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 where these parameters are defined as irrational functions, behaving like fractional derivatives in the time domain. Here, we present the proof of stability of the time-domain EFM using the JCAPL model thanks to their oscillatory-diffusive (OD) representations.

Introduction

The EFM equations for rigid porous materials are recalled below in the Laplace domain:

ρ 0 α(s) s û + ∇ p = 0 , χ 0 β(s) s p + ∇ • û = 0 , (1) 
where ρ 0 is the ambient fluid density, χ 0 the ambient adiabatic compressibility; velocity u and pressure p are defined on (0, ∞) × Ω, with Ω ⊂ R n , f denotes the Laplace transform of f and s is the complex variable.

The JCAPL model defines α and β as

α(s) := α ∞ 1 + M s + N 1 + s L -1 s , (2) 
β(s) := γ -(γ -1) 1 + M s + N 1 + s L -1 s -1 . (3)
with parameters detailed in [START_REF] Moufid | Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media[END_REF]. These expressions are based on the exact description of α and β at the high and low frequency limits, connected by a function whose singularities lie on the negative real axis of the complex plane [START_REF] Pride | Drag forces of porous-medium acoustics[END_REF].

In order to study the stability of the whole JCAPL -EFM system, a methodology based on a poles and cuts technique [START_REF] Hélie | Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions[END_REF] is used. It enables to recast a complex function f in a formulation built from an OD representation (4), containing an infinite number of real or complex weights and poles, but no √ s-type terms.

f (s) = k∈Z r k s -s k oscillatory + ∞ 0 µ(ξ) s + ξ dξ diffusive , (4) 
with the well-posedness condition

∞ 0 |µ(ξ)|
1+ξ dξ < ∞ for f to admit an OD representation [START_REF] Moufid | Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media[END_REF].

Oscillatory-diffusive representation

The irrational parts of α and β are first studied in order to find their OD representation. The focus is therefore on the two following transfer functions:

ĝ(s) := 1 N α(s) α ∞ -1 - M s = 1 + s L -1 s , ĥ(s) := β(s) -1 γ -1 = N 1 + s L + M -N s + N 1 + s L + M -N .
Function ĝ admits a diffusive representation with µ(ξ) ∝ ξ -1 (ξ/L -1) 1/2 , a positive diffusive weight defined for ξ ∈ (L, ∞) and verifying the well-posedness condition.

Function ĥ has an oscillatory-diffusive representation containing a diffusive part and an additional isolated term, which is null for certain values of the parameters M , N and L [START_REF] Moufid | Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media[END_REF].

ĥ(s) = r 0 s -s 0 + ∞ L ν(ξ) s + ξ dξ, (5) 
with s 0 < 0, r 0 0 and ν(ξ

) ∝ ξ (ξ/L -1) 1/2 (ξ -M -N ) 2 + N 2 (ξ/L -1) -1
, which is positive and verifies the well-posedness condition.

Extended diffusive realization

Based on the OD representations of ĝ and ĥ, system (1) in the time domain reads:

     ∂ t u + M u + N (g ∂ t u) + 1 ρ 0 α ∞ ∇ ∇ ∇ p = 0, ∂ t p + (γ -1) (h ∂ t p) + 1 χ 0 ∇ ∇ ∇ • u = 0. (6) 
The interest of the OD representation is in the associated diffusive realization, which gives a time-local formulation of the convolution products present in [START_REF] Monteghetti | Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions[END_REF]. In this work, extended diffusive realizations, as

         z u (t, x) := ∞ L µ(ξ) ∂ t φ φ φ(ξ; t, x) dξ , ∂ t φ φ φ(ξ; t, x) = -ξ φ φ φ(ξ; t, x) + u(t, x) , φ φ φ(ξ; 0, x) = u(0, x)/ξ , (7) 
for z u = (g ∂ t u) with φ φ φ the diffusive variable, are used and differ from usual diffusive realizations by the presence of a time derivative in the convolution product. Non-null initial conditions are set for the diffusive variable to have a finite value for z u at t = 0 [START_REF] Lombard | Diffusive Approximation of a Time-Fractional Burger's Equation in Nonlinear Acoustics[END_REF]. The energy functional

E φ φ φ (t) := 1 2 Ω ∞ L µ(ξ) ξ φ φ φ(ξ; t, x) 2 dξ dx,
the derivative of which is

d dt E φ φ φ (t) = Ω u(t, x) • z u (t, x) dx - Ω ∞ L µ(ξ) ∂ t φ φ φ(ξ; t, x) 2 dξ dx, (8) 
can be defined for the extended diffusive realization (7). A realization analogous to (7) is used for z p := (h ∂ t p) with ψ denoting its associated diffusive variable and E ψ its associated energy. The additional first-order system r 0 /(s -s 0 ) in ( 5) is handled by the same diffusive variable ψ and its associated energy, included in E ψ , is

E ψ 0 (t) := 1 2 Ω r 0 (-s 0 ) |ψ(-s 0 ; t, x)| 2 dx,
Using the realization of the convolution products in (6) leads to the augmented system:

                         ∂ t u + M u + N z u + 1 ρ 0 α ∞ ∇ ∇ ∇ p = 0, ∂ t p + (γ -1) z p + 1 χ 0 ∇ ∇ ∇ • u = 0, ∂ t φ φ φ(ξ; t, x) = -ξ φ φ φ(ξ; t, x) + u(t, x) , ∂ t ψ(ξ; t, x) = -ξ ψ(ξ; t, x) + p(t, x) , φ φ φ(ξ; 0, x) = u(0, x)/ξ , ψ(ξ; 0, x) = p(0, x)/ξ. (9) 

Stability analysis

The stability analysis of system (9) is performed thanks to the augmented energy functional

E(t) := E m (t) + E diff (t)
, where the classical mechanical energy is

E m (t) := ρ 0 α ∞ 2 Ω u 2 dx + χ 0 2 Ω |p| 2 dx,
and a diffusive energy is defined as

E diff := ρ 0 α ∞ N E φ φ φ (t) + χ 0 (γ -1)E ψ (t) .
The positivity of the JCAPL diffusive weights, and the known sign of r 0 and s 0 , enables to prove the following proposition. 

(t) = -ρ 0 α ∞ M Ω u 2 dx + N Ω u • z u dx -ρ 0 α ∞ + χ 0 Ω p ∂ t p dx ,
have an opposite sign of those in the time derivative of the diffusive energy (see the first term of (8)) and can compensate exactly with d dt E diff .

Moreover, following [START_REF] Monteghetti | Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions[END_REF], Prop. 4.1 can be proved.

Proposition 4.1 The dynamical system (9) is asymptotically stable, i.e. (u, p, φ φ φ, ψ) → (0, 0, 0, 0) as t → ∞ in the appropriate energy space.

Hence, E describes an energy functional for (9), which enables to ensure the stability of the system without external inputs.
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