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T cells play a critical role in cancer control, but a range of potent immunosuppressive

mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate

their activity. While various immunotherapies (IMTs) aiming at re-invigorating the

T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB),

and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded

tumor-specific T cells, have led to unprecedented clinical responses, only a small

proportion of cancer patients benefit from these treatments. Important research efforts

are thus underway to identify biomarkers of response, as well as to develop personalized

combinatorial approaches that can target other inhibitory mechanisms at play in the TME.

In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic

checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1

axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important

physiologic roles, but has been co-opted by tumors to promote their growth and

impair immunity. Several agents counteracting the adenosine axis have been developed,

and pre-clinical studies have demonstrated important anti-tumor activity, alone and in

combination with other IMTs including ICB and ACT. Here we review the regulation

of adenosine levels and mechanisms by which it promotes tumor growth and broadly

suppresses protective immunity, with extra focus on the attenuation of T cell function.

Finally, we present an overview of promising pre-clinical and clinical approaches being

explored for blocking the adenosine axis for enhanced control of solid tumors.
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INTRODUCTION

IMT has led to unprecedented clinical success for some advanced cancer patients and has
been accepted as a new pillar of cancer therapy (1). Thus, the identification of biomarkers
predicting response to IMT, as well as the development of combinatorial strategies for increasing
its effectiveness in more patients, and against a broader range of tumor-types, have become
important areas of research (2). The nucleoside adenosine, involved in the regulation of multiple
diverse physiological processes either as an intracellular metabolite of nucleic acid synthesis and
energy-charge regulation or as an intercellular messenger in neurological, cardiovascular and
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immunological systems, has recently emerged as a major
immuno-metabolomic checkpoint in tumors (3). Conditions
of stress, such as hypoxia, lead to the accumulation of
extracellular adenosine, predominantly derived from enzymatic
ATP catabolism, which can act directly on tumor cells expressing
adenosine receptors to promote their growth, survival and
dissemination. In addition, adenosine, which under physiological
conditions serves as an immuno-regulatory molecule to protect
normal tissues from uncontrolled inflammation, can impair anti-
tumor immunity, both through the attenuation of protective
immune cells including T cells, NK cells, and dendritic cells
(DCs), and by enhancing the suppressive capacity of T regulatory
cells (Tregs), and myeloid-derived suppressor cells (MDSCs),
amongst others. Here we review the targeting of the adenosine
pathway to promote immune function and tumor control, with
focus on T-cell activity, important experimental findings and an
overview of clinical testing.

REGULATION OF ADENOSINE LEVELS IN
HEALTHY vs. MALIGNANT TISSUE

Extracellular adenosine, a nucleoside and derivative of ATP, is
involved in the regulation of diverse physiological processes
including vasodilation (4), kidney-exerted water reabsorption
(5), pain perception (6), and fine-tuning of the sleep–wake
cycle (7). Even though levels of extracellular adenosine within
healthy tissues are negligible (8–11), upon injury this nucleoside
sharply accumulates at the interstitium where it potently restricts
immune responses (12) and directly promotes wound healing
(13). Under homeostatic conditions in healthy tissues, the
cytosolic concentration of ATP ranges from 1 to 10mM (14),
while its extracellular levels are negligible (15). This sharp
gradient can be rapidly disrupted however upon breaches
of the plasma membrane induced by necrosis, apoptosis or
mechanical stress, as well as by regulated ATP efflux. The
latter, induced by a variety of stimuli including hypoxia,
ischemia and inflammation, has been shown to extensively
occur via exocytosis, transmembrane transfer through ATP-
binding cassette (ABC) transporters, as well as by diffusion
through a variety of anion channels or non-selective plasma
membrane pores formed by connexins, pannexin-1 or the
ATP receptor P2X7R (16–18). For instance, stimulated T
cells release ATP through pannexin-1 hemi-channels and via
exocytosis (19, 20).

Once in the extracellular space, ATP undergoes rapid stepwise
dephosphorylation by ecto-nucleotidases (21, 22) including
the E-NTPDase CD39, which converts ATP or ADP to ADP
or AMP, respectively, and the 5′-nucleotidase CD73, which
dephosphorylates AMP to adenosine (18, 23) (Figure 1).
Additional enzymes whose ecto-activity contributes toward
extracellular adenosine generation are other E-NTPDases,
members of the ecto-phosphodiesterase/pyrophosphatase
(E-NPP) family, nicotinamide adenine dinucleotide (NAD+)
glycohydrolases, the prostatic acid phosphatase (PAP), and
the alkaline phosphatase (ALP) (21) (Figure 1). Briefly, the
co-enzyme NAD+, another key cellular component whose
extracellular concentration significantly rises in injured tissue

(24, 25), is converted to adenosine diphosphate ribose (ADPR)
by the NAD+ glycohydrolase CD38 (26), while ADPR as
well as ATP are metabolized to AMP by the E-NPP CD203a
(27). Moreover, PAP, which is predominantly, but non-
exclusively, expressed in prostate tissue (28), is capable of
converting extracellular AMP to adenosine (29), whereas ALP
catalyzes the hydrolysis of ATP, ADP and AMP to adenosine
(21). Finally, adenosine can also be produced intracellularly
either by S-adenosylhomocysteine hydrolase (SAHH)-exerted
hydrolysis of S-Adenosylhomocysteine (SAH), a metabolite of
the transmethylation pathway, or due to soluble CD73-mediated
catabolism of AMP, a nucleoside participating in multiple
cellular processes and whose concentration rises within cells
of low energy charge (30) (Figure 1). Intracellularly-generated
adenosine can be secreted in a diffusion limited-manner
through bidirectional equilibrative nucleoside transporters
(ENTs) (31). However, although there is evidence suggesting
that hypoxia can boost intracellular adenosine production
(32, 33), the contribution of this pathway toward injury-
caused interstitial adenosine buildup is considered minor
due to concurrent hypoxia-induced downregulation of the
aforementioned transporters (34, 35). Given its diverse effects,
adenosine presence at the extracellular space is subject to tight
spatiotemporal control (12, 13, 36). For instance, extracellular
accumulation of adenosine is counteracted by its inward transfer
through ENTs or concentrative, sodium gradient-dependent,
symporters (31) as well as by the function of intra/extracellular
adenosine deaminase (ADA) and of cytosolic adenosine kinase
(ADK), which respectively convert adenosine to inosine or AMP
(37) (Figure 1).

In contrast to homeostatic conditions, ATP levels are
highly elevated in the TME as a result of necrosis, apoptosis,
hypoxia, and persistent inflammation (17, 18), and intra-tumoral
adenosine levels can reachmicromolar concentrations (9, 10, 38).
ATP catabolism in tumors is primarily mediated by CD39 and
CD73 (39–41), and high expression of these ecto-nucleotidases
is strongly associated with poor clinical outcome for patients
suffering a variety of cancer-types (3, 42, 43). In particular, CD39
and/or CD73 (over)expression has been detected on the surface
of tumor cells (39, 44–51), cancer-associated fibroblasts (CAFs)
(52–54), mesenchymal stem cells and stromal cells (55–57),
endothelial cells (ECs) (45, 46, 51), myeloid derived suppressor
cells (MDSCs) (58–60), tumor associated macrophages (TAMs)
(53, 61), Tregs (46, 62–64), Th17 cells (65) and of antigen
experienced/exhausted conventional CD4+ and CD8+ T cells
(64, 66–68). In addition, CD39/CD73-bearing exosomes (69, 70),
released by tumor cells (71), Tregs (72), and MDSCs (57, 73)
further contribute to adenosine generation. Currently, hypoxia
as well as incessant inflammation are considered to be the
main drivers of intra-tumoral CD39 and CD73 overexpression.
Namely, hypoxia-induced (74, 75) HIF1α (76–79) and Sp1 (80)
activity promotes expression of these ecto-nucleotidases. Along
the same lines, signaling pathways initiated by inflammation-
associated molecules, such as IL-2 (81), IL-6 (66, 82), IL-1β (83),
TNFα (83–85), type I IFNs (86, 87), IL-27 (66, 88), TGFβ (82, 89,
90) as well as by inducers of theWnt (91, 92) or cAMP (83, 93–95)
signaling pathways also boost CD39 (66, 81, 82, 88, 89, 95) and
CD73 (81–87, 89–94) levels.
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FIGURE 1 | Regulation of interstitial adenosine levels in injured tissue. Stress-induced, extracellular buildup of ATP or NAD+ fuels catabolic adenosine-generating

pathways, such as the one mediated by CD39 and CD73. The activity of other ecto-nucleotidases including CD38, CD203a, ALP, and PAP, also contribute toward

extracellular adenosine accumulation. Adenosine can also be produced intracellularly by SAHH-exerted hydrolysis of SAH, as well as by soluble CD73-mediated

catabolism of AMP, and it can be exported by ENTs in a diffusion-limited manner. On the flip side, the combination of CD26-bound ADA activity and of adenosine

cellular uptake, either through equilibrative ENTs or via concentrative CNTs, limits interstitial adenosine levels. Intracellularly, adenosine can be eliminated via its

conversion to SAH by SAHH, to AMP by ADK, or to inosine by ADA. SAHH, S-adenosylhomocysteine hydrolase; SAH, S-Adenosylhomocysteine; ENTs, equilibrative

nucleoside transporters; CNTs, concentrative nucleoside transporters; ADK, adenosine kinase; ADA, adenosine deaminase.

Although CD39 and CD73-mediated catabolism of
extracellular ATP is considered to account for the bulk of
intra-tumoral adenosine generation, expression levels of ecto-
enzymes participating in alternative adenosine production
pathways also rise in the advent of cancer. For instance, CD38
is frequently upregulated within neoplastic tissues (26, 96, 97)
and sporadic evidence suggests that CD203a levels also increase
on TME components (98, 99). Along the same lines, the
serum concentration of PAP increases during prostate cancer
progression (100) while others suggest it gets upregulated
on cancerous tissue as well (28). Finally, several studies have
demonstrated elevated levels of ALP on cancer cells (101, 102) as
well as a correlation of serum ALP levels and disease stage (103–
105). Critically, the relative contribution of these alternative
adenosine-producing pathways toward intra-tumoral buildup
of this nucleoside remains to be determined. Finally, along with
aberrant production, defective uptake resulting from the down-
modulation of equilibrative (106, 107) as well as concentrative
(108–110) nucleoside transporters, also driven by hypoxia

(34, 35, 111), further contributes to adenosine accumulation in
the TME.

ADENOSINE RECEPTOR SIGNALING

Four adenosine receptors (ARs), all coupled to G-proteins, have
been identified; A1R, A2AR, A2BR, and A3R (112, 113). While
A1, A2A, and A3 are described as high affinity adenosine
receptors (EC50 in the range of 0.1–0.7µM), A2BR is considered
as low affinity because it is activated only in the presence of high
concentrations of adenosine (EC50 of 15–25µM), such as may
be found in the TME or under other pathological conditions.
Upon adenosine binding, these GPCRs induce the replacement
of GDP bound by the heterotrimeric G proteins, a class of GTP
hydrolases, with GTP thus resulting in the dissociation of the
latter into Gα monomers and Gβγ dimers, now free to modulate
downstream effectors before their GTP hydrolysis-induced re-
association (114).
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Of the four classes of Gα proteins characterized to date,
namely Gαs, Gαi, Gαq/11, Gα12/13, only Gαs and Gαi directly
influence the activity of adenylyl cyclases (AC), enzymes that
catalyze the cyclization of intracellular ATP into cyclic adenosine
monophosphate (cAMP) (114). In terms of function, triggering
of the Gαs-coupled A2AR and A2BR promotes AC activity
(115). In contrast, stimulation of the Gαi-paired A1R and
A3R inhibits cAMP generation (115). Although modulation
of intracellular cAMP content constitutes a crucial aspect of
extracellular adenosine-exerted regulation, stimulation of its
receptors induces a variety of cAMP-independent biochemical
effects, such as A1R/Gαi, A2BR/Gαq/11, A3R/Gαq/11-induced
stimulation of phospholipase C (PLC) activity and A1R/Gαi,
A2AR, A2BR/Gq/11, A3R-mediated ERK activation (115).
Finally, elevation of extracellular adenosine levels induces
receptor-independent boosting of AMP-activated protein kinase
(AMPK) via intracellular transfer of this nucleoside followed by
its conversion to AMP (116, 117).

ADENOSINE-INDUCED INTRACELLULAR
cAMP ACCUMULATION IMPAIRS T
CELL-MEDIATED ANTITUMOR
RESPONSES

It is now understood that T cells play a major role in tumor
control (118–120). As will be discussed however, elevated levels
of adenosine in the TME can potently impair T-cell function by
inducing accumulation of intracellular cAMP.

Levels of Adenosine Receptors on the T
Cell Surface
Murine (121–127) and human (128–132) T cells express all
four ARs, and levels of A2AR (122, 124–127, 129), A2BR (126,
127, 130), and A3R (127, 131) increase upon T cell activation.
However, the biology of T cells is primarily affected by the
predominantly expressed A2AR (122, 123, 128, 132). Of note,
similarly to CD39 and CD73, A2AR, and A2BR are upregulated
due to hypoxia-induced HIF1α (133) transcriptional activity.
Moreover, mRNA levels of both A2AR and A2BR are upregulated
in T cells specifically upon provision of anergic stimulus (134).
Validating these findings, adoptively transferred tumor-specific
T cells isolated from tumors contained twice the A2AR mRNA
levels than counterpart T cells isolated from spleens of tumor-
bearing mice (135). Since triggering of the different ARs initiates
diverse and even antagonistic signaling pathways, the net cellular
effects of adenosine are determined by the relative surface
expression of its receptors. It is clear, however, that treatment
of human (136, 137) or murine (38, 126, 138, 139) T cells
with adenosine or adenosine analogs induces A2AR- (38, 126,
137–139) as well as A2BR- (38, 136) mediated intracellular
cAMP build-up.

The Mechanics of cAMP-Mediated
T Cell Suppression
The secondary messenger of adenosine cAMP, also a derivative of
ATP, is involved in a diverse range of cellular functions including
metabolism, transcription, and growth, while oscillations of

its levels within distinct cell populations are paramount
for the regulation of multiple bodily functions, such as
endocrine, cardiovascular, neuronal, and immune processes
(140). The intracellular concentration of cAMP is determined
by the antagonistic activities of ACs, and of cAMP-specific
phosphodiesterases (PDEs), proteins that hydrolyze cAMP to
5′-AMP. Although cAMP can diffuse within the cytosol, the
co-localization of the highly-targeted AC and PDE activities
in particular subcellular regions results in the formation of
distinct cAMP microdomains within which co-localized cAMP
effectors are activated by in-situ generated cAMP before its swift
degradation (141, 142). The formation of such microdomains is
mediated by AKAPs, scaffold proteins shown to bind ACs, PDEs
as well as effectors of the cAMP-signaling pathway (143, 144). Of
the 10 currently identified AC isoforms, T cells express AC3, AC6,
AC7 and AC9 (145, 146) with most cAMP production catalyzed
by AC7 (146). As previously described, A2AR and A2BR are
coupled to Gαs which stimulates the activity of ACs. Of the 11
PDE families characterized to date, isoforms belonging to the
relatively strong-affinity (147) cAMP-binding families of PDE1
(145, 148), PDE3 (145, 149), PDE4 (145, 149), PDE7 (145, 149–
151), PDE8 (145, 151, 152), and PDE11 (145) have been observed
within T cells, with most cAMP hydrolysis carried out by PDE3
and PDE4 isoforms (148, 149, 153). Of note, cAMP levels in T
cells can also be augmented by additional factors in the TME
including prostaglandin E2 (PGE2) (154), norepinephrine (155),
histamine (156), the neuropeptides VIP and PACAP (157, 158),
and low pH (159). Additional phenomena contributing toward
cAMP build-up within effector T cells include TCR triggering
(160, 161) as well as direct cAMP transfer by tumor cells (162)
or Tregs (163) via gap junctions.

Accumulation of cAMP within the T cell cytosol induces
the activity of protein kinase A (PKA) and of exchange protein
directly activated by cAMP (EPAC). PKA, the dominant effector
of the cAMP signaling pathway (164) is an heterotetramer
comprising two catalytic (C) subunits, maintained in an inactive
state by tethering to two regulatory (R) subunits (165). Binding
of cAMP to the R-subunits induces a conformational change
resulting in the release of the C-subunits (166). As a result,
liberated PKA C-subunits within T cells phosphorylate a wide
variety of substrates affecting multiple signaling pathways (167).
It is well established that sustained PKA activity disrupts
signaling induced by triggering of the TCR, of the co-stimulatory
receptor CD28 (168, 169) as well as by the IL-2 receptor (IL-
2R) (170). Negative regulators of these signaling pathways, whose
activity is bolstered by PKA, include Csk (171), SHP-1 (172),
SHIP1 (173), HPK1 (174), and PP2A (175). Conversely, PLCγ1
(176, 177), Raf-1 (178, 179), JAK3 (170), RhoA (180, 181), VASP
(182) as well as the transcription factors NFAT (183, 184) and
NFkB (185, 186) constitute mediators or endpoint effectors of the
aforementioned axes whose activity is dampened by PKA.

PKA activity also significantly affects cytoplasmic potassium
concentration within T cells by inhibiting the activity of Kv1.3
(187) and KCa3.1 (188, 189), channels which are responsible
for the bulk of potassium efflux by T cells (190). In a negative-
feedback fashion, PKA induces reduction of the cytosolic
cAMP concentration by directly phosphorylating AC6 in an
inhibitory fashion (191) as well as isoforms of PDE3 (192),
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PDE4 (193, 194), PDE8A (195) in a stimulatory manner. At
the transcriptional level, PKA augments the activity of CREB
cAMP responsive element binding (CREB), cAMP responsive
element modulator (CREM) and activating transcription factor-1
(ATF-1) (196), which induce or counteract the transcription of
multiple inflammation-relevant genes such as IL-2 (197–199),
IFNγ (200–202), IL-4 and IL-13 (203, 204), IL-17 (205–208), and
FoxP3 (209, 210). Specifically, PKA promotes the transcriptional
activity of CREB by phosphorylating it thus increasing its affinity
for its co-activators CBP and p300 (211), and by promoting the
nuclear localization of CRTC (212), another family of CREB
co-activators. Finally, PKA directly phosphorylates and activates
ATF-1 (213) as well as distinct CREM isoforms (214) in a way
similar to CREB.

The guanine nucleotide exchange factor EPAC1 is another
effector of cAMP in T cells (215, 216). cAMP binds to the cAMP-
responsive N-terminal region of EPAC1 and induces an open
conformation rendering its catalytic core accessible to its effectors
(217, 218). The most heavily characterized EPAC1 effector in
T cells is the anergy-associated GTPase Rap1 (219, 220) which
in its GTP-bound form is targeted to the plasma membrane
(221) where it inhibits TCR-induced MEK-ERK activation by
sequestering Raf-1 (220, 222).

Overview of the Inhibitory Effects of cAMP
on T-Cell Biology
A variety of molecules, including cAMP analogs, direct AC
activators (e.g., forskolin and cholera toxin) and PDE inhibitors
have been used to elucidate the diverse effects of intracellular
cAMP accumulation on T-cell biology. In the presence of
such molecules (223–228) as well as by A2AR triggering
(125, 126, 229) the capacity of previously unstimulated T
cells, CD4+ or unfractionated, to differentiate post-activation
toward cells that produce Th1 (125, 126, 223–225, 229) or
Th2 (226–229)-signature cytokines is drastically diminished.
This occurs in a PKA-dependent fashion (230, 231) through
multi-level disruption of TCR- or CD28-induced signaling (122,
232). Intriguingly, A2AR agonist-induced impairment of IFNγ

production remains evident even when A2AR agonist-pretreated
T cells are re-stimulated in the absence of this agent (139).
Furthermore, agents that directly activate the cAMP pathway
(233–235), as well as adenosine (122, 138, 232, 236, 237), have
been shown to restrict stimulation-induced AKT activation (122,
232, 233, 238) and to induce stabilization of β-catenin, which
restricts maturation toward terminally differentiated effector cells
(239). Moreover, such agents can prevent FasL upregulation, thus
averting FasL-mediated activation-induced cell death (AICD)
(127, 138, 235, 237). Finally, such molecules abolish mitogenic-
stimulus-induced T cell proliferation, in a PKA-dependent
manner (240), by downmodulating the transmission of TCR/
CD28- and IL-2 (241)-initiated signaling, as well as IL-2
production (126, 229, 231) and IL-2Ra expression (242).

Forskolin, cAMP analogs, PDE inhibitors (152, 243–245)
and adenosine (188, 246–248) also diminish T cell adherence
(152, 243, 246, 248) by down-modulating the expression levels
of ICAM-1 (249, 250) as well as of the integrins α4 (251,
252) and β2 (251, 253), components of VLA-4 and LFA-1,
respectively. Such agents also impair T-cell migration (188, 244,

245, 247) by inducing KCa3.1 inhibition (188, 189). In addition,
cAMP-mediated signaling (230, 254, 255) or the presence of
A2AR agonists (139, 168, 230, 231) diminishes T cell cytotoxicity,
in a PKA-dependent manner (168, 230, 231), probably as a result
of impaired TCR signaling, motility/adhesion, granule exocytosis
(138), as well as due to decreased expression of FasL, Granzyme
B (GzB), and perforin (127).

Lastly, cholera toxin (256), PDE inhibitors (257–259),
forskolin (157) and A2AR agonists (126, 260) not only skew
T cells toward the Treg lineage via induction of FoxP3 expression
(126, 256–258, 260), but also enhance the capacity of Treg cells
to suppress responder T cells (258–260), at least in part by
upregulating CTLA-4 levels (157, 260). Thus, cAMP can potently
diminish the differentiation and effector activities of CD4+ and
CD8+ T cells, while promoting the differentiation toward Tregs,
as well as their suppressive capacity.

THE PLEIOTROPIC EFFECTS OF
ADENOSINE IN THE
TUMOR MICROENVIRONMENT

Along with T cells, many other cell types in the TME including
other protective or suppressive immune infiltrates, tumor-
associated fibroblasts, endothelial cells and cancer cells also
express functional ARs (3, 261–266). Here we briefly describe the
effects of adenosine-induced signaling on them (Figure 2).

Dendritic Cells
The biology of DCs, specialized antigen presenting cells (APCs)
and critical messengers between the innate and adaptive immune
system, can be severely impaired by adenosinergic signaling. For
example, it has been reported that adenosine binding to A2BR
(267) halts the differentiation of monocytes to DCs (267, 268).
In addition, adenosine averts inflammatory stimulus-induced
DC activation (269), whereas A2AR (270) and A2BR triggering
(267, 271, 272) diminishes the capacity of DCs to prime Th1
immune responses (267, 270, 271) but rather prompts DCs to
skew naïve T cell differentiation toward Th2 (267, 271) and
Th17 (272) lineages. Adenosine-treated DCs exhibit decreased
expression or secretion of TNFα and IL-12 (268–271, 273) and
enhanced production of IL-5 (270), IL-10 (267, 268, 270, 273),
IL-6 (267, 272) and TGFβ (267). Moreover, such DCs are less
motile due to chemokine receptor downregulation (274), and
have a tolerogenic effect on the TME due to overexpression of
TGFβ (267), IL-10, IDO-1 (267), arginase-2 (267, 275), as well as
A2AR-mediated upregulation of PD-L2 (276). Finally, adenosine
compels DCs to secrete the proangiogenic factors VEGF (267,
275) in an A2BR-dependent manner as well as IL-8 (267).

Macrophages
Stimulation of adenosine receptors hinders the differentiation
of monocytes to macrophages, probably through cAMP
accumulation (277). Moreover, by engaging A1R (278), A2AR
(278–282), A3R (281, 283) or setting off Gαs-paired ARs (284),
adenosine reduces the pro-inflammatory activity of macrophages
by dampening their ability to produce IL-12 (279), TNFα
(278–280, 282, 283), macrophage inflammatory protein-1α
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FIGURE 2 | Overview of the pleiotropic effects of adenosine in the TME. Adenosine enables tumor cells to escape immune-surveillance by limiting the functionality of

multiple potentially protective immune infiltrates including T cells, DCs, NK cells, macrophages and neutrophils, while enhancing the activity of immunosuppressive

cell-types, such as MDSCs and Tregs. In addition, adenosine not only assists tumor cells in co-opting adjacent fibroblasts for support, but also induces the formation

of new blood vessels. Adenosine also affects the capacity of some tumor cell-types to survive, proliferate, migrate and invade neighboring tissues (HPC, bone

marrow-derived hematopoietic progenitor cells).

(MIP1α) (281), nitric oxide (278, 285) and superoxide (284). In
addition, by triggering A2AR (282, 286, 287), A2BR (288, 289)
or unidentified ARs, adenosine promotes an M2 polarization of
macrophages by inducing upregulation of arginase-1 (288, 290),
IL-10 (279, 286, 289) and VEGF production (282, 287).

NK Cells
A2AR stimulation by adenosine not only restricts the NK
maturation (291), but also their capacity for stimulus-induced
CD69 upregulation (292, 293), proliferation (291, 294) as well as
IFNγ (292, 293) and TNFα (294, 295) production. Furthermore,
largely via A2AR triggering, adenosine diminishes target cell
killing by NK cells (292, 294, 296–298).

Neutrophils
Adenosine exerts a variety of inhibitory effects on neutrophils.

For example, triggering of A2AR (299–303), A3R (304), non-

specified A2Rs (304–307) or ARs dampens their ability to
adhere (299, 305, 308, 309), transmigrate (310), secrete TNFα
and MIP1α (300, 306), degranulate (301, 302, 304, 311),
perform Fc receptor-mediated phagocytosis (307) and
produce superoxide (299, 301–303). Interestingly, others
claim that A2AR and A2BR signaling has been shown
to suppress VEGF production (310). Finally, A2AR
stimulation prompts neutrophils to secrete higher levels
of PGE2 (312).
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MDSCs
A2BR-mediated signaling boosts differentiation of bone
marrow hematopoietic progenitors toward a tolerogenic
myeloid-derived cell subset, the MDSCs (313). Moreover,
A2AR activation promotes IL-10 production by MDSCs
(314) and treatment with an adenosine analog results in
increased expression of CD73 (313). Finally, it has also been
shown that A2BR stimulation on MDSCs augments VEGF
production (315).

Stromal Cells
Adenosine, along with critically contributing to the establishment
of a tolerogenic TME, also enables tumors to subvert fibroblasts
into supporting them and to induce formation of new blood
vessels, processes essential to their growth and dissemination.
CAFs, for example, are stromal cells that support tumors by
secreting the pro-metastatic and angiogenic (316) chemokine
CXCL12 (317), as well as the mitogenic (318) fibroblast growth
factor 2 (FGF2) (319). Triggering of A2BR on the surface of
CAFs boosts expression of both CXCL12 and FGF2 (320) whereas
A2AR-induced signaling stimulates their proliferation (54). As
previously mentioned, adenosine can stimulate VEGF secretion
by multiple cell types found within the TME, which in turn
promotes angiogenesis by supporting the survival, migration and
proliferation of endothelial cells (321, 322). It has also been
shown that A2AR (323) and A2BR (66) stimulation diminishes
production of the anti-angiogenic factor thrombospondin-1 by
endothelial cells. Furthermore, adenosine not only augments the
rate of intra-tumoral nutrient delivery by inducing vasodilatation
(324), but also hinders leukocyte extravasation (325) through
downregulation of adhesion molecules, such as E-selectin (326,
327) VCAM-1 (326, 327) and ICAM-1 (327, 328) on the surface
of endothelial cells, as well as by limiting vascular permeability
(325, 327, 329–331) through A2BR activation (329–331). Finally,
signaling initiated by triggering of A2AR (332, 333), A2BR
(334–336) or non-specified ARs prompts endothelial cells to
overexpress CD73 (334) as well as the proangiogenic factors
VEGF (332, 333, 335, 336), IL-8 (335) and basic fibroblast growth
factor (bFGF) (335, 336).

Tumor Cells
Adenosine binding to ARs on the surface of cancer cells has a
profound impact on their biology. For example, the triggering
of A1R (337, 338), A2AR (54, 339, 340), and A3R (339,
341–343) induces a variety of cellular responses that augment
cancer cell survival such as AKT and ERK1/2 stimulation, as
well as Bad inactivation (342). Additional responses to AR
signaling contributing to bolstered cancer cell survival include
upregulation of Bcl2 (343), downregulation of p53 (338) and
Bax (343) as well as aversion of caspase-9 (343) and caspase-3
(54, 343, 344) activation. Paradoxically, extracellular adenosine
has also been demonstrated to cause cancer cell death either by
setting offA1R (345, 346), A2AR (341, 347), A2BR (348, 349), and
A3R (339, 350–354) or via induction of AMPK activation upon
its cellular uptake and subsequent conversion to AMP (345).

Moreover, A1R (337, 355), A2AR (341, 356), A2BR (344, 357–
359), and A3R (343, 360) stimulation augments cancer cell

proliferation through activation of PLC (356), protein kinase
C-delta (PKC-δ) (356), AKT (356, 357), ERK1/2 (356–360),
JNK (356, 358), and p38 (358). Furthermore, triggering of the
ARs leads to upregulation of cyclins A (343), B (358), D (343,
358), E (337, 343, 358), estrogen receptor-α (355) as well as
downregulation of the cell-cycle inhibitors p27 (337) and p21
(343, 358). Surprisingly, though, activation of A2BR (349) and
A3R (341, 350, 353, 361–363) has also been reported to result in
a potent cytostatic effect.

Motility (358, 359, 364–369) and invasiveness (358, 359,
367, 370) are additional features of cancer cells that are
boosted upon engagement of A1R (364, 365), A2AR (366),
A2BR (358, 359, 367, 368), and A3R (369, 370). In terms of
mechanisms, signaling initiated by these receptors promotes
filopodia formation (367) as well as expression of matrix
metalloproteases (MMPs) (358, 359, 370) and FXYD5 (359),
a cell membrane glycoprotein known to drive metastasis by
reducing cell adhesion (371). In contrast, others claim that A3R
triggering hinders the motility and invasiveness of cancer cells
(372, 373). Finally, A2AR (374), A2BR (369, 375), and A3R (369,
375–377) stimulation on the surface of cancer cells promotes
angiogenesis by boosting secretion of the pro-angiogenic factors
VEGF (369, 375, 377), IL-8 (369, 375), angiopoietin 2 (376), and
erythropoietin (374).

The contrasting consequences of triggering particular ARs,
on the survival, proliferation or migration and invasiveness
of tumor cells most probably occur due to the heterogeneity
between cells and/or experimental settings employed to assess
them. For instance, two different cancer cell lines of distinct
tissue origin could have profoundly diverse AR expression
profiles as well as different ability to transmit/terminate
signaling initiated by these receptors. Moreover, they might have
different capacity to produce adenosine, which once released
into the medium can trigger ARs in an autocrine fashion.
Finally, different concentrations used between experiments,
as well as limited specificity of the AR agonists/antagonists,
probably constitute additional factors contributing to the
observed discrepancies.

TARGETING ADENOSINERGIC SIGNALING
IN CANCER IMMUNOTHERAPY

Adenosine confers potent immunosuppressive as well as direct
tumor-promoting effects in the TME. Thus, approaches to both
blocking its generation and hindering binding to its receptors
have become important areas of research (Figure 3). Indeed,
extensive pre-clinical experimentation has firmly established
that targeting the adenosinergic signaling on its own (Table 1)
or in combination with emerging IMTs or established cancer
treatments (Table 2) shows important promise and soundly
supports the clinical evaluation (Table 3) of these concepts. Here
we present an overview of such pre-clinical and clinical studies.

Blockade of Adenosine Generation
As previously described, CD73 is an nucleotidase that converts
AMP, generated from CD39- or CD38/CD203-mediated
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FIGURE 3 | Approaches for blocking adenosinergic signaling in the TME. The inhibitory effects of adenosine in the TME can be circumvented by administration of

mAbs or small molecules that target enzymes involved in the catabolism of ATP and NAD, such as CD39,CD73 and CD38, as well as by pharmacologic antagonists

of A2AR and A2BR to block adenosine-mediated signaling. Whereas multiple such mAbs and pharmacologic inhibitors/antagonists display antitumor activity within

murine models of solid tumors (Tables 1, 2), depicted are only those currently evaluated in patients with solid tumor malignancies (Table 3). Finally, treatments that

reduce the extracellular export of ATP, such as oxygenation to reverse hypoxia, can attenuate adenosinergic signaling.

catabolism of ATP or NAD respectively, to adenosine. Its
central role in adenosine generation is underscored by the
fact that CD73-deficient mice display drastically decreased
interstitial levels of adenosine, not only at steady state,
but also upon induction of trauma or hypoxia (409, 410).
CD73 knock-out mice exhibit hindered tumor growth and
metastatic spreading (378–380, 387) and mice inoculated
with tumor cells lacking CD73 survive longer than mice
inoculated with tumor cells expressing this ecto-enzyme
(378, 388). Indeed, administration of anti-CD73 monoclonal
antibodies (mAb) (368, 378–386) or of a CD73-specific
pharmacologic inhibitor (378, 379, 381, 383, 384, 387–
389) impairs tumor growth (368, 378–382, 385, 387, 389)
and metastasis (368, 379, 380, 384, 386) while increasing
survival (378, 382, 384, 388). Of note, CD73 can also act
as an adhesion/signaling molecule to promote metastasis
in a catalytic-activity independent manner (386, 411, 412).
Mechanistically, the aforementioned treatments have been
shown to promote intra-tumoral accumulation of CD8+

T cells (381, 382, 385, 389), B cells (381) as well as of
Th1- and Th17-associated cytokines (381) while decreasing
the levels of intra-tumoral VEGF (383) and the presence
of Tregs (389). Of note, even though metastasis can be
modestly inhibited by anti-CD73 therapy in an immune-system
independent fashion (368, 386), most of the antitumor effect
of CD73 blockade is due to alleviation of A2AR-mediated
immunosuppression (368).

No doubt encouraged by these pre-clinical studies, four anti-
CD73 mAbs are currently being evaluated as monotherapies in
small scale trials targeting a variety of solid tumors. In July 2015,
MedImmune launched a first in-human trial (NCT02503774)
evaluating the human anti-CD73 mAb Oleclumab, which
allosterically prevents CD73 from assuming its catalytically active
conformation (413). In June 2016, Bristol-Myers Squibb (BMS)
launched a Phase I/IIa trial (NCT02754141) to assess the efficacy
of BMS-986179, a human IgG2-IgG1 hybrid mAb that not only
inhibits CD73-exerted AMP hydrolysis but also induces CD73
internalization (414). In April 2018, Corvus Pharmaceuticals
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TABLE 1 | Evaluation of adenosine-axis blockade in murine models of solid malignancies.

Target Treatment Tumor model Outcome of adenosine axis blockade

depends on presence/unhindered

function of

Impact on the TME

CD73 ➣ mAbs:

• TY/23 (368, 378–384)

• 2C5 IgG2a (384)

• Oleclumab (385)

• AD2 (386)

➣ Pharmacologic inhibitor:

• APCP (378, 379, 381, 383,

384, 387–389)

➣ Breast:

• 4T1.2 (368, 382, 383)

• E0771 (368)

• LM3a (386)

• MDA-MB-231a (386)

➣ Melanoma:

• B16-SIY (378)

• B16-

F10 (379, 381, 384, 387, 389)

• K1735 (381)

• LWT1 (384)

➣ Ovarian:

• ID8 (378, 388)

➣ Prostate:

• TRAMP-C1 (380)

• RM-1 (382)

➣ Colon:

• CT26 (385)

• MC38-OVA (382)

➣ Fibrosarcoma:

MCA-induced (380, 382)

➣ Lymphoma:

• EG7 (379)

➣ Primary tumor expansionrate ↓

(368, 378–382, 385, 387, 389)

• Host CD73 (387)

• A2AR on hematopoietic cells (368)

• T cells, NK cells or B cells (368)

• T cells (381)

• CD8T cells (380)

• IFN-γ (382)

• IL-17A (381)

• Partially retained inmice

depleted of B cells (381)

• Retained in perforin KO mice (382)

➣ Metastasis formation ↓

(368, 379, 380, 384, 386)

• Retained against tumor cells with significantly

reduced CD73 (386)

• Host CD73 (380)

• MDSCs (384)

• Retained in mice depleted of T cells or NK

cells (380)

• Retained in SCID mice lacking T cells, NK

cells and functional B cells (386)

• Host FcRIV (384)

• FcR binding capacity (384)

• Independent of the capacity to suppress

CD73 catalytic activity (384, 386)

➣ Survival↑ (378, 382, 384, 388)

↑ CD8+ T cells (381, 385, 389)

↑ tumor-specific CD8+ T cells (382)

↓ CD73 on CD4+/CD8+

T cells (382, 384)

↑ B cells (381)

↓ Tregs (389)

↑ MDSCs (384)

↓ CD73 on MDSCs (384)

↑ IFN-γ, TNF-α, IL-17A (381)

↓ Ki67+ cells (381)

↓ Bcl-2+ cells (381)

↓ Microvessel density (383)

↓ VEGF (383)

CD39 ➣ mAb:

• 9-8B (390)

➣ Pharmacologic inhibitor:

• POM-1 (391)

➣ Melanoma: B16-F10 (391)

➣ Colon: MCA38 (391)

➣ Sarcoma: IGN-SRC-

004a (390)

➣ Primary tumor expansion rate ↓ (391)

• Host CD39 (391)

➣ Survival ↑ (390)

• Retained in NOG mice lacking T cells, B cells,

NK cells and functional macrophages (390)

CD38 ➣ mAb:

• NIMR-5 (96)

➣ Pharmacologic inhibitor:

• Rhein (96)

➣ Lung:

• 344SQ (96)

• LLC-JSP (96)

• 531LN3 (96)

➣ Primary tumor expansion rate ↓ (96)

• CD8+ T cells (96)

↑ CD8+ T cells (96)

↑ CD44hiCD62Llo CD8+ T cells (96)

↓ PD-1+TIME3+ CD8+ T cells (96)

↓ Tregs (96)

↓ MDSCs (96)

Intratumoral

hypoxia

• Respiratory hyperoxia

(60% O2) (9, 293)

➣ Breast: 4T1 (293)

➣ Melanoma:

• B16 (9)

• B16-F10 (293)

• CL8-1 (9)

➣ Fibrosarcoma: MCA205

(9, 293)

➣ Primary tumor expansion rate ↓ (9)

➣ Metastasis formation ↓ (293)

• CD4 > CD8 > NK cells (293)

• Host A2AR (293)

• Independent of 60%O2-induced ROS

production (293)

➣ Survival ↑ (9, 293)

↓ Hypoxia (9, 293)

↓ HIF- 1α (9)

↑ FHL-1, FIH-1, VHL (HIF- 1α

inhibitors) (9)

↓ CD39, CD73, A2AR, A2BR, COX-2

mRNA (9)

↓ extracellular adenosine (9)

↑ CD8+, CD69+, CD44+ cells (293)

↓ Tregs (293)

↑ IL-2, IL-12, CXCL9, CXCL10,

CXCL11 mRNA (293)

↓ TGF-β (293)

↓ FOXP3 in Tregs (293)

↓ CD39, CD73, CTLA-4 on

Tregs (293)

↑ MHC class I on tumor cells (9)

↓ VEGF, VEGF mRNA (9)

↓ Microvessel density (9)

(Continued)
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TABLE 1 | Continued

Target Treatment Tumor model Outcome of adenosine axis blockade

depends on presence/unhindered

function of

Impact on the TME

A2AR ➣ Antagonists:

• ZM241385 (38, 54)

• ZM241365 (389)

• SCH58261 (54, 292, 384,

392–394)

• FSPTP (395)

• CPI-444 (396)

• PBF-509 (397)

➣ Breast:

• 4T1.2 (292)

➣ Melanoma:

• B16-F10

(292, 384, 389, 394, 395, 397)

• CL8-1 (38)

• BRAFV600E-PTEN-deficient

mice (393)

• LWT1 (393)

➣ Colon:

• CT26 (396)

• MC38 (396)

➣ NSCLC: PC9a (54)

➣ Bladder: MB49 (395)

➣ HNSCC: Tgfbr1/Pten double

KO (392)

➣ Fibrosarcoma: MCA205 (397)

➣ Primary tumor expansion rate ↓

(38, 54, 389, 392, 393, 396)

• T cells (38)

• Retained in NUDE micelacking

T cells (54)

➣ Metastasis formation ↓

(292, 384, 393, 394, 397)

• Tumor CD73 (292, 394)

• Host A2AR (292)

• T cells, B cells or NK cells (292)

• Perforin (292)

➣ Survival↑ (384, 396)

• CD8T cells > NK cells (394)

↓ CD8+, CD4+ T cells (395)

↑ CD8+ T cells (389, 392, 393)

↑ CD69 on CD8+ T cells (393)

↓ A2AR+ CD8+ T cells (392)

↑ IFN-γ+ CD8+ T cells (392)

↑ T-bet, 41-BB in/on CD44+CD8+

T cells (396)

↑ IFN-γ, TNF-α production by CD8+

T cells (392)

↑ stimulation-induced IFN-γ/TNF-α

production by CD8+ T cells (396)

↑ NK cells (393, 395)

↑ GzB+ NK cells (292)

↓ Tregs (389, 392, 393)

↓ PD-1, LAG3, FOXP3 on Tregs (396)

↓ A2AR+ Tregs (392)

↓ FOXP3 (392)

A2BR ➣ Antagonists:

• PSB1115

(292, 315, 359, 398)

• ATL-801 (399)

➣ Breast:

• 4T1.2 (292, 359, 368, 399)

• E0771 (359)

➣ Melanoma:

• B16-F10 (292, 315, 359, 398)

• LWT1 (359)

➣ Bladder: MB49 (399)

➣ Primary tumor expansion rate ↓

(315, 398, 399)

• Mature T cells (399)

• T cells (398)

• Host A2BR (399)

• Host CXCR3 (399)

• Retained in A2AR−/− mice (399)

• Retained in mice depleted of MDSCs but lost

upon adoptive transfer of MDSCs (398)

➣ Metastasis formation ↓ (292, 359, 368)

• Tumor CD73 (292)

• Retained in RAG−/−cγ−/− mice lacking

T cells, B cells and NK cells (292)

• Retained in mice depleted of T cells, NK cells

D11c+ DCs or macrophages (359)

➣ Survival↑ (359)

• Tumor A2BR (359)

• Retained in mice depleted of T cells or NK

cells (359)

↑ CD8+ T cells (315, 398)

↑ CXCR3+ T cells (399)

↑ NKT cells (315, 398)

↓ MDSCs (315, 398)

↑IFN-γ, CXCL10 mRNA (399)

↑ IFN-γ, TNF-α, GzB (398)

↓ MCP-1, IL-10 (398)

↓ VEGF (315)

↓ Microvessel density (315)

aPatient-derived tumor cell lines, NSCLC, Non-Small-Cell LungCancer. HNSCC, Head and neck squamous cellcarcinoma.

X > Y: X contributes more than Y to the anti-tumor effect of adenosine axis modulation.

initiated clinical evaluation (NCT03454451) of their humanized
anti-CD73 mAb, CPI-006, which directly competes with AMP
for the CD73 active site (415). Finally, in July 2018, Novartis
listed a Phase I/Ib trial (NCT03549000) evaluating the efficacy
of SRF373/NZV930, a human mAb that impedes CD73 activity
via a currently undisclosed mechanism, and was pre-clinically
developed by Surface Oncology before being exclusively licensed
to Novartis for further clinical development.

CD39 also critically contributes to the generation of
extracellular adenosine from ATP as evidenced by the fact

that deficiency of this enzyme results in significantly decreased
adenosine content in tissues, not only at steady state, but
also upon ischemia induction (80). Similar to studies with
CD73-deficient mice, tumor growth and metastasis are reduced
in CD39-null mice (391, 416). In addition, intraperitoneal
delivery of a CD39 inhibitor in immunocompetent mice
reduces tumor growth rates (391). Administration of an
anti-CD39 mAb increased the survival of immuno-deficient
mice inoculated with patient-derived tumors (390), indicating
that CD39 can also promote tumor growth or metastasis
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in an immune system independent manner. In terms of
mechanisms, several studies have demonstrated that in vitro
inhibition of CD39 activity by pharmacologic inhibitors (45,
47, 62) or blocking mAbs (45, 417, 418) results in enhanced
functionality of T cells (45, 47, 62, 418) and NK cells (45,
47, 418), as well as decreased Treg-mediated suppression
of T cell proliferation (47, 417). Even though restriction
of CD39 activity in vitro conclusively alleviates adenosine-
induced immunosuppression, a surprisingly small number
of studies demonstrate effectiveness of this approach within
tumor-bearing mice. Finally, while humanized mAbs targeting
CD39, such as IPH52 (Innate Pharma) have been developed,
clinical studies exploring CD39 blockade/inhibition have not
been launched.

As previously mentioned, the concerted activity of CD38 and
CD203a, can functionally replace CD39 toward the generation
of extracellular adenosine. Further substantiating the soundness
of CD38-blockade as a cancer treatment, immunocompetent
CD38-null mice display reduced tumor growth (419) whereas
tumors devoid of this ectonucleotidase grow slower both in
immuno-competent (96) as well as in immuno-deficient mice
(97). Indeed, administration of CD38 mAbs retards tumor
growth (96, 420). Interestingly, tumors derived from anti-CD38
mAb-treated mice encompass more CD8+ T cells and less
Tregs and MDSCs (96). Moreover, increased fraction of CD8+

T cells infiltrating these tumors display an effector memory
phenotype while less of these cells are double positive for the
exhaustion markers PD-1 and TIM3 (96). Three anti-CD38
mAbs, Daratumumab (Janssen Biotech), Isatuximab (Sanofi),
and MOR202 (Morphosys) are being clinically evaluated.
Daratumumab was FDA-approved in 2015 for treating multiple
myeloma patients, while to date the most advanced testing of
Isatuximab and MOR202 as monotherapies are respectively the
Phase II trials NCT01084252, NCT02960555, and NCT02812706,
as well as the Phase I/IIa trial NCT01421186. Of note, in
addition to modulating the enzymatic activity of CD38, these
mAbs also have the capacity to induce cytotoxicity through
diversemechanisms, such as induction of complement activation,
Ab-dependent cellular cytotoxicity (ADCC) or phagocytosis,
and programmed cell death (420). Albeit extensive clinical
experience of utilizing the aforementioned mAbs against CD38-
overexpressing hematologic malignancies, the recently launched
trial NCT03473730 constitutes the first application of a CD38-
specific mAb in patients with solid tumor malignancies.

Another approach for limiting the intratumoral interstitial
adenosine is the oxygenation of the TME (293). As mentioned,
hypoxia promotes build-up of extracellular adenosine at
least by inducing upregulation of CD39 and CD73 as well
as downregulation of adenosine transporters. Indeed, in
pre-clinical models, respiratory hyperoxia (60% oxygen) lowers
intra-tumoral adenosine levels (9), tumor growth rates (9),
metastasis formation (293) and increases survival of tumor-
bearing mice (9, 293). Mechanistically, this treatment boosts
MHC-I levels on the tumor-cell surface (9), the presence of
CD8+, CD69+, or CD44+ cells within the TME (293) and
reduces the presence of Tregs (293) as well as the latter’s capacity
to express CD39, CD73, CTLA-4, or FoxP3 (293). Moreover,

increased oxygenation of tumors not only averts angiogenesis
through reduction of VEGF concentration (9), but also dampens
expression of molecules associated with immune dysfunction,
such as TGF-β, CD39, CD73, A2AR, A2BR and COX-2 (9, 293),
the rate-limiting enzyme of PGE2 biosynthesis, while increasing
the mRNA levels of pro-inflammatory agents, such as IL-2, and
IL-12a (293).

Blockade of Adenosine Receptor Binding
Along with blocking adenosine production with small molecules
or mAbs, another approach to inhibit adenosine-induced
signaling is to directly block binding to its receptors A2AR and
A2BR. Underscoring the potent protumoral effect of A2AR-
trigerring, mice devoid of this receptor present reduced rates
of tumor growth and metastasis, and in some instances tumors
undergo complete rejection (38, 292, 400, 402). In addition,
administration of pharmacologic A2AR antagonists recapitulates
the anti-tumor effects of A2AR-deletion since it results to reduced
primary tumor expansion (38, 54, 389, 392, 393, 396) and
metastasis formation (292, 384, 393, 394, 397) ultimately leading
to prolonged survival (384, 396). Mechanistically, tumors derived
from A2AR-antagonist-treated mice are more heavily infiltrated
by CD8+ T cells (389, 392, 393) as well as NK cells (389, 392, 393)
and encompass fewer Tregs (389, 392, 393). In addition, in vivo
A2AR antagonism leads to increased expression of CD69 (393),
T-bet (396), and 4-1BB (396) as well as production of IFNγ and
TNFα (392, 396) by intra-tumoral CD8+ T cells. Furthermore,
this intervention increases the fraction of intra-tumoral NK
cells producing GzB (292) and reduces the expression of
PD-1, LAG3, FoxP3 and A2AR by tumor-infiltrating Tregs
(392, 396). Interestingly, the A2AR antagonists ZM241385
and SCH58261 exhibit the capacity to curb primary tumor
growth even in a T cell-independent manner (54). Notably,
A2A antagonism in vivo increases activation induced cell death
(AICD) of intra-tumoral T cells (395), a finding corroborating
observations that cAMP-accumulation in the T cell cytosol
averts terminal effector differentiation and AICD (421, 422).
Three A2AR antagonists are currently being evaluated as single
agents in Phase I/II trials to treat cancer patients bearing solid
tumors. In particular, Corvus Pharmaceuticals, AstraZeneca, and
Novartis have undertaken the clinical development of CPI-
444 (NCT02655822), AZD4635 (NCT02740985), and NIR178
(NCT02403193, NCT03207867), respectively.

As for A2AR, genetic deletion of A2BR reduces tumor growth
rate (399, 423) while A2BR−/− tumor cells display reduced
metastatic potential (359, 367). Notably, administration of A2BR
antagonists in tumor-bearing mice reduces tumor growth (315,
398, 399) and metastasis (292, 359, 368) eventually prolonging
their survival (359). Mechanistically, antagonism of A2BR in
vivo augments the intra-tumoral presence of CD8+ T cells (315,
398), NKT (315, 398) as well as the mRNA levels of IFNγ and
CXCL10 (399) and the concentration of TNFα, IFNγ, and GzB
(398) in the TME. This intervention further results in decreased
accumulation of MDSCc (315, 398) and IL-10 (398), as well
as reduced levels of VEGF and angiogenesis (315). Based on
encouraging preclinical results, Palobiofarma recently launched
a dose escalation Phase I study (NCT03274479) administering
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TABLE 2 | Evaluation of concomitant adenosine-axis blockade in murine models of solid malignancies.

Combinatorial

schemes

Treatments Tumor model Outcome of concomitant adenosine

axis blockade depends on

presence/unhindered function of

Impact on the TME

CD73 inhibition &

A2AR antagonism

➣ anti-CD73mAb:

• TY/23 (384)

➣ A2AR pharmacologic

antagonist:

• SCH58261 (384)

➣ Breast: 4T1.2 (384)

➣ Melanoma:

• B16-F10 (384)

• LWT1 (384)

➣ Metastasis formation ↓ (384)

➣ Survival ↑ (384)

• NK cells > CD8+ T cells (384)

• IFN-γ (384)

• Perforin (partial dependence) (384)

PD-1 ICB &

CD73 inhibition

➣ anti-PD-1mAb:

• RMP1-14 (382, 385)

➣ anti-CD73mAbs:

• Oleclumab (385)

• TY/23 (382)

➣ Breast: 4T1.2 (382)

➣ Colon:

• CT26 (385)

• MC38 (382)

➣ Prostate: RM-1 (382)

➣ Primary tumor expansion rate ↓

(382, 385)

➣ Survival ↑ (382, 385)

↑ Tumor-specific CD8+ T

cells (382, 385)

↑ IFN-γ mRNA (382)

PD-1 ICB &

CD38 inhibition

➣ anti-PD-L1mAb:

• 9G2 (96)

➣ anti-CD38mAb:

• NIMR-5 (96)

➣ CD38 pharmacologic inhibitor:

• Rhein (96)

➣ Lung:

• 344SQ (96)

• LLC-JSP (96)

➣ Primary tumor expansion rate ↓ (96)

➣ Metastasis formation ↓ (96)

↑ CD8+ T cells (96)

↑ CD44hiCD62Llo CD8+ T cells (96)

↓ PD-1+TIME3+ CD8+ T cells (96)

↑ CD4+ ICOS+ T cells (96)

↓ Tregs (96)

↓ MDSCs (96)

PD-1 ICB &

A2AR antagonism

➣ anti-PD-L1:

• 9G2 (mAb) (96)

• B7-DC/Fc (400)

➣ anti-PD-1mAb:

• RMP1-14 (396, 401)

➣ A2AR antagonists:

• SCH58261 (96, 394, 401)

• ZM241385 (400)

• SYN115 (401)

• CPI-444 (396)

➣ Breast:

• AT3 (401)

• 4T1.2 (394, 401)

➣ Melanoma:

B16-F10 (394)

➣ Colon:

• MC38 (396, 401)

• CT26 (396)

➣ Lung:

• 344SQ (96)

• LLC-JSP (96)

➣ Lymphoma: EL4 (400)

➣ Primary tumor expansion rate

↓ (96, 396, 400, 401)

• IFN-γ (401)

• Retained in perforin KO mice (401)

➣ Metastasis formation ↓ (394, 401)

• Tumor CD73 (394)

• NK cells > CD8+ T cells (394)

➣ Survival ↑ (394, 396, 401)

• CD8+ T cells > NK cells (394)

↑ IFN-γ+ CD8+ or tumor-specific

T cells (401)

↑ GzB+ CD8+ T cells (401)

↑ NK cells (394)

PD-1 ICB &

A2BR antagonism

➣ anti-PD-1mAb:

• RMP1-14 (359)

➣ A2BR antagonist:

• PSB1115 (359)

➣ Melanoma:

B16-F10 (359)

➣ Breast: 4T1.2 (359)

➣ Metastasis formation ↓ (359)

➣ Survival ↑ (359)

CTLA-4 ICB &

CD73 inhibition

➣ anti-CTLA-4mAbs:

• 9H10 (389)

• UC10-4F10 (382)

➣ CD73 pharmacologic

inhibitor:

• APCP (389)

➣ anti-CD73mAb:

• TY/23 (382)

➣ Breast: 4T1.2 (382)

➣ Melanoma: B16F10 (389)

➣ Colon: MC38 (382)

➣ Prostate: RM-1 (382)

➣ Primary tumor expansion rate ↓

(382, 389)

• CD8+ >> CD4+ T cells (382)

➣ Survival ↑ (382)

↑ CD8+, CD4+ T cells (389)

↑ Tumor-specific CD8+ T cells (382)

↑ IFN-γ, T-bet mRNA (382)

↑ IFN-γ (389)

(Continued)
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TABLE 2 | Continued

Combinatorial

schemes

Treatments Tumor model Outcome of concomitant adenosine

axis blockade depends on

presence/unhindered function of

Impact on the TME

CTLA-4 ICB &

A2AR antagonism

➣ anti-CTLA-4mAb:

• 9H10 (389)

➣ A2AR antagonist:

• ZM241365 (389)

➣ Melanoma:

B16F10 (389)

➣ Primary tumor expansion rate ↓ (389) ↑ CD8+ T cells (389)

↑ IFN-γ, GzB (389)

CTLA-4 ICB &

A2BR antagonism

➣ anti-CTLA-4mAb:

• UC10-4F10 (359)

➣ A2BR antagonist:

• PSB1115 (359)

➣ Breast: 4T1.2 (359)

➣ Melanoma:

B16-F10 (359)

➣ Metastasis formation ↓ (359)

➣ Survival ↑ (359)

ACT &

CD73 inhibition

➣ T cells:

• 2C (SIY-specific) (378)

• Reactive to ID8 (378)

• OT-I (OVA-specific) (378)

➣ CD73 pharmacologic inhibitor:

• APCP (378)

➣ anti-CD73mAb:

• TY/23 (378)

➣ Melanoma:

B16-SIY (378)

➣ Ovarian: ID8 (378)

➣ Lymphoma:

• EG7 (EL4-OVA) (378)

➣ Primary tumor expansion rate ↓ (378)

➣ Survival ↑ (378)

↑ Adoptively transferred T cells (378)

ACT &

A2AR antagonism

➣ T cells:

• anti-HER2 CAR+ (135)

• OT-I (OVA-specific)

(388, 396)

• TDLN-derived (402)

• Reactive to CMS4 (38)

➣ A2AR antagonists:

• CPI-444 (396)

• ZM241385 (38, 135, 402)

• KW6002 (402)

• SCH58261 (135, 388)

➣ Breast: E0771-

HER2 (135)

➣ Melanoma:

B16-OVA (396)

➣ Ovarian: ID8-OVA (388)

➣ Fibrosarcoma:

• MCA205 (402)

• 24JK-HER2 (135)

➣ Sarcoma CMS4 (38)

➣ Primary tumor expansion rate ↓

(135, 396)

• PD-1 ICB (135)

• IFN-γ (135)

➣ Metastasis formation ↓ (38, 402)

• Non-myeloablative pretreatment (402)

➣ Survival ↑ (135, 388, 396, 402)

• PD-1 ICB (135)

↑ Adoptively transferred T cells (396)

↑ Tbet, 41BB, CD69 in/on adoptively

transferred CD8+ cells (396)

↑ IFN-γ+ adoptively transferred

T cells (135)

↑ Stimulation-induced IFN-γ, TNF-α

production by adoptively

transferred CD8+ T cells (396)

↑ Stimulation-induced IFN-γ

production by adoptively

transferred CD8+ or CD4+

T cells (402)

↑ Tbet, 41BB in/on endogenous

CD44+ CD8+ cells (396)

↑ Stimulation-induced IL-2, IFN-γ,

TNF-α production by endogenous

CD8+CD44+ T cells (396)

ACT & intratumoral

hypoxia aversion

➣ Respiratory hyperoxia (60%O2)

➣ T cells:

• TDLN-derived (293)

➣ Melanoma:

B16-F10 (293)

➣ Fibrosarcoma:

MCA205 (293)

➣ Primary tumor expansion rate ↓ (293)

• Host A2AR (293)

➣ Metastasis formation ↓ (293)

↑ Adoptively transferred T cells (293)

↑ IFN-γ+ endogenous/adoptively

transferred CD8+ T cells (293)

Radiotherapy &

CD73 inhibition

➣ Radiotherapy:

• Single local dose of

20Gy (403, 404)

➣ anti-CD73mAb:

• Unspecified (403)

• TY/23 (404)

➣ Breast: TSA (403, 404) ➣ Primary tumor expansion rate ↓

(403, 404)

• BATF3 (403)

↑ CD103+DCs (403)

↑ CD8a+ DCs (404)

↑ CD40 on CD8a+ DCs (404)

↑ CD8+T cells (404)

↑ CD69 on CD8+T cells (404)

↑ CD8+T cell/Treg ratio (403)

↓ Tregs (404)

Chemotherapy &

CD73 inhibition

➣ Chemotherapy:

• Doxorubicin (405)

• Paclitaxel (405)

➣ anti-CD73mAb:

• TY/23(405)

➣ Breast:

• 4T1.2 (405)

• AT3 (405)

➣ Primary tumor expansion rate ↓ (405)

• Partially retained in SCID mice lacking T

cells, NK cells and functional B

cells (405)

• CD8+ T cells (405)

➣ Survival↑ (405)

↑ Tumor-specific CD8+ T cells (405)

↑ IFN-γ (405)

(Continued)
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TABLE 2 | Continued

Combinatorial

schemes

Treatments Tumor model Outcome of concomitant adenosine

axis blockade depends on

presence/unhindered function of

Impact on the TME

Chemotherapy &

CD39 inhibition

➣ Chemotherapy:

• Mitoxantrone (406)

• Oxaliplatin (406)

➣ CD39 pharmacologic inhibitor:

• ARL67156 (406)

➣ Colon: CT26 (406)

➣ Fibrosarcoma:

MCA205 (406)

➣ Primary tumor expansion rate ↓ (406)

• T cells (406)

• Knockdown of tumor Atg5 (406)

↑ Extracellular ATP (406)

↑ DCs (406)

↑ IFN-γ+ CD4+, CD8+ T cells (406)

↑ IL-17A+ γδ T cells (406)

↑ IFN-γ (406)

Chemotherapy &

A2R antagonism

➣ Chemotherapy:

• Doxorubicin (359, 405, 407)

• Dacarbazine (398)

• Oxaliplatin (398, 407)

➣ A2R antagonists:

• SCH58261(A2AR) (405)

• PSB1115 (A2BR) (359, 398)

• AB928 (A2AR&A2BR) (407)

➣ Breast:

• 4T1.2 (405)

• AT3 (359, 405, 407)

➣ Melanoma:

B16-F10 (398)

➣ Primary tumor expansion rate ↓

(398, 405, 407)

• Tumor CD73 (405)

➣ Survival ↑ (359)

↑ CD8+ T cells (398)

↑ Tumor-specific CD8+ T cells (407)

↑ NKT cells (398)

↑ GzB (398)

Targeted therapy &

CD73 inhibition

➣ anti-ErbB2 mAb

• 7.16.4 (408)

➣ anti-CD73 mAb

• TY/23 (408)

➣ Breast:

• H2N100 (408)

• TUBO (408)

• ErbB2-overexpressing

mice (408)

➣ Primary tumor expansion rate ↓ (408)

• Tumor CD73 (408)

• B cells, T cells or NK cells (408)

➣ Spontaneous tumor formation ↓ (408)

➣ Metastasis formation ↓ (408)

➣ Survival ↑ (408)

↑ CD8+ T cells (408)

↑ CD4+ FOXP3− T cells (408)

↓ MDSCs (408)

Targeted therapy &

A2AR antagonism

➣ BRAF inhibitor:

• PLX4720(393)

➣ MEK inhibitor:

• Trametinib (393)

➣ A2AR antagonist:

• SCH58261 (393)

➣ Melanoma:

• BRAFV600E-PTEN-

deficient mice (393)

• BRAFV600E LWT1 (393)

➣ Primary tumor expansion rate ↓ (393)

➣ Metastasis formation ↓ (393)

TDLN, tumor-draining lymphnode.

PBF-1129, a selective A2BR inhibitor, in patients with advanced
Non-Small Cell Lung Cancer (NSCLC).

Combinatorial Treatment Approaches
Since multiple ecto-enzymes with redundant functions
contribute toward extracellular adenosine production and
both A2AR and A2BR triggering mediate the majority of
adenosine’s pro-tumoral effects, monotherapies may not be
sufficient to block the adenosine-signaling axis. In addition,
there is strong rationale for combination with IMTs, such as ICB
of PD-1/PDL-1 or CTLA-4, as well as ACT, radiotherapy and
chemotherapy, to further unleash the cytotoxic capacity of T
cells, which, as will be discussed, can become highly sensitized to
adenosine-mediated immunosuppression.

Combinations of Adenosine-Axis Blockade Agents
Concurrent mAb-mediated (418) or pharmacologic (47)
inhibition of CD39 and CD73 failed to potentiate CD73-
blockade-induced suppression of adenosine production
by Tregs and ovarian cancer cell lines. These findings are

corroborated by the observation that skin biopsies derived from
CD39−/−CD73−/− mice have identical capacity to produce
adenosine upon injury induction with counterpart biopsies
derived from CD73−/− mice (424).

Alone the same lines, others addressed whether simultaneous
blockade of CD73 and of A2AR would result in higher
anti-tumor efficacy. Of note, CD73−/−A2AR−/− mice present
superior tumor control as compared to single knockout mice
(384). Moreover, tumors in A2AR-null mice express twice as
much CD73 at their core when compared to tumors formed
in wild-type mice (384). Indeed, dual therapy with an anti-
CD73 mAb and an A2AR agonist confers superior tumor
protection as compared to either one as a monotherapy
(384). However, this additive effect is lost when CD73 is
targeted with a pharmacologic inhibitor, thus underscoring
the capacity of CD73 to promote tumor progression in a
catalytic activity-independent manner (384). In light of these
studies, Evotec and Exscientia have partnered to develop
A2AR/CD73 bi-specific inhibitory molecules (425), whereas
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NCT03454451, NCT03549000 as well as the Phase Ib/II clinical
trial NCT03381274 sponsored by MedImmune all include solid
tumor-bearing patient cohorts scheduled to be treated with
combinations of an anti-CD73 mAb along with a pharmacologic
A2AR antagonist.

Adenosine-Axis and PD-1 Blockade
Briefly, PD-1 is an immunosuppressive receptor that upon
binding to its ligands, PDL-1 and PDL-2, dampens T-cell
activity thereby enabling tumors to evade immune-destruction.
Blockade of the PD-1-PDL-1/2 signaling axis results in
durable complete responses in the clinic for a fraction
of treated patients (1), and many pre-clinical and clinical
studies have explored concomitant inhibition of adenosine
production, or antagonism of A2AR and A2BR, to improve
response rates.

It has been demonstrated that CD73+ tumor cells are
resistant to PD-1 ICB (401) and that simultaneous mAb-
mediated blockade of CD73 and PD-1 synergistically enhances
tumor control and survival in mice (382, 385). Mechanistically,
the dual therapy augments intra-tumoral CD8+ tumor-
specific T cells (382, 385) and IFNγ mRNA levels (382) as
compared to single-agent treatments. Several clinical trials
assessing anti-CD73 mAb treatment along with anti-PD-1
mAb (NCT03454451, NCT03549000) or anti-PDL-1 mAb
(NCT02503774, NCT03773666, NCT03267589, NCT03334617)
of advanced solid tumors are recruiting or underway. Intra-
tumoral upregulation of CD38 and subsequent adenosine
production was recently identified as a mechanism of acquired
resistance to PD-1/PD-L1 blockade and mAb-mediated or
pharmacologic inhibition of CD38 was shown to significantly
improve the anti-tumor efficacy of an anti-PDL-1 mAb (96).
In terms of mechanisms, tumors from mice receiving the
combinatorial therapy displayed higher accumulation of CD8+

T cells, effector memory CD8+ T cells, ICOS+ CD4+ T cells and
lower levels of MDSCs and Tregs as compared to tumors from
single-agent treated mice (96).

The potential for synergy between the co-administration
of A2R antagonists with anti-PD-1 mAb is underscored
by the observations that PD-1 blockade enhances A2AR
expression on tumor-infiltrating CD8+ T cells (401), as well
as that PD-1 blockade is more efficacious, in terms of
increasing the survival of tumor-bearing mice, when these
mice lack the A2AR (400). Vice versa, A2AR triggering on
the surface of CD8+ T cells derived from tumor tissue (382),
tumor draining lymph nodes or spleen (396) promotes PD-1
expression suggesting that simultaneous PD-1 blockade would
boost the anti-tumor efficacy of A2A antagonism. Indeed,
several groups demonstrated that concurrent provision of
PD-1 checkpoint inhibitors along with A2AR antagonists is
more effective than single-agent treatments at reducing tumor
growth rate (96, 396, 400, 401) and metastasis formation
(394, 401), as well as at improving survival (394, 396, 401).
Moreover, the combination enables increased production of
IFNγ and GzB by CD8+ tumor infiltrating T cells (401)
while augmenting the intra-tumoral presence of NK cells
(394). Five clinical trials for the treatment of solid-tumor

patient cohorts with A2AR antagonists along with anti-
PD-1 Ab (NCT02403193, NCT03207867) or anti-PD-L1 Ab
(NCT02655822, NCT03337698, NCT02740985) are ongoing.
Finally, dual therapy comprising A2BR antagonism and PD-1
blockade is superior to either monotherapy at decreasing
metastasis and improving survival of tumor-bearing mice (359).
However, no clinical trials have been launched to date to explore
this combination in human cancer patients.

Adenosine-Axis and CLTA-4 Blockade
The blockade of CTLA-4, an immune checkpoint receptor
predominantly expressed by T cells and which competes with
the co-stimulatory receptor CD28 for binding to CD80/CD86
on the surface of antigen presenting cells (APCs), has also
generated durable clinical responses in advanced cancer patients
(1). Tumor-bearing mice receiving CTLA-4 blockade and
pharmacologic (389) or Ab-mediated (382) inhibition of CD73
display superior tumor control (382, 389) and overall survival
(382) than counterparts receiving single agent treatments.
Mechanistically, these dual therapies are more effective than
corresponding monotherapies at increasing the intra-tumoral
presence of tumor-specific CD8+ T cells (382), CD4+FoxP3neg T
cells (389) as well as the levels of IFNγ (389) and of mRNA coding
for IFNγ and T-bet (382). Likewise, concomitant provision of
CTLA-4 ICB and antagonists of either A2AR (389) or A2BR (359)
leads to decreased tumor growth (389) and metastasis formation
(359), as well as to higher survival of tumor-bearing mice (359)
when compared to single treatments. In terms of mechanisms,
combining CTLA-4 ICB with an A2AR antagonist augments
intratumoral CD8+ T cell presence as well as IFNγ and GzmB
levels (389).

Adenosine-Axis Blockade and Adoptive T Cell

Therapy
There are two main approaches to ACT. Either autologous
tumor-reactive T cells are expanded from tumor biopsies prior
to patient re-infusion [i.e., tumor infiltrating lymphocyte (TIL)
therapy], or peripheral blood T cells are gene-engineered to
express a tumor-specific T cell receptor (TCR), or a so-called
chimeric antigen receptor (CAR; a fusion protein that links
scFv-mediated tumor antigen-binding with intracellular endo-
domains associated with T cell activation). Cancer patients are
typically lymphodepleted prior to ACT, and following infusion
they receive high doses of IL-2, both of which support T
cell engraftment (426). TIL therapy has achieved robust and
durable responses in advanced melanoma patients, while CAR
therapy targeting CD19 has yielded unprecedented clinical
responses against a variety of advanced, treatment-refractory B
cell malignancies (118, 427, 428).

Synergy has been demonstrated between strategies limiting
adenosine production blockade and ACT within tumor-
bearing mice. Indeed, ACT confers increased control of
tumors lacking CD73 expression (388) and dual therapy
of ACT and pharmacologic or mAb-mediated inhibition of
CD73 was more robust than single treatments at augmenting
tumor control and overall survival (378). Mechanistically,
pharmacologic inhibition of CD73 potentiated the anti-tumor
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TABLE 3 | Clinical evaluation of adenosine-axis targeting in patients with solid tumors.

Molecular

target

Clinical Trial

identifier

Agents Phase Design overview* Solid tumor

indications

Sponsor Launched on

CD73 NCT02503774 Oleclumab I ➣ Single agent Advanced solid

malignancies

MedImmune 2015

➣ In combination with

durvalumab (anti-PD-L1)

NCT03736473 Oleclumab I ➣ Single agent Advanced solid

malignancies

AstraZeneca 2018

NCT03773666 Oleclumab I ➣ In combination with

durvalumab (anti-PD-L1)

Muscle-invasive

Bladder Cancer

Dana-Farber

Cancer Institute

2018

NCT03267589 Oleclumab II ➣ In combination with

durvalumab (anti-PD-L1)

Relapsed ovarian

cancer

Nordic Society for

Gynecologic

Oncology

2018

NCT03334617 Oleclumab II ➣ In combination with

durvalumab (anti-PD-L1)

PD-1/PD-L1

inhibition-resistant

NSCLC

AstraZeneca 2018

NCT03742102 Oleclumab Ib/II ➣ In combination with

durvalumab (anti-PD-L1) and

paclitaxel (chemotherapy)

Metastatic Triple

Negative Breast

Cancer

AstraZeneca 2018

NCT03611556 Oleclumab Ib/II ➣ In combination with

gemcitabine (chemotherapy)

and nab-paclitaxel

(chemotherapy)

Metastatic

pancreatic cancer

MedImmune 2018

➣ In combination with

gemcitabine and

nab-paclitaxel and

durvalumab (anti-PD-L1)

➣ In combination with

mFOLFOX (chemotherapy

regimen comprising

oxaliplatin, leucovorin, 5-FU)

NCT03381274 Oleclumab Ib/II ➣ In combination with

osimertinib

(EGFRT790M inhibitor)

Advanced NSCLC MedImmune 2018

➣ In combination with AZD4635

(A2Aantagonist)

NCT02754141 BMS-986179 I/IIa ➣ Single agent Advanced solid

malignancies

Bristol-Myers

Squibb

2016

➣ In combination with

nivolumab (anti-PD-1)

➣ In combination with rHuPH20

(drug deliveryenzyme)

NCT03454451 CPI-006 I/Ib ➣ Single agent Advanced solid

malignancies

Corvus

Pharmaceuticals

2018

➣ In combination with CPI-444

(A2Aantagonist)

➣ In combination with

pembrolizumab (anti-PD-1)

NCT03549000 NZV930 I/Ib ➣ Single agent Advanced solid

malignancies

Novartis 2018

➣ In combination with

spartalizumab (anti-PD-1)

➣ In combination with NIR178

(A2Aantagonist)

➣ In combination with NIR178

andspartalizumab

CD38 NCT03473730 Daratumumab I ➣ Single agent Metastatic Renal

Cell Carcinoma or

Muscle Invasive

Bladder Cancer

M.D. Anderson

Cancer Center

2017

A2A NCT02403193 NIR178 I/Ib ➣ Single agent Advanced NSCLC Palobiofarma 2015

➣ In combination with

spartalizumab (anti-PD-1)

[-1pt] NCT03207867 NIR178 II ➣ Single agent Advanced solid

malignancies

Novartis 2017

➣ In combination with

spartalizumab (anti-PD-1)

(Continued)
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TABLE 3 | Continued

Molecular

target

Clinical Trial

identifier

Agents Phase Design overview* Solid tumor

indications

Sponsor Launched on

NCT03742349 NIR178 Ib ➣ In combination with

spartalizumab (anti-PD-1) and

LAG525(anti-LAG3)

Triple-negative

Breast Cancer

Novartis 2018

NCT02655822 CPI-444 I/Ib ➣ Single agent Advanced solid

malignancies

Corvus

Pharmaceuticals

2016

➣ In combination with

atezolizumab (anti-PD-L1)

NCT03337698 CPI-444 Ib/II ➣ Single agent Metastatic NSCLC Hoffmann-La

Roche

2017

➣ In combination with

atezolizumab (anti-PD-L1)

NCT02740985 AZD4635 I ➣ Single agent Advanced solid

malignancies

AstraZeneca 2016

➣ In combination with

durvalumab (anti-PD-L1)

A2B NCT03274479 PBF-1129 I ➣ Single agent Advanced NSCLC Palobiofarma 2018

NSCLC, non-small-cell lung cancer.

*Mentioned are schemes comprising at least one adenosine-axis modulator.

efficacy of ACT at least by boosting the homing of the
adoptively transferred tumor-specific T cells at the tumor
sites (378). Likewise, respiratory hyperoxia in mice increased
the ability of adoptively transferred T cells to curb primary
tumor expansion and metastasis formation by augmenting
their capacity to accumulate in the TME and produce
IFNγ (293).

Similarly, A2AR deficiency (402) or siRNA-mediated
suppression of A2AR and A2BR expression (38) on the surface
of adoptively transferred T cells leads to enhanced prevention
of metastatic spreading (38, 402) and improved survival of
tumor-bearing mice (38). Several groups have validated these
observations by demonstrating that ACT and concomitant
administration of A2AR antagonists is superior to single
treatments in terms of decreasing tumor growth (135, 396),
hindering metastasis formation (38, 402) and ultimately
improving survival (135, 388, 396, 402). Interestingly, others
claim that A2AR antagonism improves the efficacy of adoptively
transferred CAR+ T cells only if PD1 ICB is co-administered
(135). In terms of mechanisms, concomitant A2AR antagonism
not only increases intra-tumoral presence of adoptively
transferred T cells (396) but also elevates their activation status.
In particular, when A2AR antagonists were co-administered,
tumor-derived, adoptively transferred or endogenous CD44+

CD8+ T cells, exhibit heightened expression levels of T-bet,
4-1BB, and CD69 (396) while demonstrating increased capacity
to produce IFNγ and TNFα (135, 396, 402).

Adenosine-Axis Blockade Combined With

Radiotherapy, Chemotherapy or Targeted Therapies
It is well documented that radiotherapy (RT) as well as several
chemotherapeutic (CT) drugs have the capacity to induce
ATP release (406, 429–433). Since such regimens also elevate
the expression levels of CD39 (405, 407, 434) and CD73
(405, 407, 435–437), it is possible that the concentration of
interstitial adenosine in the TME rises sharply upon application
of these treatments. Therefore, several investigators have

explored whether concomitant provision of agents targeting
the adenosine axis increase the anti-tumor efficacy of RT or of
various CT agents.

Indeed, mAb-mediated inhibition of CD73 increased the
anti-tumor efficacy of RT (403, 404) and this synergistic effect
was even more apparent upon concurrent CTLA-4-blockade
(404). Mechanistically, CD73 inhibition increases the presence
of CD8+ T cells as well as of CD8α+ or CD103+ DCs within
irradiated tumors while decreasing Tregs (403, 404). Moreover,
concomitant CD73 blockade was shown to increase the activation
status of CD8+ T cells and CD8α+ DCs within irradiated tumors
as evidenced by the elevated expression levels of CD69 and
CD40, respectively (404). Likewise, concurrent mAb-mediated
inhibition of CD73 (405) or pharmacologic blockade of CD39
activity (406) boosted the tumor control (405, 406) and survival
(405) of mice treated with the CT drugs Doxorubicin (405),
Paclitaxel (405), and Mitoxantrone (406). Of note, such dual
therapies were shown to not only augment intra-tumoral
presence of DCs (406) and tumor-specific CD8+ T cells (405)
but also the fraction of intra-tumoral CD4+ or CD8+ T cells
producing IFNγ (406) as well as the levels of IFNγ in the
TME (405, 406). In light of such observations, the clinical trials
NCT03611556 and NCT03742102 are set to decipher the potency
of CT regimens when provided in combination with the CD73-
blocking Ab Oleclumab, supplemented or not by PD-1 blockade.

Along the same lines, others explored if direct antagonism of
A2AR and A2BR would augment the antitumor effects of CT
agents. Indeed, tumor-bearing mice treated with Doxorubicin
(359, 405, 407), Dacarbazine (398), or Oxaliplatin (398, 407)
in combination with A2AR (405), A2BR (359, 398), or dual
A2AR/A2BR antagonists (407) displayed superior tumor control
(398, 405, 407) or survived longer (359). Of note, tumors derived
from mice treated with the combination of Dacarbazine and
PSB1115, an A2BR antagonist, were more heavily infiltrated by
CD8+ T cells as well as NKT cells and contained higher levels
of GzB than tumors derived from counterpart mice subjected
to Dacarbazine monotherapy (398). Likewise, concomitant

Frontiers in Immunology | www.frontiersin.org 17 June 2019 | Volume 10 | Article 925

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vigano et al. Immunosuppression by Adenosine in Tumors

administration of AB928, a dual A2AR and A2BR antagonist,
along with Doxorubicin or Oxaliplatin increased the intra-
tumoral detection of tumor-specific CD8+ T cells (407).

Finally, others have sought to decipher whether adenosine axis
blockade enhances the anti-tumor efficacy of particular targeted
therapies. For instance, it has been recently demonstrated
that high expression levels of CD73 in tumors derived
from breast cancer patients are associated with resistance to
Trastuzumab, an anti-HER2/ErbB2mAb, and that artificial CD73
overexpression promotes resistance to Trastuzumab-like therapy
in immunocompetent murine models of breast cancer (408).
Subsequently, the authorsmoved on to show that when suchmice
receive dual therapy comprising anti-CD73 and anti-ERB2 mAbs
they exhibit inferior tumor expansion rate as well as reduced
metastatic spreading and survive longer than counterpart mice
treated with either single agent treatments (408). In terms of
mechanisms, the combinatorial therapy significantly increases
the intra-tumoral presence of CD8+ and CD4+FoxP3neg T cells
while decreasing MDSCs (408). In addition, melanoma patients
harboring BRAF-mutant tumors exhibit a trend for elevated
expression of CD73 whereas co-administration of an A2AR
antagonist in mice bearing BRAF-mutant tumors increased the
therapeutic benefit achieved either by BRAF inhibition or by
the combination of BRAF and MEK inhibitors (393). Finally,
CD73 and A2AR are overexpressed in NSCLCs harboring
EGFR mutations (438) and even though preclinical studies
demonstrating increased efficacy of concomitant inhibition of
EGFR and A2AR are not currently publicly available, the clinical
trial NCT03381274 includes a cohort of patients with advanced
NSCLC that will receive both an EGFR inhibitor and an
A2AR antagonist.

SUMMARY AND FUTURE PERSPECTIVES

Adenosine is critically involved in a range of physiologic
processes including wound healing, and its levels are tightly
regulated under homeostatic conditions. In solid tumors,
however, adenosine concentration is significantly elevated,
predominantly due to stress-induced ATP release coupled with
the overexpression of nucleotidases, such as CD39 and CD73
that contribute to its catabolism. Primarily by engaging A2AR
and A2BR, also overexpressed in the TME as a result of
hypoxia and inflammation, adenosine diminishes the activity of
protective immune infiltrates, such as T cells, NK cells and DCs,
while boosting the inhibitory capacity of immunosuppressive
subsets, including Tregs and MDSCs. For instance, A2AR and
A2BR-induced cAMP accumulation within T cells blunts their
differentiation, proliferation, cytokine production and target

cell killing, predominantly through PKA activation. Along
with establishing an anti-inflammatory and tolerogenic TME,
adenosine also promotes blood vessel formation and assists
tumors in subverting adjacent fibroblasts to further support
tumor growth and metastasis.

Administration of small molecules or mAbs with the aim
to block adenosine-signaling, either by limiting its production
or its binding to ARs, has yielded important tumor control

in various pre-clinical tumor models. Moreover, simultaneous
blockade of adenosine production and receptor binding,
achieved by an anti-CD73 mAb co-administered with an A2AR
antagonist, for example, have demonstrated it synergy. Given
the potent suppression of T cells by adenosine, it comes
as no surprise that increases in tumor control and survival
conferred by ICB (anti-PD-1 and anti-CTLA-4 mAbs) or
ACT, is significantly enhanced by concomitant administration
of agents countering the adenosine axis. Synergy of such
adenosine axis modulators has further been shown with RT,
as well as CTs, schemes known to promote immunogenic
cell death (i.e., ATP is released), as well as with some
targeted therapies.

While blockade of adenosine production and A2AR/A2BR
antagonism are being tested in the clinic as monotherapies,
increasing numbers of clinical trials combining adenosine-
signaling blockade with IMTs or classic treatment approaches
(i.e., RT, CT and targeted therapies) are recruiting and/or
underway. Given the important responses achieved by a
proportion of patients to immunotherapeutic-regimens, and
the tremendous levels of immunosuppression mediated by
adenosine, the development of existing or new agents targeting
this axis, along with further testing of combinatorial strategies,
is warranted. Indeed, targeting the adenosine axis holds great
promise in the improved treatment of cancer patients.
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