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Abstract

A three-dimensional strategy to compute mesh displacement following surface recession due
to ablation is proposed and implemented in the finite volume material response code MoDe-
TheC. Due to the application to the thermal degradation of space debris during atmospheric
reentry, the strategy developed is based onto a very general formulation that can deal with
any mesh topology and object shape without preliminary identification of ablated surfaces.
First, a new moving mesh method modifies the grid to take into account changes due to
ablation. Subsequently, a shape preservation mesh balancing method redistributes the mesh
vertices to maintain the grid quality. Finally, a smoothing algorithm is applied to prevent
high frequency mesh oscillations. The new 3D mesh displacement strategy is verified on
many 2D and 3D test cases to prove the capabilities of the method.

Keywords: ablation, moving mesh method, smoothing, space debris, atmospheric reentry

1. Introduction

Since the beginning of space exploration, the human activity in space has generated a
significant number of space debris. During the last forty years, around 16 000 tons of space
debris have experienced a terrestrial atmospheric reentry. Between 10 and 40 % of that mass
may have reached the Earth surface, representing a potential threat to ground safety. The
estimate of the total casualty area became a major issue for all space actors and specifically
for CNES (Centre National d’Études Spatiales - French Space Agency) which is in charge
of ensuring the right application of the French Space Operation Act by 2021 for French
satellites-and-launchers operators and launch operations from French Guyana spaceport.
According to the French law guidelines, the maximum casualty risk probability is set to
10−4.
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Although the atmospheric reentry of spacecrafts is studied since many decades, new
challenges arise from space debris research. The main difference is linked to the nature of
this kind of reentry: the trajectory is unknown and uncontrolled, the shapes are various
and, unlike thermal protection systems, the different kind of materials encountered are
not designed to withstand such conditions. For these reasons, materials might experience
significant degradation.

The evaluation of ground risk is achieved using codes divided into two groups: Object-
Oriented Codes and Spacecraft-Oriented Codes. The first group of codes separately com-
putes each part of the debris (satellite for example) with important geometric simplifica-
tions, whereas the second one computes the whole debris. Most of the spatial agencies use
an Object-Oriented Code : DAS (NASA) [1], ORSAT-J (JAXA) [2], DEBRISK (CNES) [3],
DRAMA (ESA) [4] and/or Spacecraft-Oriented Code SCARAB (HTG - ESA) [5], PAM-
PERO (CNES) [6], ARES (ONERA) [7]. Even if these codes allow to evaluate the ground
risk for a low computational cost, the simplified models used do not account for the in-depth
material phenomena.

An accurate simulation of the material degradation is achieved with a material response
code, which can then be coupled with aerothermal and flight mechanics simulations. A large
number of ablative-material response code are developed and a summary of the models used
is provided by Lachaud et al. [8]. Some of these codes use the Finite Volume Method
(FVM) as PATO [9] but the majority uses the Finite Element Method (FEM) as SAMCEF
Amaryllis [10] since structural solvers were historically developed with the FEM for material
deformation purposes.

At ONERA, the atmospheric reentry prediction is computed with the in-house code
ARES (Atmospheric Re-Entry Software) [7] which allows to couple four independent codes:
AtMoS, FAST, MUSIC and MoDeTheC. AtMoS (Atmosphere Model Software) provides at-
mosphere data (pressure, temperature, density, composition) depending on the planet (Earth
and Mars), the geographic position (altitude, longitude, latitude), the date (day, month,
year) and specific phenomena (as luni-solar winds, magnetic disturbances). The aerother-
modynamic modelling tool FAST (Fast Aerothermodynamic Solver for Trans-atmospheric
vehicle) computes the 3D wall heat flux distribution as well as the skin friction and pres-
sure distributions allowing to calculate the aerodynamic coefficients. These coefficients are
used in the multi-objects 3DOF or 6DOF trajectory software MUSIC (MUlti SImulators in
Combination).

MoDeTheC, from the French Modélisation de la Dégradation Thermique des Composites,
is a material response code initially developed to simulate thermal degradation due to fire
exposure [11]. This software computes heat and mass transfer based on Fourier’ and Darcy’s
laws throughout anisotropic, porous composite materials. Chemical reactions (pyrolysis
and oxidation) and ablation can also be taken into account. The equation formulation is
based on the FVM on unstructured meshes. The FVM was chosen instead of the FEM
because its implementation is more straightforward in order to handle gas flow within the
material. Mesh displacement due to ablation is achieved through an Arbitrary Lagrangian-
Eulerian formulation, limited to 2D geometries. A coupling is implemented between FAST
and MoDeTheC with the resolution of an energy balance at the fluid/structure interface
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providing the wall temperature and heat fluxes. Applications of the MoDeTheC solver
address, for example, decomposition of carbon-reinforced composite materials in aeronautical
fire scenarios and of composite materials, metals and alloys in atmospheric re-entry scenarios.

To decrease the error for ground risk estimation, material degradation computations have
to be improved. Therefore, as previously mentioned, the 3D thermochemical behaviour of the
material has to be fully computed, in particular the 3D mesh displacement due to ablation.
This paper presents the general 3D mesh displacement strategy developed to simulate space
debris thermal degradation during atmospheric reentry.

Firstly, the material response code MoDeTheC is briefly presented, as well as the numer-
ical strategy of the solver. Then, the interface tracking and the mesh redistribution methods
from the literature and potentially compatible with space debris application are introduced.
The analysis of these methods show that some are not compatible with MoDeTheC and oth-
ers are not directly applicable for the space debris requirements. Parts of these numerical
methods are combined to define a new strategy for the mesh displacement and smoothing.
The new strategy, divided into three main steps, is described with: 1- a mesh displacement
method ; 2- a shape preservation mesh balancing method ; 3- a mesh smoothing method.
Then, a verification campaign on theoretical test cases is exhibited to prove the accuracy of
the mesh displacement strategy.

2. MoDeTheC material response code

MoDeTheC is a material response solver developed in first intention to compute the
thermo-chemical features of a composite material exposed to fire. A composite material
like CFRP (Carbon Fibers Reinforced Polymer) is a porous material initialy composed
of fibers, matrix and gas. When the material temperature increases, the matrix reacts
through a pyrolyse reaction and is transformed into a carbon residue (char) and a mixture
of decomposition gases. With the increase in material porosity, the gas is allowed to be
advected in the material and ejected at the material surface. After the pyrolysis, the material
is decomposed with the presence of oxygen atoms and molecules through oxidative reactions.

The material modeling in MoDeTheC is based on a multi-species approach. A set of I
species (solid or gas) including J gaseous species is chosen to define the composite material.
The thermo-chemical decomposition of the material is defined with a set of M chemical re-
actions. Each degradation reaction is driven by an Arrhenius rate equation and is associated
to an heat of reaction. The heat and mass change due to the chemical reactions are taken
into account in the mass and energy conservation equations.

In the following, the subscript i refers to any species, the subscript j refers to a gaseous
species and the subscript g refers to the gas mixture. When no subscript is applied, the
variable refers to the material. The mass conservation equations are:

∂ (ρYi)

∂t
= ω̇i for solid species

∂ (ρYj)

∂t
+
−→
∇ ·

(
ρg
Yj
Yg

−→v g

)
= ω̇j for gaseous species

(1)

(2)
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where ρ is the density (in kg/m3), Y the mass fraction, ω̇ the mass source term due to
chemistry (in kg/(m3 · s)) and −→v g the average gas velocity (in m/s).

The energy conservation equation is:

∂ (ρh)

∂t
+
−→
∇ · (ρghg−→v g) =

−→
∇ ·

(
k?
−→
∇T

)
+ Q̇R (3)

where h is the enthalpy (in J/kg), k? the effective thermal conductivity tensor (in W/(m ·K))
and Q̇R the total heat release rate of the chemical reactions (in W/m3).

In these equations, the average gas velocity −→v g is calculated using Darcy’s law:

−→v g = −KP

µg

−→
∇pg (4)

where KP is the permeability second order tensor (in m2), µg the dynamic viscosity of the
gas mixture (in Pa · s) and pg the average gas pressure computed under the assumption of
the ideal gas mixture law (in Pa).

The governing equations described above are implemented in MoDeTheC using the finite-
volume formulation in 2D and 3D for unstructured fixed meshes. The resolution of the
system is done using a first order operator splitting. The thermal diffusive and reactive
numerical subsystem is first computed with a time step ∆t. Then, the advective subsystem
is solved with a sub-iteration procedure based on the maximum value of the CFL (Courant
Friedrichs Lewy) number.

In MoDeTheC, the material ablation is modelled at the boundaries using several models:
imposed ablation velocity, energy balance based on latent heat of sublimation or chemical
reactions (oxidation, nitridation for example). The ablation model returns a mass and
an energy increment which are integrated in the mass and energy conservation equations.
These data are integrated in the numerical model using the Arbitrary Lagrangian-Eulerian
approach. The velocity of the ablated is boundary is finally computed as follows:

−→
V ab,f = −ṁab,f

ρAf

−→n f (5)

where ṁab,f is the ablated mass of the boundary cell linked to f (in kg/s), Af the face area
(in m2) and −→n f the outward-pointing normal vector to f . However, the mesh deformation
requires the displacement velocity for the mesh vertices. The face/vertex conversion is not
trivial and is the purpose of section 4.3.

The boundary mesh deformation is followed by an adaption of the entire mesh which

results in a displacement velocity
−→
V mesh for all faces. The mesh displacement can be inter-

preted as the displacement of the conservative variables (ρY , ρh) in the opposite direction,

i.e. with the velocity −
−→
V mesh. The advective motion of the mesh

−→
∇ ·

(
u
−→
V mesh

)
is added

in the heat and mass equations of the first operator Splitting.
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3. Numerical methods for mesh displacement

The description of the MoDeTheC solver shows the numerical choices made to model
ablation. The conservative equations are processed with the Arbitrary Lagrangian-Eulerian
approach and the boundary is explicitly displaced. Thus, the overall computational domain
needs to be adapted to follow the boundary deformation. The numerical methods from the
literature for the interface tracking and the mesh adaptation are respectively described in
sections 3.2 and 3.3 after the definition of the technical vocabulary in section 3.1.

3.1. Introduction of the technical vocabulary used

The technical vocabulary used to describe the mesh is defined in this section to avoid
misinterpretation and is illustrated in Fig. 1, 2 and 3. These illustrations use a geometry
representing an eighth of a sphere (Fig. 1a) modelled by a coarse mesh (Figs. 1b). The
basic notions of a mesh (vertex, edge and face) are shown in Fig. 2.

(a) Geometry. (b) Mesh. (c) Surface, curve and corner.

curve

surface

corner

Figure 1: Mesh vocabulary on an eight of a sphere geometry.

The comparison between the mesh (Fig. 1b) of the geometry and the geometry itself
(Fig. 1a) shows that the mesh induces a loss of information about the geometry. Indeed, a
gap between the boundary edges and the arcs exists (Fig. 2 and 3). Also, the surface faces
of the mesh are not overlaid with the surface of the sphere. This difference between the
mesh and the geometry occurs for every curved geometry because first order elements are
used in the MoDeTheC solver. The use of higher-order meshes would be a way to alleviate
this issue but beyond the scope of the present article.

To generalise, the term arc is used to name the space curve associated to an edge of the
mesh, and a surface patch is used to name the geometrical surface associated to a face of a
mesh. In case of planar surface, arcs and edges overlay as well as faces and surface patches.

On every mesh, the sharp edges and corners can be detected (cf. Section 4.2.1) to split
the surface mesh. By following this procedure, the eighth of a sphere is split into 4 boundary
zones: three flat surfaces and one curved surface. For a given boundary zone, each face is
modelled by a surface patch. The union of these surface patches is called a surface (Fig.
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vertex

edge

face

Figure 2: Mesh vocabulary : vertex, edge and
face.

arc

surface patch

Figure 3: Geometry vocabulary : arc and surface
patch.

1c). The intersection between two surfaces defines a curve and the intersection between
two or more curves defines a corner.

Finally, the authors wish to clarify the use of the word “smoothing” for the next sections
of the paper. In many publications, mesh smoothing refers to the action of moving vertices
to give a regular aspect to the mesh. In the same time, smoothing methods are also used
to remove undesirable noise in the mesh. In this paper, a different term is associated with
each method:

• mesh balancing refers to the action of redistributing the vertices to maintain the grid
quality and avoid cell inversion;

• mesh smoothing refers to the work of avoiding high frequency oscillations (numerical
noise) between boundary vertices.

3.2. Interface Tracking Methods

When an interface tracking method is used, the displacement of boundary faces, edges
and vertices depends on the calculation of a displacement vector for each boundary vertex.
With a structured grid, the easiest method is to move the boundary vertices along internal
edges. Then, the internal vertices are proportionally distributed between the moved bound-
ary and a fixed boundary [12, 13]. However, this method cannot be easily transposed to
unstructured grids. Indeed, the internal edge along which the boundary vertex has to be
displaced is not unique. Hence, a boundary displacement method is applied to the normal
direction of the boundary faces, in order to be suitable for both structured and unstructured
grids.

During the ablation process, moving the boundary faces in the normal direction can lead
to the creation of areas where the material cannot be, i.e. irrelevant mass added to the
system (Fig. 4). To prevent this pathological behaviour and to correctly displace structured
and unstructured meshes, boundary conditions are generally defined as stationary, sliding
or ablating as done by Droba [14]. Then, a treatment is applied to each vertex depending
on the type of boundary surface around it.
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(a) Initial trapeze mesh. (b) Material creation - wrong displace-
ment.

(c) Final mesh with correction.

−→
V imp

Figure 4: Illustration of the displacement correction need.

In 2D, the displacement of a corner vertex is found using the intersection of the two
displaced edges. In 3D, corner vertices have 3 different boundary surfaces around them.
For each boundary surface around the 3D corner vertex, the best fit plane for the face
displacement is found. Then, the new location of the 3D corner vertex is the intersection
of the 3 planes. However, this strategy for the displacement of 3D corner vertices cannot
be used for computations with important shape deformation. Indeed, when a corner vertex
is smoothed, the intersection between the 3 planes around it is no longer defined. The
strategy described by Droba [14] allows to deform complex geometries in 2D. However, the
3D strategy was not verified with test cases and the formulation seems inadequate for shape
changes. Moreover, for space debris atmospheric reentry applications, boundary surfaces
cannot be classified at the beginning of the calculation since every part of the debris is likely
to be ablated due to both tumbling and fragmentation processes. Therefore, this method
cannot be used without modifications.

Another method for the displacement of an explicit surface was developed by Jiao [15]
and mainly used for icing and solid rocket motor propellant grain combustion computa-
tions. The displacement direction is firstly driven by the normal vector of each face. The
displacement vector is corrected with a wave frontal motion to avoid issues in the singular
points (Fig. 5b). Then, the optimal displacement distance is chosen to remove the exact
ablated mass in the least square sense. The main advantage of this method compared to
Droba [14] method is that singularities of the geometry are managed without a preliminary
classification. However, the wavefrontal motion for the surface displacement never preserves
the object shape. Jiao [15] gives the example of a cube with a constant displacement velocity
applied on each boundary face. The wavefrontal motion smooth the geometry whereas the
advective motion (equivalent to the strategy of Droba) preserves the cube shape. Depending
on the computation objective, a choice between these two approaches is required with Jiao
algorithm.

The first boundary displacement methods based on internal edge direction are not suit-
able for the unstructured meshes to be treated by MoDeTheC. The other methods only

7



(a) Envelope of sphere. (b) Envelope of balls.

Figure 5: Two-dimensional illustration of difference between envelopes of spheres and balls [15].

consider the boundary mesh and are thus compatible. However, one constraint is that
MoDeTheC solver might be able to ablate any part of the geometry without preliminary
identification which is not the case with the method proposed by Droba. Among the bound-
ary displacement method of the literature, only the one presented by Jiao [15] could be used
for space debris application. However, the procedure described to correct the motion is not
able to maintain the shape of the object studied as illustrated in Fig. 4. This analysis
motivates the development of a new strategy to deal with 3D surface deformation.

3.3. Mesh redistribution

The entire mesh needs to be redistributed to follow the boundary displacements with
the ALE formulation, generally in a two-step procedure to conserve the object shape. First,
the boundary vertices are redistributed and then the internal vertices. The redistribution
techniques can be based on the resolution of Partial Differential Equations (PDE), on me-
chanical analogies (mass-spring system, linear elastic solid) or on topological changes (local
or global remeshing). Several comparisons between these techniques can be found in [16, 17].

The Laplacian smoothing is a simple and efficient method. It was largely studied and
many derivations were suggested. The main drawback of the Laplacian smoothing is the
flattening of the geometry which reduces the geometry volume and creates zero-volume cells.
For the boundary vertex redistribution, a first solution is to limit the vertices displacement
to the neighboring faces [18]. Other solutions were developed to solve this problem based on
Laplacian derivations (bilaplacian, Taubin smoothing, mean curvature flow) [19, 20]. Even
if derived methods exhibit better solutions, surface flattening is still observed [20].

Another method to redistribute the boundary vertices is to balance them in the tangential
plane of the surface (null space smoothing) [15]. After some iterations, the shape reaches a
steady state and the smoothing does not modify the shape anymore. The main advantage
of the null space smoothing method is that the shape is not smoothed by the process. The
method only redistribute the vertices over it. However, because the shape is not smoothed,
unphysical noise appears at the surface [21]. To prevent the high frequency oscillations of
the mesh, a smoothing step to repair the boundary mesh is required.
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4. Description of the Mesh Displacement Strategy developed

4.1. Strategy overview

A new strategy is suggested for managing 3D mesh displacements to describe the thermal
degradation of materials along space debris atmospheric reentry. The main objective is to
maintain the mesh quality during the ablation process. The strategy was built with the in-
house material response code MoDeTheC constraints and for the space debris application.
So, the main constraints are:
− to define a unique strategy for any kind of mesh type (structured, unstructured and

hybrid),
− to be relevant to any kind of 3D debris shape,
− to automatically detect the moving surface without preliminary identification, since in

case of space debris atmospheric reentry the surface recession can occur anywhere due
to space debris tumbling.

The computation of ablation in a material response code based on an ALE formula-
tion requires the implementation of adequate mesh displacement, mesh balancing and mesh
smoothing methods. In Sections 3.2 and 3.3, some methods for mesh displacement, balancing
and smoothing were presented and discussed.

The proposed mesh displacement strategy (Fig. 6) is performed in three steps:
1. The Moving Surface Mesh Method which modifies the surface grid to take into

account changes due to ablation.
2. The Shape-Preserving Mesh Balancing Method which maintains the mesh qual-

ity.
3. The Mesh Smoothing Method which avoids undesirable mesh oscillations.
The main differences between the developed method and methods proposed in the lit-

erature are the formulation of the displacement based on geometrical considerations and
the automatic sharp feature detection which enables space debris thermal degradation com-
putations. For the mesh balancing method, the null space smoothing [15] shows excellent
shape conservation despite the creation of undesirable noise. This method is thus used in
combination with a Laplacian operator to control the vertex distribution. The undesirable
noise is removed in the third step with a least square curve/surface smoothing. The three
steps of this strategy are independent and can be used separately.

The inputs for this strategy are:
− the mesh with all connectivity between vertices, faces and edges;
− the displacement length of each boundary face.

4.2. Mesh processing

The mesh displacement strategy described in this article uses specific mesh data in
addition to the vertex location and connectivities. The way to obtain these required global
data, used several times in the mesh displacement strategy, is presented in this section.
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Input: mesh and boundary face recession

Moving Surface Mesh Method
1. boundary vertex displacement and correction

Shape-Preserving Mesh Balancing Method
1. boundary vertex balancing
2. boundary vertex projection
3. internal vertex balancing

Mesh Smoothing Method
1. curve-vertex smoothing
2. surface-vertex smoothing

Output: updated mesh

Figure 6: Mesh displacement strategy.

4.2.1. Sharp edges and corners detection

The sharp feature detection is done at the beginning of the calculation and after each
mesh displacement. It is defined as a function of the angle between every couple of adjacent
faces for each vertex. If this angle is greater than a user-defined limit angle θlim, the edge is
considered as sharp. The default value in MoDeTheC is set to θlim = 45°. The vertices are
finally classified (Fig. 7a) between those having zero sharp edge n, 2 sharp edges n and 3 n.
Object with vertices having 4 or more sharp edges are not presented in this article because
they are not encountered in the application cases of interest. Nevertheless, the strategy
described can handle such geometries with simple adjustments in the vertices correction
procedure.

(a) Boundary vertex classification. (b) Mesh with initial faces. (c) Mesh with equivalent faces.

FA FB

FC

FDFE

FF

Fα

FβFγ

Figure 7: Sharp edge detection and displacement steps on cube mesh.
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4.2.2. Hybrid interface detection

As already mentioned, MoDeTheC solver manages all standard elements for structured
and unstructured meshes. The interface between a structured and an unstructured area is of
particular interest for the mesh balancing because important displacements can occur leading
to a loss in mesh quality. Thus, the interface is detected to apply a special formulation at
these vertices. This interface detection is done as follows: if all the elements around a vertex
are not of the same type and at least one element is of structured type, the vertex is declared
to be located on the interface. The result of the interface detection is shown in Fig. 8 for
2D and 3D cases.

(a) Square (2D). (b) Rectangular cuboid (3D). (c) Internal view of a blunted cylinder (3D).

Figure 8: Illustration of the hybrid interface detection shown in red.

4.3. Moving Surface Mesh Method

The goal of the Moving Surface Mesh method is to convert the displacement length of
boundary faces into vertex displacements. For this step, only the mesh on the boundaries
is considered while the internal mesh remains fixed.

For the moving surface mesh method, the vertices are divided into two groups. For all
vertices located on sharp edges (n and n in Fig. 7), the Average of smooth faces and Vertices
correction procedure steps described in sections 4.3.1 and 4.3.2 are applied. For all vertices
outside the sharp edges (n in Fig. 7), only the Average of smooth faces step described in
Section 4.3.1 is applied.

4.3.1. Average of smooth faces

The displacement of the corner (n) vertex in Fig. 7b depends on the surface recession
−→
V i

dep of its neighboring faces Fi and their respective normal vector −→n i (for i ∈ {A, . . . , F}).
The first step is to consider adjacent faces in the same surface. This means that the dis-
placement of three sets of faces ({FA;FB}, {FC ;FD} and {FE;FF}) is calculated (Fig. 7b).

The displacement due to faces connected with smooth edges is computed with an area-
weighted average of each face recession velocity. As illustrated in Fig. 9, the displacement
vector due to two smooth faces j and k is:

−→
V α

d =
1∑

i∈{j,k}
Ai

∑
i∈{j,k}

Ai
−→
V i

d (6)
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where Ai is the area of face Fi.
−→
V α

dep is the equivalent displacement vector of faces Fj
and Fk. Eq. 6 has a general formulation which can be extended to any number of adjacent
faces in a group of faces not sharing sharp edges. After this step, an equivalent mesh (Fig.
7c) is virtually obtained where the corner vertex is shared by faces (Fα, Fβ and Fγ) only
separated by sharp edges. For each equivalent face, the vertex displacement vector is thus
known.

P

P ′
H

Pk

Pj

Fk

Fj

−→nk
−→nj

−→
V k

d −→
V j

d

Figure 9: Displacement of smooth vertex computed with an area-weighted average of each face recession.

4.3.2. Vertices correction procedure

The purpose of the correction is to prevent vertices from getting out of the computational
domain. A sharp vertex displacement without correction is illustrated with l in Fig. 10a.

The correction moves the vertex to the closest boundary face or edge with the following
procedure applied separately to each equivalent face. First, the complementary face or edge
is found. In 2D, the complementary face is the only other face directly linked to the vertex.
For corner vertices with 3 sharp edges in 3D, the complementary edge is the edge between
the two other equivalent faces. For example, the complementary edge of Fα in Fig. 7c is the
edge between Fβ and Fγ. The intersection between the complementary face or edge and the

normal plane to
−→
V α

dep gives a point Pα
cor (n in Fig. 10a). The final position of the displaced

vertex P ′ is obtained with the sum of the corrected displacement of each equivalent face
(Fig. 10b).

For corner vertices with more than 3 sharp edges, a way to correct the displacement
would be first to find the closest boundary face to the displaced vertex l. The intersection

between this face and the normal plane to
−→
V α

dep gives a line Lα. The corrected displacement
n in Fig. 10a is found with the normal projection of l on the line Lα.

After these steps, the grid is changed to take into account the mass removal and the
updated material shape. The next step of the mesh displacement strategy is to balance and
smooth the mesh while preserving the shape to avoid cell inversions and keep a good mesh
refinement.

12



(a) Sharp vertex correction. (b) Sharp vertex displacement.

PPα

Pβ

−→nα

−→nβ

−→
V α

dep
ln

PPα

Pβ

−→nα

−→nβ

ln

l
n

6

P ′

Figure 10: Vertex correction procedure.

4.4. Shape-Preserving Mesh Balancing Method

The proposed balancing method is designed to maintain the geometry shape during the
vertex redistribution procedure. The method is based on the sharp edge and vertex detection
procedures described above and is divided into 4 steps:

1. curve-vertex balancing (n vertices with n and n neighbours1 in Fig. 7a) ;
2. surface-vertex balancing (n vertices with n, n and n neighbours in Fig. 7a) ;
3. boundary-vertex projection on arc or surface patch ;
4. internal vertex balancing.

Note that during this procedure, the corner vertices (n in Fig. 7a) remain unchanged
whereas all the other vertices are balanced with the moving surface mesh method.

The curve, surface and internal vertex balancing are done with a Laplacian formulation
detailed below and satisfying two objectives:
− prevent any change of the initial grid refinement;
− process mesh distortion and large deformation.

4.4.1. Weight determination for the converged Laplacian operator

The Laplacian formulation uses converged weights calculated at the beginning of the
computation. These weights allow not to move the relative position of vertices when it is
not necessary (i.e. before important ablation occurs).

The calculation of these weights is done by solving N systems of N i
v vertices where N is

the number of vertices in the mesh and N i
v is the number of vertices connected to the vertex

i. Another solution is to solve one system of N vertices but this second option has an higher

1n vertices are not considered because they do not belong to the curves.
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computational cost. A least square algorithm is implemented in MoDeTheC and gives the
weight w′ij of the vertex i linked to the vertex j (w′ij 6= w′ji).

4.4.2. Laplacian operator

The Laplacian operator
−→
L modifies the position of each vertex at each time-step with a

sub-iteration process up to
−→
L = 0:

−→
P n+1
i =

−→
P n
i + γ

−→
L (P n

i ) (7)

where γ = 0.4 is a damping factor and n the sub-iteration number. In this method, the

Laplacian is divided into 2 sub-models
−→
L1 and

−→
L2 with

−→
L = (1 − α)

−→
L 1 + α

−→
L 2 where

α ∈ [0, 1] is a parameter to pass from a Laplacian formulation to an other and is defined as:

α = min

1 ,

∥∥∥−−−→PiPi0

∥∥∥
2

Llap

 (8)

where Pi0 is the initial location of Pi at the beginning of the computation (i.e. Pi0 6= P 0
i ).

The characteristic length for the Laplacian smoothing Llap is defined by the user depending
on the length and shape of the object. For the 2D Sinusoidal Slider example shown in Fig.
20, a good choice is the half of an oscillation length i.e. Llap = 0.5 m.

The first Laplacian
−→
L 1 is the dominant term when the mesh is close to the initial mesh

(α→ 0):
−→
L 1 (P n

i ) =
1∑

j∈Ji

w′ij

∑
j∈Ji

w′ij
−−−→
P n
i P

n
j (9)

where Ji is the set of vertices directly connected to Pi and w′ij is the weight of the edge
between Pi0 and Pj0 , determined with the procedure described in Section 4.4.1.

The second Laplacian
−→
L 2 homogenizes the mesh and prevents cell inversion when the

mesh is no longer close to the initial one (α→ 1):

−→
L 2 (P n

i ) =
1∑

j∈Ji

w′′j

∑
j∈Ji

w′′j
−−−→
P n
i P

n
j (10)

where the vertex weight w′′j =
∥∥∥−−−→P n

i P
n
j

∥∥∥ is updated at each iteration for surface and internal

balancing and at each sub-iteration for curve balancing.
Vertices on hybrid interfaces, detected thanks to the procedure described in Section

4.2.2, are always balanced with the Laplacian operator
−→
L 1. This choice allows to avoid

important distortion of the mesh due to the difference in vertex density between structured
and unstructured zones (as illustrated in Appendix A).

The main issue with the Laplacian balancing is that it tends to flatten the surface as
previously mentioned. Even if this problem is solved with the following projection step on

14



the null space, the Laplacian balancing is modified to keep the mesh consistent during the
sub-iteration process. Thus, the vertex displacement is constrained to the two adjacent sharp
edges for the boundary curve balancing. Similarly, the vertex displacement is constrained
to the adjacent faces for the boundary surface balancing.

4.4.3. Specific cell layer processing

As an option for the mesh balancing method, the user is free to activate a different
algorithm for the prism, hexahedral and quadrilateral layers balancing. To do so, the user
set the boundary surfaces from which layers are sought (i.e. active surface for layer research),
for example Γ1 and Γ2 in Fig. 11. All vertices in these surfaces (n in Fig. 11) are used as
departure vertices for the algorithm. From the identified vertices, an automatic detection of
prism and hexahedral (in 3D) as well as quadrilateral (in 2D) layers near the boundary is
performed at the beginning of the computation as follows:

• if the vertex belongs to one surface (PB) or to several surfaces (PA) for which layer
research is activated, the linked vertices are sought inside the domain;

• if the vertex belongs to several surfaces and at least one of these surfaces is not active
to layer research (PC), the linked vertices are sought along the boundary surfaces.

The algorithm looks for linked vertices up to an interface vertex (n) or up to another
boundary. Let’s remember that interface vertices are either detected with the procedure
described in section 4.2.2 or user-defined.

Γ1

Γ2

Γ3

Γ4

n

n

n

n

n n n n n n n n n n

n

n

n

n

n

PA
n n n n n n

PB
n n n

PC

PIPS
(P1, . . . , P4)

Figure 11: Example of automatic detection of cell layers between a boundary and an interface.

Prism, hexahedral and quadrilateral layers detected with this process are balanced with
the specific cell layer method. To illustrate the method, five linked vertices represented
in Fig. 12 are considered, where PS is a boundary vertex and P1, P2 and P3 are internal
vertices. PI can be located on another boundary surface or on an interface. The boundary

vertex displacement due to ablation and balancing is written δ
−→
P S.

The displacement of the layer vertices depends on the nature of PI :
• when PI is an interface vertex (an internal vertex located at the boundary between

two kinds of mesh), the layer vertex displacements are equal to the displacement of
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n n n n n

PS P1 P2 P3 PI

ni = 1 2 3

Figure 12: Cell layer balancing between a boundary vertex PS and an interface or boundary vertex PI .

the boundary vertex:

δ
−→
P 1 = δ

−→
P 2 = δ

−→
P 3 = δ

−→
P I = δ

−→
P S (11)

• when PI is on another boundary surface, PI can also have a displacement δ
−→
P I with

δ
−→
P I 6= δ

−→
P S. In this case, the relative location ni of the layer vertices Pi between PS

and PI is used to compute the displacement of layer vertices:

δ
−→
P i =

nm + 1− ni
nm + 1

δ
−→
PS +

ni
nm + 1

δ
−→
P I (12)

where nm is the number of inner vertices of the layer (nm = 3 in Fig. 12).
The cell layer displacement, when PI is an interface vertex, can lead to a tangling of

the mesh after important boundary vertex displacement. This issue occurs in the ablation
simulation when the material is close to the demise. To manage this, the presented mesh
displacement strategy will be associated to a remeshing algorithm in the future.

4.4.4. Vertex projection

The shape of the computed object is altered drastically by the application of the Lapla-
cian operator during the computation. The balancing of the vertices belonging to curves and
surfaces are thus followed by a projection of the boundary vertices onto the reconstructed
mesh skin to prevent flattening process. This mesh skin is based on the vertex location
after the moving surface mesh method and before the Laplacian operator. This step usu-
ally requires an arc equation for each boundary edge and a surface patch equation for each
boundary face. In this strategy, these equations are reduced to the tangential space at the
vertex. This tangential space is define as the orthogonal plane to the normal vector of the
vertex. The normal vector −→n at a boundary vertex is defined as the average of the normal
vector of the edges (2D) or face (3D) around the vertex. The arc and the surface patch are
thus approximated with respectively a straight line and a plane.

Boundary vertices are projected onto the curve and surface tangential approximations
according to the number of sharp edge linked to them:
− vertices with at least 3 sharp edges (n in Fig. 7a) are not redistributed: they are not

affected by this step;
− vertices with 2 sharp edges (n in Fig. 7a) are redistributed along these 2 edges: they

are projected up to the tangential line;
− vertices with 0 sharp edge (n in Fig. 7a) are redistributed on their neighboring faces:

they are projected up to the tangential plane.
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Note that during this study, a second order reconstruction of arc and surface patch was
implemented with Farouki et al. [22] methodology to take into account the curvature of a
curved geometry. The ablation simulation carried out so far (some examples are shown in
Section 5) have shown excellent shape preservation with both the tangential approximation
of arcs and surface patches and the second order reconstruction. However, it was observed
that the curved reconstruction does not improve significantly the results with an higher CPU
cost.

4.5. Mesh Smoothing Method

At the beginning of the smoothing step, all the boundary vertices are considered because
the noise appears during the projection step. The set of vertices to smooth is the reduced
with the procedure described in Section 4.5.1. This vertex detection is mandatory because
the smoothing algorithm described below (as any smoothing method) can alter the object
shape if the procedure is applied at every time iteration on every boundary vertex of the
mesh.

The smoothing method implemented in MoDeTheC is based on a polynomial interpola-
tion of curves and surfaces obtained with a weighted least square method. For every vertex
to smooth, a set of coefficients for Eq. 13 is computed.

y(x) =
∑
i

aix
i for curves

z(x, y) =
∑
i

∑
j

aijx
iyj for surfaces

(13)

First, the algorithm used to detect the vertices for the smoothing step is detailed. Then,
the smoothing of curves in 2D and surfaces in 3D is described. Finally, the extension of the
methodology to smooth curves in 3D is presented.

4.5.1. Detection of vertices for the smoothing step

The smoothing step of the mesh displacement algorithm is applied only on vertices where
an oscillation is detected. This detection is done in two steps at each time step:

1. Vertex classification
First, the normal vector −→n at a boundary vertex is defined as the average of the
normal vector of the edges around the vertex. Then, for each boundary vertex, the
scalar products between its normal vector −→n and the unit vectors of the edges around
the vertex are calculated (Fig. 13). A smoothing tag il is set to every boundary vertex:
(a) corner vertex: il = −3
(b) when all scalar product around the vertex are positive: il = 1 (S2 and S4)
(c) when all scalar product around the vertex are negative: il = −1 (S1, S3 and S5)
(d) when all scalar product around the vertex are null: il = 2
(e) when, around the vertex, at least one scalar product is positive and at least one

is negative: il = −2
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S1

S2

S3

S4

S5

−→n1

−→n2

−→n3

−→n4

−→n5

−−→
S3S4

−−→
S3S2

−
+

−

+

−

Figure 13: 2D schema of undesirable mesh oscillations where a smoothing is required.

2. Choice of vertices to smooth
Vertices with a smoothing tag equal to −3 or 2 are not included in the set of vertex
to smooth because corner vertices (il = −3) should not move during the balancing
and smoothing steps and because vertices in a plane should not be smoothed. For
the others, the smoothing tag of each vertex is compared to the smoothing tag of its
neighbours. If at least one neighbour has a smoothing tag different from the current
vertex smoothing tag, the vertex has to be smoothed.

4.5.2. 2D curve and 3D surface smoothing

The smoothing strategy illustrated in Fig. 14 is divided into 6 steps.

P

−→n = ±−→u y

−→u x

P2
P1

P4

P3 y = a1 + a2 x+ a3 x
2 + . . .

6
P ′

Figure 14: 2D schema of a mesh with undesirable noise where a smoothing step is required.

1. The smoothing of point P requires a set N of ND vertices around P . The minimum
number of neighbouring vertex ND depends on the degree of the interpolation equation
Ndeg and on the dimension of the geometry.{

ND = Ndeg + 1 in 2D

ND = Ndeg (Ndeg + 1)/2 in 3D
(14)

2. The set of vectors
−−→
PPi is normalized by

(∥∥∥−−→PP1

∥∥∥
2

+ maxi∈N

∥∥∥−−→PPi∥∥∥
2

)
. This ensure that

all distance
∥∥∥−−→PPi∥∥∥

2
are strictly lower than 1.
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3. An orthonormal local basis is built so that (P,−→u x,
−→u y) is the plane normal to vector −→n

through P and −→u z is collinear to the normal vector −→n of the vertex P . In 2D, −→u x is the
normal vector to −→n and −→u y = ±−→n . The next steps are carried out in this basis.

4. The least square system to solve is written in matrix form with:

In 2D: A =


1 0 0 · · ·
1 x1 x2

1 · · ·
1 x2 x2

2 · · ·
...

...
...

. . .

 B =


0
y1

y2
...

 X =


a1

a2

a3
...

 (15)

In 3D: A =


1 0 0 0 0 0 · · ·
1 x1 y1 x2

1 x1 y1 y2
1 · · ·

1 x2 y2 x2
2 x2 y2 y2

2 · · ·
...

...
...

...
...

...
. . .

 B =


0
z1

z2
...

 X =


a1

a2

a3
...

 (16)

The least square formulation is weighted to take into account the distance between the
vertex P and its neighbours Pi. The weight function θ is defined on [0, 1], strictly positive,
decreasing and with θ(0) = 1. In MoDeTheC, the weight function θ(x) = 2 x3 − 3x2 + 1
is used.
The vertex weight wi is obtained using the variable x defined by the normalised distance
between the vertex to smooth and the neighbour vertex. The weight matrix W is:

W =


1

w1

w2

. . .

 (17)

5. The resolution of the weighted least square problem gives the vector X for which the
error is minimal [23]:

X =
(
tAW A

)−1 tAW B (18)

6. The least square problem is here written in the local basis centered on the vertex P .
The coordinate of P in this basis are thus (0, 0, 0) (or (0, 0) in 2D). In the local basis,
the displacement of P to the smoothed vertex P ′ is given by the first coefficient a of the
vector X. This displacement is finally formulated in the global basis of the geometry to
move the vertex.

4.5.3. 3D curve smoothing

The previous formulation cannot smooth 3D space curves because a space curve is not
described with one polynomial equation. Smoothing a 3D space curve uses the definition
of this curve as being the intersection between two surfaces locally approximated by two
planes. The strategy is then to reduce the smoothing of a space curve to the smoothing of
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two 2D curves. For each surface, the space curve is projected to its approximate plane and
the resulting 2D curve is smoothed.

In practice, the two first steps of the smoothing procedure for 2D curve described in
Section 4.5.2 are identical in this case. Then, steps 3 to 6 are done twice: once for each
normal vector of the vertex2. Once the smoothing of the vertex relative to each surface is
done, both corrections are added to calculate the final correction of the smoothing step.

The impact of the smoothing step on the resulting geometry during an ablation compu-
tation is presented in 5.2.4.

5. Validation and demonstration test cases

The mesh displacement strategy has been validated on multiple geometries and test
cases in 2D and 3D. In this section, the geometric validation is presented to verify the
displacement of boundary nodes with an imposed ablation velocity. The mesh displacement
on sharp edges and the shape preservation during the mesh balancing and smoothing are
then validated. In addition, the relevance of the material response code MoDeTheC to deal
with important shape variations is demonstrated in simulations assuming imposed heat flux
at the boundaries. In this section, all meshes are generated with GMSH 3.0.2 [24] unless
stated otherwise.

5.1. Validation of the mesh displacement method

The cube and truncated cone test cases are computed to validate the mesh displacement
method without the influence of the projection and smoothing steps.

5.1.1. Cube

The first test case presented is a cube of 1 m side. The 3D cube mesh (Fig. 15a) is
composed of 729 cells and 6 surfaces (as defined in Section 3.1).

Ablation velocities are imposed on each of the boundary surfaces of the cube during the
3 s of simulation with a time step δt = 0.01 s. Four of the planes have the same ablation

velocity
−→
V imp = 0.1 m/s, one plane has an higher ablation velocity 1.5

−→
V imp and the last

plane is fixed.
A 2D slice of the cube mesh at the beginning of the computation and at the end are

presented in Fig. 15b and 15c. During this computation, the cube is transformed into a
rectangular cuboid. The important results of this test case are:

• Right angles are kept.
• Plane surfaces are still planes after the ablation.
• The absolute displacement error δx regarding the plane location is 1.2× 10−8 m for all

ablated planes, where δx = |xth − xnum| with xth the theoretical location of the planes
and xnum the numerical result.

• The same behaviour and results are obtained with structured and unstructured meshes.

2Curve vertices have two normal vectors: one for each surface.
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(a) 3D structured mesh. (b) Slice of the initial mesh. (c) Slice of the final mesh.

1.5
−→
V imp

−→
V imp

−→
V imp

−→
V imp

Figure 15: View of cube mesh before and after ablation.

5.1.2. Truncated cone

The node displacements on acute and obtuse angles are checked with a truncated cone

geometry meshed with 6743 cells (Fig. 16a). An ablation velocity
−→
V imp = 0.1 m/s is imposed

on the two plane surfaces.

(a) t = 0 s (b) t = 6 s

−→
V imp

−→
V imp

2 m

0.25 m

0.5 m

Figure 16: View of the truncated cone geometry and mesh before and after ablation.

Fig. 16b compares the final and initial meshes and shapes after the 6 s simulation with
a time step δt = 0.05 s. The left and right disks are still planar and the angle between each
disk and the cone boundary remains unchanged. This result proves that for acute angles,
the mesh displacement does not create matter (as illustrated in Fig. 4).

5.2. Validation and demonstration of the boundary mesh balancing and smoothing methods

The balancing and smoothing method detailed respectively in Sections 4.4 and 4.5 are
composed of the Laplacian operator, a projection on the tangential approximation of arcs
and surface patches and a smoothing step. The next test cases show that this strategy
succeeded in performing mesh displacement without flattening.
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5.2.1. Eighth of a sphere

The ablation of an eighth of a sphere of 0.5 m radius is simulated with structured and
unstructured meshes (Fig. 17a). This geometry is composed of 4 surfaces: 3 planes and 1
curved surface.

(a) t = 0 s (b) t = 8 s (c) t = 15 s

Figure 17: Ablation of an eighth of a sphere.

With this geometry, the first test consist in imposing during 15 s with a time step δt =

0.01 s a constant ablation velocity
−→
V imp = 0.01 m/s on each planar boundary (blue part in

Fig. 17). The vertices of the spherical surface (red part in Fig. 17) have to stay on the
initial sphere shape during the shape preservation balancing and the smoothing procedures.

The solution at t = 8 s and t = 15 s (Fig. 17) show that the spherical shape of the red
surface is not affected during the computation. Moreover, the distance between the vertices
of the curved surface and the initial center of the sphere must remain constant and equal

to 0.5 m. The minimal, maximal and average distance of the curved surface vertices
∥∥∥−−→OPi∥∥∥

are plotted as a function of time in Fig. 18. During the 15 s of computation, the error on
the average distance is less than 0.1 % which allows to maintain the spherical shape of the
object. The minimal and maximal distance reach respectively 0.4978 m and 0.5007 m. This
proves that all vertices stay very close to the original sphere.

The second test case is performed with the same geometry, the same meshes and nu-
merical parameters. The only difference is that the ablation velocity is not applied on the
planar surfaces but on the curved surface (red in Fig. 17). The relative error δd between the

theoretical and numerical distance
∥∥∥−−→OPi∥∥∥ is calculated and shown in Fig. 19 for the block

structured mesh.
This second test case on the eighth of a sphere shows again excellent results about the

mesh displacement method in MoDeTheC. The average error during the computation is less
than 0.02 % and the minimal and maximal errors do not exceed 0.03 %.

5.2.2. 2D Sinusoidal Slider

At first, the Sinusoidal Slider test case of Droba [14] illustrated in Fig. 20 is used
to validate the vertex displacement on concave and convex surfaces. A structured mesh
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Figure 18: Minimal, maximal and average distance between the initial center of the sphere and the curved
surface vertices - Imposed ablation velocity on planar boundaries - Unstructured mesh.
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Figure 19: Relative error on the distance between the initial center of the sphere and the curved surface
vertices - Imposed ablation velocity on curved boundary - Structured mesh.

composed of 2500 cells (Fig. 21a) is used.
A heat flux Φ = 20 MW/m2 is imposed on the boundary Γ2 whereas the heat flux on

other boundaries is set to zero. To compute the heat transfers and the surface ablation due
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Γ1

Γ2

Γ3

Γ4

3 m

0.9 m
1.1 m

Figure 20: Schema of the 2D Sinusoidal Slider [14].

to sublimation, the fictive material defined by Droba [14] is used. The ablation model for
the sublimation is the latent enthalpy model defined by Mullenix [25]. This computation is
run during 400 s with a time step δt = 0.025 s.

Density ρ = 2000 kg/m3

Heat capacity CP = 1000 J/(kg ·K)
Thermal conductivity λ = 0.4 W/(m ·K)
Sublimation temperature Tsub = 1000 K
Sublimation enthalpy ∆Hsub = 205 kJ/kg
Initial temperature Ti = 500 K

Table 1: Material properties for the Sinusoidal Slider test cases.

(a) initial mesh (b) t = 180 s

(c) t = 250 s (d) t = 300 s (e) zoom at t = 300 s

Figure 21: Ablation of the 2D Sinusoidal Slider with an imposed heat flux.

The type of boundary condition used in MoDeTheC for ablation is not involved in the
mesh displacement model. It only modifies the input data, i.e. the ablation rate of each
face.
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The results of the simulation are given in Fig. 21. The shape of the boundary curve Γ1

is retained and the boundary curve Γ3 remains straight. However, the boundary curve Γ2

bends slightly at its junction with the boundary curve Γ1 due to a difference in heat transfer
in the material between the low part of the geometry (near Γ3) and the high part (near Γ1).
For the same energy input at the boundary curve Γ2, the lower part of the geometry always
heats the same volume close to Γ3. However, the upper part of the geometry heats either a
larger or a smaller volume due to the oscillations of Γ1. This results in a curvature on the
top of Γ1 while the bottom part remains flat. The combined effect of this curvature with
the Laplacian smoothing of the internal vertices stops the computation after 310 s due to
cell inversion (Fig. 21e).

The continuation of the computation can be achieved with multiple solutions. The first
one is to reduce the time step. This will raise the final time but the error is only shifted.
Such a solution also increases the computation cost. Another possibility is to change the
balancing method of the internal vertices. The Laplacian smoothing is known to have such
issues and might be replaced by an iso-parametric smoothing. The last solution is to re-mesh
a part or the entire domain.

The Sinusoidal Slider geometry is also used to highlight the necessity of the projection
step in the strategy described in Section 4.4.4. A coarse mesh composed of 600 cells (Fig.

22a) is used. For this test case, a constant ablation velocity
−→
V imp = 0.01 m/s is set on the

boundary curve Γ2 and no ablation is imposed on the others boundaries. The final time is
set to 150 s and the time step is 0.05 s. For comparison purposes, this case is run with and
without the projection step implemented in MoDeTheC.

(a) t = 0 s

(b) t = 150 s (c) zoom at t = 150 s

Figure 22: Ablation of the 2D Sinuosidal Slider with an imposed ablation velocity: with (in black) and
without (in blue) boundary vertex projection.

The result of the mesh displacement strategy is shown in Fig. 22. The initial shape of
the 2D Sinuosidal Slider is represented with dashed black line. The shape of the domain
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with and without projection are also shown respectively in black line and in blue line. The
result shows that the projection step is mandatory to maintain the sinusoidal shape of the
boundary Γ1 (Fig. 22b and 22c). From the point of view of an ablation computation,
material is created around the bottom of the sinusoid and material is removed around the
top of it. Finally, Fig. 22 proves the ability of the mesh displacement strategy to keep the
object shape even when the mesh is not fine.

The accuracy of the shape-preserving mesh balancing method is validated with a mesh
dependancy study shown in Fig. 23. The previous computation with an imposed ablation
velocity is performed with 50, 100 and 200 edges on the boundary curve Γ1. As a comparison
the mesh shown in Fig. 22 has 60 edges on Γ1.
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Figure 23: Maximal error for the 2D displacement of the boundary curve Γ1 during the computation.

At each time step, the maximal error δymax between the numerical and theoretical posi-
tion of Γ1 is plotted. Even with a coarse mesh, the error does not exceed 1.6 %. The maximal
error is drastically reduced to 0.35 % when a medium mesh is used. The computation with
the fine mesh, represented with the blue curve in Fig. 23, does not end at 250 s because of
cell inversion.

5.2.3. 3D Sinusoidal Slider

The 2D Sinusoidal Slider test case proposed by Droba [14] is here extended to 3D geome-
tries to prove the capacity of the mesh displacement strategy to maintain 3D space curves
and surfaces. The 2D Sinusoidal Slider is extended to 3D in two different ways. The first is
to extrude the 2D mesh following the third dimension (Fig. 24a) and the second is to define
a sinusoid in two space directions (Fig. 24b). These test cases are named 2D-E Sinusoidal
Slider and 3D Sinusoidal Slider respectively. The 2D-E Sinusoidal Slider is meshed with a
structured mesh with a refinement equivalent to the fine mesh of the 2D Sinusoidal Slider
(Fig. 21a) whereas the 3D Sinusoidal Slider refinement is equivalent to the coarse mesh of
Fig. 22a. These meshes are respectively composed of 25 000 and 36 000 cells. The material
properties are unchanged for these computations.

26



(a) 2D-E Sinusoidal Slider. (b) 3D Sinusoidal Slider.
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Figure 24: Schema of the 3D Sinusoidal Slider test cases.

The 2D-E Sinusoidal Slider is computed during 400 s with a time step δt = 0.025 s and
an imposed heat flux Φ = 20 MW/m2 on Γ2. The five other boundary surfaces have no heat
flux.

(a) t = 0 s (b) t = 150 s

(c) t = 250 s (d) t = 300 s

Figure 25: Ablation of the 2D-E Sinusoidal Slider with an imposed heat flux.

The computation of the 2D-E Sinusoidal Slider gives similar results to the 2D test case.
The shape of the boundary surface Γ1 is not modified during the ablation process. As for
the 2D case, the boundary surface Γ2 is curved and this curvature induces a cell inversion in
the volume and at the boundaries Γ3 and Γ4 after 310 s. Moreover, the computation results
agree with the expected results since the 2D-E displaced mesh is close to the extrusion of
the 2D Sinusoidal Slider result. The projection and smoothing steps maintain the shape of

27



the sinusoid while preventing the amplification of the numerical oscillations of the mesh.

The 3D Sinusoidal Slider test case is computed during 250 s with a time step δt = 0.05 s

and an imposed ablation velocity
−→
V imp on both Γ2 and Γ3 boundary surfaces in Fig. 24b.

The mesh during the ablation process is shown with the contour of the Z coordinate (Fig.
26). The reduced set of contour values and the initial boundary curves of the domain
illustrate the conservation of the sinusoidal surface. The height of the sinusoid is kept.
Moreover, the boundary curves between Γ1 and Γ4 and between Γ1 and Γ5 strictly follow
the initial curves.

The position of the sinusoid is also preserved during the computation even if a small
displacement in the ablation direction is observed as illustrated in Fig. 27, where the time
evolution of the Y coordinate contour at a specific location (black circle in Fig. 26a) of the
sinusoid is shown. In this area, the Y coordinate error for the highest vertex is less than
0.22 % during the computation.

(a) t = 0 s (b) t = 100 s (c) t = 250 s

Figure 26: Ablation of the 3D Sinusoidal Slider with imposed ablation velocity.

t = 0 s t = 30 s t = 60 s t = 90 s t = 120 s t = 150 s t = 180 s t = 210 s

Figure 27: Zoom on a bump of figure 26 during the computation.

A equivalent quantitative study as for the for 2D Sinusoidal Slider is performed with the
2D-E geometry. The mesh refinement is changed for the boundary surface Γ1 in Fig. 24a.
The maximal error shown in Fig. 28 is very similar to the results of Fig. 23. The coarse
mesh reaches a maximal error of 1.6 % and the medium mesh error does not exceed 0.35 %.
This proves the ability of the mesh displacement strategy to maintain the 3D shape when
large ablation occurs.

28



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250

δy
m

a
x

[%
]

t [s]

50 edges 100 edges 200 edges

Figure 28: Maximal error for the 2D-E displacement of the boundary surface Γ1 during the computation.

5.2.4. Doubly Receding Rectangle

The Doubly Receding Rectangle test case proposed by Droba [14] challenges the capacity
of the mesh displacement method to smooth a geometry. The domain consists in a rectangle
where a heat flux φ = 4 MW/m2 is set to the boundary curves Γ1 and Γ2 (Fig. 29). The
heat flux of the boundary curves Γ3 and Γ4 is set to zero. The computation is run during
500 s with a time step δt = 0.05 s. For this computation, an hybrid mesh composed of 2374
cells is generated with 7 layers of quadrilateral close to Γ1 and Γ2 (Fig. 30a).

Γ1

Γ2

Γ3

Γ4

3 m

1 m

Figure 29: Schema of the 2D Doubly Receding Rectangle [14].

The thermal response of the theoretical material defined in Table 1 is finally presented in
Fig. 30 during the ablation computation. At 80 s, the upper left corner is smoothed because
the energy received at the corner is higher due to the heat flux on both boundaries. Up to
500 s, the smoothed geometry is ablated and the size of the cell layers close to Γ1 and Γ2 are
maintained.
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(a) t = 0 s (b) t = 150 s

(c) t = 300 s (d) t = 500 s

Figure 30: View of the temperature field inside the material during the ablation of the 2D Doubly Receding
with imposed heat flux.

The Doubly Receding Rectangle test case is also used to highlight the impact of the
smoothing step during an ablation computation. The same case is thus performed twice:
firstly with the strategy of Section 4 (in black) and secondly by disabling the smoothing
step of the procedure (in red in Fig. 31).

The computation is performed on a block structured mesh (Fig. 31a). The result of the
computation at t = 170 s and t = 500 s is shown in Fig. 31b and 31e. The impact of the
mesh smoothing step during the computation is seen with the close views.

At t = 170 s, both methods smooth the corner vertex between Γ1 and Γ2. However, the
zooms at the upper left corner vertex show that an undesirable noise appears without the
smoothing step (Fig. 31c). During the computation, this noise increases and the resulting
mesh at t = 500 s is shown in Fig. 31f with strong oscillations. With the smoothing
step described in Section 4.5, this noise is removed during the computation without shape
flattening (Fig. 31d and 31g).

5.2.5. 3D Receding Cuboid

The general formulation of the mesh displacement strategy described in this paper allows
to smooth 2D and 3D geometries. The Doubly Receding Rectangle test case is here converted
in 3D in two different ways. The first is an extrusion of the Doubly Receding Rectangle (Fig.
32a) and the second is a triple receding cuboid (Fig. 32b). These test cases are named 3D
Doubly Receding and 3D Triple Receding respectively.

The 3D Doubly Receding geometry is meshed (11 470 cells) with 3 structured blocks to
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(a) t = 0 s

(b) t = 170 s (c) zoom at t = 170 s (d) zoom at t = 170 s

(e) t = 500 s (f) zoom at t = 500 s (g) zoom at t = 500 s

Figure 31: Ablation of the Doubly Receding 2D with imposed heat flux - Impact of smoothing step.

(a) Doubly receding. (b) Triple receding.
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Figure 32: Schema of the 3D Receding Cuboid test cases.

refine the mesh close to the boundary surfaces Γ1 and Γ2. The numerical parameters are
the same as for the 2D Receding Rectangle. So, an heat flux φ = 4 MW/m2 is set to the
boundary surfaces Γ1 and Γ2 whereas the heat flux on the other boundaries is set to zero.
During the computation, the boundary curve between Γ1 and Γ2 is smoothed (Fig. 33).
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In the same time, the boundary surfaces Γ3, Γ4, Γ5 and Γ6 are maintained in their initial
plane without any imposed sliding condition. Finally, the boundary curves and surfaces are
smoothed and no undesirable noise appears.

(a) t = 0 s (b) t = 50 s (c) t = 100 s

(d) t = 200 s (e) t = 400 s (f) t = 500 s

Figure 33: View of the temperature field inside the material during the ablation of the Doubly Receding
Cuboid with imposed heat flux.

The 3D Triple Receding test case challenges the ability of MoDeTheC to smooth corner
vertex. To do so, the heat flux φ = 4 MW/m2 is set to three boundary surfaces: Γ1, Γ2

and Γ4. The domain is meshed (55 926 cells) with structured blocks to refine the mesh close
to the boundary surfaces where the heat flux is applied. The mesh displacement correctly
smoothes the corner vertex and the boundary curves, as seen in Fig. 34.

6. Conclusion

A 3D mesh displacement strategy for the simulation of material degradation during
atmospheric reentry of space debris is proposed. The strategy requires three independent
steps, all based on a sharp edge and node detection. First, the mesh shape is modified to take
into account ablation due to physico-chemical phenomena. The present method computes
the node displacement such that any geometry can be managed. Then, the boundary and
internal nodes are redistributed to maintain a good mesh quality. The combination of
the Laplacian operator and a projection step on curves and surfaces enables the mesh to
be smoothed at each time-step without any undesirable flattening. Finally, the mesh is
smoothed to prevent high frequency oscillations of the boundary surfaces and curves. This
3D strategy is compliant with structured, unstructured and hybrid meshes. Moreover, for
space debris application, any material surface can be ablated without having to predetermine
or specific boundary conditions.
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(a) t = 0 s (b) t = 50 s (c) t = 100 s

(d) t = 200 s (e) t = 400 s (f) t = 500 s

Figure 34: View of the temperature field inside the material during the ablation of the Triple Receding
Cuboid with imposed heat flux.

This strategy is implemented in the finite volume material response code MoDeTheC
which uses an ALE approach with an interface tracking method. However, neither the finite
volume formulation nor the ALE method are prerequisite for this strategy. The general
formulation of the node displacement, the mesh balancing and the mesh smoothing allows
to use this strategy in different solvers. Moreover, the mesh displacement step can eas-
ily be coupled to another balancing and smoothing methods because all these steps are
independent.

The verification of the strategy implemented in MoDeTheC was done on many 2D/3D
different shapes and ablation configurations (imposed velocity or sublimation model). Some
examples were shown to justify the choice of the 3D mesh displacement strategy and to
prove its accurate behaviour.

Future work consists in the complete validation of MoDeTheC ablation models. Sim-
ulation with increasing complexity will be computed to take into account all the physical
phenomena of the material degradation. These computations will be compared to other
ablation codes and to experimental results. Moreover, the ablation of other geometries,
representative of space debris, will be checked.

Finally, one objective of space debris material ablation is to compute the degradation
of the entire object. To do so, the mesh displacement strategy described in this paper and
based on the ALE formulation is not enough. So, a local and/or global remesh algorithm
should be implemented in MoDeTheC in the future.
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Appendix A. Interface and layer treatments for internal balancing

The mesh balancing used in MoDeTheC can compute large mesh deformation thanks to

the use of the Laplacian operator
−→
L , to the special treatment imposed on interfaces and to

the cell layer displacement described in Section 4.4.
The doubly receding rectangle test case presented in Section 5.2.4 is here used with the

block structured mesh shown in Fig. A.35a. The balancing is done with the Laplacian

operator
−→
L and three options are compared:

• without interface and layer treatments (Fig. A.35b);
• with interface treatment and without layer treatment (Fig. A.35c);
• with interface and layer treatments (Fig. A.35d).
At t = 100 s, the displacement of internal and boundary vertices is large enough for the

parameter α defined in Section 4.4.2 to be equal to 1. The mesh balancing is therefore

applied with
−→
L 2 operator. The mesh distortion due to

−→
L 2 operator is seen in Fig. A.35b

were the boundary layer refinement is lost. The balancing of the interface vertices circled

in Fig. A.35a with the operator
−→
L 1 improves the mesh quality (Fig. A.35c). However, the

size of the cell layers close to the upper left corner is increased due to the mesh curvature.
This issue is solved with the cell layer treatment as shown in Fig. A.35d. Thus, with the
interface and layer treatments, the quality of the mesh is maintained up to 500 s in the all
domain, and particularly close the boundaries Γ1 and Γ2.
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[7] Y. Prévereaud, Contribution à la modélisation de la rentrée atmospherique des débris spatiaux., PhD
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Université de Toulouse, Toulouse, France (2014).
[12] J. Wiebenga, I. Boyd, Computation of multi-dimensional material response coupled to hypersonic flow,

43rd AIAA Thermophysics Conference, 2012. doi:10.2514/6.2012-2873.
[13] S. Peluchon, Approximation numérique et modélisation de l’ablation liquide, Ph.D. thesis, L’Université
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(a) Initial mesh.

t = 100 s t = 500 s

(b) Without interface and layer treatments.

t = 100 s t = 500 s

(c) With interface treatment and without layer treatment.

t = 100 s t = 500 s

(d) With interface and layer treatments.

Figure A.35: Ablation of the Doubly Receding 2D with imposed heat flux - Impact of the interface and layer
treatments on internal balancing.
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