
HAL Id: hal-03769017
https://hal.science/hal-03769017v1

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Space Exploration for Memory-Oriented
Approximate Computing Techniques

Hugo Miomandre, Jean Francois Nezan, Daniel Ménard

To cite this version:
Hugo Miomandre, Jean Francois Nezan, Daniel Ménard. Design Space Exploration for
Memory-Oriented Approximate Computing Techniques. 33rd IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP), Jul 2022, Gothenburg, Sweden.
�10.1109/ASAP54787.2022.00028�. �hal-03769017�

https://hal.science/hal-03769017v1
https://hal.archives-ouvertes.fr

Design Space Exploration for Memory-Oriented
Approximate Computing Techniques

Hugo Miomandre
INSA Rennes

IETR, UMR CNRS 6164
Rennes, France

Hugo.Miomandre@insa-rennes.fr

Jean-François Nezan
INSA Rennes

IETR, UMR CNRS 6164
Rennes, France

Jean-Francois.Nezan@insa-rennes.fr

Daniel Ménard
INSA Rennes

IETR, UMR CNRS 6164
Rennes, France

Daniel.Menard@insa-rennes.fr

Abstract—Modern digital systems are processing more and
more data. This increase in memory requirements must match the
processing capabilities and interconnections to avoid the memory
wall. Approximate computing techniques exist to alleviate these
requirements but usually require a thorough and tedious analysis
of the processing pipeline. This paper presents an application-
agnostic Design Space Exploration (DSE) of the buffer-sizing
process to reduce the memory footprint of applications while
guaranteeing an output quality above a defined threshold. The
proposed DSE selects the appropriate bit-width and storage type
for buffers to satisfy the constraint. We show in this paper that the
proposed DSE reduces the memory footprint of the SqueezeNet
CNN by 58.6% with identical Top-1 prediction accuracy, and the
full SKA SDP pipeline by 39.7% without degradation, while only
testing for a subset of the design space. The proposed DSE is fast
enough to be integrated into the design stream of applications.

Index Terms—Approximate Computing, Design Space Explo-
ration, Signal Processing, Deep Neural Network

I. INTRODUCTION AND CONTEXT

Digital signal processing and multimedia applications have
to compute an ever increasing amount of data. For instance,
the SKA [3], [14] is the world’s largest radio telescope project
in construction, planned to generate 16 Tb/s data streams.

In 2021, the digital world accounted for 4% of greenhouse
gases and 10% of the electricity consumption.Memories are
responsible for the major part of the power consumption of
both Edge Computing [7], [15] and HPC systems [16], as the
area occupied can be as large as 80% of a chip and external
memories are often required to extend these internal memories.

Approximate Computing (AxC) enables improvements from
circuit to system levels to reduce the energy consumption,
computation time, or implementation cost as presented in [5].
In this context, three main approaches have been proposed
in AxC: Hardware-Level, Computation-Level and Data-Level
AxC techniques. The contributions of this paper belong to
the latter category, which impact the processed data. Existing
precision optimization techniques [10] aim at reducing the
implementation cost of the processing part without taking into
account the memory part.

Memory reduction AxC techniques are typically done at
design time and used on top of memory handling [8] method,
and may be application-specific [11]. These techniques require
an in-depth knowledge of the computation and handling per-
formed on the data, which tends to be time-prohibitive. Hence

the need to develop fast and generic Design Space Exploration
(DSE) algorithms to optimize the precision of data buffers.

In this paper, we propose DSE method to ease the im-
plementation of a precision optimization technique aiming to
reduce the memory footprint of an application while respecting
a user-defined quality constraint. Our method, relying on [12],
is fast enough to be integrated into the design stream of an
application.

Our contribution is a data-driven AxC DSE method. The
goal is to find the binary representation of manipulated data
with the smallest number of bits, while preserving the accuracy
of the final result.

The Approximate Buffer (AxB) technique presented in [12]
consists in concatenating data into buffers to reduce the
memory footprint. Data are represented using the Fixed-Point
(FxP) format with an arbitrary bit-width, with every data from
an AxB using the same format. It enables memory footprint
reductions between 27% and 68% on the application examples
without significant degradation of the output quality, at the cost
of a manual and time-consuming DSE.

While current DSE methods enable the implementation
of AxC-based techniques on applications, these methods are
either architecture-specific [6] or application-specific [13],
but also does not take into account the memory footprint
improvement achievable with AxC [4]. To the best of our
knowledge, there is no automatic and generic DSE algorithm
for memory footprint reduction method based on data preci-
sion optimization AxC techniques like AxBs.

II. CONTRIBUTIONS

The DSE method presented in this paper automates and
extends the AxB technique presented in [12], adding the
support of representations in addition to the FxP format.

A. Alternative Data Representation

By default, AxBs use the FxP format to store data. However,
as the whole AxB uses the same format, FxP is poorly suited to
represent values across a wide range. Hence, we added support
for two additional data representations.

The custom Floating-Point (cFP) format extends the rule-
set of regular FP arithmetics [1].The cFP representation uses
the same four parameters to represent the sign-bit s, the size

of the exponent field e and the mantissa m, and the value of
the exponent bias b. These parameters are adjusted to reduce
the number of bits required to represent a value while still
maintaining a sufficient level of accuracy.

The concept of Uniform Quantazition (UQ) representation
consists in re-scaling the data to store to fit a new
representation space. This representation space is sub-
divided in 2n steps, with n denoting the number of bits
to represent the data. The conversion slightly differs from
the conventional uniform quantization to enforce the proper
storage of 0. The simplicity of the UQ format goes well with
the possibility to handle data with an arbitrary bit-width.

B. Memory Footprint Minimization Algorithm

Our generic DSE algorithm is designed to minimize the
memory footprint of an application, while maintaining the
result above a specified threshold of a desired quality metric.
Our DSE relies on the AxB concept detailed in [12], allowing
data to be represented and stored in memory on an arbitrary
number of bits, without the usual 2n constraints. Alternative
data representations from Section II-A are added within AxBs,
requiring no additional modification of the application original
source code, aside from the initial modification needed for
AxBs usage.

One of the main feature of our DSE is the distinction
between global buffers and local buffers. Global buffers are
are allocated for the whole lifespan of the application, such as
the result vector of an iterative process or a reference set of
value that needs to be compared against. Local buffers are not
required for the whole duration of the application and whose
memory space can be reused [8].

This clear distinction between global buffers and local
buffers allows to opportunistically increase the bit-width of
local buffers when possible, reducing the number of config-
uration to explore. This operation is later on referred to as
buffer inflation.

A first run of the application is performed to monitor the
variation of values to store within AxBs. This enables the
determination of the base storage format to be used for each
representation.

Algo. 1 shows the global view of our method and its
separation into three subsections detailed in Algo. 2, Algo. 3
and Algo. 4.

Algorithm 1: Global view of the DSE algorithm.

1 wmin ← minValueDetermination // Algorithm 2

2 qtest ← runTest(wmin)
3 if qtest < qconstraint then
4 wmin ← IterativeProcess(wmin) // Algorithm 3

5 return bitScraping(wmin) // Algorithm 4

1) Min Value Determination: The first part (Algo. 1:1),
detailed in Algo. 2, consists in finding, for each individual
buffer, the minimal number of bits bbest and the associated

data-type which satisfy the quality constraint qconstraint, while
every other buffer are kept at their original data-type. The
goal of this step is to find an appropriate starting vector
wmin. Each bit-width nbit is tested with each candidate data-
type. Intermediary results are kept aside for latter parts of the
DSE, as well as potential future explorations with different
quality constraints. This vector of individual minimums wmin

is then tested to check if it satisfies the quality constraint
(Algo. 1:2-4). If not, the algorithm continues with the second
part (Algo. 1:4) detailed in Algo. 3.

Algorithm 2: Min Value Determination.
Input: The list of buffer to process
Output: The list of minimal sizes

1 foreach j ∈ bufGlob ∪ bufLoc do
2 qtest ←∞
3 nbit ← MAX NB BIT
4 bbest ← MAX NB BIT
5 for i ← log2(MAX NB BIT) - 1 downto 0 do
6 if qtest ≥ qconstraint then
7 nbit ← nbit - 2i

8 else
9 nbit ← nbit + 2i

10 qtest ← findBestType(j, nbit)
11 if (qtest ≥ qconstraint) AND (nbit < bbest) then
12 bbest ← nbit

13 wj
min ← bbest

14 return inflateBuffer(wmin)

2) Iterative Process: The main part of Algo. 3 is an iterative
convergent process to find a buffer configuration wtest with a
better qMem ratio (∆quality

∆memory).
The goal is to slowly increase the output quality of the

application by selectively adding bits to data buffers, starting
from wmin. On every step, a bit-budget wbudget and a woffset are
used to determine the number of bits to add. Global buffers
are handled as independent buffer-entities, while local buffers
are all considered as a single unique buffer-entity. With nglobal

and nlocal the number of global buffers and local buffers, the
number of buffer-entity to consider for the definition of wbudget

and woffset is nentity = nglobal+min(nlocal, 1). wbudget corresponds
to the number of buffer-entity to receive a single additional bit,
and woffset to the number of bits to add to each buffer-entity.

During a step, the algorithm sets up a list Wtest of all the
configurations possible with wbudget and woffset from wmin. Wtest

inflated, creating potential duplicates to remove, and ordered
by increasing memory footprint. Finally, the application is
executed with every entry of Wtest.

If no satisfying qMem ratio can be found, the wbudget is
increased, until it reaches nglobal + min(nlocal, 1). wbudget then
goes back to 1, and woffset is incremented and applied on
every buffer (Algo. 3:9). Local buffers with non-overlapping
lifespans are completely independent from one another. Con-
sequently, as the maximal memory footprint is achieved in a

specific section of the application, local buffers that are not
impacting this maximum can have their bit-width increased to
the point it either reaches the memory ceiling, or reaches the
number of bits used for the original data.

Algorithm 3: Iterative Process.
Input: The list of buffer to process
Output: A set of parameter that satisfies qconstraint

1 qiter ← qtest, bestQMem ← 0
2 wbudget ← 0, woffset ← 0, exit ← False
3 while exit = False do

// If no satisfactory step has been found,

add an additional bit to the pool

4 if bestQMem ≤ 0 then
5 wbudget++

6 else
7 wbudget ← 1, woffset ← 0

// If an additional bit has been added to

every buffer, increase the pool offset

8 if wbudget > nentity then
9 wbudget ← 1, woffset++

// Provides a list of test vectors ordered

by increasing footprint

10 Wtest ← generateWtest(wmin, nglobal, nlocal, wbudget,
woffset)

11 foreach wtest in Wtest do
12 qtest ← runTest(wtest)
13 qMem ← ∆quality

∆memory
// Check if satisfactory solution

14 if qtest ≥ qconstraint then
15 exit ← True, Break

// Check if satisfactory next step

16 if qMem > bestQMem then
17 bestQMem ← qMem
18 qiter ← qtest

19 wmin ← wtest

// If buffers are already at max size,

then exit without solution

20 if
∑

wtest = nentity × MAX NB BIT then
21 exit ← True, Break

22 return wmin

To simplify the representation of the method, some of its
parts have been offloaded in the form of functions, detailed
hereafter, the first two being user-provided:

• qualityEval(): Evaluate the quality from a reference.
• appFootprint(wtest): Computes the memory footprint.

Can be user-provided or from a development framework.
• findBestType(wtest

j , nbit): If needed, runs the application
with a single AxB for buffer wtest

j on nbit. Returns the
best type and save the result for future uses.

• inflateBuffer(wtest): Gradually increases the size of local
buffers until it reaches the memory ceiling.

• runTest(wtest): Runs the application with the wtest param-
eter set. Returns the output quality value.

• generateWtest(wmin, nglobal, nlocal, wbudget, woffset): Gener-
ates a list Wtest with wbudget and woffset, inflates, prunes,
and orders the list by memory footprint. Returns Wtest.

3) Bit Scraping: After the main part is completed (Algo. 3),
a pass of bit-scraping (Algo. 4) is performed.

Algorithm 4: Bit Scraping.

Input: Vector wmin respecting constraint qconstraint

Output: Optimised buffer, New quality value
1 exit ← False
2 while exit = False do
3 for i = 0 to nbuffer do
4 wtest ← wmin

5 wi
test ← wi

test - 1
6 if appFootprint(wtest) < appFootprint(wmin)

then
7 qtest ← runWithTestVector(wtest)
8 if qtest ≥ qconstraint then
9 wmin ← wtest

10 qlast ← qtest

11 exit ← True

12 return wmin, qlast

The result vector wmin obtained from Algo. 3 is able to
satisfy the quality constraint, but may overshoot it.

Bit-scraping consists in iterating on every buffer of wmin to
remove unnecessary bits. If the removal allows a reduction of
the memory footprint and maintaining of the constraint, the
change is committed, otherwise discarded. If no bits can be
removed from buffers, the bit-scraping process ends.

III. EXPERIMENTAL RESULTS

The proposed DSE was tested on 2 C-based applications
modified to use AxBs. Tests were performed on a x86 Intel
Xeon E5-1620 CPU.

A. SqueezeNet CNN

SqueezeNet [9] is a CNN for computer vision. Specific
methods based on quantization and pruning enable a reduction
of the model size, but the reference 4.7MB version is used.
The model is pre-trained and does not undergo any re-training.

The proposed DSE is used to minimize the memory foot-
print of SqueezeNet. The constraint is identical TOP-1 classi-
fication for a dataset of 300 images. The memory footprint of
the reference implementation is composed of around 4.7MB of
model parameters, around 3.8MB of buffers to store data be-
tween layers and around 0.7MB of other memory allocations,
for a total of 9.2MB.

Fig. 1 shows the memory allocation during the execution of
each layer (left columns).

The buffers used to test our DSE method are the 10 global
buffers holding the model of the CNN, and 7 of the local

con
v1

max
Po

ol1fire
2

fire
3

max
Po

ol3fire
4

fire
5

max
Po

ol5fire
6

fire
7

fire
8

fire
9

con
v1

0

av
gP

oo
l0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.17
M

em
or

y
fo

ot
pr

in
t (

M
B)

Output
Input
Model
Misc.

Fig. 1. Memory allocation at different stage of the reference SqueezeNet
CNN (left) and with our method with a 100% accuracy (right).

20 35 50 65 80 95 110 125 140 155
80

100

120

140

160

180

200

220

Quality (PSNR in dB)

M
em

or
y

fo
ot

pr
in

t
(M

B
)

From [12]
Our DSE

Fig. 2. Graph of the memory footprint dependant of the output quality.

buffers used between the first layers, for a total of 17 buffers.
Using our generic DSE algorithm, the memory footprint of the
application can be reduced to 3.81MB, a 58.6% reduction, with
100% TOP-1 accuracy. This result is obtained by exploring
only 300 of the theoretical maximum 3217 ≈ 3.87 × 1025

possible configurations. The memory footprint obtained with
our DSE are displayed on Fig. 1 (right columns).

Inference time when using AxBs is around 7% slower.
Considering that a single execution of the application takes
around a minute on CPU, our DSE method is able to provide
a satisfying AxB configuration in approximately 5 hours.

B. SDP Imaging Pipeline

For the second use-case, the SDP Evolutionary Pipeline
(SEP) [2] application is considered. The SEP is an imple-
mentation of the Square Kilometre Array (SKA) Science Data
Processor (SDP) for its most compute-intensive task. The
dataset corresponds to 15 minutes of data from 512 antennae.
The full SKA is expected to have hundreds of thousands of
receivers producing billions of samples per second.

The reference memory footprint of the SEP with this dataset
is 234.9MB. The acceptable noise level of this application is
evaluated with a PSNR value at around 100dB.

Fig. 2 shows the memory footprint of the application
dependant of the output quality, tested with quality constraints
from 50dB to 155dB by 5dB increments. The number of
configurations tested to reach a result ranges from 7 to 50.

Using our DSE with a 105dB constraint yields an output
quality of 106dB with a memory footprint of 141MB, a 39.7%
reduction. This result is obtained by exploring only 7 of the
maximum 329 ≈ 3.52 × 1013 possible configurations, with
a runtime of around 170 seconds per configuration. The use
of AxBs on this application leads less than 1% performance
penalty.

The proposed DSE is able to provide the AxB configuration
for a given quality constraint in a time ranging from minutes
to hours.

IV. CONCLUSION

This paper presents an automatic and generic DSE method
to optimize the setup of the AxB AxC technique.

We have shown that our DSE method is capable of finding
the adequate AxB configuration to reduce the memory foot-
print of data processing application. Our DSE method has been
tested on SqueezeNet CNN with a pre-trained model and on
an implementation of the SKA SDP pipeline.

Precision optimization of applications’ computations is not
in the scope of the proposed method but are complementary
and can be combined with our approach.

Future works will consist in merging this method into a code
generation framework and studying the impact of its result to
target other kind of hardware architecture such as FPGAs.

REFERENCES

[1] Ieee standard for floating-point arithmetic. IEEE Std 754-2019.
[2] SEP Pipeline Imaging - GitLab. https://gitlab.com/ska-telescope/sdp.
[3] SKA Observatory Public Website. https://www.skatelescope.org/.
[4] S. Barone, M. Traiola, M. Barbareschi, and A. Bosio. Multi-objective

application-driven approximate design method. IEEE Access, 2021.
[5] A. Bosio, D. Menard, and O. Sentieys. A Comprehensive Analysis of

Approximate Computing Techniques: From Component- to Application-
Level. ESWEEK 2018, 2018.

[6] J. Castro-Godı́nez, J. Mateus-Vargas, M. Shafique, and J. Henkel.
Axhls: Design space exploration and high-level synthesis of approximate
accelerators using approximate functional units and analytical models.
In ICCAD, 2020.

[7] E. de Greef, F. Catthoor, and H. de Man. Array placement for storage
size reduction in embedded multimedia systems. In ASAP, USA, 1997.

[8] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. On memory reuse
between inputs and outputs of dataflow actors. ACM TECS, 2016.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡0.5mb model size, 2016.

[10] D. Menard, D. Chillet, and O. Sentieys. Floating-to-fixed-point Conver-
sion for Digital Signal Processors. EURASIP, 2006.

[11] S. Minakova and T. Stefanov. Buffer sizes reduction for memory-
efficient cnn inference on mobile and embedded devices. In DSD, 2020.

[12] H. Miomandre, J.-F. Nezan, D. Menard, A. Campbell, A. Griffin, S. Hall,
and A. Ensor. Approximate buffers for reducing memory requirements:
Case study on SKA. In SiPS, 2020.

[13] G. Paim, L. M. G. Rocha, H. Amrouch, E. A. C. da Costa, S. Bampi,
and J. Henkel. A cross-layer gate-level-to-application co-simulation for
design space exploration of approximate circuits in hevc video encoders.
IEEE Transactions on Circuits and Systems for Video Technology, 2020.

[14] J. Santander-Vela, L. Pivetta, and N.P. Rees. Status of the Square
Kilometre Array. In Proc. of International Conference on Accelerator
and Large Experimental Control Systems (ICALEPCS’17), ICALEPCS.

[15] Wm. A. Wulf and S. A. McKee. Hitting the memory wall: Implications
of the obvious. SIGARCH Comput. Archit. News, March 1995.

[16] D. Zivanovic, M. Pavlovic, M. Radulovic, H. Shin, J. Son, S. A. Mckee,
P. M. Carpenter, P. Radojković, and E. Ayguadé. Main memory in hpc:
Do we need more or could we live with less? ACM TACO, 2017.

