods for mean-field models of swarming with uncertainty[END_REF]. Those are described by the coupled hyperbolic system

∂ t u(t, x) + ∂ x f u(t, x) = 0 (EC 1) such that f u(t, x) = Å f ũ(ec) λ(t, x); ξ φ k (ξ) dP ã k=0,...,K , ( EC 2) 
λ(t, x) = argmax λ∈R m(K+1) Lag λ; u(t, x) . ( EC 3) 
We note that the transform to converved variables requires the numerical quadrature

u = " T λ := ũ(ec) ( λ), φ k P k=0,...,K
and the inverse mapping λ = " T -1 u is specified by the numerically expensive optimization problem (EC 3). The Lagrange function is strictly concave with respect to the Lagrange multipliers and satisfies

Lag λ; u = η ũ(ec) λ; ξ dP + K k=0 λ T k Å u k -ũ(ec) λ; ξ φ k (ξ) dP ã , ( Lag 1) 
∇ λ Lag λ; u = u k -ũ(ec) λ; ξ φ k (ξ) dP k=0,...,K , ( Lag 2) 
∇ 2 λ Lag λ; u = - ∇ 2 ũ(ec) η ũ(ec) λ; ξ -1 φ k (ξ)φ (ξ) dP k, =0,...,K . ( Lag 3) 
According to [START_REF] Müller | Rational extended thermodynamics[END_REF][START_REF] Després | Uncertainty quantification for systems of conservation laws[END_REF][START_REF] Kusch | Intrusive methods in uncertainty quantification and their connection to kinetic theory[END_REF], an entropy-entropy flux pair is

η( u), ψ( u) = η ũ(ec) λ, ξ dP, ψ ũ(ec) λ, ξ dP . ( 8 
)
To obtain a differential equation for the Lagrange multipliers, we write for short

H := ∇ 2 ũ(ec) η ũ(ec) λ; ξ , DF := D ũ(ec) f ũ(ec) λ; ξ .
Then, for smooth solutions the hyperbolic system ( 6) is equivalent to the non-conservative form

∂ t λ(t, x) + A λ(t, x) ∂ x λ(t, x) = 0 with A( λ) := Å H DF H -1 φ (ξ)φ k (ξ) dP ã ,k=0,...,K . (L)
However, if there is a jump in the solution, the non-conservative form (L) contains the product of the discontinuous matrix-valued function A λ(t, x) with the distributional derivative of the solution, which may contain a Dirac mass at the point of the jump. In general, such a product is not well-defined [46, Sec. 1].

Polynomial moment method for isentropic Euler equations

In the sequel, we consider applications to the isentropic Euler equations

∂ t Å ρ(t, x) q(t, x) ã + ∂ x Ç q(t, x) q 2 (t,x) ρ(t,x) + κρ γ (t, x) å = 0
with non-polynomial pressure law p(ρ) = ρ γ for γ ≥ 1 and κ > 0. According to [47, eq. (7.4.11)], an entropy-entropy flux pair is

η(u), ψ(u) = Å 1 2 q 2 ρ + κ γ -1 ρ γ , 1 2 
q 3 ρ 2 + κγ γ -1 qρ γ-1 ã for γ > 1, η(u), ψ(u) = Å 1 2 q 2 ρ + κρ ln(ρ), 1 2 
q 3 ρ 2 + κq ln(ρ) + 1 ã for γ = 1.
Defining the velocity ν := q /ρ as auxiliary variable, we obtain the mapping

N (u) = ∇ u η(u) to entropy variables λ = (α, ν) T as N (u) = Å -ν 2 /2 + γκ γ-1 ρ γ-1 ν ã , N -1 (λ) = Å 1 ν ã γ-1 γ -1 2γκ ν 2 + 2α for γ > 1, N (u) = Å -ν 2 /2 + κ ln(ρ) + 1 ν ã , N -1 (λ) = Å 1 ν ã exp Å ν 2 + 2α 2κ - 1 
ã for γ = 1.
. We note that the naive approach using the projection (5) would require evaluating integrals of nonlinear expressions as e.g. ρ γ , φ k P , which is not feasible in a precomputation step because of non-polynomial dependencies on the stochastic input. Likewise, the expressions (EC 1) -(EC 3) and (Lag 1) -(Lag 3) need to by calculated by numerical quadrature2 . In the special case of isentropic Euler equations, however, Theorem 1.3 states an efficient way to evaluate all involved integrals. Namely, the Lagrange multipliers make appear quadratic relationships that can be exploited by introducing a time and space dependent measure.

Theorem 1.3. Define the space and time-dependent measure P 1 t, x; ξ(ω) := ρ(ec) t, x; ξ(ω) dP(ω) and the vectors a, . . . , d ∈ R K+1 with entries

a k = 1, φ k P1 , b k = Π K α , φ k P1 , c k = Π K ν , φ k P1 , d k = Π 2 K ν , φ k P1
as well as the auxiliary term " α γ :=

® (γ -1) b for γ > 1, κ a for γ = 1.
The projected states and the flux function (EC 2) for the conservative form

u t + f ( u) x = 0 are Å ũ(ec) , φ k P ã k=0,...,K = Å a c
ã and

Å f ũ(ec) , φ k P ã k=0,...,K = Ç c 3γ-1 2γ d + 1 γ " α γ å .
The entropy-entropy flux pair (8) reads as

η( u), ψ( u) = γ + 1 2γ d 0 + b 0 - 1 γ (" α γ ) 0 , K k=0 ν k b k + d k .
Furthermore, the Hessian (Lag 3) has the projected entries

∇ 2 ũ(ec) η ũ(ec) , φ k φ P = Ç γ+1 2 " D + " B -" C -" C " A å ,
where the block matrices are given by the measure P 2 := ρ(ec) (ξ) -1 dP and the associated weighted inner products are

" A k, = 1, φ k φ P2 , " B k, = Π K " α γ ,φ k φ P2 , " C k, = Π K ν ,φ k φ P2 , " D k, = Π 2 K ν , φ k φ P2 .
Proof. We have the relations

ν(ec) ( λ) := q(ec) ( λ) ρ(ec) ( λ) = Π K ν and ρ(ec) ( λ) γ-1 = γ-1 2γκ Π 2 K ν + 2Π K α , γ > 1, 1, γ = 1.
The expressions for the projected flux function follow from

f u (ec) ( λ) ρ(ec) ( λ) -1 = Ç ν(ec) ( λ) ν(ec) ( λ) 2 + κρ (ec) ( λ) γ-1 å = Ç Π K ν] 3γ-1 2γ Π 2 K ν + 1 γ Π K " α γ å .
Furthermore, the relation q(ec

) ( λ) = ρ(ec) ( λ)Π K ν yields η u (ec) ( λ) ρ(ec) ( λ) -1 = ® 1 2 ν(ec) ( λ) 2 + κ γ-1 ρ γ-1 for γ > 1, 1 2 ν(ec) ( λ) 2 + κ ln(ρ) for γ = 1 = γ + 1 2γ Π 2 K ν + Π K α - 1 γ Π K " α γ , ψ u (ec) ( λ) ρ(ec) ( λ) -1 = ® 1 2 ν(ec) ( λ) 3 + κγ γ-1 Π K ν ρ γ-1 for γ > 1, 1 2 ν(ec) ( λ) 3 + κΠ K ν ln(ρ) + 1 for γ = 1 = Π 3 K ν + Π K α Π K ν .
Likewise, the expression for the Hessian follows from

ρ(ec) ( λ)∇ 2 ũ(ec) η ũ(ec) = Å γ+1 2 Π 2 K ν + Π K " α γ -Π K ν -Π K ν 1 ã .
Theorem 1.3 allows to calculate all expressions exactly in the case of piecewise constant Haar-type expansions. The quadrature nodes read as ξ (q) = ∆ξ 2 + q∆ξ for ∆ξ = 2 -(J+1) and q = 1, . . . , 2 J+1 . For general gPC basis, however, an accurate numerical quadrature is needed, which may result in high computational cost. If the hyperbolic differential equation is written in terms of the Lagrange multipliers, all integrals can be computed in a precomputation step as shown in the following theorem.

Theorem 1.4. The non-conservative form (L) reads as

λ t + A( λ) λ x = 0 for A( λ) = D u f ( u) T with A( λ) = Å O γ-3 2 P 2 ( ν) + (γ -1)P 1 ( α) 1 2P 1 ( ν) ã for γ > 1, A( λ) = Å O -P 2 ( ν) + κ1 1 2P 1 ( ν) ã for γ = 1.
Proof. The claim follows form the relation

N -1 Π K [ λ] = u (ec) ( λ)
and from the expressions

H DF H -1 = Ç 0 -ν (ec) ( λ) 2 + γκρ (ec) ( λ) γ-1 1 2ν (ec) ( λ) å = Å 0 γ-3 2 Π 2 K ν + (γ -1)Π K α 1 2Π K ν ã , γ > 1, H DF H -1 = Ç 0 -ν (ec) ( λ) 2 + κ 1 2ν (ec) ( λ) å = Å 0 -Π 2 K ν + κ 1 2Π K ν ã , γ = 1.
According to [START_REF] Godlewski | Numerical Approximation of Hyperbolic Systems of Conservation Laws[END_REF]Th. 3.1], the matrix H DF is symmetric. Hence, the relation

A( λ) = D u f ( u) T follows from H DF H -1 = (H DF) T H -1 = DF T .
Finally, we remark that the presented expressions are well-defined if all realizations of the random density are strictly positive. An example where the minimizer u (ec) (t, x; ξ) is at the boundary of the admissible domain is given in [12, Fig. 2]. The previous discussion does not hold in this case, since the mapping N may be not invertible. Still the entropy closure may have a unique solution.

We refer the interested reader to [START_REF] Després | Uncertainty quantification for systems of conservation laws[END_REF][START_REF] Léonard | Minimization of entropy functionals[END_REF][START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF][START_REF] Borwein | Duality relationships for entropy-like minimization problems[END_REF] for a detailed discussion on the minimization of entropy functionals

High order discretizations

This section introduces high order reconstructions for the presented intrusive formulations. Since they need a special treatment when discontinuities arise, we introduce also indicators for shock solutions that are based on the entropy inequality (2).

Conservative scheme

The hyperbolic systems are discretized by a finite volume scheme. The system and the entropy inequality are integrated on control volumes V n j := T n × I j with time domain T n := t n , t n+1 , spatial interval I j := x j -∆x 2 , x j + ∆x 2 and grid points x j+1 = x j + ∆x, which yields the cell averages

ūn+1 j = ūn j - 1 ∆x t n+1 t n f u(t, x j+ 1 /2 ) -f u(t, x j-1 /2 ) dt. (9) 
A numerical discretization Ūn j ≈ ūn j is obtained by replacing the integrals (9) by a numerical flux function. Furthermore, the central, weighted, essentially non-oscillatory (CWENO) reconstruction from [START_REF] Cravero | CWENO: Uniformly accurate reconstructions for balance laws[END_REF] is applied. A third-order reconstruction is of the form CWENO : Ūj-1 (t), Ūj (t), Ūj+1 (t) → U j (t, x), [START_REF] Hu | A stochastic Galerkin method for Hamilton-Jacobi equations with uncertainty[END_REF] where U j (t, •) denotes a reconstruction polynomial of degree two that is defined for x ∈ I j . The reconstructions at cell interfaces are denoted by U ± j∓ 1 /2 (t) := U j (t, x j∓ 1 /2 ) and at the center by U c j (t) := U j (t, x j ), which yields the semi-discretization

d dt Ūj (t) = - 1 ∆x ï F U - j+ 1 /2 (t), U + j+ 1 /2 (t) -F U - j-1 /2 (t), U + j-1 /2 (t) ò ,
where F denotes the local Lax-Friedrichs flux. The semi-discretization is approximated in time with the optimal strong stability preserving (SSP) Runge-Kutta (RK) method with three stages [START_REF] Jiang | Efficient implementation of weighted ENO schemes[END_REF].

Namely, the solution in the next time step t n+1 is obtained by the recursion

Ū(i) j = Ūn j - ∆t ∆x i-1 k=1 a i,k Å F (k) j+ 1 /2 - F (k) j-1 /2 ã , ( 11 
) Ūn+1 j = Ūn j - ∆t ∆x 3 i=1 b i Å F (i) j+ 1 /2 - F (i) j-1 /2 ã , (12) 
where

F (i) j± 1 /2 = F U (i),- j± 1 /2 , U (i),+
j± 1 /2 denotes the numerical flux evaluated at the i-th stage of the Runge-Kutta scheme with the values a i,k and b i taken from the Butcher's tableaux3 .

Semi-conservative scheme

The conservative update [START_REF] Bambach | Description of random level sets by polynomial chaos expansions[END_REF] and ( 12) has for the polynomial moment method the drawback that numerically expensive transforms λ (i),±

j+ 1 /2 = " T -1 U (i),± j+ 1 /2 and λ (i),± j-1 /2 = " T -1 U (i),± j-1 /2
are needed in each Runge-Kutta stage. Therefore, we use the following semi-conservative update that has been recently introduced by [31, Pidatella, Puppo, Russo, Santagati] and proven to capture correct shock speeds:

(i) The reconstruction [START_REF] Hu | A stochastic Galerkin method for Hamilton-Jacobi equations with uncertainty[END_REF] (iii) A pointwise reconstruction CWENO * : λ

(i) j-1 , λ (i) j , λ (i) j+1 → λ * j (x)
is applied in each Runge-Kutta stage. Here, CWENO * denotes the analogue for point values of the CWENO reconstruction from cell averages. In particular, the "optimal" polynomial interpolates all three point values ¶

x k , λ (i) k k = j, j ± 1 © , while the "left" and "right" linear polynomials interpolate only the two left and right ones. Having fixed the basis interpolation polynomials, the rest of the construction proceeds exactly as for CWENO by computing the Jiang-Shu oscillation indicators [START_REF] Jiang | Efficient implementation of weighted ENO schemes[END_REF] and the nonlinear weights. It gives the reconstructed values λ (i),± j∓ 1 /2 := λ * j (x j∓ 1 /2 ) and a reconstruction of the spatial derivative that is denoted by D rec

x λ (k) j . The update for the predictions, which is based on the non-conservative form stated in Theorem 1.4, reads as

λ (i) j = λ n j - ∆t ∆x i-1 k=1 a i,k A D rec x λ (k) j .
(iv) The reconstructions at cell interfaces are obtained by

U (i),± j∓ 1 /2 (t) = " T λ (i),±
j∓ 1 /2 and at the cell center by

U (i),c j = " T λ (i) j
. These values are used for the numerical flux [START_REF] Després | Uncertainty quantification for systems of conservation laws[END_REF] in the conservative update [START_REF] Bambach | Description of random level sets by polynomial chaos expansions[END_REF].

When the spatial interval is discretized in N cells, the conservative scheme in Section 2.1 requires for a third-order reconstruction 6N optimization problems (EC 3), namely two per cell in each Runge-Kutta stage for the reconstructions at the cell boundaries. In contrast, the semi-conservative update needs only N optimization problems to obtain the point values

λ n j = " T -1 U n,c j
. The computational price that has to be paid for this reduction is one additional reconstruction. The numerical cost of this CWENO reconstruction, however, is negligible in comparison of involved optimization problems. Furthermore, all expressions in the non-conservative form in Theorem 1.4 are exactly obtained and all involved integrals are precomputed. In constrast, the integrals in Theorem 1.3 need a numerical quadrature in each time step. Hence, the computational time of the semi-conservative scheme is approximately 1 /6 of the conservative scheme for a third order discretization.

Reconstruction in characteristic variables

The application of high order schemes in a componentwise fashion may result in oscillations when discontinuities arise [START_REF] Qiu | On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[END_REF]. These oscillations can be avoided if the reconstructions are carried out along characteristic directions [START_REF] Qiu | On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[END_REF]. The transform into characteristic directions results in a noteworthy computational overhead. To this end we follow the approach in [START_REF] Puppo | Numerical entropy and adaptivity for finite volume schemes[END_REF] and perform the characteristic projections only in those cells, where the entropy indicator signals a non-smooth flow.

Analytical entropy

Following the arguments in [33, Sec. 3.8.1], we use as indicator for shocks the entropy production. By integrating the entropy inequality over the domain (t 1 , t 2 ) × (x , x r ) we obtain

S(u , u r ) := 1 ∆t ∆x xr x η(u) dx t2 t1 + t2 t1 ψ(u) dx xr x = 1 ∆x η(u ) -η(u r ) (s 1 -s 2 ) ( 13 
)
for ∆x = s 1 ∆t and

s 1 u -u r = f (u ) -f (u r ), s 2 = ψ(u ) -ψ(u r ) η(u ) -η(u r ) .
Figure 1 illustrates the indicator (13) for Burgers' equation with states u > u r > 0. The differential equations u t +( u 2 /2) x = 0 and ( u 2 /2) x +( u 3 /3) x = 0 are equivalent for smooth solutions, but result in different shock speeds s 1 > s 2 > 0. Then, the entropy production is proportional to the difference in shocks speeds times the difference in the entropies that correspond to left and right states. The left panel of Figure 2 shows the indicator [START_REF] Jin | A study of hyperbolicity of kinetic stochastic Galerkin system for the isentropic Euler equations with uncertainty[END_REF] for Burgers' equation with respect to the left axis as blue line. The right state reads as u r = 1 and the x-axis accounts for the left state u ∈ [START_REF] Xiu | Efficient stochastic Galerkin methods for random diffusion equations[END_REF][START_REF] Eigel | Adaptive stochastic Galerkin FEM[END_REF].

t 1 t 2 x x r ∂ t u + ∂ x f (u) = 0 u u r s 1 t 1 t 2 x x r ∂ t η(u) + ∂ x ψ(u) = 0 η(u ) η(u r ) s 2
According to [START_REF] Leveque | Numerical Methods for Conservation Laws, 2nd Edition[END_REF]Ex. 3.4] 4 , the indicator reads as S(u , u r ) = -1 12 (uu r ) 3 ∆x -1 + O ∆x . Likewise, the right y-axis states as dashed, red line the indicator for shallow water equations and a diatomic gas, which is modelled by isentropic Euler equations with nonlinear pressure law ρ 7 /5 . Here, we observe a cubic convergence for u → u r . The corresponding mass fluxes are chosen as the corresponding Hugioniot loci such that the Rankine Hugoniot conditions holds, i.e. the left and right states are connected in a Riemann problem by a shock.

analytical indicator S(u , u r )

Burgers' equation The indicator holds for the intrusive formulations as well, however, we have in general

S " u , " u r = E ï S Π K " u , Π K " u r ò , (14) 
i.e. the mean of pointwise realizations differs from the indicator of the intrusive formulation. The random case is shown for shallow water equations in the right panel of Figure 2. The deterministic right state is u r = (1, 0) T and is illustrated as black squares. It is connected for each uniformly distributed realization ξ(ω) ∈ [0, 1] by a shock wave, i.e. it is located on the Hugoniot locus

ρ(θ, ξ) = θ + ξ(θ -1) and q(θ, ξ) = ρ(θ, ξ) q r ρ r + ρ(θ, ξ) ρ r ρ(θ, ξ) -ρ r ρ(θ, ξ) 2 -ρ 2 r .
The random heights are shown in purple and the random mass fluxes, given by the Hugoniot loci, are shown in green with respect to the right y-axis. Note that the intrusive formulation, presented in Section 1.1, is not necessarily connected by a shock, although each realization is located on a Hugoniot locus. The indicator [START_REF] Jin | A study of hyperbolicity of kinetic stochastic Galerkin system for the isentropic Euler equations with uncertainty[END_REF] for the intrusive formulation is shown at the left y-axis as red line and the mean of pointwise indicators ( 14) is dashed.

Numerical entropy

Likewise to the cell averages ( 9), the entropy inequality is integrated on the volumes

V n j = T n ×I j which yields ηn+1 j -ηn j + 1 ∆x Tn ψ u(t, x j+ 1 /2 ) -ψ u(t, x j-1 /2 ) dt ≤ 0. ( 15 
)
Using a Gauss-Lobatto quadrature rule and the SSP Runge-Kutta discretization with three stages, the integrals over time (T n ) and space (I j ), which occur in the inequality [START_REF] Pettersson | A stochastic Galerkin method for the Euler equations with Roe variable transformation[END_REF], are approximated up to third order by the quadrature rules η U(t n , •)

Ij := 1 6 η U n,+ j-1 /2 + 4η U n,c j + η U n,- j+ 1 /2 , ψ U(•, x j± 1 /2 ) Tn := 3 i=1 b i Ψ (i) j± 1 /2 , ( 16 
)
where

Ψ (i)
j± 1 /2 is a numerical entropy flux, evaluated at the i-th Runge-Kutta stage, which is consistent with the analytical entropy flux ψ. Following [START_REF] Puppo | Numerical entropy production for central schemes[END_REF][START_REF] Puppo | Numerical entropy and adaptivity for finite volume schemes[END_REF], we introduce the numerical entropy production

Sn j := 1 ∆t ï η U(t n+1 , •) Ij -η U(t n , •) Ij + ∆t ∆x ψ U(•, x j+ 1 /2 ) Tn -ψ U(•, x j-1 /2 ) Tn ò . ( 17 
)
The indicator [START_REF] Gerster | Entropies and symmetrization of hyperbolic stochastic Galerkin formulations[END_REF] converges to zero with the same rate of the local truncation error in regions of smoothness, i.e. we have Sn j ∼ O ∆t 3 for a third-order scheme. If a shock occurs, the indicator increases in the magnitude Sn j ∼ O ∆t -1 .

Local characteristic decomposition

As discussed in Section 2.3.1 the analytical indicator S(u , u r ) ∼ (uu r ) p ∆x -1 decays cubically, i.e. p = 3, for Burgers' and quadratically, i.e. p = 2, for isentropic Euler equations. In smooth regions, we have uu r ∼ O(∆x) and hence S(u , u r ) ∼ O ∆x p-1 . This motivates the ratio as the numerical indicator Sn j ∼ O ∆x 3 decreases with the order of the scheme. This allows for a treshold that takes wave packages at different magnitudes into account and is independent of the spatial discretization. More precisely, we use as indicator for non-smooth solutions the treshold

Sn j < min S Ä Ūn j-1 , Ūn j+1 ä , -T 1 T 2 . ( 18 
)
The first treshold parameter, satisfying 0 < T 1 1, has only a technical meaning to exclude regions, where the analytical indicator S Ä Ūn j-1 , Ūn j+1 ä ≈ 0 signals no entropy production. The treshold T 2 ∈ (0, 1) can be chosen arbitrarily. However, the scheme is relatively robust with respect to the value of the treshold T 2 , as our numerical experiments will show, and a typical choice is T 2 = 1 /4. Furthermore, we remark that the analytical entropy production is only used as treshold and not as the indicator itself, since the time discretization must be taken into account, which requires the numerical entropy production.

In regions, where the indicator ( 18) signals a non-smooth flow, the reconstruction ( 10) is performed in characteristic variables. This means the stencil Ūn j-1 , Ūn j , Ūn j+1 is first turned around by the right eigenvector matrix R Ūn

j of the Jacobian D u f ( u) = W ( u) Λ( u) R( u).
Then, the CWENO reconstruction [START_REF] Hu | A stochastic Galerkin method for Hamilton-Jacobi equations with uncertainty[END_REF] is applied. This yields the reconstructions

C n,+ j-1 /2 , C n,c j , C n,- j+ 1 /2 . A back transformation yields the point values U n,± j∓ 1 /2 = W Ūn j C n,± j∓ 1 /2 and U n,c j = W Ūn j C n,c j .

Numerical results

In the following, numerical results are presented for Burgers', shallow water and isentropic Euler equations. In the deterministic case, the numerical framework that is described in Section 2 can be applied for those equations in a similar way. The intrusive formulations, however, require a problem dependent treatment due to the computation of nonlinear expressions. Hence, the stochastic Galerkin method is used for Burgers' and shallow water equations, where a Roe variable transform enables quadratic relations. In contrast, the polynomial moment method is applied to isentropic Euler equations with non-polynomial pressure law and the non-conservative form in Lagrange multipliers yields polynomial expressions that reduce computational cost.

Burgers' equation

Figure 3 illustrates how the intrusive formulation comes along with wave packages at different amplitudes. In particular, a stochastic Galerkin formulation of Burgers' equation with the random Riemann problem u (ξ) = ξ + 1 and u r = 1 as initial data is considered. Haar-type expansions with level J = 1 are used, hence there are four gPC modes that are plotted as black, dotted lines. As explained in Section 2.3.3, the ratio between the numerical entropy and the analytical entropy production gives an indicator which scales independently of the spatial discretization. Regions where the treshold (18) signals a non-smooth flow are purple shaded. In particular, the parameters T 1 = 10 -5 , T 2 = 1 /2 are used in all simulations and all wave packages are correctly identified, independently of their size or the spatial discretization.

Shallow water equations

Likewise, Figure 4 contains a simulation for a random dam break problem of shallow water equations, where the left height h (ξ) = ξ + 2 is uniformly distributed and the right height h r = 1 is deterministic. The cosine transform is used to obtain a stochastic Galerkin formulation with Roe variable transform. The right panel shows the corresponding solution for level J = 1 (top) and J = 2 (bottom). The right colorbar presents a zoom in the area of the shock. The gPC modes and the indicators in this area are shown in the left and middle panels. The lower, middle panel includes both the gPC modes u = ( h, q) T , plotted against the left y-axis, and the random solution Π K h(t, x) ξ(ω) , shown at the right colorbar.

We note that the indicator (18) signals non-smooth flows not over the whole area where random shocks occur, but only for the smaller wave packages. This is a desirable property as the characteristic decomposiiton is numerically expensive and conducted only in the purple shaded area, which is relatively small compared to the whole computational domain. Furthermore, all wave packages are again correctly identified, independently of their size or the spatial discretization, although the same treshold parameters are used. Figure 5 shows the absolute error between the intrusive formulation and the reference solution h ref according to [START_REF] Leveque | Finite volume methods for hyperbolic problems, 1st Edition[END_REF]Sec. 13] for the Riemann problem considered in Figure 4. The x-axis shows a zoom on the regions where random reference rarefaction waves and shocks occur, the y-axis corresponds to realizations ξ(ω) ∈ [0, 1] and the colorbar states the absolute error. Note the different colorbars with range 0, 0.24 • 2 -J in the upper panels. As expected, we observe a convergence to the reference solution for increasing levels J = 0, . . . , 3 and the absolute error scales like 2 -J . absolute error in the region of random rarefaction waves

level J = 0 level J = 1 level J = 2 level J = 3
absolute error in the region of random shocks 

level J = 0 level J = 1 level J = 2 level J = 3

Isentropic Euler equations

Since the stochastic Galerkin method cannot be applied directly to general non-polynomial pressure laws, the polynomial moment method, derived in Section 1.3, is used to model a diatomic gas with pressure law p(ρ) = ρ 7 /5 . Figure 6 presents the solution to the conservative form in Theorem 1.3. Here, the semi-conservative scheme [START_REF] Pidatella | Semi-conservative finite volume schemes for conservation laws[END_REF] is used, which is described in Section 2.2 and is based on the non-conservative form in Theorem 1.4. Likewise to the previous numerical experiments, we consider a random Riemann problem, where the left density ρ (ξ) = 2 + ξ is uniformly distributed and the right density ρ r = 1 is deterministic.

The left panels of Figure 6 show the gPC modes in the area of the shock at the left y-axis. The numerical entropy indicator is red plotted and the analytical as green circles in the scale shown at the right axis. The middle panels show the corresponding random solution Π ρ(t, x) ξ(ω) with respect to the left y-axis and the left colorbar. The right colorbar states a zoom in the area, where random shocks occur. The right panels show both the gPC modes at the left axis and the corresponding random solution in terms of the colorbar.

Figure 7 states the absolute error for the density, where the solution ρ ref to the random Riemann problem is exactly given in [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[END_REF]Sec. 4]. Similarly to the convergence study for the stochastic Galerkin method in Figure 5, a zoom on the regions where random reference shocks occur shows that the error decays as 2 -J for increasing levels. Furthermore, we emphasize that the semiconservative scheme captures the correct shock speeds, although the internal Runge-Kutta stages are computed by the non-conservative form. This is a crucial feature that is proven in [START_REF] Pidatella | Semi-conservative finite volume schemes for conservation laws[END_REF]. 

Shock colliding problem

So far, we have shown that the local characteristic decomposition is only performed in those cells where wave packages occur, independently of their size and spatial discretization. Hence, they come along with an actually negligible computational overhead. In this subsection we present an example that shows the need to project the solution along characteristic directions, since otherwise there is a code crash. We consider the random shock colliding problem with initial values h(0, x; ξ) = ® 0.2 for x ∈ [0.8, 1.2], 1 + ξ /2 else and q(0, x; ξ) =      5 for x ≤ 0.8, -5 for x ≥ 1.2, 0 else.

Figure 8 shows a simulation using the intrusive stochastic Galerkin formulation with the cosine transform of level J = 1 (top), J = 2 (middle) and space discretization ∆x = 2 -11 . The upper and middle panels show the temporal evolution of the mean and the confidence region for random heights. The lower panels present a zoom on the area where the reconstruction in characteristic variables is performed. The gPC modes corresponding to the height are black dotted with respect to the right y-axis and the first K + 1 characteristics are shown at the left axis, respectively. We observe that conserved variables envolve multiple waves in one stencil, while the characteristics envolve at most one wave. 

Summary

We have considered high order discretizations to intrusive formulations for random hyperbolic systems. The stochastic Galerkin method has been used for Burgers' and shallow water equations. Furthermore, the polynomial moment method has been applied to general isentropic Euler equations. These approaches lead to large coupled hyperbolic systems that involve numerically expensive optimization problems. It has been shown that those do not occur when a non-conservative form is considered. In particular in the case of isentropic Euler equations, a non-conservative form contains only quadratic relations even if the pressure law is non-polynomial. Hence, a semi-conservative update is used that circumvents optimization problems by pointwise CWENO reconstructions of auxiliary variables in the internal Runge-Kutta stages. Furthermore, the ratio between a numerical and analytical entropy production has been introduced as indicator for non-smooth solutions. It scales independently of the spatial discretization and captures wave packages at different magnitudes, which typically arise from intrusive formulations. This allows for conducting numerically expensive reconstructions along characteristic fields, which are needed to reduce numerical oscillations, but only in those cells where non-smooth solutions occur.

Definition 1 . 1 .

 11 Assume random initial valuesI : Ω, F(Ω) → L 1 loc (R m ), B L 1 loc (R m ) with I(• ; ξ) ∈ L ∞ A ∩ BV(A) P-a.s.,where B denotes the Borel set and A denotes the admissible domain of the underlying deterministic problem. A random field is called random η-admissible weak solution if the mappingu : Ω, F(Ω) → C 0 [0, T ]; L 1 loc R; A , ω → u •, •; ξ(ω)is measureable, if initial values are almost surely satisfied, i.e. u(0, x; ξ) = I(x; ξ) P-a.s., and if the restriction to the open strip (0, T ) × R satisfies the weak formulation

j=

  U j (t n , x j ).(ii) Point values in terms of the auxiliary variables λ n j = " T -1 U n,c j are computed which requires the numerically expensive optimization problem (EC 3).

Figure 1 :

 1 Figure 1: Illustration of entropy production for Burgers' equation with positive shock speeds.

Figure 2 :

 2 Figure 2: Left panel: Deterministic indicator[START_REF] Jin | A study of hyperbolicity of kinetic stochastic Galerkin system for the isentropic Euler equations with uncertainty[END_REF] for Burgers', shallow water and isentropic Euler equations with pressure law ρ 7/5 . The right state is chosen as ur = 1 for Burgers' and ur = (1, 0) T for isentropic Euler equations. The x-axis states the left state ρ ∈ [1, 2], while the mass flux q is on the Hugoniot locus connected by the right state ur = (1, 0) T . The quadratic convergence for shallow water equations is illustrated by -0.6(ρ -ρr)2 and for isentropic Euler equations by -1.1(ρ -ρr)2 . Right panel: The left state is uniformly perturbed by ρ + ξ(ρ -1) and purple shaded at the scale shown at the right axis. The corresponding random states q (ξ) are green shaded. The analytical indicator for the intrusive formulation is plotted as red line and the mean of pointwise random indicators[START_REF] Roe | Approximate Riemann solvers, parameter vectors, and difference schemes[END_REF] for shallow water equations in dashed.

Figure 3

 3 Figure3shows the analytical entropy production S Ūn j-1 , Ūn j+1 as green dots and the numerical entropy production Sn j as red line at the scale of the right vertical axis. We observe that both indicators increase in the magnitude O ∆t -1 .intrusive formulation for Burgers' equation using the classical Haar sequence

Figure 3 :

 3 Figure 3: Left y-axis: Solution to the intrusive formulation for Burgers' equation in t = 1 /2. Right y-axis: Numerical entropy (17) is shown as red line, analytical indicator (13) is plotted as green circles.

  intrusive formulation for shallow water equation generated by the cosine transform 0.48 0.5 0.52 0.54 0-11 solution with level J = 1 ∆x = 2 -11 zoom on shock solution with level J = 2

Figure 4 :

 4 Figure 4: Cosine transform with level J = 1 (top) and level J = 2 (bottom). Left and middle panels show the gPC modes for the water height (black dotted) and the mass flux (blue dashed). The numerical entropy (17) is shown as red line and the analytical indicator (13) is plotted as green circles with respect to the right y-axis. The right panel shows the random solution in t = 1 /2 with discretization ∆x = 10 -11 and gravitational constant g = 1 /2.

Figure 5 :

 5 Figure 5: Absolute error Π K h(t, x) ξ(ω) -h ref t, x; ξ(ω) for cosine transform and discretization ∆x = 10 -11 .
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 1 polynomial moment method for a diatomic gas with γ = 7 /5 and level J =

Figure 6 :

 6 Figure 6: The left panels show the gPC modes for the density (black dotted) and the mass flux (blue dashed) of a gas that is modelled by the isentropic Euler equations with γ = 7 /5. The numerical entropy (17) is shown as red line and the analytical indicator (13) is plotted as green circles with respect to the right y-axis. The middle and right panels show the random solution in t = 1 /2 as well as a zoom on the shock with respect to the right colorbar.

Figure 7 :

 7 Figure 7: Absolute error Π K ρ(t, x) ξ(ω) -ρ ref t, x; ξ(ω) for cosine transform and discretization ∆x = 10 -10 . The x-axis shows a zoom on the regions where shocks occur, the y-axis corresponds to realizations ξ(ω) ∈ [0, 1] and the colorbar states the absolute error.

random water height for J = 1 -
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Figure 8 :

 8 Figure8: Top and middle: Mean h 0 (t, x) and confidence region to the random height Π K h(t, x) (ξ). Bottom: gPC modes h(t, x) and the first K + 1 characteristcs in the area, where waves occur for J = 1 and ∆x = 10 -11 .

We write for short Π

K λ = Ä Π K λ ä 2 .

Burgers' equation forms an exceptional case. Due to η(u) = u 2 /2 and hence N (u) = u, the intrusive stochastic Galerkin formulation and the moment method coincide.

The coefficients for the third-order SSP-RK scheme read asa 2,1 = 1, a 3,1 = a 3,2 = 1 /4, b 1 = b 2 = 1 /6, b 3 = 2 /3 and a i,k = 0 for k ≥ i.

Therein, the factor 1 /6 is found in contrast to 1 /12, since the alternatively scaled entropy η(u) = u 2 is used.
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