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Abstract

We consider the problem of sequential recommendations, where at each step an
agent proposes some slate of N distinct items to a user from a much larger catalog
of sizeK >> N . The user has unknown preferences towards the recommendations
and the agent takes sequential actions that optimise (in our case minimise) some
user-related cost, with the help of Reinforcement Learning. The possible item
combinations for a slate is

(
K
N

)
, an enormous number rendering value iteration

methods intractable. We prove that the slate-MDP can actually be decomposed
using just K item-related Q functions per state, which describe the problem in a
more compact and efficient way. Based on this, we propose a novel model-free
SARSA and Q-learning algorithm that performs N parallel iterations per step,
without any prior user knowledge. We call this method SlateFree, i.e. free-of-
slates, and we show numerically that it converges very fast to the exact optimum
for arbitrary user profiles, and that it outperforms alternatives from the literature.

1 Introduction

In many real-life applications, an agent needs to optimally adapt to a random environment through the
choice of multi-dimensional actions over time. A specific, common scenario is that of a personalised
recommender system (RS), which should pick a set of N ≥ 1 items among a much larger corpus
of size K >> N , given the user’s recent and past viewing history. An illustrative example of this
challenge to solve the top-N recommendations problem is Google’s YouTube algorithm, where
the current corpus contains several tens of billions of videos Goodrow [2021] and the number of
recommended items per view may vary (based on scrolling) but in general involves N > 20 items. In
such applications the group of N items recommended per step is often called a slate.

As Shani et al. [2005] observed, the RS problem is essentially of sequential nature. The recommenda-
tion of a specific slate at some point in time offers not only immediate gains if some recommended
item is clicked, but can also generate future benefits by guiding the user towards a path of more
interesting items as the user session evolves. Shani et al. [2005] formulated this problem within the
framework of Markov Decision Processes (MDPs) (Puterman [1994]), and tried to solve it under
strong assumptions of independence. Naturally, when the RS needs to learn unknown user prefer-
ences, it can do so by observing user-item interactions over time, and the tools of Reinforcement
Learning (RL) are most appropriate, see Taghipour et al. [2007] for an early effort.

The optimal slate selection problem per step is in fact combinatorial: the user’s choice is affected by
the combination (and possibly the order) of the items in the slate, not just their individual importance
to the user Aouali et al. [2021]. In such control problems over long horizon, the challenge with
slate actions is that the corresponding combinatorial action space is immense and the search for an
optimal solution quickly becomes intractable. Even for a small catalog of size K = 100 items and a
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recommendation slate of size N = 4, there are
(
100
4

)
≈ 4 million unordered slates as possible actions.

Consequently, the number of slate actions in the YouTube example is astronomical.

To tackle the dimensionality explosion in such value iteration algorithms, Ie et al. [2019] (motivated
by previous work from Sunehag et al. [2015]) have shown that the slate-value function can be exactly
decomposed into K individual Q item-values, per state. Such decomposition could actually render
temporal-difference (TD) learning with slates tractable. However, this proposal is based on prior
knowledge about the user behaviour given any slate and single item choice. In essence this is not
a model-free algorithm. It can be implemented if either a user model is assumed, or if the user
preference choice per slate is learned from history, which doubles the learning effort of RL and needs
to keep in memory N

(
K
N

)
unknowns per user, one unknown per slate and per item choice.

Our contribution. We introduce in this work a novel exact decomposition of the Q values for slates,
into K individual item-Q values and propose a tractable TD-learning (SARSA- and Q-) algorithm,
named here SlateFree, which allows to solve efficiently learning and control problems of arbitrary
slate dimension N > 1 using value-iteration. The important difference compared to Ie et al. [2019] is
that our decomposition is entirely model-free in the sense that it does not require any prior knowledge
over the user behaviour, and it allows to include costs that depend on both state and action. The
proposed decomposition without assuming any independence, simplifies Q-learning considerably:
(i) It keeps K state-item Q functions per state in memory, instead of

(
K
N

)
, a massive reduction.

(ii) The optimal slate in the exploitation consists of the N -out-of-K items with best item-Q function.

The novel RL algorithm is based on definitions of marginal state-item Q functions, item-costs and
transitions. It performs N-parallel Q-updates per step, one per item included in the slate. This way,
the relevance of an individual item is updated every time this is included in a slate. The method
reminds of the independent learners in multi-agent systems, by Claus and Boutilier [1998], one agent
per dimension.

The SlateFree has considerable performance features. It can learn and take optimal actions over
time for any unknown user behaviour. It is shown to be insensitive to the slate-size N , thus allowing
to scale for arbitrary dimensions. The MDP decomposition is proved in this paper to hold under
certain assumptions: (i) the slates are unordered sets of distinct items, and (ii) the user behaviour is
Markovian, i.e. the user choice is based only on the current state and recommended slate. Numerical
evaluations of the novel RL algorithm show empirically that it finds the optimum even when the cost
is a function of both the state and the chosen action-slate, something not possible in other works.

In Section 2 we introduce state-item values as marginal quantities and prove the decomposition of the
Bellman equations in the MDP setting. In Section 3 we present the decomposed SARSA- and RL-
algorithms, referred to from now on, jointly, as SlateFree. In Section 4 we show numerically the
exactness of the solution compared to vanilla-RL for users with various preference behaviour and
illustrate significant performance improvements against SlateQ in Ie et al. [2019]. We also illustrate
how SlateFree converges for any type of user and the convergence speed does not depend on the
size of the slate. We further illustrate how the algorithm behaves in situations where the cost is a
function of both state and action-slate. The code is available on Google Colab SlateFree Authors
[2022a] and here SlateFree Authors [2022b].

Related literature. The established solution for static recommender systems is based on collaborative
filtering, as in Deshpande and Karypis [2004] or matrix factorisation, as in Takács et al. [2008]. Since
the problem is actually dynamic, Reinforcement Learning (Sutton and Barto [2018]) is at the moment
widely applied to propose more effective or more diverse recommender systems (Karatzoglou et al.
[2013], Rohde et al. [2018], Zhou et al. [2020], Warlop et al. [2018]). To overcome the curse of
dimensionality in the action space a deep reinforcement learning approach is taken: Zheng et al.
[2018] work with a value-based approach and approximate the Q-value by a neural network, whereas
Liu et al. [2020b], Liu et al. [2020a] use an actor-critic architecture for policy-based opimisation,
where the actor network outputs a continuous feature vector, which can be mapped to an item, thus
avoiding the discrete formulation.

RL problems with continuous and high-dimensional action spaces have been recently approached
by policy iteration methods. Deterministic policy gradient by (Silver et al. [2014]) is shown to
considerably outperform standard policy updates. This method was combined with an efficient
mapping to discrete actions by Dulac-Arnold et al. [2015], so that problems like the search for top-N
recommendations can be efficiently resolved. Chen et al. [2019] adapt the REINFORCE algorithm

2



with reward independence assumptions. de Wiele et al. [2020] work with amortised inference to
maximise over a smaller subset of possible actions. Metz et al. [2017] propose an autoregressive
network architecture to sequentially predict the action value for each action dimension, which requires
manual ordering of the actions. Tavakoli et al. [2018] propose a neural architecture with many network
branches, one for each action dimension. The special structure of slate-recommendations has given
rise to problem specific solutions, like the one by Sunehag et al. [2015], who introduce a formulation
that benefits from the fact that at each step the user chooses a single item, for a given action slate.
Their approach cannot scale because it needs to keep in memory one value-function per slate. In a
very interesting recent approach Ie et al. [2019] show how the slate-value function can be exactly
decomposed into individual Q item-values and introduce the method SlateQ. They construct optimal
slates from the individual item-values by solving a Linear Program (LP) per step. As mentioned, their
decomposition is based on prior knowledge of user choice behaviour.

2 Decomposition of slate-MDPs

We first introduce the slate-MDP, defined as (S,A,P, C, λ) and describe the process for the special
application of the recommender system. Time is slotted with current step t. The state St = s at time
t will be here the currently viewed item, so the state-space S = K is the full item catalog of size K.
But we can use more general states, e.g. the history of the last m-viewed items m > 1, so S 6= K.
The action At = ω is an N -sized unordered slate of recommended items. The set of possible actions
A is the set of all possible unordered N -sized slates, where in each slate ω ∈ A no item is duplicated.
Here, “unordered” means that only the set of recommended items in the slate is important, not their
order. The state transition function P : S ×A×S → [0, 1] is the probability, given the current state s
and recommended slate ω, that the user moves to state s′, by either picking one of the recommended
items, or rejecting them and selecting some item from the search bar. The general cost function
is C : S × A → R and λ ∈ (0, 1) is the discount rate. The objective is to find an optimal policy
π : S ×A → [0, 1] to minimise the expected cumulative discounted cost from any initial state s ∈ S ,
which is the value-function of state s (alternatively one could work with rewards and maximisation)

Vπ(s) = Eπ

[ ∞∑
k=0

λkct+k | St = s

]
. (1)

In the above, Eπ is the expectation under given policy π, the current time-step is t and the cost at
future step t+ k is ct+k = c(St+k, At+k). The randomness is due to the user choice behaviour. We
consider a stationary policy π, which is a distribution over actions given the current state. It does not
depend on time t. This is a randomised policy in general,

πs(ω) := Pπ [At = ω | St = s] , ω ∈ A(s). (2)

If the mass is concentrated on a single slate-action ω, the policy is called deterministic and we denote
it by πds (or just d). Given a state s, it holds

∑
ω∈A(s) πs(ω) = 1. Observe that we introduced an

action space A(s) per state s, because for our recommender application the currently viewed item s
should not be included in the recommendation slate.

The state-action function Qπ(s, ω) of pair (s, ω) ∈ S × A is the expected cumulative discounted
cost, starting from state s, taking action ω and following policy π,

Qπ(s, ω) = Eπ

[ ∞∑
k=0

λkct+k | St = s,At = ω

]
. (3)

From Sutton and Barto [2018] and Puterman [1994] we know that the state-value functions satisfy
the recursive system of Bellman equations (just policy π evaluation here), ∀(s, ω) ∈ S ×A

Qπ(s, ω) = c(s, ω) + λ
∑
s′∈S

P [s′|s, ω]
∑

ω′∈A(s′)

πs′(ω
′)Qπ(s

′, ω′) (4)

= c(s, ω) + λEs′ [Vπ(s′) | S = s,A(s) = ω] , (5)

where in the last equation we replaced with the value function in s′ because for stationary randomised
policies it holds Vπ(s′) =

∑
ω′∈A(s′) πs′(ω

′)Qπ(s
′, ω′).
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The P [s′|s, ω] in (4) models the random user choice behaviour when visiting state s and exposed to
slate ω, which is considered known in the MDP setting. Notice here, that the process is Markovian
exactly because the user is Markovian, meaning that their choice is only based on the current state
and action and not the past.

2.1 Item frequencies, transition probabilities, and state-item functions

For the decomposition we need to introduce some new marginal quantities to shift the analysis from
slates to items. Since the policy π is stationary and randomised, given state s it randomly recommends
among feasible slates, each containing a different set of items. Obviously, the item j ∈ K can appear
in several action-slates. So the first quantity to be defined is the recommendation frequency of an
item, using the randomised policy πs(ω) = Pπ[ω | s]. To calculate this, we sum the recommendation
probabilities over all slates that contain the item j, when at state s.
Definition 1. The frequency of a recommended item j ∈ K at state s ∈ S , under policy π, is defined
through the randomised probabilities of slate-actions in (2) as

rπs,j := P[At = ω ∈ A(s; {j})|St = s] =
∑

ω∈A(s;{j})

Pπ[ω|s] =
∑

ω∈A(s)

πs(ω)1(j ∈ ω). (6)

In the above the notation A(s; {j}) ⊆ A(s) is used to denote the set of actions at state s, that
necessarily include item j. The indicator function 1(j ∈ ω) = 1 if j is included in the slate,
otherwise 0. What we call “frequency” is in fact the probability to randomly select some slate-action
that includes item j, when at state s. It holds,∑

j∈K
rπs,j =

∑
j∈K

∑
ω∈A(s)

πs(ω)1(j ∈ ω) = N, ∀s ∈ S, (7)

where we use the fact that each slate contains N distinct items, i.e. there are no duplicates.

From now on we need to shift the analysis to items (that may belong to more than one slate). Hence,
as we did above, we also need to define marginal probabilities when we know that item j is definitely
inside the slate, whereas the remaining entries of the slate can be occupied by any other N − 1 sized
feasible slate. We do so, in order to have a description that depends on one item only.
Definition 2. The transition probability given item j inside the recommended slate is defined as

Pπ[s′|s, j] := P[s′|s, ω ∈ A(s; {j})], ∀s ∈ S, ∀j ∈ K. (8)

For the transition probability given state s and some action including item j we prove in the Appendix
two Properties (we also present in the appendix a third by-product):
Property 1. The single-item transition probability is a marginal probability of P[s′|s, ω], and it holds∑

ω∈A(s)

πs(ω)1(j ∈ ω)P[s′|s, ω] = rπs,jPπ[s′|s, j] ∀s ∈ S, ∀j ∈ K. (9)

Consequently, the item probabilities depend on the recommendation policy π.
Property 2. If rπs,j > 0, then P[s′|s, j] is a probability mass function,

∑
s′∈S Pπ[s′|s, j] = 1.

The above two properties are very important for the analysis. Property 2 states that the quantity defined
in (8) can be used as a probability distribution to describe state transitions. It can be understood as a
summary of the Markov transitions from one state to the other given the whole slate. Furthermore,
since we are focusing only on the presence of item j and do not consider what are the other entries in
the slate, these other entries can be incorporated in the description using marginal expressions. This is
what Property 1 shows. It states that the item probabilities can be expressed as the expectation using
slate probabilities over all slates that contain item j, i.e.,

∑
ω∈A(s) πs(ω)1(j ∈ ω)P[s′|s, ω], and

normalised by the item frequency rπs,j . However, what happens using this definition, is that the newly
defined item transition probability in Definition 2 actually depends directly on the recommendation
policy πs(ω), as this appears in the expression in (9). Note here that the item transition probabilities
do not make any independence assumptions among items in the slate. These just focus on the
presence of one item in the slate and use the original slate transition probability definition to calculate
marginals over the remaining entries.

Similarly, we can also define the marginal cost-item function and the state-item function. These are
defined directly using the following expressions.
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Definition 3. The marginal cost-item function cπ(s, j) that depends on policy π is defined as

rπs,jc
π(s, j) :=

∑
ω∈A(s)

πs(ω)c(s, ω)1(j ∈ ω), ∀s ∈ S, ∀j ∈ K. (10)

In the special case that the cost is just a function of the current state, cπ(s, j) = c(s), ∀j ∈ K.

Finally, we give the following special definition for the state-item function Qπ(s, j):
Definition 4. The state-item function Qπ(s, j) is defined from the state-action functions Qπ(s, ω) as

rπs,jQπ(s, j) :=
∑

ω∈A(s)

πs(ω)Qπ(s, ω)1(j ∈ ω) ∀s, j ∈ S. (11)

Notice that this definition is different from what would be the most natural one, i.e. to be the
value-function starting from state s, and taking some initial slate-action that necessarily includes item
j and following policy π. The Definition 4 can again be understood as a marginal quantity, i.e., the
expectation over all state-value functions that include item j normalised by the frequency rπs,j > 0.

Notice here that for items j such that rπs,j = 0, the state-item functions Qπ(s, j) are not well defined.
We will see next that this is not actually a problem for the decomposition.

2.2 Decomposed Bellman equations

The above definitions allow us to reformulate the Bellman equations with slates into a system of
equations that is expressed only by item quantities.
Theorem 1. [SlateFree-MDP] The Bellman equations in (4) for state-action functions with slates
Qπ(s, ω), are equivalent to the following system of equations with state-item functions Qπ(s, j) from
Def. 4, cost-item functions from Def. 3, and transition probability given some item j from Def. 2

Qπ(s, j) = cπ(s, j) + λ
∑
s′∈S

Pπ[s′|s, j]

(
1

N

∑
k∈K

rπs′,kQπ(s
′, k)

)
, ∀s ∈ S, ∀j ∈ K. (12)

If the cost is a function of just the current state, we replace in the above by cπ(s, j) = c(s), so that
the cost does not depend on the policy.

Proof. We multiply both sides of (4) by πs(ω)1(j ∈ ω) and sum over all feasible slate-actions ω,∑
ω∈A(s)

πs(ω)1(j ∈ ω)Qπ(s, ω) =
∑

ω∈A(s)

c(s, ω)πs(ω)1(j ∈ ω) +

+ λ
∑

ω∈A(s)

πs(ω)1(j ∈ ω)
∑
s′∈S

P[s′|s, ω]Vπ(s′).

Then, we replace the left-hand side by the function Definition 4, the first term of the right-hand side
by the cost-item Definition 3 and in the second term we use Property 1, to find

rπs,j

(
Qπ(s, j)− cπ(s, j)− λ

∑
s′∈S

Pπ[s′|s, j]Vπ(s′)

)
= 0. (13)

Now, use the equality Vπ(s′) =
∑
ω∈A(s′) πs′(ω)Qµ(s

′, ω), multiply it from both sides by 1(k ∈ ω)
and sum over k ∈ K. We use the fact that the slate size is N and again Definition 4, so we get∑
k∈K

Vπ(s
′)1(k ∈ ω) =

∑
k∈K

∑
ω∈A(s′)

πs′(ω)Qπ(s
′, ω)1(k ∈ ω)⇒ Vπ(s

′) =
1

N

∑
k∈K

rπs′,kQπ(s
′, k).

By replacing the above expression for Vπ(s′) in (13) we get the expression in (12), as long as rπs,j > 0
for the (s, j) pair. In the case that rπs̃,` = 0 for some pair (s̃, `), notice that regardless of its value
Qπ(s̃, `) <∞, it will always contribute rπs̃,`Qπ(s̃, `) = 0 when found at the right-hand side of (12),
hence the pairs with zero frequencies do not affect the equations of others. For their own state-item
value, any solution Qπ(s̃, `)− c(s̃)− λ

∑
s̃′∈S Pπ[s̃′|s̃, `]Vπ(s̃′) = κ <∞ satisfies (13), hence also

the one for κ = 0. This way we result in the validity of (12) for any possible state-item pair.
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2.3 Optimality equations

We know from Puterman [1994, Prop.6.2.1] that the discounted MDPs always have a stationary
deterministic optimal policy. We denote from now on deterministic policies by index d (we may omit
π) and the optimal policy by d∗ (we may omit d). Then by definition,

πds (ω) =

{
1, for a unique slate ωd(s) ∈ A(s)
0, ∀ω 6= ωd(s) and ω ∈ A(s) . (14)

A special case is when we follow the optimal deterministic policy, so that

π∗s (ω) =

{
1, for ω∗(s) = argminω∈A(s)Qd∗(s, ω)
0, otherwise . (15)

When more than one action-slates have the minimum Q(s, ω) ties are broken arbitrarily. For the
deterministic and optimal policies the value function starting from state s is equal to

Vd(s) =
∑

ω∈A(s)

πds (ω)Qd(s, ω) = Qd(s, ω
d(s))

opt.⇒ Vd∗(s) = min
ω∈A(s)

Qd∗(s, ω). (16)

Theorem 2. [Optimal SlateFree-MDP] The Bellman optimality equations for slates are equivalent
to the following system of equations with state-item functions from Def. 4, cost-item functions from
Def. 3, and transition probability given some item j from Def. 2, under the optimal policy π = d∗

Qd∗(s, j) = cd
∗
(s, j) + λ

∑
s′∈S

Pd
∗
[s′|s, j] min

`∈K
Qd∗(s

′, `), ∀s ∈ S, ∀j ∈ K (17)

and it holds Qd∗(s, j) = Vd∗(s), ∀j ∈ ω∗(s) inside the optimal slate. Also, cd
∗
(s, j) = cd(s, ω

∗(s))
for j in the optimal slate. For ` /∈ ω∗(s) the cost c∗(s, `) can be any convex combination of the slate-
costs c(s, ω), for ω ∈ A(s; {`}). For state-only dependent cost, we replace by cd

∗
(s, ω∗(s)) = c(s).

Proof. For deterministic (and optimal) policies the quantities in Section 2.1 related to items become:
1. Item-frequencies (from Definition 1)

rds,j =

{
1, ∀j ∈ ωd(s)
0, otherwise . (18)

2. Transition probability (from Definition 2):
Pd[s′|s, j] = P[s′|s, ωd(s)], ∀j ∈ ωd(s), (19)

meaning that the transition probability given some item in the slate, is equal to the transition
probability given the whole information about the slate.
3. Cost (from Definition 3):

cd(s, j) = cd(s, ω
d(s)), ∀j ∈ ωd(s) (20)

4. State-item function (from Definition 4):
Qd(s, j) = Qd(s, ω

d(s)), ∀j ∈ ωd(s). (21)
In words, given state s, all items included in the deterministic (resp. optimal) slate have the same
state-item function value, equal to that of the whole slate.
Lemma 1. For any stationary policy d (and also the optimal d∗), it holds that Qd(s, j) = Vd(s),
∀j ∈ ωd(s). Specifically for the optimal,

Qd∗(s, j) = min
ω∈A(s)

Qd∗(s, ω), ∀j ∈ ω∗(s) (22)

Proof of Lemma 1. For stationary deterministic policies we have from (21) that Qd(s, j) =
Qd(s, ω

d(s)), ∀j ∈ ωd(s). It also holds from (16) that Vd(s) = Qd(s, ω
d(s)).

We now continue to the proof of Theorem 2. Applying the optimal deterministic policy to the state-
action equations for item-frequencies from Theorem 1 (see formulation in 13) we get, (c∗ := cd

∗
)

Qd∗(s, j) = c∗(s, j) + λ
∑
s′

Pd
∗
[s′|s, j]Vd∗(s′)

(16)
= c∗(s, j) + λ

∑
s′

Pd
∗
[s′|s, j] min

ω∈A(s)
Qd∗(s

′, ω).

From (22) in Lemma 1 it holds that Qd∗(s′, j) = Vd∗(s
′), ∀j ∈ ω∗(s′). Then, necessarily

Qd∗(s
′, j) ≤ Qd∗(s

′, k), ∀k /∈ ω∗(s′), otherwise Vd∗(s′) would not be the optimal value. In
other words, Vd∗(s′) = min`∈KQd∗(s

′, `). From (10) we get (20) c∗(s, j) = cd
∗
(s, ω∗(s)) for all

j ∈ ω∗(s). For ` /∈ ω∗(s), we know that r∗s,` → 0 and πs(ω) → 0 for all ω ∈ A(s; {`}), so that
from (10) c∗(s, `) can be any convex combination of the slate-costs c(s, ω), for ω ∈ A(s; {`}).
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3 Decomposed SARSA and Q-learning for slate actions

Consider a sequence of states, slate-actions and costs over discrete time-slots t = 1, 2, . . . as
(S1 = s,A1 = ω, c1 = c(s), S2 = s′, A2 = ω′, c2 = c(s′), . . .). The transition from state S1 to
S2 depends on the slate recommended by the agent, and the unknown user behaviour to select one
of the items in the slate; the user is allowed to disregard the slate and select another item of their
own preference. The vanilla SARSA Sutton and Barto [2018] is an on-policy TD(0) method, which
updates the state-action values Q(st, ωt) as follows

Q(st, ωt) = Q(st, ωt) + γ [c(st, ωt) + λQ(st+1, ωt+1)−Q(st, ωt)] . (23)
The slate-actions ωt+1 can follow the ε-greedy exploration policy. We denote it by πε; based on
this, the greedy slate ω∗(s) that minimises Q(s, ω) is chosen with probability 1− ε and a uniformly
random slate ω ∈ A(s) is chosen with probability ε. This implementation requires per state s ∈ S,
all
(
K
N

)
combinations of Q-values stored in memory. Furthermore, all these combinations need to be

traversed when searching for the minimum in the greedy step.

SlateFree updates. We can use the decomposition of the Bellman equations in Theorem 1, to propose
a SlateFree-SARSA policy. We remind that a state-action pair (s, ω) corresponds to N state-item
pairs (s, j) one per j ∈ ω. The update can be written based on (12),

[SlateFree− SARSA] For all N items in the slate j ∈ ωt :

Q(st, j) = Q(st, j) + γ

cε(st, j) + λ
1

N

∑
k∈ωt+1

Q(st+1, k)−Q(st, j)

 .(24)

For the ε-greedy policy, each time state st is visited, the transition to st+1 is sampled from the
unknown transition probability Pε[st+1|st, j], which depends on user preferences, but also on the
policy ε-greedy, which can change over time in the transient regime. The frequencies rεs′,k in (12)
do not appear above, because the new action batch ωt+1 is a sample of the policy πε (and the
frequencies rε). In fact it can be easily shown that

∑
k∈ωt+1

Q(st+1, k)/N is just a one-sample
unbiased estimator of

∑
k∈K rs′,kQ(s′, k)/N . The cost cε(st, j) also depends on the ε-greedy; in the

special case that it depends on the state only, we replace cε(st, j) = c(st), otherwise the cost per item
will evolve over time and needs to be recalculated using Def. 3, keeping track of r̃ε, π̃ estimators.

Similar to SARSA, we can introduce a decomposed version of the Q-learning algorithm (Watkins and
Dayan [1992]), which is an off-policy TD(0) method, where the Q functions are updated based on
the optimal action policy, although the actions may follow some other (say ε-greedy) policy. Then as
above, we can use Theorem 2 to propose the updated step of the state-item functions following (17),

[SlateFree− Q] For all N items in the slate j ∈ ωt :

Q(st, j) = Q(st, j) + γ

[
c(st, ωt) + λmin

`∈K
Q(st+1, `)−Q(st, j)

]
. (25)

In the special case that it depends on the state only, we replace by c(st, ωt) = c(st). The implemen-
tation of SlateFree (both -SARSA and -Q variations) requires per state s at most K values stored
in memory (if we avoid self-loops, then recommending the same item is not an option).

Finding the best slate. In the exploitation phase of the ε-greedy policy, we need to decide which
N -slate is optimal. We are given, however, for each state s, not the state-action values Q(s, ω) but
rather the K state-item values Q(s, j). Since we are looking for a stationary deterministic optimal
policy, then we can apply the results from Section 2.3. Specifically, we have proved in Lemma 1 that
Qd∗(s, j) = minω∈A(s)Qd∗(s, ω), ∀s ∈ ω∗(s), meaning that all state-item values will be equal, for
the items included in the optimal slate (or more generally in the slate of the deterministic policy).
Hence, we need only select in the greedy phase, the N items with smallest Q(s, j) values, both in the
-SARSA and -Q version of SlateFree.

The update steps in (24) and (25) have important novelties compared to alternatives, as in e.g. Ie
et al. [2019, eq.14, 15]. They are strictly model-free and do not need any prior knowledge over
the environment. Also, costs that depend on both state and action are allowed. Hence, SlateFree
uses N parallel updates to learn any stationary environment over time, using a more compact Q-
function representation, compared to the non-decomposed vanilla-SARSA and Q-learning methods.
Convergence to the optimal is empirically verified in practice, but yet not provably guaranteed, due to
the dependence of the costs and transition probabilities per item in the learned policy.
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4 Numerical evaluation

In this section, we evaluate numerically the performance of SlateFree (both -Q and -SARSA
variations), against two methods from the literature: (i) the standard Q-learning and SARSA tabular
method (called Vanilla-Q and Vanilla-SARSA, where all possible

(
K
N

)
action-slate combinations are

accounted for, each having its own Q-value per state; furthermore against (ii) the proposed in Ie
et al. [2019] method SlateQ with greedy slate selection in exploitation phase. Our environment is
a recommendation system where a user starts their viewing episode from a certain item, and the
system recommends a slate of N (unordered) items, excluding the currently viewed item. Each
episode has average length (1 − λ)−1 steps. The experience is repeated over Tepis ≥ 1 episodes.
The great challenge is to test the SlateFree method on user behaviours whose solution needs to be
combinatorially searched. We evaluate three such artificial user choice models:

User-1 The user has a fixed retention probability α ∈ [0, 1] per step to select one of the N
recommended items uniformly at random, and (1− α) probability to disregard the recom-
mendations and select on their own for one of the K library items uniformly at random.

User-2 The user has a set X of undesired items that they would never click on. Then, this behaviour
is similar to user-1, with the difference that user-2 will choose either from the recommended
items (with probability α), or from the whole library (with 1 − α) one item uniformly at
random among all items, ignoring in both cases those items in set X .

User-3 The user has a set Y of must-include global items. This user does not follow a retention
probability α. Instead, they will select among the recommended items at random, as long as
at least one item from Y is included in the recommendation slate.

A. Small scenario. We first study a small size scenario with K = 10 and N = 4. The number of
possible combinations per state is

(
K−1
N

)
= 126, where we exclude recommendation of the currently

viewed item. With SlateFree we get a reduction in memory for the Q-table from 10 × 126 to
10× 9. The costs per item are all high 20 + zi, where zi ∼ Uniform(0, 4), but there are four items
with lower cost, namely c0 = 5 + z0, c1 = 0 + z1, c7 = 4 + z7 and c9 = 8 + z9 (remember it is a
minimisation problem). The discount is fixed in all experiments to λ = 0.85. For user-1 and -2, the
retention is α = 0.75. For user-2 the exclusion set X = {0, 1, 8}. For user-3 we select X = Y as
in user-2. The learning rate is γ = 0.004 and the ε-greedy GLIE strategy has fixed ε = 0.05 for the
exploration probability. We consider as number of episodes for the evaluation Tepis = 600K. Each
episode is a walk of the user on the library of K items, with mean length (1− λ)−1 = 6, 67 views.
The evaluation for the three types of users and Tepis = 600K is shown in Fig. 1 (TOP-row). We use
on the x-axis logarithmic scale of episodes. The value per episode has high variance and so we smooth
the results within a window of 200 episodes. SlateFree-Q and -SARSA converge for any user type
in around 10K episodes, an order of magnitude faster than the Vanilla-Q and Vanilla-SARSA. Also,
the average value after convergence is the same for the two methods, indicating that SlateFree
converges to the optimal value function. Both SlateFree and SlateQ converge to the optimal value,
but we will see this is not true for larger catalog and dimension instances. Our method shows faster
and steeper convergence than SlateQ in all users, because SlateQ updates the item-Q values only for
the single selected item, whereas SlateFree for all N items included in the slate.

B. Larger Scenario. Next we evaluate the convergence in a more difficult scenario with K = 100
and N = 10, which corresponds to

(
99
10

)
≈ 15 · 1012 combinations. This problem is not tractable for

Vanilla-Q or Vanilla-SARSA. Hence, we only show results for SlateFree-Q, SlateFree-SARSA
and SlateQ in Fig. 1 (BOTTOM-row). The value per episode has high variance and so we smooth
the results within a window of 1000 episodes. Now, both SlateFree-Q and -SARSA can solve all
three user cases within ≈ 500K episodes, whereas SlateQ seems to learn and improve over time, but
cannot solve for any user, at least within the Tepis = 1M episodes.

C. Insensitivity in N . Our evaluations show that the convergence time given some library size K
becomes almost insensitive to the dimension size N . To illustrate this, we simulate user-3 for a
catalog size K = 10 and various sizes of N ∈ {1, 2, 3, 4, 5}. The results are illustrated in Fig. 2
(left). One can observe that surprisingly the slowest converging curve is for N = 1, whereas for
the higher N almost all curves converge before Tepis = 10K. The reason for the poor convergence
behaviour of N = 1 is probably due to the fact that each step in the episode contributes a single
update of the state-item functions, whereas for N > 1 the multiple parallel updates accelerate the
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Figure 1: (TOP-row) Value function user-1 (left), user-2 (centre), user-3 (right); library K = 10,
dimension N = 4, episodes 600K, methods: SlateFree-Q, SlateFree-SARSA, SlateQ, Vanilla-*.
(BOTTOM-row) Value function user-1 (left), user-2 (centre), user-3 (right); library K = 100,
dimension N = 10, episodes 1M , methods: SlateFree-Q, SlateFree-SARSA, and SlateQ.

Figure 2: (left) Insensitivity in N , (centre) Number of Q-updates, (right) Slate-dependent cost.

process considerably. This is the same reason why SlateFree-Q in Fig. 1 shows a steeper learning
curve compared to SlateQ, where the latter updates a single state-item function per step.

D. Effect of parallel updates. We investigate the role of N parallel updates in the convergence of the
SlateFree-Q algorithm. More specifically, for user-1, and the small scenario K = 10 and N = 4
we evaluate the algorithm using a different number of updates per step at each evaluation. Aside the
proposed algorithm which updates all four items in the slate per step, in the others we allow three
items per step, two items, and finally a single item to update. We plot our results in Fig. 2 (centre). We
observe that the complete method with all four updates converges in 10K episodes already (shown in
red). For three updates per step, the method seems to converge (green curve) to a value close to the
optimum, albeit very slowly. For two and a single update (brown and pink curves) we observe that
the method gradually improves over the episodes but even in 150K events it has not converged to the
optimum. To conclude, the plot shows that it is necessary to do all N parallel updates per step for the
method to converge to the best possible value, and fast.

E. Dependence of cost on both state and action-slate. We study now how the performance of
SlateFree is affected when the cost depends on both the current state and the entire action-slate
c(st, ωt). Such an option is not supported by SlateQ Ie et al. [2019]. We now modify the cost so that
a penalty = 42 is applied to all Q(st, j) where j ∈ ωt are the items participating in the recommended
slate, whenever the user does not follow (rejects) the recommendation slate. Obviously this penalty is
slate-dependent. We illustrate the performance of all methods in Fig. 2 (right). We observe that the
decomposed SlateFree converges to the optimal solution for both -Q and -SARSA variations, same
as Vanilla-Q and Vanilla-SARSA. SlateQ from Ie et al. [2019] fails to converge to the minimal value.
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A Appendix

[Proof Property 1.] It holds that πs(ω) := Pπ[ω|s]. We can use the conditional probability formula∑
ω∈A(s)

πs(ω)1(j ∈ ω)P[s′|s, ω] =
∑

ω∈A(s)

P[s′, ω|s]1(j ∈ ω)

= P[s′, ω ∈ A(s; {j})|s] = P[s′|s, ω ∈ A(s; {j})] · P[ω ∈ A(s; {j})|s]
Def.2, Def.1

= Pπ[s′|s, j]rπs,j .
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[Proof Property 2.] Using Definition 2 and Definition 1 we can write∑
s′∈S

Pπ[s′|s, j] Def.2
=

∑
s′∈S

P[s′|s, ω ∈ A(s; {j})] =
∑
s′∈S

P[s′, ω ∈ A(s; {j})|s]
P[ω ∈ A(s; {j})|s]

=
1

P[ω ∈ A(s; {j})|s]
∑
s′∈S

∑
ω∈A(s)

1(j ∈ ω)P[s′, ω|s]

Def.1
=

1

rπs,j

∑
ω∈A(s)

πs(ω)1(j ∈ ω)
∑
s′∈S

P[s′|s, ω] = 1

rπs,j
rπs,j1.

Property 3. The single-item transition probability depends on the policy π. It satisfies,

Pπ[s′|s, j] =
∑

ω∈A(s)

P[s′|s, ω]Pπ[ω|s, j]1(j ∈ ω). (26)

In the above, for 1(j ∈ ω) = 1, it holds Pπ[ω|s, j] := Pπ[(ω, j)|s]/Pπ[ω ∈ A(s; {j})|s] =
πs(ω)/r

π
s,j .

[Proof Property 3.] We can write the slate as ω = (ω−j , j) which contains item j and ω−j are the
remaining N − 1 entries. It holds due to conditioning, that

P[s′|s, ω] = P[s′|s, (ω−j , j)] =
Pπ[s′, ω−j |s, j]
Pπ[ω−j |s, j]

=
Pπ[s′, ω|s, j]
Pπ[ω|s, j]

,

where the superscript π is included, because Pπ[ω|s, j] depends on the policy π. Using this expression,∑
ω∈A(s;{j})

Pπ[s′, ω|s, j] =
∑

ω∈A(s;{j})

P[s′|s, ω]Pπ[ω|s, j].

Summing at the left-hand side over all ω that contain j, we get the marginal Pπ[s′|s, j].
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