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Introduction

This work focuses on the equations of the EFM: ρ eq (s) s û + ∇ p = 0 , C eq (s) s p + ∇ • û = 0 ,

where u and p are defined on (0, ∞) × Ω, with Ω ⊂ R n , f denotes the Laplace transform of f and s is the complex variable. In order to reformulate these equations in the time domain, recent studies have used the additional differential equations (ADE) method [START_REF] Dragna | A generalized recursive convolution method for time-domain propagation in porous media[END_REF], approximating ρ eq and C eq by rational functions of s or using the oscillatory-diffusive (OD) representation method [START_REF] Monteghetti | Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models[END_REF], based on a pole and cut technique [START_REF] Hélie | Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions[END_REF].

Choosing to approximate ρ eq and C eq by rational functions or by using the OD representation approach leads, in both cases, to write their discrete expressions using multipole models.

ρ eq (s) = ρ ∞ 1 + N k=1 r k s -s k , (2) 
C eq (s) = C ∞ 1 + M k=1 l k s -q k . (3) 
On that account, the following work is based on ρ eq and C eq approximated as above.

2 Time-domain representation of the EFM It is assumed here that the studied porous media have a purely dissipative behaviour, hence all parameters r k , l k , s k and q k of ρ eq and C eq are real. Then, using expressions (2) and (3), system (1) becomes:

           s û + N k=1 r k s -s k s û + 1 ρ ∞ ∇ p = 0 , s p + M k=1 l k s -q k s p + 1 C ∞ ∇ • û = 0 . (4) 
However, as suggested by Xie et al. for a Biot model [START_REF] Xie | A discontinuous Galerkin method for wave propagation in orthotropic poroelastic media with memory terms[END_REF], it can also be rewritten as follows, which can ease the numerical computation.

           s û + N k=1 r k + r k s k s -s k û + 1 ρ ∞ ∇ p = 0 , s p + M k=1 l k + l k q k s -q k p + 1 C ∞ ∇ • û = 0 . (5) 
In order to compare these two equivalent systems in the time domain, the inverse Laplace transform is applied. This leads to a new set of equations containing causal convolution. To compute them, additional variables, ϕ k ϕ k ϕ k and ψ k for system (4), ϕ k ϕ k ϕ k and ψ k for system [START_REF] Moufid | Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media[END_REF], are introduced. Therefore, the global systems for (4) and ( 5) read:

                                 ∂ t u + 1 ρ ∞ ∇ p = - N k=1 r k ϕ k ϕ k ϕ k , ∂ t p + 1 C ∞ ∇ • u = - M k=1 l k ψ k , ∂ t ϕ k ϕ k ϕ k + 1 ρ ∞ ∇ p = s k ϕ k ϕ k ϕ k - N k=1 r k ϕ k ϕ k ϕ k , ∂ t ψ k + 1 C ∞ ∇ • u = q k ψ k - M k=1 l k ψ k ; (6)                      ∂ t u + 1 ρ ∞ ∇ p = - N k=1 r k u - N k=1 r k s k ϕ k ϕ k ϕ k , ∂ t p + 1 C ∞ ∇ • u = - M k=1 l k p - M k=1 l k q k ψ k , ∂ t ϕ k ϕ k ϕ k = s k ϕ k ϕ k ϕ k + u , ∂ t ψ k = q k ψ k + p . (7) 
In ( 7), there are no spatial derivatives in the ADE, compared to (6). Hence, when the system is discretized with a numerical scheme based on fluxes, these fluxes depend on the velocity and pressure variables, but not on the additional variables. Consequently, the problem to solve at each mesh interface does not grow with the number of additional variables. Moreover, for problems with multiple subdomains (porous media and air domain), there are no additional fluxes to manage for the interface between them.

Stability analysis

Hereafter, a stability analysis of system ( 7) is performed thanks to an energy functional defined below:

E(t) = ρ ∞ E u (t) + C ∞ E p (t) , where E u = 1 2 Ω u 2 dx - N k=1 r k s k 2 Ω ϕ k ϕ k ϕ k 2 dx ,
and

E p = 1 2 Ω p 2 dx - M k=1 l k q k 2 Ω (ψ k ) 2 dx .
It is straightforward to take its derivative:

dE dt = -ρ ∞ N k=1 r k Ω ∂ t ϕ k ϕ k ϕ k 2 dx -C ∞ M k=1 l k Ω (∂ t ψ k ) 2 dx - ∂Ω (p u) • n dσ.
From these equations, combined with the fact that ρ ∞ and C ∞ are necessarily positive, we impose the following sufficient conditions on the parameters:

(C 1 ) the weights (r k , l k ) k are positive, (C 2 ) the poles (s k , q k ) k are negative.
Hence, E is positive-definite and decreasing without external contributions at the boundary of the domain Ω. Thus, under these conditions, E describes an energy functional for (7), that enables to ensure the stability of the system without external inputs.

A numerical application with a Discontinuous Galerkin (DG) scheme was carried out to apply previous results. Furthermore, these 2 conditions are met by several approximated models describing ρ eq and C eq for a realistic range of physical parameters. Indeed, the OD representation of the JCAPL model or the Horoshenkov model can be discretized in the form of ( 2) and ( 3) with parameters verifying the conditions (C 1 ) and (C 2 ).

Conclusion

This work formulates the EFM equations for porous media in the time domain, with the functions ρ eq and C eq described by a set of weights and poles. In addition, a proof of stability is given under certain conditions on the sign of these weights and poles. In order to apply the theoretical results obtained, a DG scheme was implemented in 2D [START_REF] Moufid | Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media[END_REF].
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 1 Figure 1: Normalized energy over time in a 2D domain for different multipole-model parameters approximating a toy model and an initial Gaussian field for u and p. Increasing parts of the energy are marked in red.
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