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A TOPOMETRIC EFFROS THEOREM

ITAÏ BEN YAACOV AND JULIEN MELLERAY

ABSTRACT. Given a continuous and isometric action of a Polish group G on an adequate Polish topo-
metric space (X, τ, ρ) and x ∈ X, we find a necessary and sufficient condition for Gx

ρ
to be co-meagre;

we also obtain a criterion that characterizes when such a point exists. This work completes a criterion
established in earlier work of the authors.
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1. INTRODUCTION

Our work in this article is concerned with Polish topometric spaces, namely objects of the form
(X, τ, ρ), where (X, τ) is a Polish topological space and ρ is a lower semi-continuous distance which
refines τ. Type spaces in continous logic provide fundamental examples, though our main motivation
comes from another direction: given a Polish group (G, τ), and a left-invariant distance d inducing
τ, there is a natural topometric structure obtained by setting ρ(g, h) = supk∈G d(gk, hk). The triplet
(G, τ, ρ) is then a Polish topometric group, i.e. a Polish space enriched with a topometric structure
for which the distance is translation-invariant. These objects played an important part in [BBM13],
and some of their properties were further studied in [BM15].

An interesting phenomenon was observed in [BBM13]: given an action of a Polish group G on a
Polish topometric space (X, τ, ρ), it might happen that each G-orbit is meagre (in the sense of Baire
category), yet there exists x ∈ X such that the ρ-closure Gx

ρ
is co-meagre. Call such an x a metrically

generic element. It is of interest, in some concrete cases, to determine precisely what these elements
are; see for instance the recent work [BHI22] which interweaves some model theory and ergodic
theory. Under the additional hypothesis of adequacy (see Definition 2.3 below; this assumption is
satisfied by both kinds of Polish topometric spaces we mentioned above), it was proved in [BM15]
that metrically generic elements form a Gδ subset of X, and a characterization of these elements in
the spirit of a classical theorem of Effros (e.g., [Gao09, Theorem 3.2.4]) was provided.

The Effros theorem is a cornerstone in the study of the structure of orbits for Polish group actions,
particularly when one needs to determine whether there exist co-meagre orbits. The topometric
version obtained in [BM15] left open the question of whether a weaker condition on x was sufficient
to establish that x is metrically generic, as well as the issue of giving a criterion for the existence
of metrically generic elements. The purpose of this note is to address those two points, proving
the following (we refer the reader to the beginning of the next section for a reminder of topometric
conventions and notations).

Theorem (see Theorem 3.8 and Theorem 3.10 below). Let (X, τ, ρ) be an adequate Polish topometric
space, and G be a Polish group acting continuously and isometrically on X. Assume that the action G y X is
topologically transitive. Then:
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• an element x ∈ X is a metric generic if, and only if, (Ux)ρ<ε is somewhere-dense for each open U ∋ 1
and each ε > 0.

• There exists a metric generic if, and only if, for any neighbourhood V of 1, any ε > 0 and any
nonempty open U ⊆ X, there exists a nonempty open U′ ⊆ U such that for any nonempty open
W1, W2 ⊆ U′ one has ρ(VW1, W2) ≤ ε.

2. ADEQUATE DISTANCE AND GENERIC ELEMENTS

We allow distances to take the value ∞, with the convention that r + ∞ = ∞ for all r ∈ [0, ∞].

Convention 2.1. When X is a set endowed with a topology τ and a metric ρ, the vocabulary of general
topology refers to (X, τ), unless explicitly qualified, while the vocabulary of metric spaces refers to
(X, ρ). Thus, for example, (X, τ, ρ) is Polish if (X, τ) is, and complete if (X, ρ) is. Similarly, a continuous
and isometric action of a group G on (X, τ, ρ) is a continuous action of G on (X, τ) such that each map
x 7→ gx is an isometry for (X, ρ).

We denote the (topological) closure, as usual, by A, and the metric closure by the (qualified) variant
A

ρ
.

Definition 2.2. Given a distance ρ on a set X, U a subset of X, and r > 0, we let

(U)ρ<r =
{

x ∈ X : ρ(x, U) < r
}

, (U)ρ≤r =
{

x ∈ X : ρ(x, U) ≤ r
}

.

We call these sets thickenings (open and closed, respectively) of U. We mention the distance ρ in the
subscript, since several distances on X may be considered at the same time.

Definition 2.3. Let (X, τ) be a Polish space and ρ a distance on X (possibly incompatible with the
topology τ).

(i) The distance ρ is adequate if for every open set O ⊆ X and r > 0, the thickening (O)ρ<r is
again open.

(ii) An open set W ⊆ X is ε-small if for every open non-empty W1, W2 ⊆ W we have ρ(W1, W2) ≤
ε.

(iii) A point x ∈ X is ρ-generic if for every ε > 0, the set (x)ρ<ε is somewhere-dense.

Remark 2.4. Assume that W ⊆ X is open and ε-small, and let δ > ε. Then for every non-empty open
O ⊆ W, the (relative) thickening W ∩ (O)ρ<δ is dense in W.

Indeed, let x ∈ W and let U ∋ x be an open neighbourhood. We may assume that U ⊆ W. Then
ρ(O, U) ≤ ε < δ, so (O)ρ<δ ∩ U 6= ∅.

Example 2.5. Assume that (X, τ, ρ) is a topometric space (i.e., ρ refines τ and is lower semi-
continuous). Then ρ is adequate if and only if (X, τ, ρ) is adequate in the sense of [BM15]. In this
case, we observe that an open set W ⊆ X is ε-small if and only if diamρ W ≤ ε. Indeed, one implica-
tion is immediate from the definition of ε-smallness. For the opposite direction, assume that x, y ∈ W
and ρ(x, y) > ε. By lower semi-continuity of ρ, there exists open neighbourhoods x ∈ W1 and y ∈ W2
such that ρ(W1, W2) > ε, and we may freely assume that Wi ⊆ W.

Further, in that case x is ρ-generic if and only if it is topometrically isolated, that is, x belongs to
the interior of (x)ρ<ε for all ε > 0 (see [Ben08]; for a more general version of this fact, valid also for
non-topometric spaces, see Lemma 2.9 below).

Definition 2.6. Let G be a group. A norm on G is a function ‖·‖ : G → [0, ∞] such that
• For all g ∈ G, ‖g‖ = 0 ⇔ g = 1.
• For all g ∈ G ‖g‖ = ‖g−1‖.
• For all g, h ∈ G ‖gh‖ ≤ ‖g‖+ ‖h‖.

Norms correspond to left-invariant (or right-invariant, depending on the choice of convention)
metrics on G, via the equality ‖g‖ = d(g, 1) (or d(g, h) = ‖h−1g‖). This left-invariant distance always
defines a group topology, and we say that the norm is compatible with that topology. Equivalently, a
norm is compatible with a group topology if the family of sets

Ur =
{

g ∈ G : ‖g‖ < r
}

(1)
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is a basis of neighbourhoods for the identity. The Birkhoff-Kakutani Theorem asserts that a topo-
logical group is metrisable if and only if it admits a compatible norm (equivalently, a compatible
left-invariant distance). In what follows, all norms (on topological groups) are implicitly assumed to
be compatible.

Example 2.7. Assume that G is a metrisable topological group (e.g., a Polish group) acting continu-
ously on X. Let ‖·‖ be a compatible norm on G, and define

ρ(x, y) = inf
{

‖g‖ : gx = y
}

,

where inf∅ = ∞.
Then ρ is an adequate distance. Indeed, (A)ρ<r = Ur A, where Ur is as in (1). Moreover, since ‖·‖

is compatible and G acts continuously on X, ρ refines the topology of X.

In general, the distance ρ of Example 2.7 need not be lower semi-continuous. For instance, assume
that G is the permutation group of the integers, acting on itself by conjugation and endowed with the
norm ‖σ‖ = inf{2−n : ∀i ≤ n σ(i) = i}. Let G0 denote the subgroup of all permutations which map
0 to itself, and fix a permutation σ with a dense conjugacy class in G0; fix also τ ∈ G0 which is not in
the conjugacy class of σ. One can pick (σn) which are conjugate to σ and converge to τ; for all n one
has ρ(σn, σ) ≤ 1 (they are conjugate by an element which fixes 0) yet ρ(τ, σ) = ∞.

If ρ denotes the greatest lower semi-continuous function below ρ, we do not know if there are any
reasonable conditions under which ρ, or something equivalent to it in some reasonable sense, is an
adequate distance function.

Example 2.8. Example 2.5 and Example 2.7 can be joined as follows. Let (X, τ, ρ) be an adequate
topometric space, and let G be a metrisable topological group acting continuously and isometrically
on X. Let ‖·‖ be a norm on G, and define (we use ∨ as infix notation for the maximum function):

ρ′(x, y) = inf
{

‖g‖ ∨ ρ(gx, y) : g ∈ G
}

.

Thus, if Ur = {g ∈ G : ‖g‖ < r}, then (A)ρ′<r = Ur(A)ρ<r = (Ur A)ρ<r. Then ρ′ is an adequate
distance refining the topology.

If G is trivial, we obtain Example 2.5, and if ρ is the discrete 0/∞ distance, Example 2.7.
The distance ρ′ in this example plays an essential role in our approach here, because it combines

the group topology and the metric on X: ρ′(x, y) is small iff there exists g close to 1 (for the topology
of G) which maps x close to y (according to ρ). As we saw above, even for discrete ρ this distance ρ′

is not lower semi-continuous in general, which is why we allow non-topometric spaces in our setup
here.

We now state two lemmas concerning ρ-generic elements for adequate distances. We do not as-
sume any compatibility between ρ and τ besides adequacy. These will prove useful in the proof of
our topometric version of Effros’ theorem.

Lemma 2.9. Let ρ be an adequate distance on (X, τ).

(i) For every A ⊆ X we have (A)ρ<ε ⊆ (A)ρ<ε and (A
◦
)ρ<ε ⊆ (A)ρ<ε

◦
.

(ii) If x is ρ-generic then x ∈ (x)ρ<ε
◦

for every ε > 0. Moreover, for every ε > δ > 0 there exists an open

neighbourhood W ∋ x such that (W)ρ<δ ⊆ (x)ρ<ε
◦
.

Proof. For (i), let U = X r (A)ρ<ε. Since ρ is adequate, (U)ρ<ε is open and disjoint from A, hence also
from A, so U is disjoint from (A)ρ<ε, proving the first inclusion. For the second inclusion, observe
that (A

◦
)ρ<ε is open and contained in (A)ρ<ε, hence in (A)ρ<ε, so it is contained in the interior.

Assume now that x is ρ-generic. For ε > 0, let V = (x)ρ<ε
◦
, which is non-empty by assumption on

x. Then V ∩ (x)ρ<ε 6= ∅, so x ∈ (V)ρ<ε. By definition, (V)ρ<ε ⊆
(

(x)ρ<ε

)

ρ<ε
⊆ (x)ρ<2ε. Since (V)ρ<ε

is open, x ∈ (x)ρ<2ε
◦
.

For the moreover part, let W = (x)ρ<ε−δ
◦
. Then x ∈ W, and by (i)

(W)ρ<δ ⊆
(

(x)ρ<ε−δ

)

ρ<δ

◦
⊆ (x)ρ<ε

◦
. �
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Lemma 2.10. Let X be a Polish space and ρ an adequate distance. Then the following are equivalent:

(i) For every ε > 0, the union of ε-small open subsets of X is dense.
(ii) The set of ρ-generic x ∈ X is co-meagre.

(iii) The set of ρ-generic x ∈ X is dense.

Proof. (i) =⇒ (ii). This argument is inspired by a similar one in unpublished lecture notes of Christian
Rosendal.

Let {On} be a basis of (non-empty) open sets for X and let δm → 0. For each n, m, let Wn,m ⊆ On be
open, non-empty and δm-small. Then Wm =

⋃

n Wn,m is open and dense in X for all m.
For any k such that Ok ⊆ Wn,m, the thickening Wn,m ∩ (Ok)ρ<2δm

is dense in Wn,m (see Remark 2.4).
It follows that the set

Dn,m =
⋂

Ok⊆Wn,m

(Ok)ρ<2δm

is co-meagre in Wn,m. Thus Dm =
⋃

n Dn,m is co-meagre in Wm and therefore in X. Therefore D =
⋂

m Dm is co-meagre in X.
Assume now that x ∈ D. For each m we have x ∈ Dn,m for some n, and if Ok ⊆ Wn,m, then

(x)ρ<2δm
∩ Ok 6= ∅. It follows that Wn,m ⊆ (x)ρ<2δm

. Thus (x)ρ<2δm
is somewhere-dense for every m,

i.e., x is generic.
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Fix ε > 0. If x ∈ X is ρ-generic, then x ∈ (x)ρ<ε

◦
by Lemma 2.9. In addition, if

W1, W2 ⊆ (x)ρ<ε
◦

are open and non-empty, then both intersect (x)ρ<ε, so ρ(W1, W2) < 2ε. It follows
that the union of all 2ε-small open sets contains the generic points, and is therefore dense. �

Remark 2.11. When (X, τ, ρ) is a topometric space, the argument is much more straightforward,
namely, it suffices to take the intersection over m of all unions of all δm-small open sets.

3. TOPOMETRIC GROUP ACTION

We assume throughout that we have the data of Example 2.8, namely, (X, τ, ρ) is an adequate
topometric Polish space and G a Polish group acting on X continuously and isometrically. We fix a
norm on G, which we assume to be bounded by 1, and define ρ′ as in Example 2.8:

ρ′(x, y) = inf
{

‖g‖ ∨ ρ(gx, y) : g ∈ G
}

.

As pointed out above, ρ′ is an adequate distance refining the topology, but (X, τ, ρ′) is not necessarily
a topometric space. Note also that ρ′ is not, in general, G-invariant.

Observe that x ∈ X is ρ′-generic if, and only if, (Ux)ρ<ε
◦
6= ∅ for every open U and ε > 0, if and

only if x ∈ (Ux)ρ<ε
◦

for every open U and ε > 0.

Remark 3.1. Recall that the action G y X is topologically transitive if GV ∩ W 6= ∅ for any two
non-empty open V, W ⊆ X. By analogy, one may be tempted to call it topometrically transitive if
ρ(GV, W) = 0 for any two non-empty open V, W ⊆ X. However, the two notions coincide.

Indeed, one implication is immediate. For the other, assume that the action is topometrically trans-
itive, and let U be a non-empty open subset of X. For any ε > 0 the set (GU)ρ<ε is open and dense, so

GU
ρ

is co-meagre, and in particular, dense. Since ρ refines the topology, GU = GU
ρ
= X. It follows

that G y X is topologically transitive.

Lemma 3.2. The following are equivalent:

(i) The action G y X is toplogically transitive.
(ii) The set of x ∈ X whose orbit is dense, is co-meagre.

(iii) There exists a point x ∈ X such that (Gx)ρ<ε is dense for all ε > 0.

Proof. (i) =⇒ (ii). This is classical: choose a countable basis {On} and let Y =
⋂

GOn. Then each GOn

is open and dense, so Y is co-meagre, and the orbit of every x ∈ Y intersects every On.
(ii) =⇒ (iii). Immediate.
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(iii) =⇒ (i). If such an x exists, then G y X is topometrically transitive in the sense of Remark 3.1,
hence topologically transitive. �

Lemma 3.3. Assume that x ∈ X is ρ′-generic. Then G y X is topologically transitive if and only if (Gx)ρ<ε

is dense for all ε > 0.

Proof. One implication is immediate from Lemma 3.2. For the other, assume that G y X is topolo-
gically transitive. Fix ε > 0.

By Lemma 2.9, x ∈ V = (x)ρ′<ε
◦
. Then GV is dense, and

GV ⊆ G · (x)ρ′<ε ⊆ G · (x)ρ′<ε = (Gx)ρ<ε.

Therefore, (Gx)ρ<ε is dense as well. �

Lemma 3.4. Assume that G y X is topologically transitive. Then the following are equivalent:

(i) For every ε > 0, the union of (ρ′, ε)-small open sets in X is dense.
(ii) The set of ρ′-generic points is co-meagre.

(iii) A ρ′-generic point exists.

Proof. (i) =⇒ (ii). This is Lemma 2.10.
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Let x be ρ′-generic, and let ε > 0. On the one hand, the open set (x)ρ′<2ε

◦
is (ρ′, 4ε)-

small, as in the proof of the last implication of Lemma 2.10. On the other hand, by Lemma 2.9,
x ∈ (x)ρ′<ε

◦
and

(x)ρ<ε ⊆ (x)ρ′<ε ⊆
(

(x)ρ′<ε
◦)

ρ′<ε
⊆ (x)ρ′<2ε

◦
.

Consequently, (Gx)ρ<ε = G(x)ρ<ε is contained in a union of (ρ′, 4ε)-small open sets.
Since x is ρ’-generic and G y X is topologically transitive, (Gx)ρ<ε is dense (by Lemma 3.3),

completing the proof. �

Notation 3.5. Given x ∈ X, we let [x] = Gx
ρ
.

Observe that the sets [x] form a partition of X into ρ-closed sets.

Lemma 3.6. Assume that x is ρ′-generic and y ∈ [x]. Then y is ρ′-generic.

Proof. First, fix g ∈ G and ε > 0, then find δ such that 0 < δ ≤ ε and for all h ∈ G one has
‖h‖ ≤ δ ⇒ ‖ghg−1‖ ≤ ε. Given y ∈ g(x)ρ′<δ there exists h such that ‖h‖ < δ and ρ(g−1y, hx) < δ,

i.e., ρ(y, ghg−1 gx) < δ. It follows that g(x)ρ′<δ ⊆ (gx)ρ′<ε, hence also g(x)ρ′<δ
◦
⊆ (gx)ρ′<ε

◦
. Hence

gx is ρ′-generic.
Now, let y ∈ [x] and ε > 0, and find g ∈ G such that ρ(gx, y) < ε. Then (gx)ρ′<ε ⊆ (y)ρ′<2ε, so

(y)ρ′<2ε
◦
6= ∅, and y is generic as well. �

We are ready to prove our main lemma, describing the structure of ρ′-generic elements for a topo-
logically transitive action.

Lemma 3.7. (i) Fix ε > 0. Assume that x, y ∈ X are both ρ′-generic, and that y ∈ (Gx)ρ<ε
◦
. Then

y ∈ (Gx)ρ≤ε.
(ii) Assume that G y X is topologically transitive. Then the set of ρ′-generic elements in X is either

empty, or of the form [x] = Gx
ρ

(where x is any ρ′-generic element).

Proof. For the first item, it is enough to show that y ∈ (Gx)ρ≤ε′ for any given ε′ > ε. Let δn =
2−n(ε′ − ε) and εn = ε′ − δn.

We are going to construct a (convergent) sequence (gn) of elements of G, whose limit will send x
close to y.

Before going into the details, recall the notation (1): Ur =
{

h ∈ G : ‖h‖ < r
}

. Let O0 = G, and
once gn has been chosen, let

On+1 = U2−n ∩ gnU2−n g−1
n ∩ g−1

n U2−n gn,
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observing that this is a symmetric neighbourhood of 1. Then, if z ∈ X is ρ′-generic, we define

Vn(z) = (Onz)ρ<εn

◦
, Wn(z) = (Onz)ρ<δn

◦
.

By Lemma 2.9, both of them contain z, and
(

Wn+1(z)
)

ρ<εn
=

(

(On+1z)ρ<δn+1

◦)

ρ<εn
⊆ (On+1z)ρ<δn+1+εn

◦
= Vn+1(z).(2)

Now, to the actual construction, which will ensure that:
• For even n we have g−1

n y ∈ Vn(x) and gn+1 ∈ gnOn.
• For odd n we have gnx ∈ Vn(y) and gn+1 ∈ Ongn (equivalently, g−1

n+1 ∈ g−1
n On).

We may start with g0 = 1, observing that, indeed, g−1
0 y = y ∈ (Gx)ρ<ε

◦
= V0(x).

Assume that gn has been chosen, say for some even n. Then

y ∈ gnVn(x) ∩ Wn+1(y) =
(

gnOnx
)

ρ<εn

◦
∩ Wn+1(y).

Since Wn+1(y) is open, it intersects (gnOnx)ρ<εn . Together with (2):

gnOnx ∩ Vn+1(y) ⊇ gnOnx ∩
(

Wn+1(y)
)

ρ<εn
6= ∅.

We may then choose gn+1 ∈ gnOn such that gn+1x ∈ Vn+1(y). The odd step is similar.
We claim that the sequence (gn) is Cauchy for the upper uniformity on G, hence convergent since

G is Polish. Indeed, let us consider an even m ≥ 2, say m = n + 2. Then gm ∈ gn+1On+1 and
gm+1 ∈ On+2gm, so

gm+1g−1
m ∈ On+2 ⊆ U2−n−1,

g−1
m gm+1 ∈ g−1

m On+2gm ⊆ On+1 · (g−1
n+1On+2gn+1) · On+1 ⊆ U2−n · U2−n−1 · U2−n .

Therefore ‖gm+1g−1
m ‖ < 2−m+1 and ‖g−1

m gm+1‖ < 5 · 2−m+1, which is good enough. The odd case is
similar.

Let g = lim gn ∈ G. For all n we have y ∈ g2n

(

O2nx
)

ρ<ε2n
, so we may choose zn ∈ X and un ∈ O2n

such that g2nzn → y and

ρ(g2nzn, g2nunx) = ρ(zn, unx) < ε2n ≤ ε′.

By continuity of the group action, g2nunx → gx. Since ρ is, in addition, lower semi-continuous, we
obtain ρ(y, gx) ≤ ε′, as promised.

For the second item, assume that G y X is topologically transitive and that x is ρ′-generic. We
know by Lemma 3.6 that any y ∈ [x] is ρ′-generic as well. Conversely, since the action is topologically
transitive we have (Gx)ρ<ε = X for all ε > 0, by Lemma 3.2. By the first item, every ρ′-generic
element belongs to

⋂

ε>0 (Gx)ρ≤ε = [x]. �

We obtain the following topometric version of the Effros theorem.

Theorem 3.8. Let (X, τ, ρ) be an adequate Polish topometric space, G a Polish group acting on X topologically
transitively. Then, for x ∈ X, the following are equivalent:

(i) The orbit closure [x] = Gx
ρ

is co-meagre.
(ii) The set (Gx)ρ<ε is non-meagre for all ε > 0.

(iii) The point x is ρ′-generic, namely (Ux)ρ<ε is somewhere-dense for every ε > 0 and open U ∋ 1.

Equivalently, x ∈ (Ux)ρ<ε
◦

for every ε > 0 and open U ∋ 1.

Proof. (i) =⇒ (ii). Immediate since Gx
ρ

is contained in (Gx)ρ<ε for all ε > 0.
(ii) =⇒ (iii). For any open U ∋ 1 we can express G as

⋃

n gnU. Since (Gx)ρ<ε is not meagre, neither
is (Ux)ρ<ε, so it is somewhere-dense. In other words, x is ρ′-generic. The second characterisation is
by Lemma 2.9.

(iii) =⇒ (i). Let X0 ⊆ X consist of all ρ′-generic elements, and assume that x ∈ X0. By Lemma 3.4,
the set X0 is co-meagre. By Lemma 3.7, X0 = [x]. �
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Remark 3.9. If we assume that Gx is dense in X, the above conditions are also equivalent, by [BM15,
Theorem 5.2], to the following conditions:

(iv) Gx
ρ

is Gδ.
(v) For any open subset U of G and any ε > 0,

(

Ux
)

ρ<ε
is open in Gx

ρ
.

(vi) For any open subset U of G and any ε > 0,
(

Ux
)

ρ<ε
is open in Gx.

The criterion obtained in this paper provides a condition on x that is sufficient for Gx
ρ

to be co-
meagre, but is seemingly weaker than the conditions from [BM15]. This approach also enables us to
state a criterion for the existence of such points. The analogous statement for Polish group actions on
Polish spaces is due to Rosendal and part of our arguments here are adaptations of Rosendal’s proof
to the topometric setting.

Theorem 3.10. Let (X, τ, ρ) be an adequate Polish topometric space, G a Polish group acting on X topologic-
ally transitively. Then the following are equivalent:

(i) There exists x ∈ X such that [x] = Gx
ρ

is co-meagre.
(ii) For any ε > 0 the union of all (ρ′, ε)-small open sets is dense.

(iii) For any open V ∋ 1, any ε > 0 and any non-empty open U ⊆ X, there exists a non-empty open
U′ ⊆ U such that for any non-empty open W1, W2 ⊆ U′ one has ρ(VW1, W2) ≤ ε.

Proof. (i) ⇐⇒ (ii). By Theorem 3.8 there exists x ∈ X such that [x] is co-meagre iff there exists a
ρ′-generic x, and then Lemma 3.4 states that the two conditions are equivalent.

(ii) ⇐⇒ (iii). The union of all (ρ′, ε)-small open sets is dense if and only if every non-empty open
set U contains a (ρ′, ε)-small one W, namely such that, if W1, W2 ⊆ W are non-empty and open, then
(W1)ρ′<ε ∩ W2 6= ∅. Since (W1)ρ′<ε = (UεW1)ρ<ε, where Uε =

{

g ∈ G : ‖g‖ < ε
}

as in (1), we obtain
the alternate formulation. �

Let us give an example of an application of our topometric version of the Effros theorem. Given a
Polish topometric group (G, τ, ρ) and n < ω, we turn Gn into an adequate Polish topometric space
by endowing it with the product topology and the metric ρ(x, y) = maxi<n ρ(xi, yi). The group G

acts on each Gn by diagonal conjugation. We say that x ∈ Gn is metrically generic if G · x
ρ

is co-meagre
in Gn (here we use · to denote the action of G by diagonal conjugation, to avoid confusion with the
product of elements of G), or equivalently, if (G · x)ρ<ε is co-meagre for every ε > 0. We say that
(G, τ, ρ) has ample metric generics if Gn admits a metrically generic point for each n.

Proposition 3.11. Let (G, τG, ρG) and (H, τH, ρH) be two Polish topometric groups and ϕ : H → G a group
homomorphism such that:

• ϕ : (H, τH) → (G, τG) and ϕ : (H, ρH) → (G, ρG) are continuous.
• For any open U in H and any ε > 0, (ϕ(U))ρG<ε is open in G (i.e. ϕ is topometrically open in the

sense of [BM15]).
• ϕ has dense image .

Assume further that (H, τH, ρH) has ample metric generics.
Then (G, τG, ρG) has ample metric generics, and images of metrically generic elements of Hn are metrically

generic elements of Gn.

Proof. Since H has ample generics, each action H y Hn is topologically transitive. Since ϕ has dense
image, each action G y Gn is topologically transitive as well.

Assume that x ∈ Hn is a metric generic. Let U be an open neighbourhood of 1 in G and ε > 0. Let
also y = ϕ(x) ∈ Gn.

Find an open neighbourhood V of 1 in H and δ > 0 such that ϕ
(

(V · x)ρH<δ

)

⊆ (U · y)ρG<ε. Using
Lemma 2.9 and the continuity of ϕ, we have

(U · y)ρG<2ε ⊇
(

ϕ
(

(V · x)ρH<δ

)

)

ρG<ε
⊇

(

ϕ
(

(V · x)ρH<δ

)

)

ρG<ε
⊇

(

ϕ
(

(V · x)ρH<δ

)

)

ρG<ε
.
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By the characterization of metric generics we know that (V · x)ρH<δ contains some non-empty open
W ⊆ Hn. It follows that (U · y)ρG<2ε contains (ϕ(W))ρG<ε, and we are done since ϕ is topometrically
open. �

This in particular recovers the sufficient condition for ample generics in Polish topometric groups
given in [BBM13] (there H is endowed with the discrete metric, H is a subgroup of G and ϕ is the
identity on H). We note, however, that Proposition 3.11 could also be obtained via results obtained
in [BBM13] or [BM15]. The reason why, at the moment, we cannot present a more convincing applic-
ation of our topometric Effros theorem is that we lack examples of adequate topometric spaces, and
the applicability of our result is still quite limited in practice, though we hope this will change.

We conclude this paper by discussing a potential source of interesting examples.
Fix a homogeneous metric structure M and a countable group Γ (say, generated by some finite

set S for ease of exposition), and consider the space A(Γ,M) of all actions of Γ on M. One can see
A(Γ,M) as a closed subspace of Aut(M)Γ, so the induced topology τ turns A(Γ,M) into a Polish
space. The group Aut(M) and the space A(Γ,M) also carry natural metrics, namely, for g, h ∈ G
and α, β ∈ A(Γ,M):

du(g, h) = sup
{

d
(

g(x), h(x)
)

: x ∈ M
}

, ρ(α, β) = sup
{

du

(

α(s), β(s)
)

: s ∈ S
}

.

Note that (A(Γ,M), τ, ρ) is a Polish topometric space; and Aut(M) acts by conjugation on
A(Γ,M), via (g · α)(γ) = gα(γ)g−1. In some concrete settings (e.g., in ergodic theory, see [BHI22])
one would like to know if there exists a privileged action of Γ on M. In many cases, the orbits for
this Aut(M)-action are meagre, and the next-best thing would be the existence (and description) of
a metric generic. Thus it would be interesting to apply our criterion in this setting, i.e., to know that
A(Γ,M) is adequate.

Note that when Γ is the free group generated by S, A(Γ,M) is isomorphic, as a topometric space,
to Aut(M)n, hence is adequate.

Question 3.12. Let M be the Urysohn metric space, and Γ a countable group. Is the space of actions
A(Γ,M) an adequate Polish topometric space?

Of course one could replace M by any other homogeneous metric structure and ask the same
question (in particular, one could consider the standard atomless measure algebra, or the separable
Hilbert space).
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