
HAL Id: hal-03769268
https://hal.science/hal-03769268v1

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preliminary study for intonation classification of
imagined speech for brain-computer interface

applications
Isabel Casso, José Rouillard, Hakim Si-Mohammed, Nacim Betrouni, François

Cabestaing, Anahita Basirat

To cite this version:
Isabel Casso, José Rouillard, Hakim Si-Mohammed, Nacim Betrouni, François Cabestaing, et al..
Preliminary study for intonation classification of imagined speech for brain-computer interface ap-
plications. European Conference on Signal Processing, Aug 2022, Belgrade, Serbia. �10.23919/EU-
SIPCO55093.2022.9909933�. �hal-03769268�

https://hal.science/hal-03769268v1
https://hal.archives-ouvertes.fr


Preliminary study for intonation classification of
imagined speech for brain-computer interface

applications
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Abstract—In the current study, we focused on decoding speech
prosody from EEG. Prosody (i.e., melody and rhythm of speech)
is important during communication as it allows to convey emotion
and meaning. However, it has received little attention in the field
of brain-computer interfaces. To address this issue, we contrasted
the production of two syllables, “ba” and “da”, produced
mentally as an affirmation (e.g., “ba.”) or a question (e.g., “ba?”)
using two different intonations. We focused on spectral features.
After classification in the time-frequency domain, we found above
chance-level accuracies in specific frequency ranges of the alpha
band (7-12 Hz) early on during the production phase. We also
obtained above chance-level results on a range of the low-beta
band (16-20 Hz) during a late time window. Based on the visual
inspection of topographies and the literature, we suggest that the
results during the early time window, but not that during the
late time window, reflect a genuine difference between imagined
affirmation and question production. Future studies should
provide more information about neural markers and underlying
neuro-cognitive processes to improve the understanding of the
imagined intonation production. This would pave the way for
the development of speech-based BCI capable of differentiating
intonation and prosody in general.

Index Terms—Intonation, imagined speech, EEG, brain-
computer interfaces, prosody

I. INTRODUCTION

Spoken word production involves a set of complex processes
such as conceptual preparation, lexical selection, morphologi-
cal, phonological, and phonetics encoding and articulation [1].
Despite the complexity of the brain’s computations underlying
these processes, recent studies have shown that it is possible to
decode speech using electrocorticography (ECoG) recordings
(e.g., [2]) even during dialogue [3]. These results, currently ob-
tained for the overt speech, pave the way for the development
of brain-computer interfaces (BCI) systems using imagined
speech for the case of individuals who are unable to speak
overtly.

Contrary to overt speech, imagined speech does not involve
articulation. According to the dual-stream prediction model
[4], the articulatory trajectory is planned in the inferior frontal
gyrus and other premotor areas. During imagined speech, the

planned trajectory bypasses the primary motor cortex and
is simulated internally. The somatosensory consequence of
the simulated articulation is then estimated in the inferior
parietal cortex. Then, an abstract auditory representation,
formed around regions of posterior superior temporal gyrus
and superior temporal sulcus, is derived from the estimation.

If the neural activities related to these processes can be
detected and decoded, BCI systems could thus use the imag-
ined speech setting for communication purposes, ultimately
for developing prosthesis for individuals who cannot articulate
(e.g., see [5], for locked-in syndrome due to stroke).

Even though most studies on overt and imagined speech
decoding to date have used ECoG recordings, a few studies
thus far have shown that some aspects of imagined speech can
be decoded using EEG (for a review, see [6]).

Although critical during communication, as it allows to
convey emotion and meaning, prosody has not been a common
subject of research in the BCI field; generally, paradigms focus
on discriminating vowels, syllables, and short words without
examining prosodic contrast.

To our knowledge, only one EEG study to date has reported
the results on prosody using imagined speech. In this study,
Li and Chen [7] examined the decoding of different Mandarin
tones. The classification across all four tones reached an 80.1%
accuracy using audio-visual stimuli and 67.7% using only
visual stimuli.

In the present work, we studied the possibility of decoding
a particular component of speech prosody from EEG signals,
which is intonation. Our task involved the production of two
syllables, ”ba” and ”da”, produced mentally as an affirmation
(e.g., ”ba.”) or a question (e.g., ”ba?”). We focused on spectral
features. In fact, studies on overt speech detected alpha (7-
12.5 Hz) and beta (12.5-30 Hz) power decreases over speech
motor areas before and during articulation in tasks such as
picture naming or verb generation tasks. In addition to motor
aspects of speech production, this phenomenon seems to be
related to the process of retrieval of conceptual and lexical
information from memory. Increases in theta band (3.5-7 Hz)



have also been observed. This has been related to executive
control processes and may reflect the need for more control
during speech production (e.g., when bilingual participants
select the wrong language during word production) [8]. We
only focused on motor aspects, as our task does not involve
memory retrieval or executive control processes.

In a recent study on short sentence production (e.g., ”Do
you understand me?”), Dash and colleagues [9] observed a
significant contribution of delta oscillations (0.5-3.5 Hz) in
decoding overt and imagined speech. Although the contribu-
tion of low-frequency oscillations during speech production
remains unclear, such oscillations are thought to be related to
the processing of prosodic aspects of utterances during speech
perception [10].

Based on the above mentioned literature, we hypothesized
that delta, alpha and beta bands could be the frequency bands
of interest for observing and decoding the contrast between
affirmations and questions in our study.

II. METHODS

A. Participants

Six right-handed native french speakers (4 females) were
included in this study. All of them were naive to the experi-
ment. Participants had an average age of 22.7 years old (±1.37
years). All had self-reported normal or corrected-to-normal
vision without any hearing, language, memory or learning
problems. One additional participant was tested but excluded
from analyses due to noisy data.

B. Experimental task design

We used four visual prompts: ”ba.”, ”ba?”, ”da” and ”da?”.
The syllables, and not words or sentences, were used to
minimize semantic processing. The experiment was divided
into eight overt and eight imagined speech blocks. An overt
speech block is followed by an imagined speech block and
vice-versa. The order of blocks was counterbalanced across
participants. Each block comprised 24 trials (6 repetitions of
each prompt). The order of trials in each block was pseudo-
randomized. Overall, 48 trials per prompt have been presented
to participants for each block type. In this paper, we focused
on imagined speech blocks.

Figure 1 shows the structure of each trial. Participants
were first presented with a fixation cross for 1 second. Af-
terward, a written syllable was presented for 1.5 seconds.
The participants were asked to imagine producing the prompt
with the appropriate intonation (i.e., affirmation or question)
immediately after the disappearance of the visual cue. The
next trial started automatically 2.5 s after the disappearance
of the prompt.

C. Data acquisition, pre-processing, and analyses

EEG were recorded with the BioSemi 64-channels gel-
electrode system at a sampling frequency of 2048 Hz in
the open-source software OpenViBE. The recordings were
carried out in an isolated room. Participants were seated at
approximately 1m from a 15 inch LCD monitor.

Fig. 1. The structure of experimental trials. Prompts were ”ba.”, ”ba?”, ”da.”
and ”da?”.

An average re-referencing was applied to all signals; then,
data passed through a one-pass, zero-phase, notch filter from
49.12 to 50.88 Hz to avoid electrical line noise.

All epochs or samples with peaks over 750 µV were
rejected and not included in the analyses. Considering previous
research results on the decoding of imagined tones [7], we car-
ried our analysis defining a region of interest of six electrodes
F5, FC3, P5, CP3 C3 and C4 as in [7]. These electrodes are
commonly used in studies on imagined speech as they are
thought to capture the activities of regions involved in speech
production [6].

Considering only the data from these region, we performed
a time-frequency analysis with a frequency-dependent time
window length, which consisted in taking ten intervals ranging
from 0.5 Hz to 45 Hz, comprising bands delta (0.5-3.5 Hz),
theta (3.5 - 7 Hz), low-alpha (7-9 Hz), high-alpha (9-12.5Hz),
low-beta (12.5-20 Hz), high-beta (20-30 Hz), and gamma (30-
45 Hz). The pre-processed data were filtered within each
frequency range. We extracted the epochs of the two con-
ditions (affirmation and question) considering the entire 2.5
production phase adding 0.2 s prior to production phase onset.
Baseline correction was applied considering this time window
(0.2 s). We obtained the time-frequency representations (TFRs)
of every epoch with window size dependent on the upper and
lower values of the ten frequency intervals with a resolution
of 10 Hz and concatenated in a sliding window manner with
a 0.11 s overlap.

We considered a BCI benchmark algorithm [11] [12] also
used in the analysis by [7] composed of a Common Spatial
Pattern (CSP) as a filtering step and a Linear Discriminant
Analysis (LDA) algorithm for class discrimination. We se-
lected six filters per class (i.e., affirmation and question).

The TFR data, consisting of spatial features in the time-
frequency domain from different time windows of the pro-
duction phase, was shuffled and split into train and test
sets using 67% and 33% of data, respectively, ensuring the
equal representation of classes. We calculated the covariance
matrices using the train data.

The CSP + LDA pipeline was trained and tested over



a 5-fold cross-validation. The chance level was calculated
considering the number of test samples fed into the classifier
for a 95% classification confidence as proposed in [13].

III. RESULTS

Figure 2 shows the time-frequency classification accuracies
obtained with test TFR data from all subjects. We obtained a
maximum classification accuracy of 57% above chance-level
early on during the production phase around 0.1 s in 7-12 Hz
frequency band and during a late time window at about 1.8 s
in 16-20 Hz frequency band. These bands correspond to alpha
and low-beta, respectively.

Fig. 2. Classification results of imagined speech intonation in the time-
frequency domain. The above chance level results (over 55%) are indicated
by dotted rectangles.

To better understand the classification results, we checked
the topography maps on these bands and time windows
for imagined affirmation and question production. Figures 3
and 4 show the topography averaged across subjects. After
visual inspection of these figures, we can observe distinctions
between the two intonation conditions on the electrodes we
have selected for analysis based on previous research [6],
[7]. Regarding the alpha band, the contrast between two
conditions can be observed during the time window when the
classification accuracy was above chance level (i.e., around 0.1
s and 0.3 s). Regarding the low-beta band, the contrast can be
seen around 1.8 s corresponding to the time window during
which the classification accuracy was also above chance level.
However, other electrodes, not included in our classification
analysis and thus not tested, seem to show larger contrasts
(e.g., occipital electrodes).

We also examined the topography maps of each subject
on all the frequency bands defined in section II for imag-
ined affirmation and question production. For brevity, these
topographies are not shown, but it is noteworthy to mention
that we observed inter-individual variability regarding both
timing and localization of activities.

IV. DISCUSSION

Several BCI studies to date have focused on decoding
phonemes, syllables, and words from brain signals. These
studies are interesting for developing speech prostheses and
speech synthesizers for various medical applications, from
reeducation to communication devices (e.g., [5]). However,
the focus on decoding prosody is scarce.

Prosody is an essential aspect of speech communication
allowing to convey meaning and emotion. The goal of the
current exploratory study was to examine EEG markers of
imagined intonation production and test whether the intonation
of affirmations and questions could be decoded using an EEG
signal.

Given the scarcity of EEG research on speech intonation
production, we must first ensure that distinguishing features
on cortical activity for various intonations will allow a BCI
to perform its decoding task. We explored data from a set
of electrodes previously used in the decoding of imagined
mandarin tones production [7], namely F5, FC3, P5, CP3, C3,
C4; above cortical regions involved in prosody production [14]
[15] and imagined speech production [4].

We performed a time-frequency analysis with a time win-
dow dependent on frequency range and classification with a
CSP+LDA pipeline. As mentioned in the Introduction, we
expected to observe results in alpha and beta bands as they
have been reported in speech production tasks [8]. The delta
band was another frequency band of interest as it has been re-
ported in decoding sentences including imagined affirmations
and questions [9] (although the focus of the study was not on
prosody decoding).

The results showed above chance-level accuracies during
an early time window in the alpha band (between 7 Hz and
12 Hz) and during a late time window in the low-beta band
(between 16 Hz and 20Hz). The contrast between affirmations
and questions during the early time window could be related
to the planning phase of speech production and is consistent
with speech production literature. However, the results during
the late time window would occur too late. We believe that this
latter result may be related to processes other than imagined
speech production per se. Contrary to our hypothesis, we
did not observe above chance-level results on the delta band.
This result could be because the stimuli we used were too
short for a slow frequency band. Dash and colleagues [9]
who reported the importance of the delta band for imagined
speech decoding had used more prolonged stimuli (e.g., ”Do
you understand me?”). The involvement of the delta band in
prosody production should be investigated in future studies.

In sum, although our results should be interpreted cautiously
due to a limited number of participants, they show for the
first time that (1) intonation could be decoded using EEG in
an imagined speech setting and (2) spectral features would
be appropriate features for decoding speech prosody. It is
noteworthy that the study of Li and Chen [7] reported the
results on tone production without using spectral features and



Fig. 3. Topography maps, averaged across subjects, on 7-12 Hz frequency band between 0 to 0.4 s of production phase for imagined affirmations (top) and
imagined questions (bottom).

Fig. 4. Topography maps, averaged across subjects, on 16-20 Hz frequency band between 1.6 to 2 s of production phase for imagined affirmations (top) and
imagined questions (bottom).

the study of Dash and colleagues [9] on decoding imagined
speech using spectral features did not focus on prosody.

One of the challenges when examining imagined speech,
and in BCI studies in general, is that the results are not time-
locked to the beginning of the target process, i.e., speech
production in the current study. As in most studies on imagined
speech, our analyses were time-locked on the disappearance
of the prompt: subjects were asked to begin to produce
speech mentally at this moment. In future studies, to better
investigate EEG markers, it would be necessary to find ways
to estimate more accurately the time-frame of the production
by, for example, asking participants to report the end of their

production as in [16]. The inter-subject variability that we
observed in the current study may be related to this issue.

In addition, given the limited literature on prosody pro-
duction in the field of BCI, we decided to use the same
electrodes as selected in the study of Li and Chen [7] which
was on imagined tone production. This low spatial density
may have contributed to the classification’s poor performance.
Based on the visual inspection of topographies, including other
electrodes in the analyses seems required. Another critical
issue that should be addressed in future studies on prosody
production for BCIs concerns appropriate EEG markers and
underlying neurocognitive processing. We believe that focus-



ing on ”blind” classification approaches as in the current study
as well as the study of [7] would not be sufficient to develop
BCIs as reliable systems need to be based on knowledge on
underlying cortical processes.

In conclusion, this preliminary study addressed the high
complexity and feasibility of intonation decoding of imagined
speech from data obtained through EEG.

Furthermore, we believe that future research on imagined
speech decoding should provide more information about neu-
ral markers and frequency bands of interest. This would
improve the understanding of the underlying neurocognitive
process and favor the development of speech-based BCIs
capable of differentiating prosody.
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