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On the joint survival probability of two collaborating firms

Stefan Ankirchner ∗ Robert Hesse † Maike Klein ‡

September 5, 2022

Abstract

We consider the problem of controlling the drift and diffusion rate of the endowment
processes of two firms such that the joint survival probability is maximized. We assume
that the endowment processes are continuous diffusions, driven by independent Brownian
motions, and that the aggregate endowment is a Brownian motion with constant drift and
diffusion rate. Our results reveal that the maximal joint survival probability depends only
on the aggregate risk-adjusted return and on the maximal risk-adjusted return that can be
implemented in each firm. Here the risk-adjusted return is understood as the drift rate
divided by the squared diffusion rate.

2020 MSC : Primary 49J20, 35R35, Secondary 91B70.
Keywords : Ruin probability, Survival probability, Optimal control,

Collaboration, Two-dimensional Brownian motion.

Introduction

Consider two insurance companies that aim at collaborating so as to maximize their joint survival
probability, or equivalently, to minimize the probability that one of the two companies gets
ruined. Assume that the two companies can commit themselves to help the other in case of
financial distress. To assess the benefit of a collaboration Grandits [4] has set up a model
where the endowment processes, also called surplus processes, of both companies are given by
two independent Brownian motions with drift and the companies can collaborate by transfer
payments. These payments are assumed to be absolutely continuous with respect to the Lebesgue
measure and to be bounded in such a way that each company keeps a minimal positive drift rate.
The collaborations considered in [4] are assumed to have an impact only on the drift rates of

the companies’ endowment processes. There are types of collaboration, however, that also entail
a change of the diffusion rates; think, e.g., of mutual reinsurance agreements or agreements to
transfer high-risk subsidiaries. In this paper we address the question of how to quantify the
maximal benefit if a collaboration has an impact also on the diffusion rate of both endowment
processes.
To measure the benefit of collaboration we introduce a control problem, where an agent can

continuously allocate a drift and diffusion rate to two diffusion processes representing the en-
dowment processes of the two companies, respectively. The aggregate drift and diffusion rates
are assumed to be constant and independent of the allocation plan. Moreover, we assume that
the set of implementable drift rates is bounded, and the set of implementable diffusion rates
is bounded and bounded away from zero. The agent aims at choosing an allocation plan that
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maximizes the joint survival probability of both companies. One can think of the agent as a
mediator between the companies suggesting a mutual help contract.
As in [4] the optimal control turns out to be of bang-bang type: it is optimal that the agent

implements the highest possible risk-adjusted return, defined as the ratio of the drift rate and
the volatility squared, in the endowment dynamics of the company behind. Besides, the formula
for the value function reveals that the maximal joint survival probability only depends on the
maximal implementable risk-adjusted return and on the risk-adjusted return of the aggregate
endowment process. Our assumptions entail that the latter does not depend on the allocation
strategy.
We solve the control problem via a classical verification technique. To this end we construct

an explicit solution of the associated Hamilton-Jacobi-Bellman (HJB) equation. We use that
the optimal control can be characterized as a bang-bang feedback function jumping at the line
bisecting the first quadrant, where the first quadrant is interpreted as the set of non-negative
endowment pairs. Since the optimal control is of bang-bang type, the HJB is linear below the
bisector and above the bisector. The boundary conditions and a smooth fit condition along the
bisector leads to a specific solution of the HJB equation, which can be verified to coincide with
the value function. We remark that our construction of the solution of the HJB equation and
also the verification bears some similarities with the approach used in [4].

McKean and Shepp [8] and Grandits [4] both consider the problem of maximizing the joint
survival probability of two firms whose endowment processes are given by independent Brownian
motions with drift and which are allowed to collaborate by transfer payments. In [8] these
transfer payments are at most as high as the drift rates whereas in [4] each company keeps a
given positive minimal drift rate. In both cases the value function is derived and turns out to be a
classical solution to the associated HJB equation. We emphasize that we allow for negative drift
rates in our model. Grandits and Klein [5] extend the model of [4, 8] to endowment processes
driven by Brownian motions that are correlated. In all three articles [4, 5, 8] the derived optimal
strategy is of bang-bang type and implements the highest possible risk-adjusted return for the
company behind.
In [9] Schmidli deals with maximizing the survival probability of one company by choosing an

optimal dynamic proportional reinsurance strategy in the diffusion model. Also in this model
the optimal strategy maximizes the risk-adjusted return among all admissible strategies.

The paper is organized as follows. In Section 1 we introduce our model and provide the value
function and an optimal strategy. We explain how to derive the formula for the value function
in Section 2. Finally, we prove our results in Section 3.

1 Model and main results

Let σ, σ ∈ (0,∞) with σ ≤ σ and µ, µ ∈ R such that µ ≤ µ. We define

M := µ+ µ and Σ := σ + σ

and assume that

M > 0. (1.1)

Let D be a measurable, non-empty subset of [µ, µ]× [σ, σ] such that

(µ, σ) ∈ D =⇒ (M − µ,Σ− σ) ∈ D. (1.2)

We interpret an element (µ, σ) ∈ D as an implementable pair of drift and diffusion rate for the
endowment process of each company. The set of admissible controls consists of all measurable
functions (µ, σ) : R2 → D and is denoted byM.
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We denote the endowment processes of the two companies by X = (Xt)t∈[0,∞) and Y =
(Yt)t∈[0,∞), respectively. Given a control (µ, σ), we assume that the dynamics of the pair (X,Y )
satisfy the stochastic differential equation (SDE)

dXt = µ(Xt, Yt) dt+
√
σ(Xt, Yt) dW

1
t , X0 = x,

dYt =
(
M − µ(Xt, Yt)

)
dt+

√
Σ− σ(Xt, Yt) dW

2
t , Y0 = y,

(1.3)

where W = (W 1,W 2) denotes a two-dimensional Brownian motion and (x, y) ∈ R2. For every
(µ, σ) ∈ M and (x, y) ∈ R2 there exists a weak solution of (1.3) satisfying the initial condi-
tion (X0, Y0) = (x, y), and we have uniqueness in law for (1.3) (see [7]). Recall that a weak
solution of (1.3) consists of a tuple (Ω,F , (Ft)t∈[0,∞),P,W,X, Y ), where the first 4 components
build a filtered probability space, W is a two-dimensional Brownian motion with respect to the
filtration (Ft) and the processes X,Y,W satisfy the SDE (1.3) (see, e.g., Section 5.3 in [6]).
Now let x, y ∈ [0,∞) and (µ, σ) ∈ M. Let (Ω,F , (Ft)t∈[0,∞),P,W,X, Y ) be a weak solution

of (1.3) with initial condition (X0, Y0) = (x, y). The probability that both companies survive is
given by

J(x, y, µ, σ) := P

[
inf

t∈[0,∞)
Xt ≥ 0, inf

t∈[0,∞)
Yt ≥ 0

]
. (1.4)

We refer to J(x, y, µ, σ) as the joint survival probability of both companies, given initial endow-
ments (x, y) and a collaboration control (µ, σ). The maximal joint survival probability for an
initial endowment (x, y) ∈ [0,∞)2 is given by

V (x, y) := sup
(µ,σ)∈M

J(x, y, µ, σ). (1.5)

We now comment on the model assumptions. Notice that we allow for Markov controls only.
The time homogeneous dynamics (1.3) entails that there exists an optimal control that is a
Markov control. To simplify the outline of the model we restrict the control set to Markov
controls upfront.
Notice that the volatilities of both processes X and Y are bounded away from zero. Hence,

the probability in (1.4) does not change if we replace ≥ by the strict inequality symbol >.
The Assumption (1.1) means that the drift rate of the aggregate endowment process X + Y

is positive. If M is non-positive, then with probability one the aggregate process hits zero.
This further implies that at least one of the two companies gets ruined, and hence the value
function (1.5) is constant equal to zero. Thus, the only interesting case is where (1.1) is satisfied.
The Condition (1.2) means that the set of implementable drift and diffusion rate pairs coincide

for both companies. The symmetry of D facilitates the search for the optimal strategy and a
closed form formula of the value function that turns out to be symmetric around the line bisecting
the first quadrant.

It turns out that the maximal joint survival probability essentially depends only on the two
ratios

L := L(D) = sup
(µ,σ)∈D

µ

σ
and S :=

µ+ µ

σ + σ
=
M

Σ
.

Notice that L ≤ µ
σ <∞, because D ⊆ [µ, µ]× [σ, σ].

Our main result is as follows.

Theorem 1.1. The value function of the optimal control problem (1.5) is given by

V (x, y) =


1− e−2Lmin{x,y} − 2Lmin{x, y}e−L (x+y), L = 2S,

1− e−2Lmin{x,y} − L

L− 2S
e−2S (x+y)

(
1− e−2 (L−2S) min{x,y}

)
, L 6= 2S.

(1.6)
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If L is attained in D, say by (µ̂, σ̂), then an optimal control is given by(
µ∗(x, y), σ∗(x, y)

)
= 1{x≤y}(µ̂, σ̂) + 1{x>y}(M − µ̂,Σ− σ̂). (1.7)

Remark 1.2. The value function V only depends on the ratios L – the maximal implementable
risk-adjusted return – and S – the risk-adjusted return of the aggregate endowment process.
Moreover, one can show that the value function V is continuous and strictly increasing in L
and S.

Remark 1.3. Observe that we can change the definition of the optimal control (µ∗, σ∗) on the
set {x = y} and obtain indistinguishable processes (X∗t , Y

∗
t ), t ∈ [0,∞), because with probability

one the set {t ∈ [0,∞) : X∗t − Y ∗t = 0} has Lebesgue measure zero, for details see Appendix C
in [2].

Since we have an explicit formula for the value function, we can quantify the gain of collabo-
ration. To this end, we assume that in the case of no collaboration both endowment processes
have a constant drift rate of M2 and a constant diffusion rate of

√
Σ
2 .

The probability for a Brownian motion with drift rate M
2 and diffusion rate

√
Σ
2 and starting

in z ∈ (0,∞) to hit zero is given by e−2S z (see, e.g., [1, Chapter V.5, Equation (5.6)]). Thus, in
case of no collaboration the joint survival probability is given by

Vnc(x, y) =
(
1− e−2S x

) (
1− e−2S y

)
. (1.8)

Notice that (1.8) follows also from (1.6) by restricting D to the set containing only the element(
M
2 ,

Σ
2

)
.

In order to quantify the gain of collaboration we introduce

R(x, y) :=
V (x, y)

Vnc(x, y)
, x, y > 0.

Note that R is the relative increase of the maximal joint survival probability due to a collabora-
tion.

Corollary 1.4. R is non-increasing in both x and y,

lim
x↓0

R(x, y) =
L

S
, and lim

x→∞
R(x, y) =

1− e−2Ly

1− e−2S y
.

Moreover, for every a > 0 we have

lim
x↓0

R(x, a x) =
L

S
and lim

x→∞
R(x, a x) = 1.

Remark 1.5. For a set D of implementable drift and diffusion rate satisfying (1.2) and L > S
the relative increase of the maximal joint survival probability also only depends on L and S.
Corollary 1.4 implies that a risk transfer is of particular interest if one company is (or both
companies are) close to ruin.

Remark 1.6. Observe that L = L(D) ≥ S > 0. Moreover, we have L > S if and only if there
exists (µ, σ) ∈ D with µ

σ 6= S. To show the claim we distinguish three cases.

• If D contains an element (µ, σ) with µ
σ > S, then also L = sup(µ,σ)∈D

µ
σ > S.

• If there exists (µ, σ) ∈ D with µ
σ < S, then (M − µ,Σ− σ) ∈ D by Assumption (1.2) and

S = M
Σ < M−µ

Σ−σ ≤ L.

• Finally, if µσ = S for all (µ, σ) ∈ D, then L = S holds true.
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2 Deriving the value function

In this section we explain how one can derive a solution of the Hamilton-Jacobi-Bellman (HJB)
equation associated to (1.5) and, thus, obtain a candidate for the value function V . Our approach
is based on [4], where a ruin problem for two independent Brownian motions with controllable
drift is considered. In our setting this corresponds to σ = σ = 1 and µ > 0.
First observe that the HJB equation associated to (1.5) is given by

sup
(µ,σ)∈D

{
σ

2

∂2

∂x2
v +

Σ− σ
2

∂2

∂y2
v + µ

∂

∂x
v + (M − µ)

∂

∂y
v

}
= 0, on (0,∞)× (0,∞) (2.1)

with boundary conditions

v(x, 0) = v(0, y) = 0, x, y ∈ [0,∞), (2.2)

lim
y→∞

v(x, y) = 1− e−2Lx, x ∈ [0,∞), (2.3)

lim
x→∞

v(x, y) = 1− e−2Ly, y ∈ [0,∞). (2.4)

We now comment on these boundary conditions for the HJB Equation (2.1). Condition (2.2) is
due to the fact that if one endowment process is already zero, then the joint survival probability
equals zero. If the endowment process of one company attains infinity, then this process is
assumed to survive forever. The process behind obtains the highest possible risk-adjusted return
to maximize its survival probability, which is given by the right-hand side of Equation (2.3) or
(2.4), respectively (see, e.g., [1, Chapter V.5, Equation (5.6)]).
We first consider the case where the set of implementable drift and diffusion rate is given by

the rectangle D = [µ, µ] × [σ, σ]. In this case L = µ
σ . Moreover, the supremum over D in (2.1)

can be separated and the HJB equation is given by

sup
σ∈[σ,σ]

{
σ

2

∂2

∂x2
v +

Σ− σ
2

∂2

∂y2
v

}
+ sup
µ∈[µ,µ]

{
µ
∂

∂x
v + (M − µ)

∂

∂y
v

}
= 0, on (0,∞)× (0,∞).

(2.5)

Note that in the HJB Equation (2.5) we maximize a linear function in σ and µ, respectively, over
a compact interval. Hence, each supremum is attained at the boundary of the corresponding
interval. More precisely,

sup
σ∈[σ,σ]

{
σ

2

∂2

∂x2
v +

Σ− σ
2

∂2

∂y2
v

}
(x, y) =


σ

2

∂2

∂x2
v(x, y) +

σ

2

∂2

∂y2
v(x, y), if

∂2

∂x2
v(x, y) ≥ ∂2

∂y2
v(x, y),

σ

2

∂2

∂x2
v(x, y) +

σ

2

∂2

∂y2
v(x, y), otherwise,

and

sup
µ∈[µ,µ]

{
µ
∂

∂x
v + (M − µ)

∂

∂y
v

}
(x, y) =


µ
∂

∂x
v(x, y) + µ

∂

∂y
v(x, y), if

∂

∂x
v(x, y) ≥ ∂

∂y
v(x, y),

µ
∂

∂x
v(x, y) + µ

∂

∂y
v(x, y), otherwise.

In the following we make several assumptions on the solution v of the HJB equation. After
obtaining the explicit formula given on the right-hand side of (1.6) we can check that all the
assumptions are satisfied. Finally, one has to verify that v is indeed the value function of our
problem (1.5).
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We assume that v is a classical solution of the HJB Equation (2.5), i.e. v ∈ C2
(
(0,∞)×(0,∞)

)
with boundary conditions (2.2), (2.3), and (2.4). Since our control problem (1.5) is symmetric
in the initial values of the endowment processes, every candidate v for the value function should
satisfy v(x, y) = v(y, x). Due to this symmetry and the monotonicity of the maximization
problem (1.5) we impose that{

(x, y) :
∂

∂x
v(x, y) >

∂

∂y
v(x, y)

}
=

{
(x, y) :

∂2

∂x2
v(x, y) <

∂2

∂y2
v(x, y)

}
=
{

(x, y) : x < y
}

and{
(x, y) :

∂

∂x
v(x, y) =

∂

∂y
v(x, y)

}
=

{
(x, y) :

∂2

∂x2
v(x, y) =

∂2

∂y2
v(x, y)

}
=
{

(x, y) : x = y
}
.

Observe that this implies that the smaller endowment process is assigned the lowest possible
volatility and the highest possible drift rate to minimize the risk that this firm is ruined. In
other words, the agent chooses the maximal implementable risk-adjusted return for the company
behind.
Using v(x, y) = v(y, x), we only focus on the set

G =
{

(x, y) ∈ [0,∞)× [0,∞) : x ≤ y
}
.

In the interior of G it holds - under our assumptions - that v has to satisfy

σ

2

∂2

∂x2
v +

σ

2

∂2

∂y2
v + µ

∂

∂x
v + µ

∂

∂y
v = 0 (2.6)

with

v(0, y) = 0,

lim
y→∞

v(x, y) = 1− e−2Lx,

∂

∂x
v(t, t) =

∂

∂y
v(t, t), t ∈ (0,∞),

∂2

∂x2
v(t, t) =

∂2

∂y2
v(t, t), t ∈ (0,∞). (2.7)

We make the ansatz

v(x, y) = 1− e−2Lx + f(x)g(y), (x, y) ∈ G.

The function (x, y) 7→ f(x)g(y) fulfills (2.6) in the interior of G. More precisely,

σ

2
f ′′(x)g(y) +

σ

2
f(x)g′′(y) + µ f ′(x)g(y) + µ f(x)g′(y) = 0 (2.8)

with

f(0)g(y) = 0, y ∈ [0,∞), (2.9)

lim
y→∞

f(x)g(y) = 0, x ∈ [0,∞), (2.10)

f(t)g′(t)− f ′(t)g(t) = 2Le−2L t, t ∈ (0,∞). (2.11)

Note that we do not impose an additional assumption on (x, y) 7→ f(x)g(y) to guarantee (2.7)
because it turns out that the solution that we construct for (2.8) satisfying (2.9), (2.10), and
(2.11) directly implies that Condition (2.7) for v is fulfilled, see (2.18) below.
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Provided that f(x)g(y) 6= 0 for all (x, y) in the interior ofG, Equation (2.8) can be reformulated
as (

σ

2

f ′′

f
+ µ

f ′

f

)
(x) +

(
σ

2

g′′

g
+ µ

g′

g

)
(y) = 0.

The previous equation can only hold true for all (x, y) in the interior of G if(
σ

2

f ′′

f
+ µ

f ′

f

)
(x) = λ, (2.12)

(
σ

2

g′′

g
+ µ

g′

g

)
(y) = −λ (2.13)

for some λ ∈ R.
First we consider the case L 6= 2S . This case is a bit more involved than the case L = 2S.

We assume that λ ∈
(
−µ2

2σ ,
µ2

2σ

)
which guarantees real-valued solutions to (2.12) and (2.13).

Later on we have to choose λ in an appropriate way such that the boundary condition (2.11) is
fulfilled. By Theorem 1 and Theorem 5 in [3, Chapter 2] we obtain that

f(x) = C1 exp
(
(−L+ ϑ1)x

)
+ C2 exp

(
(−L− ϑ1)x

)
,

g(y) = C3 exp
((
−
µ

σ
+ ϑ2

)
y
)

+ C4 exp
((
−
µ

σ
− ϑ2

)
y
)

for some C1, C2, C3, C4 ∈ R, where

ϑ1 = ϑ1(λ) =

√
µ2 + 2σ λ

σ
, ϑ2 = ϑ2(λ) =

√
µ2 − 2σ λ

σ
.

From (2.9) we conclude that f(0) = 0 and hence, C2 = −C1. Since we are only interested in
the product f(x)g(y), we can assume that C1 = 1 without loss of generality. Note that for
λ ∈

(
−µ2

2σ , 0
]
Condition (2.10) yields C3 = 0. Unfortunately, for λ ∈

(
0,

µ2

2σ

)
this does not hold

true. Nevertheless, we set C3 = 0 and hope to obtain a solution. In addition, Condition (2.11)
on the diagonal results in

2L exp (−2L t) =C4

[
L− ϑ1 −

µ

σ
− ϑ2

]
exp

((
−L+ ϑ1 −

µ

σ
− ϑ2

)
t
)

+ C4

[
−L− ϑ1 +

µ

σ
+ ϑ2

]
exp

((
−L− ϑ1 −

µ

σ
− ϑ2

)
t
) (2.14)

which has to be satisfied for all t ∈ (0,∞). Therefore, it is necessary that the exponent of one
summand coincides with −2L t. This directly implies that the coefficient of the other summand
vanishes. More precisely, we determine λ such that

L− ϑ1 +
µ

σ
+ ϑ2 = 2L (2.15)

or

L+ ϑ1 +
µ

σ
+ ϑ2 = 2L. (2.16)

Some standard but lengthy computations show that λ∗ = −2S
µσ−µσ
σ+σ is the unique λ ∈(

− µ2

2σ ,
µ2

2σ

)
satisfying either (2.15) or (2.16). More precisely, if L < 2S then (2.15) holds;

and (2.16) is fulfilled if L > 2S.
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For λ = λ∗ and L < 2S Equation (2.14) is given by

2L exp (−2L t) = 2C4 [L− 2S] exp (−2L t) .

Thus,

C4 =
L

L− 2S
.

Similarly, for L > 2S we conclude that

C4 = − L

L− 2S
.

To sum up, we have

f(x)g(y) =
L

L− 2S
e−2S y

(
e2 (S−L)x − e−2S x

)
= − L

L− 2S
e−2S (x+y)

(
1− e−2 (L−2S)x

)
.

(2.17)

Now we use the symmetry of our problem and obtain v on [0,∞) × [0,∞) by just mirroring
1− e−2Lx + f(x)g(y), where (x, y) 7→ f(x)g(y) is given by (2.17), at the line bisecting the first
quadrant which yields that v is given by the right-hand side of (1.6).
It remains to check that the assumptions made on v are satisfied. Indeed, it holds that

f(x)g(y) 6= 0 for all x, y ∈ (0,∞), the function given on the right-hand side of (1.6) is C2
(
(0,∞)×

(0,∞)
)
and

∂

∂x
v(x, y)− ∂

∂y
v(x, y) =


2Le−2Lx

(
1− e−2S (y−x)

)
, x ≤ y,

− 2Le−2Ly
(

1− e−2S (x−y)
)
, x > y,


> 0, x < y,

= 0, x = y,

< 0, x > y,

∂2

∂x2
v(x, y)− ∂2

∂y2
v(x, y) =


− 4L2e−2Lx

(
1− e−2S (y−x)

)
, x ≤ y,

4L2e−2Ly
(

1− e−2S (x−y)
)
, x > y,


< 0, x < y,

= 0, x = y,

> 0, x > y.

(2.18)

Hence, all assumptions made on v are satisfied.

For the case L = 2S we also use λ∗ = −2S
µσ−µσ
σ+σ which in this case simplifies to λ∗ = −S µ.

Then, the solutions of (2.12) and (2.13) are given by

f(x) = (C1 + C2 x) exp(−Lx),

g(y) = C3 exp

(
µ

σ
y

)
+ C4 exp(−Ly)
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for some constants C1, C2, C3, C4 ∈ R, again see Theorem 1 and 5 in [3, Chapter 2]. Using (2.9)
we conclude that C1 = 0 and (2.10) implies that C3 = 0. Thus,

f(x)g(y) = C2C4 x exp
(
− L (x+ y)

)
.

Using (2.11) results in C2C4 = −2L and mirroring at the line bisecting the first quadrant yields

v(x, y) = 1− e−2L min{x,y} − 2L min{x, y} e−L (x+y). (2.19)

Finally, one can check that the function in (2.19) satisfies all our assumptions made on v.

In the next step we explain how to obtain a solution of the HJB equation (2.1) if D is a proper
subset of [µ, µ] × [σ, σ]. As a candidate v for the value function we choose the function on the
right-hand side of (1.6) which we derived in the case where D is a rectangle and adjust the
maximal risk-adjusted return L to L = sup(µ,σ)∈D

µ
σ . Recall that the risk-adjusted return of the

aggregate endowment process equals S and does not have to be changed. Now we want to show
that our candidate solves the HJB Equation (2.1). To this end, observe that for (µ, σ) ∈ D it
holds that(

σ

2

∂2

∂x2
v +

Σ− σ
2

∂2

∂y2
v + µ

∂

∂x
v + (M − µ)

∂

∂y
v

)
(x, y)

=


− 2σ L e−2Lx

(
1− e−2S (y−x)

) [
L− µ

σ

]
, x ≤ y,

− 2 (Σ− σ)Le−2Ly
(

1− e−2 S(x−y)
)[
L− M − µ

Σ− σ

]
, x > y.

(2.20)

Since D satisfies (1.2), we have

L = sup
(µ,σ)∈D

µ

σ
= sup

(µ,σ)∈D

M − µ
Σ− σ

.

Hence, for all x, y ∈ (0,∞)

sup
(µ,σ)∈D

{
σ

2

∂2

∂x2
v +

Σ− σ
2

∂2

∂y2
v + µ

∂

∂x
v + (M − µ)

∂

∂y
v

}
(x, y) ≤ 0.

For simplicity we assume that L is attained in D, say by (µ̂, σ̂). Then L = µ̂
σ̂ and (2.20) equals

zero for (µ̂, σ̂) if x < y. If x > y then (2.20) is zero for (M − µ̂,Σ − σ̂). Therefore, the HJB
Equation (2.1) is fulfilled and v is a candidate for our value function.

Now it remains to verify that the right-hand side of (1.6) is indeed the value function of the
optimal control problem (1.5), i.e. to prove Theorem 1.1.

3 Proofs

First, we prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Denote by v the function given by the right-hand side of (1.6). We first
show that v is an upper bound for the joint survival probability. For this purpose let (µ, σ) ∈M
be an arbitrary admissible control for the drift and diffusion rate. Denote the ruin time of the
controlled process (Xt, Yt) =

(
Xx,µ,σ
t , Y y,µ,σ

t

)
by

τ = inf {t ∈ [0,∞) : Xt ≤ 0 or Yt ≤ 0} .

9



Using that v ∈ C2
(
(0,∞)× (0,∞)

)
Itô’s Formula implies

v(Xt, Yt) = v(x, y) +

∫ t

0

√
σ(Xs, Ys)

∂

∂x
v(Xs, Ys) dW

1
s +

∫ t

0

√
Σ− σ(Xs, Ys)

∂

∂y
v(Xs, Ys) dW

2
s

+

∫ t

0

{
1

2
σ
∂2

∂x2
v +

1

2
(Σ− σ)

∂2

∂y2
v + µ

∂

∂x
v + (M − µ)

∂

∂y
v

}
(Xs, Ys) ds.

(3.1)

Since v solves the HJB Equation (2.1), the drift part in (3.1) is non-positive. Hence,
(
v(Xt, Yt)

)
t∈[0,∞)

and, thus,
(
v(Xt∧τ , Yt∧τ )

)
t∈[0,∞)

are local supermartingales. Moreover, since v is bounded,(
v(Xt∧τ , Yt∧τ )

)
t∈[0,∞)

is a uniformly integrable supermartingale. Therefore, the supermartigale
convergence theorem yields that

lim
t→∞

v(Xt∧τ , Yt∧τ )

exists P-a.s. By dominated convergence we conclude that

v(x, y) ≥ lim
t→∞

E [v(Xt∧τ , Yt∧τ )] = E
[
1{τ<∞}v(Xτ , Yτ ) + 1{τ=∞} lim

t→∞
v(Xt, Yt)

]
. (3.2)

On {τ <∞} the boundary conditions (2.2) imply that v(Xτ , Yτ ) = 0. We claim that on {τ =∞}
we have limt→∞ v(Xt, Yt) = 1.
In order to show this first observe that

(X + Y )t = x+ y +Mt+
√

ΣWt, (3.3)

where W is a Brownian motion. Thus, we know that lim
t→∞

(X + Y )t = ∞, P-a.s. Moreover, the
supermartingale convergence theorem guarantees that on {τ =∞} we have that

lim
t→∞

v(Xt, Yt)

exists P-a.s. Combining this with the particular form of v yields that on {τ =∞}

lim
t→∞

e−2Lmin{Xt,Yt}

exists and so lim
t→∞

min{Xt, Yt} ∈ R ∪ {+∞} does P-a.s. We now show that

P
[

lim
t→∞

min{Xt, Yt} <∞
]

= 0.

By (3.3) and the identity

2 min{Xt, Yt} = Xt + Yt − |Xt − Yt|

it follows that on
{

limt→∞min{Xt, Yt} < ∞
}
it holds that lim

t→∞
|Xt − Yt| = ∞ and, hence, the

paths of X and Y do not intersect infinitely often. Since the paths are continuous, either Xt or
Yt converges for t→∞ on

{
limt→∞min{Xt, Yt} <∞

}
. Thus, we have{

lim
t→∞

min{Xt, Yt} <∞
}

=
{

lim
t→∞

Xt <∞
}
∪
{

lim
t→∞

Yt <∞
}
, P-a.s.

Now, to show that P [limt→∞Xt <∞] = 0 recall that

Xt = x+

t∫
0

µ(Xs, Ys) ds+

t∫
0

√
σ(Xs, Ys) dW

1
s .
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Let A(t) :=
t∫

0

σ(Xt, Yt) ds. Notice that A(t) is strictly increasing, hence, we can introduce the

time-changed process

X̃t := XA−1(t) = x+

A−1(t)∫
0

µ(Xs, Ys) ds+

A−1(t)∫
0

√
σ(Xs, Ys) dW

1
s .

Note that Bt :=
A−1(t)∫

0

√
σ(Xs, Ys) dW

1
s , t ∈ [0,∞), is a Brownian motion since

〈B,B〉t =

A−1(t)∫
0

σ(Xs, Ys) ds = A
(
A−1(t)

)
= t.

Further, a simple substitution in the deterministic integral yields

X̃t = x+

A−1(t)∫
0

µ(Xs, Ys) ds+Bt = x+

t∫
0

µ

σ
(Xs, Ys) ds+Bt.

We know that µ
σ (Xs, Ys) ≤ L for all s by the definition of L. For the Brownian motion B it is

well known that

P
[
{Bn+1 −Bn < −L− 1} infinitely often

]
= 1.

This directly implies

P
[{
X̃n+1 − X̃n < −1

}
infinitely often

]
= 1.

Consequently, P
[

lim
t→∞

X̃t <∞
]

= 0. Moreover, σ > 0 yields limt→∞A(t) =∞. Thus,

P
[

lim
t→∞

Xt <∞
]

= P
[

lim
t→∞

X̃t <∞
]

= 0.

Similarly, one can show that Y does not converge with probability one. Hence, we see that
P
[

lim
t→∞

min{Xt, Yt} <∞
]

= 0. Therefore, it follows that on {τ =∞} we have

P
[

lim
t→∞

min{Xt, Yt} =∞
]

= 1

and the particular form of v implies that

P
[

lim
t→∞

v(Xt, Yt) = 1
]

= 1. (3.4)

Thus, plugging (3.4) into (3.2) we see

v(x, y) ≥ E
[
1{τ=∞}

]
= P[τ =∞] = J(x, y, µ, σ) (3.5)

and hence, v ≥ V .

Now assume that L is attained in D. Then the strategy (µ∗, σ∗) given in (1.7) is admissible, for
(µ∗, σ∗) the drift rate in (3.1) vanishes and thus, the process

(
v(Xt∧τ , Yt∧τ )

)
t∈[0,∞)

is a uniformly
integrable martingale. Hence, equality holds in (3.5) which implies that v is the value function
of the optimal control problem (1.5) and (µ∗, σ∗) is an optimal control.
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So far we have shown that the value function V is given by the right-hand side of (1.6) if L is
attained in D. Now we consider the case where L is not attained in D, i.e. arg max(µ,σ)∈D

µ
σ = ∅.

Then there exists a sequence (µn, σn)n∈N ⊆ D with Ln := µn
σn
↗ L as n → ∞. Without loss of

generality we can assume that Ln ≥ S (see Remark 1.6) and that

lim
n→∞

µn = µ̃ ∈ [µ, µ],

lim
n→∞

σn = σ̃ ∈ [σ, σ],

because D ⊆ [µ, µ]× [σ, σ]. In particular, we have µ̃
σ̃ = L. Let D̃ = D∪

{
(µ̃, σ̃), (M − µ̃,Σ− σ̃)

}
.

Then D̃ ⊆ [µ, µ]× [σ, σ], D̃ satisfies (1.2) and

L(D̃) = sup
(µ,σ)∈D̃

µ

σ
= max

{
sup

(µ,σ)∈D

µ

σ
,
µ̃

σ̃
,
M − µ̃
Σ− σ̃

}
=
µ̃

σ̃
= L,

where we use that L ≥ S = M
Σ by Remark 1.6 and thus, M−µ̃Σ−σ̃ ≤ S ≤ L. In particular, (µ̃, σ̃) ∈

arg max
(µ,σ)∈D̃

µ
σ . Hence, the value function V L(D̃) for maximizing the joint survival probability

over controls taking values in D̃ is given by (1.6) with L(D̃) = L. Moreover, V ≤ V L(D̃) = V L.
To derive a lower bound for V let

Dn = {(µn, σn), (M − µn,Σ− σn)} , n ∈ N.

By definition Dn satisfies (1.2). Since (µn, σn) ∈ D, it holds that Dn ⊆ D. Moreover,

L(Dn) = sup
(µ,σ)∈Dn

µ

σ
= max

{
µn
σn
,
M − µn
Σ− σn

}
= Ln,

since µn
σn

= Ln ≥ S and therefore, M−µnΣ−σn ≤ S ≤ Ln. In particular, (µn, σn) ∈ arg max(µ,σ)∈Dn

µ
σ .

Hence, the value function V Ln of (1.5) for controls taking values in Dn is given by (1.6) and
V Ln ≤ V . Since the function on the right-hand side of (1.6) is continuous in the parameter L,
we conclude that for all x, y ∈ [0,∞)

V L(x, y) = lim
n→∞

V Ln ≤ V (x, y) ≤ V L(x, y).

Therefore, also in this case the value function is given by (1.6).

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. We only show that R is non-increasing. The other results follow by
straightforward calculations.

Since R is symmetric, we only need to consider the part of the domain where x ≤ y. Moreover,
we only consider the case L > 2S. The cases L < 2S and L = 2S can be shown similarly.
One can show that ∂

∂xR is non-positive if and only if

e2S xL(L− 2S) + e2LxLS − e4S xL(L− S) + e2S y(L− 2S)
[
e2S xL− e2LxS − (L− S)

]
≤ 0.
(3.6)

Since L ≥ S, one can show by using convexity that e2SxL − e2LxS − (L − S) ≤ 0. Thus, the
left-hand side of (3.6) is non-increasing in y. Hence, (3.6) is fulfilled for all y ≥ x if and only if
it is fulfilled for y = x. Thus, we need to verify that

S
[
L
(
e2Lx − e4S x

)
− (L− 2S)

(
e2 (L+S)x − e2S x

)]
≤ 0. (3.7)
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The Inequality (3.7) is satisfied if and only if the term in the rectangular bracket on the left-hand
side is non-positive, which is equivalent to

e2Lx − e4S x

L− 2S
≤ e2 (L+S)x − e2S x

L
,

and hence, equivalent to

sinh
(
(L− 2S)x

)
(L− 2S)x

≤ sinh(Lx)

Lx
. (3.8)

(3.8) holds true, because z 7→ sinh(z)
z in strictly increasing for z ≥ 0. To sum up, we have shown

that (3.6) is satisfied and thus, ∂
∂xR is non-positive.

The partial derivative ∂
∂yR can be shown to be non-positive if and only if

L
(
e2Lx − e4S x

)
− (L− 2S)

(
e2 (L+S)x − e2S x

)
≤ 0.

The left-hand side coincides with the bracket terms of (3.7) and thus, is non-positive.
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