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We consider the problem of controlling the drift and diffusion rate of the endowment processes of two firms such that the joint survival probability is maximized. We assume that the endowment processes are continuous diffusions, driven by independent Brownian motions, and that the aggregate endowment is a Brownian motion with constant drift and diffusion rate. Our results reveal that the maximal joint survival probability depends only on the aggregate risk-adjusted return and on the maximal risk-adjusted return that can be implemented in each firm. Here the risk-adjusted return is understood as the drift rate divided by the squared diffusion rate.

Introduction

Consider two insurance companies that aim at collaborating so as to maximize their joint survival probability, or equivalently, to minimize the probability that one of the two companies gets ruined. Assume that the two companies can commit themselves to help the other in case of financial distress. To assess the benefit of a collaboration Grandits [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] has set up a model where the endowment processes, also called surplus processes, of both companies are given by two independent Brownian motions with drift and the companies can collaborate by transfer payments. These payments are assumed to be absolutely continuous with respect to the Lebesgue measure and to be bounded in such a way that each company keeps a minimal positive drift rate.

The collaborations considered in [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] are assumed to have an impact only on the drift rates of the companies' endowment processes. There are types of collaboration, however, that also entail a change of the diffusion rates; think, e.g., of mutual reinsurance agreements or agreements to transfer high-risk subsidiaries. In this paper we address the question of how to quantify the maximal benefit if a collaboration has an impact also on the diffusion rate of both endowment processes.

To measure the benefit of collaboration we introduce a control problem, where an agent can continuously allocate a drift and diffusion rate to two diffusion processes representing the endowment processes of the two companies, respectively. The aggregate drift and diffusion rates are assumed to be constant and independent of the allocation plan. Moreover, we assume that the set of implementable drift rates is bounded, and the set of implementable diffusion rates is bounded and bounded away from zero. The agent aims at choosing an allocation plan that maximizes the joint survival probability of both companies. One can think of the agent as a mediator between the companies suggesting a mutual help contract.

As in [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] the optimal control turns out to be of bang-bang type: it is optimal that the agent implements the highest possible risk-adjusted return, defined as the ratio of the drift rate and the volatility squared, in the endowment dynamics of the company behind. Besides, the formula for the value function reveals that the maximal joint survival probability only depends on the maximal implementable risk-adjusted return and on the risk-adjusted return of the aggregate endowment process. Our assumptions entail that the latter does not depend on the allocation strategy.

We solve the control problem via a classical verification technique. To this end we construct an explicit solution of the associated Hamilton-Jacobi-Bellman (HJB) equation. We use that the optimal control can be characterized as a bang-bang feedback function jumping at the line bisecting the first quadrant, where the first quadrant is interpreted as the set of non-negative endowment pairs. Since the optimal control is of bang-bang type, the HJB is linear below the bisector and above the bisector. The boundary conditions and a smooth fit condition along the bisector leads to a specific solution of the HJB equation, which can be verified to coincide with the value function. We remark that our construction of the solution of the HJB equation and also the verification bears some similarities with the approach used in [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF].

McKean and Shepp [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] and Grandits [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] both consider the problem of maximizing the joint survival probability of two firms whose endowment processes are given by independent Brownian motions with drift and which are allowed to collaborate by transfer payments. In [START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] these transfer payments are at most as high as the drift rates whereas in [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF] each company keeps a given positive minimal drift rate. In both cases the value function is derived and turns out to be a classical solution to the associated HJB equation. We emphasize that we allow for negative drift rates in our model. Grandits and Klein [START_REF] Grandits | Ruin probability in a two-dimensional model with correlated Brownian motions[END_REF] extend the model of [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF][START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] to endowment processes driven by Brownian motions that are correlated. In all three articles [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF][START_REF] Grandits | Ruin probability in a two-dimensional model with correlated Brownian motions[END_REF][START_REF] Mckean | The advantage of capitalism vs. socialism depends on the criterion[END_REF] the derived optimal strategy is of bang-bang type and implements the highest possible risk-adjusted return for the company behind.

In [START_REF] Schmidli | Optimal proportional reinsurance policies in a dynamic setting[END_REF] Schmidli deals with maximizing the survival probability of one company by choosing an optimal dynamic proportional reinsurance strategy in the diffusion model. Also in this model the optimal strategy maximizes the risk-adjusted return among all admissible strategies.

The paper is organized as follows. In Section 1 we introduce our model and provide the value function and an optimal strategy. We explain how to derive the formula for the value function in Section 2. Finally, we prove our results in Section 3.

Model and main results

Let σ, σ ∈ (0, ∞) with σ ≤ σ and µ, µ ∈ R such that µ ≤ µ. We define M := µ + µ and Σ := σ + σ and assume that M > 0.

(1.1)

Let D be a measurable, non-empty subset of

[µ, µ] × [σ, σ] such that (µ, σ) ∈ D =⇒ (M -µ, Σ -σ) ∈ D. (1.2)
We interpret an element (µ, σ) ∈ D as an implementable pair of drift and diffusion rate for the endowment process of each company. The set of admissible controls consists of all measurable functions (µ, σ) : R 2 → D and is denoted by M.

We denote the endowment processes of the two companies by X = (X t ) t∈[0,∞) and Y = (Y t ) t∈[0,∞) , respectively. Given a control (µ, σ), we assume that the dynamics of the pair (X, Y ) satisfy the stochastic differential equation (SDE)

dX t = µ(X t , Y t ) dt + σ(X t , Y t ) dW 1 t , X 0 = x, dY t = M -µ(X t , Y t ) dt + Σ -σ(X t , Y t ) dW 2 t , Y 0 = y, (1.3) 
where W = (W 1 , W 2 ) denotes a two-dimensional Brownian motion and (x, y) ∈ R 2 . For every (µ, σ) ∈ M and (x, y) ∈ R 2 there exists a weak solution of (1.3) satisfying the initial condition (X 0 , Y 0 ) = (x, y), and we have uniqueness in law for (1.3) (see [START_REF] Krylov | On Ito's Stochastic Integral Equations[END_REF]). Recall that a weak solution of (1.3) consists of a tuple (Ω, F, (F t ) t∈[0,∞) , P, W, X, Y ), where the first 4 components build a filtered probability space, W is a two-dimensional Brownian motion with respect to the filtration (F t ) and the processes X, Y, W satisfy the SDE (1.3) (see, e.g., Section 5.3 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]). Now let x, y ∈ [0, ∞) and (µ, σ) ∈ M. Let (Ω, F, (F t ) t∈[0,∞) , P, W, X, Y ) be a weak solution of (1.3) with initial condition (X 0 , Y 0 ) = (x, y). The probability that both companies survive is given by J(x, y, µ, σ)

:= P inf t∈[0,∞) X t ≥ 0, inf t∈[0,∞) Y t ≥ 0 .
(1.4)

We refer to J(x, y, µ, σ) as the joint survival probability of both companies, given initial endowments (x, y) and a collaboration control (µ, σ). The maximal joint survival probability for an initial endowment (x, y) ∈ [0, ∞) 2 is given by

V (x, y) := sup (µ,σ)∈M J(x, y, µ, σ). (1.5) 
We now comment on the model assumptions. Notice that we allow for Markov controls only. The time homogeneous dynamics (1.3) entails that there exists an optimal control that is a Markov control. To simplify the outline of the model we restrict the control set to Markov controls upfront.

Notice that the volatilities of both processes X and Y are bounded away from zero. Hence, the probability in (1.4) does not change if we replace ≥ by the strict inequality symbol >.

The Assumption (1.1) means that the drift rate of the aggregate endowment process X + Y is positive. If M is non-positive, then with probability one the aggregate process hits zero. This further implies that at least one of the two companies gets ruined, and hence the value function (1.5) is constant equal to zero. Thus, the only interesting case is where (1.1) is satisfied.

The Condition (1.2) means that the set of implementable drift and diffusion rate pairs coincide for both companies. The symmetry of D facilitates the search for the optimal strategy and a closed form formula of the value function that turns out to be symmetric around the line bisecting the first quadrant.

It turns out that the maximal joint survival probability essentially depends only on the two ratios

L := L(D) = sup (µ,σ)∈D µ σ and S := µ + µ σ + σ = M Σ . Notice that L ≤ µ σ < ∞, because D ⊆ [µ, µ] × [σ, σ].
Our main result is as follows.

Theorem 1.1. The value function of the optimal control problem (1.5) is given by

V (x, y) =      1 -e -2 L min{x,y} -2 L min{x, y}e -L (x+y) , L = 2S, 1 -e -2 L min{x,y} - L L -2S e -2 S (x+y) 1 -e -2 (L-2S) min{x,y} , L = 2S. (1.6)
If L is attained in D, say by (μ, σ), then an optimal control is given by

µ * (x, y), σ * (x, y) = 1 {x≤y} (μ, σ) + 1 {x>y} (M -μ, Σ -σ). (1.7)
Remark 1.2. The value function V only depends on the ratios L -the maximal implementable risk-adjusted return -and S -the risk-adjusted return of the aggregate endowment process. Moreover, one can show that the value function V is continuous and strictly increasing in L and S.

Remark 1.3. Observe that we can change the definition of the optimal control (µ * , σ * ) on the set {x = y} and obtain indistinguishable processes

(X * t , Y * t ), t ∈ [0, ∞), because with probability one the set {t ∈ [0, ∞) : X * t -Y * t = 0} has Lebesgue measure zero, for details see Appendix C in [2].
Since we have an explicit formula for the value function, we can quantify the gain of collaboration. To this end, we assume that in the case of no collaboration both endowment processes have a constant drift rate of M 2 and a constant diffusion rate of Σ 2 . The probability for a Brownian motion with drift rate M 2 and diffusion rate Σ 2 and starting in z ∈ (0, ∞) to hit zero is given by e -2 S z (see, e.g., [1, Chapter V.5, Equation (5.6)]). Thus, in case of no collaboration the joint survival probability is given by

V nc (x, y) = 1 -e -2 S x 1 -e -2 S y .
(1.8)

Notice that (1.8) follows also from (1.6) by restricting D to the set containing only the element M 2 , Σ 2 . In order to quantify the gain of collaboration we introduce

R(x, y) := V (x, y) V nc (x, y) , x, y > 0.
Note that R is the relative increase of the maximal joint survival probability due to a collaboration.

Corollary 1.4. R is non-increasing in both x and y,

lim x↓0 R(x, y) = L S , and 
lim x→∞ R(x, y) = 1 -e -2 L y 1 -e -2 S y .
Moreover, for every a > 0 we have

lim x↓0 R(x, a x) = L S and lim x→∞ R(x, a x) = 1.
Remark 1.5. For a set D of implementable drift and diffusion rate satisfying (1.2) and L > S the relative increase of the maximal joint survival probability also only depends on L and S. Corollary 1.4 implies that a risk transfer is of particular interest if one company is (or both companies are) close to ruin. • If there exists (µ, σ) ∈ D with µ σ < S, then (M -µ, Σ -σ) ∈ D by Assumption (1.2) and

S = M Σ < M -µ Σ-σ ≤ L.
• Finally, if µ σ = S for all (µ, σ) ∈ D, then L = S holds true.

Deriving the value function

In this section we explain how one can derive a solution of the Hamilton-Jacobi-Bellman (HJB) equation associated to (1.5) and, thus, obtain a candidate for the value function V . Our approach is based on [START_REF] Grandits | On the gain of collaboration in a two dimensional ruin problem[END_REF], where a ruin problem for two independent Brownian motions with controllable drift is considered. In our setting this corresponds to σ = σ = 1 and µ > 0.

First observe that the HJB equation associated to (1.5) is given by

sup (µ,σ)∈D σ 2 ∂ 2 ∂x 2 v + Σ -σ 2 
∂ 2 ∂y 2 v + µ ∂ ∂x v + (M -µ) ∂ ∂y v = 0, on (0, ∞) × (0, ∞) (2.1)
with boundary conditions

v(x, 0) = v(0, y) = 0, x, y ∈ [0, ∞), (2.2) 
lim y→∞ v(x, y) = 1 -e -2 L x , x ∈ [0, ∞), (2.3 
)

lim x→∞ v(x, y) = 1 -e -2 L y , y ∈ [0, ∞). (2.4) 
We now comment on these boundary conditions for the HJB Equation (2.1). Condition (2.2) is due to the fact that if one endowment process is already zero, then the joint survival probability equals zero. If the endowment process of one company attains infinity, then this process is assumed to survive forever. The process behind obtains the highest possible risk-adjusted return to maximize its survival probability, which is given by the right-hand side of Equation (2.3) or (2.4), respectively (see, e.g., [1, Chapter V.5, Equation (5.6)]).

We first consider the case where the set of implementable drift and diffusion rate is given by the rectangle D = [µ, µ] × [σ, σ]. In this case L = µ σ . Moreover, the supremum over D in (2.1) can be separated and the HJB equation is given by

sup σ∈[σ,σ] σ 2 ∂ 2 ∂x 2 v + Σ -σ 2 
∂ 2 ∂y 2 v + sup µ∈[µ,µ] µ ∂ ∂x v + (M -µ) ∂ ∂y v = 0, on (0, ∞) × (0, ∞).
(2.5)

Note that in the HJB Equation (2.5) we maximize a linear function in σ and µ, respectively, over a compact interval. Hence, each supremum is attained at the boundary of the corresponding interval. More precisely,

sup σ∈[σ,σ] σ 2 
∂ 2 ∂x 2 v + Σ -σ 2 
∂ 2 ∂y 2 v (x, y) =          σ 2 ∂ 2 ∂x 2 v(x, y) + σ 2 ∂ 2 ∂y 2 v(x, y), if ∂ 2 ∂x 2 v(x, y) ≥ ∂ 2 ∂y 2 v(x, y), σ 2 
∂ 2 ∂x 2 v(x, y) + σ 2 ∂ 2 ∂y 2 v(x, y), otherwise,
and

sup µ∈[µ,µ] µ ∂ ∂x v + (M -µ) ∂ ∂y v (x, y) =          µ ∂ ∂x v(x, y) + µ ∂ ∂y v(x, y), if ∂ ∂x v(x, y) ≥ ∂ ∂y v(x, y), µ ∂ ∂x v(x, y) + µ ∂ ∂y v(x, y), otherwise.
In the following we make several assumptions on the solution v of the HJB equation. After obtaining the explicit formula given on the right-hand side of (1.6) we can check that all the assumptions are satisfied. Finally, one has to verify that v is indeed the value function of our problem (1.5).

We assume that v is a classical solution of the HJB Equation (2.5), i.e. v ∈ C 2 (0, ∞)×(0, ∞) with boundary conditions (2.2), (2.3), and (2.4). Since our control problem (1.5) is symmetric in the initial values of the endowment processes, every candidate v for the value function should satisfy v(x, y) = v(y, x). Due to this symmetry and the monotonicity of the maximization problem (1.5) we impose that

(x, y) : ∂ ∂x v(x, y) > ∂ ∂y v(x, y) = (x, y) : ∂ 2 ∂x 2 v(x, y) < ∂ 2 ∂y 2 v(x, y) = (x, y) : x < y and (x, y) : ∂ ∂x v(x, y) = ∂ ∂y v(x, y) = (x, y) : ∂ 2 ∂x 2 v(x, y) = ∂ 2 ∂y 2 v(x, y) = (x, y) : x = y .
Observe that this implies that the smaller endowment process is assigned the lowest possible volatility and the highest possible drift rate to minimize the risk that this firm is ruined. In other words, the agent chooses the maximal implementable risk-adjusted return for the company behind.

Using v(x, y) = v(y, x), we only focus on the set

G = (x, y) ∈ [0, ∞) × [0, ∞) : x ≤ y .
In the interior of G it holds -under our assumptions -that v has to satisfy σ 2

∂ 2 ∂x 2 v + σ 2 ∂ 2 ∂y 2 v + µ ∂ ∂x v + µ ∂ ∂y v = 0 (2.6) with v(0, y) = 0, lim y→∞ v(x, y) = 1 -e -2 L x , ∂ ∂x v(t, t) = ∂ ∂y v(t, t), t ∈ (0, ∞), ∂ 2 ∂x 2 v(t, t) = ∂ 2 ∂y 2 v(t, t), t ∈ (0, ∞). (2.7) 
We make the ansatz v(x, y) = 1 -e -2 L x + f (x)g(y), (x, y) ∈ G.

The function (x, y) → f (x)g(y) fulfills (2.6) in the interior of G. More precisely,

σ 2 f (x)g(y) + σ 2 f (x)g (y) + µ f (x)g(y) + µ f (x)g (y) = 0 (2.8) with f (0)g(y) = 0, y ∈ [0, ∞), (2.9 
)

lim y→∞ f (x)g(y) = 0, x ∈ [0, ∞), (2.10) f (t)g (t) -f (t)g(t) = 2 L e -2 L t , t ∈ (0, ∞).
(2.11) Note that we do not impose an additional assumption on (x, y) → f (x)g(y) to guarantee (2.7) because it turns out that the solution that we construct for (2.8) satisfying (2.9), (2.10), and (2.11) directly implies that Condition (2.7) for v is fulfilled, see (2.18) below.

Provided that f (x)g(y) = 0 for all (x, y) in the interior of G, Equation (2.8) can be reformulated as

σ 2 f f + µ f f (x) + σ 2 g g + µ g g (y) = 0.
The previous equation can only hold true for all (x, y) in the interior of G if

σ 2 f f + µ f f (x) = λ, (2.12) σ 2 g g + µ g g (y) = -λ (2.13)
for some λ ∈ R.

First we consider the case L = 2S . This case is a bit more involved than the case L = 2S.

We assume that λ ∈ -µ 2 2σ ,

µ 2 2σ
which guarantees real-valued solutions to (2.12) and (2.13). Later on we have to choose λ in an appropriate way such that the boundary condition (2.11) is fulfilled. By Theorem 1 and Theorem 5 in [3, Chapter 2] we obtain that

f (x) = C 1 exp (-L + ϑ 1 ) x + C 2 exp (-L -ϑ 1 ) x , g(y) = C 3 exp - µ σ + ϑ 2 y + C 4 exp - µ σ -ϑ 2 y for some C 1 , C 2 , C 3 , C 4 ∈ R,
where

ϑ 1 = ϑ 1 (λ) = µ 2 + 2 σ λ σ , ϑ 2 = ϑ 2 (λ) = µ 2 -2 σ λ σ .
From (2.9) we conclude that f (0) = 0 and hence, C 2 = -C 1 . Since we are only interested in the product f (x)g(y), we can assume that C 1 = 1 without loss of generality. Note that for λ ∈ -µ 2 2σ , 0 Condition (2.10) yields C 3 = 0. Unfortunately, for λ ∈ 0,

µ 2 2σ
this does not hold true. Nevertheless, we set C 3 = 0 and hope to obtain a solution. In addition, Condition (2.11) on the diagonal results in

2 L exp (-2 L t) = C 4 L -ϑ 1 - µ σ -ϑ 2 exp -L + ϑ 1 - µ σ -ϑ 2 t + C 4 -L -ϑ 1 + µ σ + ϑ 2 exp -L -ϑ 1 - µ σ -ϑ 2 t (2.14)
which has to be satisfied for all t ∈ (0, ∞). Therefore, it is necessary that the exponent of one summand coincides with -2 L t. This directly implies that the coefficient of the other summand vanishes. More precisely, we determine λ such that For λ = λ * and L < 2S Equation (2.14) is given by

L -ϑ 1 + µ σ + ϑ 2 = 2 L (2.15) or L + ϑ 1 + µ σ + ϑ 2 = 2 L. ( 2 
2 L exp (-2 L t) = 2 C 4 [L -2 S] exp (-2 L t) .
Thus,

C 4 = L L -2S .
Similarly, for L > 2S we conclude that

C 4 = - L L -2S .
To sum up, we have

f (x)g(y) = L L -2S e -2 S y e 2 (S-L) x -e -2 S x = - L L -2S e -2 S (x+y) 1 -e -2 (L-2S) x .
(2.17)

Now we use the symmetry of our problem and obtain v on [0, ∞) × [0, ∞) by just mirroring 1 -e -2 L x + f (x)g(y), where (x, y) → f (x)g(y) is given by (2.17), at the line bisecting the first quadrant which yields that v is given by the right-hand side of (1.6).

It remains to check that the assumptions made on v are satisfied. Indeed, it holds that f (x)g(y) = 0 for all x, y ∈ (0, ∞), the function given on the right-hand side of (1.

6) is C 2 (0, ∞)× (0, ∞) and ∂ ∂x v(x, y) - ∂ ∂y v(x, y) =      2 L e -2 L x 1 -e -2 S (y-x) , x ≤ y, -2 L e -2 L y 1 -e -2 S (x-y) , x > y,      > 0, x < y, = 0, x = y, < 0, x > y, ∂ 2 ∂x 2 v(x, y) - ∂ 2 ∂y 2 v(x, y) =      -4 L 2 e -2 L x 1 -e -2 S (y-x) , x ≤ y, 4 L 2 e -2 L y 1 -e -2 S (x-y) , x > y,      < 0, x < y, = 0, x = y, > 0,
x > y.

(2.18)

Hence, all assumptions made on v are satisfied.

For the case L = 2S we also use λ * = -2 S µ σ-µ σ σ+σ which in this case simplifies to λ * = -S µ. Then, the solutions of (2.12) and (2.13) are given by

f (x) = (C 1 + C 2 x) exp(-L x), g(y) = C 3 exp µ σ y + C 4 exp(-L y)
for some constants C 1 , C 2 , C 3 , C 4 ∈ R, again see Theorem 1 and 5 in [3, Chapter 2]. Using (2.9) we conclude that C 1 = 0 and (2.10) implies that C 3 = 0. Thus,

f (x)g(y) = C 2 C 4 x exp -L (x + y) .
Using (2.11) results in C 2 C 4 = -2 L and mirroring at the line bisecting the first quadrant yields v(x, y) = 1 -e -2 L min{x,y} -2 L min{x, y} e -L (x+y) .

(2.19)

Finally, one can check that the function in (2.19) satisfies all our assumptions made on v.

In the next step we explain how to obtain a solution of the HJB equation (2.1) if D is a proper subset of [µ, µ] × [σ, σ]. As a candidate v for the value function we choose the function on the right-hand side of (1.6) which we derived in the case where D is a rectangle and adjust the maximal risk-adjusted return L to L = sup (µ,σ)∈D µ σ . Recall that the risk-adjusted return of the aggregate endowment process equals S and does not have to be changed. Now we want to show that our candidate solves the HJB Equation (2.1). To this end, observe that for (µ, σ) ∈ D it holds that σ 2

∂ 2 ∂x 2 v + Σ -σ 2 ∂ 2 ∂y 2 v + µ ∂ ∂x v + (M -µ) ∂ ∂y v (x, y) =        -2 σ L e -2 L x 1 -e -2 S (y-x) L - µ σ , x ≤ y, -2 (Σ -σ) L e -2 L y 1 -e -2 S(x-y) L - M -µ Σ -σ , x > y. 
(2.20)

Since D satisfies (1.2), we have

L = sup (µ,σ)∈D µ σ = sup (µ,σ)∈D M -µ Σ -σ .
Hence, for all x, y ∈ (0, ∞)

sup (µ,σ)∈D σ 2 ∂ 2 ∂x 2 v + Σ -σ 2 ∂ 2 ∂y 2 v + µ ∂ ∂x v + (M -µ) ∂ ∂y v (x, y) ≤ 0.
For simplicity we assume that L is attained in D, say by (μ, σ). Then L = μ σ and (2.20) equals zero for (μ, σ) if x < y. If x > y then (2.20) is zero for (M -μ, Σ -σ). Therefore, the HJB Equation (2.1) is fulfilled and v is a candidate for our value function. Now it remains to verify that the right-hand side of (1.6) is indeed the value function of the optimal control problem (1.5), i.e. to prove Theorem 1.1.

Proofs

First, we prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Denote by v the function given by the right-hand side of (1.6). We first show that v is an upper bound for the joint survival probability. For this purpose let (µ, σ) ∈ M be an arbitrary admissible control for the drift and diffusion rate. Denote the ruin time of the controlled process 

(X t , Y t ) = X x,µ,σ t , Y y,µ,σ t by τ = inf {t ∈ [0, ∞) : X t ≤ 0 or Y t ≤ 0} . Using that v ∈ C 2 (0, ∞) × (0, ∞) Itô's Formula implies v(X t , Y t ) = v(x, y) + t 0 σ(X s , Y s ) ∂ ∂x v(X s , Y s ) dW 1 s + t 0 Σ -σ(X s , Y s ) ∂ ∂y v(X s , Y s ) dW 2 s + t 0 1 2 σ ∂ 2 ∂x 2 v + 1 2 (Σ -σ) ∂ 2 ∂y 2 v + µ ∂ ∂x v + (M -µ) ∂ ∂y v (X s , Y s ) ds. ( 3 
E [v(X t∧τ , Y t∧τ )] = E 1 {τ <∞} v(X τ , Y τ ) + 1 {τ =∞} lim t→∞ v(X t , Y t ) . (3.2) 
On {τ < ∞} the boundary conditions (2.2) imply that v(X τ , Y τ ) = 0. We claim that on {τ = ∞} we have lim t→∞ v(X t , Y t ) = 1.

In order to show this first observe that

(X + Y ) t = x + y + M t + √ Σ W t , (3.3) 
where W is a Brownian motion. 

lim t→∞ min{X t , Y t } < ∞ = lim t→∞ X t < ∞ ∪ lim t→∞ Y t < ∞ , P-a.s. Now, to show that P [lim t→∞ X t < ∞] = 0 recall that X t = x + t 0 µ(X s , Y s ) ds + t 0 σ(X s , Y s ) dW 1 s .
Let A(t) := t 0 σ(X t , Y t ) ds. Notice that A(t) is strictly increasing, hence, we can introduce the time-changed process

X t := X A -1 (t) = x + A -1 (t) 0 µ(X s , Y s ) ds + A -1 (t) 0 σ(X s , Y s ) dW 1 s .
Note that B t :=

A -1 (t) 0 σ(X s , Y s ) dW 1 s , t ∈ [0, ∞), is a Brownian motion since

B, B t = A -1 (t) 0 σ(X s , Y s ) ds = A A -1 (t) = t.
Further, a simple substitution in the deterministic integral yields

X t = x + A -1 (t) 0 µ(X s , Y s ) ds + B t = x + t 0 µ σ (X s , Y s ) ds + B t .
We know that µ σ (X s , Y s ) ≤ L for all s by the definition of L. For the Brownian motion B it is well known that P {B n+1 -B n < -L -1} infinitely often = 1.

This directly implies P X n+1 -X n < -1 infinitely often = 1. The left-hand side coincides with the bracket terms of (3.7) and thus, is non-positive.

Consequently, P lim

Remark 1 . 6 .

 16 Observe that L = L(D) ≥ S > 0. Moreover, we have L > S if and only if there exists (µ, σ) ∈ D with µ σ = S. To show the claim we distinguish three cases. • If D contains an element (µ, σ) with µ σ > S, then also L = sup (µ,σ)∈D µ σ > S.

8 )

 8 t→∞X t < ∞ = 0. Moreover, σ > 0 yields lim t→∞ A(t) = ∞. Thus,P lim t→∞ X t < ∞ = P lim t→∞ X t < ∞ = 0.Similarly, one can show that Y does not converge with probability one. Hence, we see that P lim t→∞ min{X t , Y t } < ∞ = 0. Therefore, it follows that on {τ = ∞} we haveP lim t→∞ min{X t , Y t } = ∞ = 1and the particular form of v implies thatP lim t→∞ v(X t , Y t ) = 1 = 1. (3.4) Thus, plugging (3.4) into (3.2) we see v(x, y) ≥ E 1 {τ =∞} = P[τ = ∞] = J(x, y, µ, σ) (3.5)and hence, v ≥ V . Now assume that L is attained in D. Then the strategy (µ * , σ * ) given in (1.7) is admissible, for (µ * , σ * ) the drift rate in (3.1) vanishes and thus, the process v(X t∧τ , Y t∧τ ) t∈[0,∞) is a uniformly integrable martingale. Hence, equality holds in (3.5) which implies that v is the value function of the optimal control problem (1.5) and (µ * , σ * ) is an optimal control. The Inequality (3.7) is satisfied if and only if the term in the rectangular bracket on the left-hand side is non-positive, which is equivalent toe 2 L x -e 4 S x L -2S ≤ e 2 (L+S) x -e 2 S x L , and hence, equivalent to sinh (L -2S) x (Lholds true, because z → sinh(z) z in strictly increasing for z ≥ 0. To sum up, we have shown that (3.6) is satisfied and thus, ∂ ∂x R is non-positive. The partial derivative ∂ ∂y R can be shown to be non-positive if and only if L e 2 L x -e 4 S x -(L -2S) e 2 (L+S) x -e 2 S x ≤ 0.

  .1) Since v solves the HJB Equation (2.1), the drift part in (3.1) is non-positive. Hence, v(X t , Y t ) t∈[0,∞) and, thus, v(X t∧τ , Y t∧τ ) t∈[0,∞) are local supermartingales. Moreover, since v is bounded,

	v(X t∧τ , Y t∧τ ) t∈[0,∞) is a uniformly integrable supermartingale. Therefore, the supermartigale
	convergence theorem yields that	
	lim t→∞	v(X t∧τ , Y t∧τ )
	exists P-a.s. By dominated convergence we conclude that
	v(x, y) ≥ lim t→∞	

  , Y t } = X t + Y t -|X t -Y t | it follows that on lim t→∞ min{X t , Y t } < ∞ it holds that lim t→∞ |X t -Y t | = ∞and, hence, the paths of X and Y do not intersect infinitely often. Since the paths are continuous, either X t or Y t converges for t → ∞ on lim t→∞ min{X t , Y t } < ∞ . Thus, we have

	By (3.3) and the identity
	2 min{X t

Thus, we know that lim t→∞ (X + Y ) t = ∞, P-a.s. Moreover, the supermartingale convergence theorem guarantees that on {τ = ∞} we have that lim t→∞ v(X t , Y t ) exists P-a.s. Combining this with the particular form of v yields that on {τ = ∞} lim t→∞ e -2 L min{Xt,Yt} exists and so lim t→∞ min{X t , Y t } ∈ R ∪ {+∞} does P-a.s. We now show that P lim t→∞ min{X t , Y t } < ∞ = 0.

So far we have shown that the value function V is given by the right-hand side of (1.6) if L is attained in D. Now we consider the case where L is not attained in D, i.e. arg max (µ,σ)∈D µ σ = ∅. Then there exists a sequence (µ n , σ n ) n∈N ⊆ D with L n := µn σn L as n → ∞. Without loss of generality we can assume that L n ≥ S (see Remark 1.6) and that

where we use that L ≥ S = M Σ by Remark 1.6 and thus, M -μ Σ-σ ≤ S ≤ L. In particular, (μ, σ) ∈ arg max (µ,σ)∈ D µ σ . Hence, the value function V L( D) for maximizing the joint survival probability over controls taking values in D is given by (1.6) with

To derive a lower bound for V let

By definition

since µn σn = L n ≥ S and therefore, M -µn Σ-σn ≤ S ≤ L n . In particular, (µ n , σ n ) ∈ arg max (µ,σ)∈Dn µ σ . Hence, the value function V Ln of (1.5) for controls taking values in D n is given by (1.6) and V Ln ≤ V . Since the function on the right-hand side of (1.6) is continuous in the parameter L, we conclude that for all x, y ∈ [0, ∞)

Therefore, also in this case the value function is given by (1.6).

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. We only show that R is non-increasing. The other results follow by straightforward calculations.

Since R is symmetric, we only need to consider the part of the domain where x ≤ y. Moreover, we only consider the case L > 2S. The cases L < 2S and L = 2S can be shown similarly.

One can show that ∂ ∂x R is non-positive if and only if

Since L ≥ S, one can show by using convexity that e 2Sx L -e 2Lx S -(L -S) ≤ 0. Thus, the left-hand side of (3.6) is non-increasing in y. Hence, (3.6) is fulfilled for all y ≥ x if and only if it is fulfilled for y = x. Thus, we need to verify that S L e 2 L x -e 4 S x -(L -2S) e 2 (L+S) x -e 2 S x ≤ 0.

(3.7)