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Abstract: INTRODUCTION: Deep brain stimulation (DBS) 

is widely used to alleviate symptoms of movement disorders.

During intraoperative stimulation the influence of active or 

passive movements on the neuronal activity is often evaluated

but the evaluation remains mostly subjective. The objective of 

this paper is to investigate the potential of a previously 

developed Weighted-frequency Fourier Linear combiner and 

Kalman filter-based recursive algorithm to identify tremor

phases and types. METHODS: Ten accelerometer recordings 

from eight patients were acquired during DBS from which 186 

phases were manually annotated into: rest, postural and kinetic 

phase without tremor, and rest, postural and kinetic phase with 

tremor. The method first estimates the instantaneous tremor 

frequency and then decomposes the motion signal into 

voluntary and tremorous parts. The tremorous part is used to 

quantify tremor and the voluntary part to differentiate rest, 

postural and kinetic phases. RESULTS: Instantaneous tremor 

frequency and amplitude are successfully tracked online. The 

overall accuracy for tremorous phases only is 89.1% and 

76.3% when also non-tremorous phases are considered. Two 

main misclassification cases are identified and further 

discussed. CONCLUSION: The results demonstrate the 

potential of the developed algorithm as an online tremorous 

movement classifier. It would benefit from a more advanced 

tremor detector but nevertheless the obtained digital 

biomarkers offer an evidence-based analysis and could 

optimize the efficacy of DBS treatment.

Keywords: Tremor estimation, Deep Brain Stimulation, 

Microelectrode Recording, Weighted-frequency Fourier 

Linear combiner, digital biomarker.

1 Introduction

Deep Brain Stimulation (DBS) [1] has become one of the most 

important neurostimulation therapies for movement disorders 

such as Parkinson’s disease (PD) and essential tremor (ET) to 

alleviate tremor among other symptoms [2]. Although DBS 

application under full anaesthesia is currently being researched 

[3], the majority of interventions are performed with awake 

patients. During the surgical procedure, electrodes are 

implanted in the thalamic or subthalamic area depending on 

the disease and symptoms. The severity of rest, postural or 

kinetic tremor [4] is evaluated by inspecting the patient's 

tremor while performing key tasks. It is linked with

intraoperative microelectrode recording (MER) of neuronal 

activity and acute stimulation to achieve precise targeting. 

After the surgery, tremor is studied during therapeutic 

stimulation for parameters adjustments and to follow the 

disease progression. Moreover, symptom assessment is an 

issue for the new generation of implanted stimulators

(PerceptTM PC neurostimulator, Medtronic).

Clinical evaluations are usually done semi-quantitatively 

via clinical rating scales such as the TETRAS [5] or the 

Unified Parkinson’s Disease rating scale [6] with the inherent 

interrater variability. We [7] and others [8-9] have previously 

shown that quantitative objective digital tremor biomarkers

can support neurosurgeons and neurologists and generate more 

precise and continuous data. An automatic differentiation 

between the different arm or body positions, between 

voluntary and tremor motion and between tremor types (rest, 

postural, kinetic) could facilitate an online and offline 

correlation analysis between stimulation settings and changes 

in neuronal activity, respectively.

The aim of the present paper is to investigate the potential 

of a previously developed Weighted-frequency Fourier Linear 

combiner (WFLC) [10] and Kalman filter-based recursive 

algorithm to identify rest, postural and kinetic (movement)

phases and to separate tremor from voluntary movements for 

the quantification of changes in tremor. The approach is tested 

with acceleration data intraoperatively acquired in parallel to 

MER during DBS surgery.
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2 Methods 

Four ET and four PD patients participated in a clinical study 

at the University Hospital in Clermont-Ferrand (2011-

A00774-37 / AU905) including four males and females each 

(mean ± std: age 67.3 ± 10.0 years). Seven subjects exhibited 

tremor in the upper limb and one in the lower limb. 

During DBS surgery, MER recordings were performed 

along two trajectories per hemisphere at several positions 

before and behind the target position identified on 

preoperative images [11]. A three-channel accelerometer 

placed on the back of the hand (side of the leg) and an 

additional static video camera recorded the procedure. The 

subjects were asked to perform motor tasks, such as holding 

the arm in the air (postural phase), closing/opening one hand 

(kinetic phase), or leaving the arm at rest (rest phase). 

Throughout the recording the subjects partially exhibited 

tremor. The assessment protocol was adapted to the patient’s 

pathology and expected cooperation, e.g., some subjects were 

not asked to perform any movement phases and other showed 

only few tremor phases.  

In six cases either the video or the accelerometer data 

were unavailable resulting in a total of ten evaluable 

recordings each lasting around 10 minutes (with one 

exception). 186 phases were manually labelled based on the 

video footage into: rest without (58), rest with tremor (35), 

postural without (22), postural with tremor (27), movement 

without (14) and movement with tremor (30). 

To retrieve the dominant tremor axis the accelerometer 

data are reduced to one dimension by performing a principal 

component analysis (PCA) using an eigenvalue decomposition 

of the covariance matrix. Note that although this step is done 

offline, it doesn’t affect the online character of the main 

algorithm presented below. Since the accelerometer signal is 

not gravity compensated it can be interpreted as a direction 

information of the gravity vector around an arbitrary axis i.e., 

it is equivalent to a positional information. 

A WFLC [10] applied on the band-pass filtered 

(Butterworth 4th order, frequency range 3-8 Hz) accelerometer 

signal (sampled at 100 Hz) is used to first estimate the 

instantaneous tremor frequency  based on a least mean 

squares recursion. Then the unfiltered accelerometer signal is 

decomposed into tremorous and voluntary parts using a 

Kalman filter (internal state , measurement model ), where 

tremor is modelled as a time-varying sinusoid with its 

frequency within the bandpass filter range and the voluntary 

part   as a model with constant first derivative  during 

integration step and a slow adaptation rate (see eq. 1-3, time 

dependencies omitted for simplicity) 

 

= [ ]    (1) 

= ( ) + ( )      +  (2) 

=     (3) 

where ,  and  stand for the coefficients of the sinusoid and 

the time, respectively. 

Tremor presence is detected by comparing the estimated 

instantaneous tremor amplitude = +  with a patient 

independent threshold. A recursive algorithm is used to 

calculate the moving standard deviation  of the voluntary part 

[12].  is reduced by a patient independent tremor amplitude 

factor  to further reject non-filtered tremorous residuals in the 

voluntary part estimation (see eq. 4). The tremor type detection 

(rest, postural and kinetic) is then obtained by comparing the 

reduced standard deviation  with two patient independent 

thresholds. The movement is considered rest if below, postural 

if in between and kinetic if above both thresholds, 

respectively.  = (1 )   (4) 

 

All used algorithms (except the PCA) are recursive and were 

selected to comply with the online requirement. Especially the 

computational requirements for the WFLC are very low due to 

its simplicity [10]. 

At every timestep the algorithm classifies the signal 

according to the thresholds. The performance is evaluated by 

comparing the manually labelled phases with their 

estimations, given by the mostly estimated class during this 

time. For a pure online approach also the phase changes should 

be detected. As a matter of fact, Bodenham’s algorithm [12] 

was originally developed to detect changes in a signal and can 

be used for this purpose. The estimation accuracy is given by 

the number of correctly classified phases divided by the total 

number of phases. 

3 Results 

Two representative analyses of partial recordings are shown in 

Figure 1 including tremor isolation and phase classification. 

Tremorous movement (Figure 1.a, recording #3), clearly 

distinguishable with its peaks in the frequency domain, is 

successfully estimated in the time domain including its 

frequency and amplitude. The labelled and estimated phases 

match with one exception, where rest tremor is estimated as 

postural tremor. A second partial recording in Figure 1.b 

(recording #6) illustrates the difficulties of the algorithm when 

no tremor is present. Postural phases without tremor are 
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classified as rest without tremor and movement phases without 

tremor as movement with tremor. It can be observed that 

voluntary movements cause broad-spectrum artefacts also in 

the range of tremor (2-8 Hz).

The error matrix for the classification of rest, postural and 

kinetic motion types where phases with and without tremor are 

merged has an overall accuracy of 85.5% (see Figure 2). The 

misclassification of postural phases in rest phases is clearly 

noticeable. Figure 3 shows a more detailed error matrix also 

differentiating between tremorous and non-tremorous phases 

with an accuracy of 76.3%. The misclassification discussed 

above mainly occurs in cases when tremor is not present 

(postural) and only to a minor extend when tremor is present 

(postural tremor). A second inaccurate estimation regards 

voluntary movement without tremor (kinetic) being estimated 

as movement with tremor (kinetic tremor). Table 1 presents 

the accuracy for every recording individually. The percentage 

of tremorous phases greatly influences the accuracy of the

recordings and show the heterogeneity of the data.

Table 1: Accuracy of every individual recording with classification 
of all six classes.

Recording # # Phases #Tremor Phases Accuracy

1 18 8 94.5%
2 17 12 82.4%
3 25 22 92.0%
4 31 23 93.5%
5 21 1 52.4%
6 23 1 39.1%
7 5 5 100.0%
8 12 6 91.7%
9 21 12 66.7%
10 13 2 69.2%

4 Discussion

The presented recursive online algorithm successfully 

characterizes tremor by estimating its instantaneous frequency 

and amplitude. The isolation of both tremor and voluntary 

movement can be used to identify different phases in a motion 

signal. This demonstrates a promising application for the

algorithm. Although the focus of this work was on pre-, intra-

and postoperative clinical evaluations these indications could 

Figure 1: Representative analysis of two partial recordings, one with tremor (a, recording #3) and one mostly without (b, recording #6). 
Top plots: Motion signal decomposed into voluntary (left) and tremorous (right) part together with the estimated instantaneous 
tremor frequency. Phases are colored according to the labelled (top half) and estimated (bottom-half) type of tremor. Bottom plot: 
Short-time Fourier transform of the motion signal (4s window, 50% overlap) with a scaled signal representation in the back and a 
scaled overall Fourier transform on the left.

Figure 2: Error matrix for the classification into rest, postural and 
kinetic phases. Phases with and without tremor are merged. 
The overall accuracy is 85.5%

a) b)
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also be useful for other purposes such as tremor suppression 

wearables where online information is required.

Distinguishing between non-tremorous rest and non-

tremorous postural phases is obviously not feasible without 

additional information as there is no movement content to 

differentiate them. In cases where tremor is present the results 

show that the algorithm can differentiate both. This is

explained with the fact that even though the subject tries to 

maintain a certain position in the air the arm is highly prone to 

drift which is then reflected in the estimated voluntary part. To

further improve the accuracy an additional orientation

estimation could be incorporated to help differentiate non-

tremorous rest from postural phases.

The nature of the presented algorithm is to find the

dominant sinusoid in the input signal. It has good response 

time regarding the adaptation of the instantaneous tremor 

frequency and amplitude. For an accurate estimation, artefacts 

from voluntary movements should have a low magnitude in 

the frequency range of tremor. In contrary when non-

tremorous movements are executed, the algorithm still tries to 

find a (non-existent) dominant frequency as shown in Figure 

1.b. The algorithm in its present form is well suited for the 

characterization of tremor but is not yet adapted for its 

detection. More sophisticated approaches, e.g., based on the

relative signal power should be investigated, before going into 

clinical use. Assuming a (perfectly accurate) implemented 

tremor detector the presented algorithm would only be applied 

on the tremorous phases which would result in an 89.1% 

accuracy with the given data.

An individual baseline measurement could provide 

further patient specific information about the tremor severity

and its base frequency. Together with machine learning 

techniques, a more accurate and robust classifier could be 

developed from the acquired digital biomarkers and deliver an 

evidence-based analysis for neurosurgeons and neurologists.
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