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Regardless of the sector of activity, industrial maintenance is a critical component for any company. It allows to
not only limit breakdowns but also to prevent possible failures. Systems’ maintenance improves productivity, and
profitability of a factory. In maritime field, maintenance is ruled by context factors such as limited storage places,
long period without confident restocking or external help from systems’ experts, etc. Thus, engine officers need to
rely on the best possible organization of the maintenance. Predictive maintenance would be a useful tool providing an
efficient assistance by anticipating anomalies and failures. This article presents two contributions: 1) a digital twin,
of a sub-system, to generate nominal and non-nominal data and, 2) the use of a machine learning based method to
predict failures and provide decision making support to maintenance officers.
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1. Introduction

Maintenance is an essential operation in the mar-
itime domain as in all industrial sectors since
it ensures systems’ reliability and security. Fur-
thermore, maintenance costs represent significant
parts of the industrial budget and exploitation
costs and so must be addressed with strong at-
tention. Nowadays, the logistics sector relies on
intensive and efficient exploitation of transporta-
tion resources, which means that availability of
operational vessels is highly critical.

1.1. Maintenance in maritime field

Systematic maintenance is always considered in
maritime field because parts storage areas are lim-
ited, and failures can have critical consequences
on the system and especially on people. Predic-
tive maintenance perfects maintenance organiza-
tion and maximizes the time at sea while mitigat-
ing downtime at the shipyards as well as reduc-

ing maintenance costs. Predictive maintenance is
therefore a necessity as it corresponds to a major
industrial challenge.
The Seanatic project (Sea Analytic Connected

Boat) aims to provide a maintenance assistance
tool to anticipate functional breakdowns and im-
prove the logistics of the intervention phases, lim-
iting technical stoppages to increase days at sea.
The work presented in this paper is part of this
project.

1.2. What is predictive maintenance?

Predictive Maintenance (PdM) is based upon the
philosophy that ”if it is not broken, don’t fix it”
(Jimenez et al. (2020)). PdM consists in monitor-
ing the system and using historical data to detect
trends of equipment’ behavior in order to predict
when it is more likely to fail. Once failure trends
are identified, and the timing of failure correctly
predicted, maintenance tasks may be planned-
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ahead. In general, equipment shows early signs of
malfunction before failures: increases above nor-
mal temperature, rise in vibration levels, drop in
performance levels, increased noise level, current
and voltage changes and so on. One of the main
advantages of predictive maintenance is that it al-
lows to plan maintenance rather than just reacting
to potential failures, but also to address the root
cause of the failure.

1.3. State of the art
1.3.1. Machine learning for prediction data

The rise of Machine Learning (ML) has also
reflected on Predictive Maintenance. Data-driven
predictive maintenance is now widely used for
the detection, diagnosis and prognosis of faults
(Vollert and Theissler (2021)). The prognosis task
to predict an asset’s remaining useful life (RUL)
(Si et al. (2011)), i.e. the time span from the
current time point to the end of the useful life,
is considered as the most complex part of pre-
dictive maintenance, yet the most beneficial one.
Predicting the time of failure enables not only
cost-effective scheduling of maintenance, but also
related activities like spare part provisioning.
Multiple reviews of ML-based predictive main-

tenance have been conducted in the recent years
(Vollert et al. (2021), Lei et al. (2020), Ran et al.
(2019) and many others). The domains of applica-
tion of these methods are diverse: bearing (Zhang
et al. (2020),Neupane and Seok (2020)), milling
tool (Serin et al. (2020)) or jet engine (Che et al.
(2019)). Recurrent neural network approaches are
among the most popular approaches. Degradation
is usually thought of as a slow process over time,
and they excel because of their ability to model
long-term dependencies.

1.3.2. Digital twin in missing data cases

The digitalization of the industry has lead to the
emergence of new technologies such as Digital
Twin (DT). The concept has been introduced by
Glaessgen and Stargel (Glaessgen and Stargel
(2012)) where a first definition was proposed.
Since that, its definition continuously improves
depending of the domains in which it is developed
and operated (Barricelli et al. (2019), Jones et al.

(2020)).
DT can be seen as the virtual representation of

a process, an object, or a product. DT can be as
simple as a static digital model, but it can also
be more sophisticated like a dynamic model that
replicates a complex behavior. DTs are widely
used for conception, simulation, optimization, or
maintenance in the industry.
Failure data are rarely available and yet nec-

essary for predictive maintenance. The need for
a Digital Twin arises from the fact that sensors
data collected is not always adequate for RUL
estimation. Thus we use a simulator for training
maintenance officer as a digital twin to gener-
ate nominal and non-nominal data. We limit our
experiments to a sub-system: a diesel-generator.
This sub-system is critical for the vessel’s opera-
tions and the maintenance team avoids letting it
breaking down.

1.4. Work positioning

This paper presents the work aimed at building
a maintenance assistance tool to anticipate func-
tional failures and improve the logistics of the
intervention phases, limiting the technical stops
to increase the sea days. Two contributions are
presented:

• Amethodology to collect data in absence
of faulty data using a digital twin solu-
tion of a diesel generator sub-system;

• The use of a deep learning approach to
predict the need for maintenance of the
diesel generator sub-system.

The paper is organized as follows. In Section
2, the data extraction using a digital twin is pre-
sented. The deep learning approach to estimate
the RUL is discussed in Section 3. Concluding re-
marks and future research are discussed in Section
4.

2. Data extraction using a digital twin

The concept of digital twin (DT), in maritime
field, is introduce in this first section. To address
the absence of supervised data, a DT solution
based on a marine training simulator for mainte-
nance officers has been developed. We begin by
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describing use-cases that enable us to build a num-
ber of representative datasets, then we explain the
method used to generate unique datasets. Finally,
we discuss the proposed methodology to gener-
ate supervised data and their impact on machine
learning (ML) algorithms.

2.1. Digital twin in maritime domain

Maritime domain follows manufacturing domain
in its digital revolution, as we see more and more
technologies and connectivity solutions embedded
in ships. For instance, engine manufacturers are a
good example of system digitalization. Over the
last 5 years, they have been improving engine
control, monitoring and connectivity as high ef-
ficiency, low gas emissions, and safe operation of
their systems are mandatory. They proposed their
own support and artificial intelligence solutions
with data they collected for years. Multiple pro-
prietary solutions have been developed such as the
Expert Insight Technology by Wärtsilä (2021), or
the Caterpillar initiative started in 2015, with the
acquisition of ESRG (Marr (2017)) that provides
a software suite for the remote monitoring and di-
agnostics. However, datasets used for developing
their technologies are not public, yet.

2.1.1. Why using a digital twin?

Operating data as data logs are most of the time
made confidential by ship-owners, when they are
not missing. Data intellectual property (IP) is a
key concern in every domain of artificial intelli-
gence. Maritime domain is not an exception, and
so the data access has to be considered as a real
challenge.
A second issue is related to supervised data.

These specific datasets require long record cam-
paigns to acquire a significant information. Even
so, due to automatic maintenance operations,
recorded data can be considered as censored. Su-
pervised data is therefore harder to obtain in real
exploitation context, and requires specific experi-
ments on these systems.
A DT approach has been introduced to tackle

the IP problem and deal with the absence of
nominal and non-nominal data to train machine
learning models. DT can be a good alternative to

generate representative datasets, as it accurately
models the system behavior. To facilitate our data
generation process, a simulator to train vessels’
maintenance officers has been used as DT.

2.2. Using a simulator as a digital twin

Asmentioned in Section 2.1.1 data is a crucial part
in supervised machine learning technologies, and
its access can be challenging because of confiden-
tiality and availability issues.
To build labeled datasets, generated data are

exported from an engine room simulator: K-Sim
by the Norwegian’s company Kongsberg (2021).
This commercial solution is usually used to train
future maintenance officers. Kongsberg’s simula-
tor allows us to shape scenarios composed of nom-
inal or non-nominal data. The possibilities offered
by the simulator are discussed in Laskowski et al.
(2015).
K-Sim Engine models benefit from a long-term

development based on actual ship specifications.
Systems’ behavior is accurately represented on an
overall level as well as on a more specific sub-
systems level. Furthermore, the simulator inte-
grates emergency situations by selecting the level
of anomaly of multiple parameters.
Every system and sub-system is represented in

the simulator by a page with its parts, sensors, and
fluid circuits. In the diesel generator (DG) sub-
system case, we can simulate a turbo-compressor,
several valves, pumps and filters or coolers along-
side lube-oil, fuel-oil, fresh water, or exhaust gas
circuits.
Multiples variables, depicting physical values

from sensors, are associated to those items. In
DG’s example, engine revolution per minute, flu-
ids temperature, pressure, and throughput, or elec-
trical power, voltage, intensity, frequency, are ob-
servable. Finally, over 150 different variables can
be monitored for the DG sub-system.
As K-Sim engine main purpose is to train ma-

rine officers through different emergency situa-
tions, each system and sub-system offer a list of
malfunction variables. These special variables can
be set to create anomalies that impact the nominal
behavior of the current system.
Thanks to the support of Kongsberg’s service,
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we use an additional proprietary software, called
Trend Log and Display System, to export logs as
csv files. A strategy for collecting failure data
was developed based on the combination of the
simulator and the data logger. Collected data are
used to compose datasets to train our model.
To simplify the training and evaluation of our

machine learning algorithm, five case studies has
been defined in collaboration with experts from
ENSM (2022), taking into account the capabilities
of the simulator. These scenarios, recommended
by the experts, represent use cases close to reality.
The next subsection will go through the context
and picked scenarios.

2.3. Case studies to build operational
context to data logs

K-Sim Engine simulates multiple engines, from
low-speed to high-speed boats. We focused on
the MAN B&W 5L90MC VLCC L11-V which
simulates a very large crude carrier of 305 meters,
with a slow speed turbo charged diesel engine.
K-Sim engine models over a thousand of sen-

sors from tens of systems. To limit our experiment
complexity, and the amount of exported data, we
focus on a sub-system: the diesel generator (DG).
The DG is a diesel engine that generates electrical
energy. DG is easier to apprehend than the main
engine, while its physical models are quite similar
and still well designed in Kongsberg’s simulator.
Over 90 variables are monitored from this sub-
system, continuously.
To complete our approach, and to provide con-

text to our generated data, we identified with
experts, senior officers and tutors, five relevant
scenarios:

• turbocharger dirty
• lube-oil filters dirty
• fuel-oil filters dirty
• high temperature fresh water cooler dirty
• low temperature fresh water cooler dirty

Each scenario offers the possibility to select a
level of anomaly from 0 to 100% of the failure.
This malfunction capability brings the opportu-
nity to monitor nominal and non-nominal data.
Nevertheless, multiple heterogeneous datasets are

required to train ML algorithms.

2.4. Datasets building method

Artificial intelligence algorithms require many
heterogeneous data for training its models. A sim-
ulator is not suited to generate hundreds of unique
datasets. To do so, a methodology based on seg-
ments of data, exported from the simulator, has
been developed. We take advantage of the mal-
function variables to create different segments of
data, that we combine to create unique sequences.
This methodology is detailed in this sub-section.
Previous subsections 2.2 and 2.3 showed how

we export data and scenarios we pick to train
our models. Adjusting malfunction level allows to
shape and form specific data sequences. However,
we cannot simply replicate our scenario to get
heterogeneous datasets. K-Sim engine is based on
mathematical models, and basic replication will
give the same results every time. Malfunction
level sequence has to be changed from a log to
another in order to get unique records. To illustrate
this, in a first attempt, a malfunction level of 10%
is set after 10 minutes, while in a second attempt,
the same event will arrive after 20 minutes.
K-Sim engine brings the functionality to au-

tomatize the malfunction level. We can, that way,
schedule various automated sequences to get dif-
ferent records of data. However, it will require a
huge amount of time to prepare those sequences,
without considering, the time needed to play and
export all logs. K-Sim engine is a training simula-
tor that makes trainees in front of a virtual engine
room. While a possibility to accelerate time has
been added to the simulator, it has not been devel-
oped to quickly generate thousands of datasets.
To overcome this technical blockage, chunks

of data for each level of malfunction, for ev-
ery picked scenarios, are generated separately.
The obtained subsequences of data are aggre-
gated them together following a random pattern.
A malfunction step of 10% has been arbitrarily
chosen to build 10 segments of malfunction, from
10% to 100%, for each scenario. As the simulator
initializes from a nominal state, when we play a
malfunction segment it takes around few seconds
to stabilize its data to the selected setpoint. First
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hundreds data are discard to remove interference.
Finally, a Python script associates to the 11

segments generated, from 0 to 100%, a random
number. This number represented howmany times
the specific chunk is played in the sequence to
form a complete unique record of data. Figure 1
shows alongside the turbocharger speed variable,
in krpm, for five different datasets automatically
generated from data segments. In the last sce-
nario (purple), nominal segment is played 8 times,
10% segment is played 10 times, 20% segment is
played 1 time, and so on.
In those turbocharger datasets, the fourth one

(purple) shows a fault corresponding to 10% of the
clogging near the seven-hundredth sample. Since
the failure occurrence, the speed of rotation is de-
creased as difficulties to exhaust gas appear. The
next step, being 20% of failure, arrives close to
the one thousand six hundredth sample. Situation
gets worst because the system is getting dirtier at
every stage we can see through the graph. Stages
are due to the collection strategy we used with the
simulator.
As we get many heterogeneous datasets, this

approach presents some limitation discussed in the
next subsection.

2.5. Discussion about synthetic data

Limits has been raised during our datasets gener-
ation process.
As much as we get unrepeatable datasets with

our method, we are still far from real-life un-
predictable models. We train machine learning
models specific to Kongsberg’s simulator mod-
els. Moreover, sensors position, and dynamic are
characteristic to this ship case. ML models will
need an update before being adapted to another
use case. Nevertheless, these datasets brought the
required data to theoretically confirm our machine
learning algorithm, on representative scenarios.
The next step will be to expose our ML algo-

rithm to real data. To do so, A 44 meters boat is
dedicated to experiments and is currently being
fitted with all the required instrumentation. This
experiment is planned as future work.

3. Deep Learning approach for RUL
estimation

Predicting the remaining useful lifetime (RUL)
is difficult; we need a reliable prediction that is
understandable to the maintenance officer who
will choose the maintenance date. The pro-
posed method is a two-step process: in the first
step, kernel principle component analysis (KPCA)
(Schölkopf et al. (1997)) is applied for non-linear
features extraction and then a recurrent neural
network approach called Weibull Time to Event
Recurrent Neural Network (Martinsson (2016))
is used to predict the Weibull distribution of the
failure risk.

3.1. Proposed approach
3.1.1. KPCA

Dimensionality affects neural networks. The more
dimensions there are, the more data we will re-
quire to train our network. Furthermore, the data
generated by the sensors is noisy and frequently
redundant. The objective of KPCA is to reduce
dimensionality and to extract non-linear features,
retaining useful information and removing redun-
dant information. KPCA is an extension of prin-
cipal component analysis (PCA) using techniques
of kernel methods.

3.1.2. Gated recurrent unit (GRU)

GRU was introduced by Cho et al. (2014) and
is part of the recurrent neural network (RNN)
architecture. A RNN is a type of artificial neural
network which uses sequential data or time series
data. They take information from prior inputs to
influence the current input and output. In order to
keep the information, they have two gates: a reset
gate and an update gate. These gates regulate the
flow of information that is required to predict the
network’s output.
We will describe how the activation of the j-

th hidden unit at time step t is computed. In the
following equations, x and h are respectively the
input vector and the output vector. W and U are
weight matrices which are learnt. Firstly, the reset
gate rj is computed by :

rj = σ([Wrx]j + [Urht−1]j)
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Fig. 1. Generated datasets of turbocharger speed

where σ is the sigmoid function and [.]j denotes
the j-th element of a vector. Similarly, the update
gate zj is computed by:

zj = σ([Wzx]j + [Uzht−1]j)

The actual activation of the proposed unit hj is
then computed by:

ht
j = zjh

t−1
j + (1− zj)h̃

t
j

where h̃t
j is generated by rj with a tanh layer. The

function is:

h̃t = tanh([Wx]j + [U(r � ht−1)]j)

where the operator� denotes the Hadamard prod-
uct.
In this formulation, when the reset gate is close

to 0, the hidden state is forced to ignore the previ-
ous hidden state and reset with the current input
only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation. On the other hand, the update gate
controls how much information from the previous
hidden state will carry over to the current hidden
state.

3.1.3. WTTE-RNN

The Weibull Time to Event Recurrent Neural
Network is a state-of-the-art approach based on
survival analysis and deep learning. This method
is used to predict the parameters of a Weibull
distribution corresponding to the survival function
of the diesel generator sub-system based on the
KPCA result. This function is used to determine

Fig. 2. Frame of GRU

when to schedule maintenance. The Weibull dis-
tribution is widely used in reliability analysis be-
cause its flexibility allows it to model various data.
The probability density function of a Weibull

random variable is :

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k x ≥ 0,

0 x < 0,
(1)

where k > 0 is the shape parameter and λ > 0 is
the scale parameter of the distribution.
This method can work with censored and non-

censored data. Censored data is any data for which
we do not know the exact event time. On the
other side, we know the exact event time for non-
censored data. In the context of reliability engi-
neering we typically refer to events as ”failures”.
It is common to refer to data as ”times” but a

variety of other units of measure may also be used
such as cycles, rounds, landings, etc. This depends
on the type of data being collected and the units in
which the life is measured. In this paper, ”times”
refers to the measurement period.
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3.2. Results

There are 912 scenarios in the dataset. We train the
model on five different failures with only one fail-
ure each time. 274 of the 912 scenarios are used in
the test sets, while the rest are used in the training
sets. The KPCA extracts only 5 components, and
the neural network is made up of 10 units. We use
Adam (Kingma and Ba (2014)) as the optimizer,
with a learning rate of 1e − 4. We use an early
stopping strategy to determinate the appropriate
number of episodes to avoid overfitting. As re-
sult of learning, we obtain a loss of 7.7492 on
the training dataset and 7.7833 on the validation
dataset.
To determine the RUL once the model is

trained, we fixed a threshold R (0 < R < 1).
It corresponds to the reliability threshold i.e., the
probability that the system will fail later than the
predicted RUL. The RUL is determined using:

RUL = λ(− ln(R))(1/k) (2)

where k and λ are the parameters of the distribu-
tion.
The goal of the threshold is to collaborate

with the maintenance officer to determine the best
value of R. This, however, is outside the scope of
the paper.
The outcome of the RUL prediction with R =

0.5 for various failures is shown in Figure 3. The
green dashed line represents the optimal predic-
tion. The actual RUL is shown by the y-axis, while
the expected RUL is represented by the x-axis.
There are five failures, each of which corresponds
to a different color. The predictions failure are
centered around the optimal RUL with a threshold
R = 0.5 and there is no distinction made by the
model based on the type of failure. The perfor-
mance of the model is less important than the ease
with which a person can interpret its predictions.

4. Conclusion

The Seanatic project seeks to provide a mainte-
nance support tool to predict functional break-
downs and enhance the logistics of the interven-
tion phases, limiting technical stoppages and in-
creasing days at sea. In this paper we present two
contributions:

• For the diesel generator, a way to collect
data in the absence of inaccurate data
utilizing a digital twin solution;

• The use of a deep learning method to
predict the remaining useful lifetime in
order to schedule the maintenance of the
diesel generator.

Datasets extracted, using our first contribution,
were used to evaluate our deep learning algorithm.
Our digital twin have generated sufficient amount
of significant data to train models. Our second
contribution has proven its efficiency to anticipate
system’s failure. This last result demonstrates how
such an approach can help maintenance officers to
plan their operations to extend equipment lifetime.
A 44 meters boat is dedicated to experiments

and is currently being fitted with all the required
instrumentation. Future perspectives will be the
integration of our approach on a training ship.
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from the École Nationale Supérieure Maritime (ENSM)
contributed to our work bringing their technical and
mechanical expertise to our project.

References
Barricelli, B. R., E. Casiraghi, and D. Fogli (2019).
A survey on digital twin: Definitions, characteris-
tics, applications, and design implications. IEEE
Access 7, 167653–167671.

Che, C., H. Wang, Q. Fu, and X. Ni (2019). Combining
multiple deep learning algorithms for prognostic and
health management of aircraft. Aerospace Science
and Technology 94, 105423.
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