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Abstract: Green communications have witnessed significant attention being paid to the next gener-
ation of wireless systems research and development. This is due to growing use of sensor- and bat-
tery-oriented smart wireless devices. The related literature in green communications for next-gen-
eration wireless systems majorly relies on transmission and sensing power management, but lacks 
a fault-tolerant centric approach. In this context, this paper presents a fault-tolerant and reliable 
green communications framework for next-generation wireless systems (FRGNWS). Firstly, maxi-
mum node-disjoint routes from all source nodes to the base station are identified based on the hy-
brid adapted grey wolf sine cosine optimizer. Secondly, a fault-tolerant and reliable route is selected 
from the maximum disjoint routes for each sensor node to the base station based on the hybrid 
adapted grey wolf whale optimizer. The performance of our proposed green communications 
framework is assessed by simulation experiments considering a realistic implementation scenario 
and different metrics. Simulation results clearly validate the efficacy of the proposed green commu-
nications framework as compared to the state-of-the-art techniques. 

Keywords: green communication; wireless sensor network; energy harvesting; whale optimization 
algorithm; grey wolf optimization; sine cosine optimization 
 

1. Introduction 
The excellent advancements in the field of IoT help in applying the latest smart tech-

nologies of wireless communications towards agriculture, grids, smart homes, smart in-
dustry revolution, military, etc. Currently, researchers are focusing on designing optimal 
energy-efficient wireless sensor networks (WSNs) consisting of a large number of tiny 
sensor nodes for monitoring/sensing/detecting particular events, which are operated pri-
marily by limited-capacity batteries [1]. Tiny sensor nodes (SNs) are also known by the 
name source nodes (SNs). The main applications of WSNs typically occur in very harsh 
environments and due to these circumstances, the battery of SNs drains out very fast. 
Therefore, the main reason for node failure in WSNs is due to their deployment in a harsh 
environment [2]. Energy harvesting (EH) is the prominent solution for providing an al-

Citation: Rathore, R.S.; Kaiwartya, 

O.; Qureshi, K.N.; Javed, I.T.;  

Nagmeldin, W.; Abdelmaboud, A.; 

Crespi, N. Towards Enabling Fault 

Tolerance and Reliable Green  

Communications in Next-Generation 

Wireless Systems. Appl. Sci. 2022, 12, 

8870. https://doi.org/10.3390/ 

app12178870 

Academic Editor: Daniel Ulises 

Campos-Delgado 

Received: 25 June 2022 

Accepted: 31 August 2022 

Published: 4 September 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 8870 2 of 36 
 

ternative source of energy to tiny nodes for resolving energy issues but sometimes fluctu-
ations occur in harvested energy due to environmental conditions and energy optimiza-
tion again needed for effective utilization in this case [3]. The concept of duty cycle (DC) 
is also used for energy efficiency but in the case of an energy-harvesting wireless sensor 
network (EH-WSN), the SNs require a heterogeneous and dynamic DC [4]. 

Whenever a specific SN involved in routing a data packet to base station (BS) be-
comes dead, then this data packet is unable to reach the BS and other SNs are selected to 
route this data packet to the BS; now, these other SNs are taking extra load and their bat-
tery is more likely to deplete fast due to the overloaded mechanism and thereby a greater 
number of SNs becomes dead. Further, this situation creates multiple network partitions 
[5]. A disjointed, partitioned network may be created due to this type of inherent limita-
tion of EH-WSN. In general terms, this situation is termed as the problem of disjointed 
networks. If the network partition condition arises, then, in this case, the communication 
mechanism happens only between the SN and those other SNs that belong to that specific 
respective partition only; for the remaining part of the network, they are totally cut off [6]. 
For resolving this condition and maintaining effective connectivity in the partitioned net-
work, we require the placing of a special type of node, called a relay node (RN) [7]. Fur-
ther, they may be different from traditional SNs in terms of the power of the battery, hav-
ing the capability of movement, etc.; also, their uniqueness lies in the fact that, first, they 
collect data packets from the SNs, and then they forward the data packets to neighboring 
RNs, and in this way data packets finally reach the sink node [8]. Relay nodes contribute 
towards enhancing the network life span since they relive the overloaded SNs by distrib-
uting their loads [9]. The only limitation in deploying relay nodes is related to increments 
in the budget of the network since they may be costly compared with traditional SNs. The 
relay nodes (RNs) can be placed by using two approaches, namely, the random approach 
or pre-determined approach [10]. The pure random approach is relatively complex since 
it requires distributed algorithms as well as a routing framework with self-organizing ca-
pabilities [11]. It should be noted that a controlled random approach with non-uniform 
nature is the best solution for the deployment of relay nodes (RNs) [12]. Therefore, for 
optimal performance with cost-effectiveness for the EH-WSN, we should place the mini-
mum number of relay nodes at appropriate optimal positions. Again, this requirement 
forms the NP-hard problem, where the relay node optimization problem is having a dis-
crete type nature and a discrete solution is needed for this NP-hard problem [13]. 

Next, fault-tolerant routing with awareness of the quality of routing is the only solu-
tion for the optimal performance of EH-WSN. Towards enabling fault-tolerant routing, 
the first step is to establish the multi-node/link disjoint routes, comparing these with the 
previous route as well as all other alternative routes. In this mechanism, the failure in the 
previous route due to the breakdown of any or all nodes/links has no impact on the alter-
native routes; this since, in the energy-harvesting environment, the time-varying, unsta-
ble, and random nature of harvested energy may compel the nodes to fail. Furthermore, 
due to this random nature of harvested energy, the nodes’ lifecycle frequently switches 
between alive and dead, which results in dynamic changes in the quality of the routing. 
The designing of effective fault-tolerant routing in EH-WSN is a hard nut to track since it 
constitutes the NP-complete problem. 

For providing faut tolerant routing, a few research articles recently were published; 
e.g., Belkadi et al. [14] proposed a fault-tolerant routing scheme utilizing clustering for 
WSN; Abdulrab et al. [15] presented a multipath routing model with features such as in-
creased reliability, minimum latency, and cost-effectiveness. In the proposed model, there 
exists a backup node in each route. The backup node is responsible for storing the data 
from the parent node for maintaining the continuity in case of failure. Hao et al. [16] also 
proposed an energy-efficient routing scheme based on a greedy strategy. In the proposed 
scheme, an energy evaluation model is constructed first for identifying the energy state of 
the node. Further, a range judgment framework was designed, and these two schemes 
were combined for designing a reception state adjustment scheme. 



Appl. Sci. 2022, 12, 8870 3 of 36 
 

Researchers are using various techniques based on approximations, heuristics, etc., 
for providing the appropriate solution for the relay node optimization problem, as well 
as to solve the NP-complete problem of fault-tolerant routing in EH-WSN. Metaheuristics 
are used currently for providing the solution to these non-deterministic polynomial time 
(NP)-hard and NP-complete optimization problems, respectively. The major reason for 
using metaheuristics for solving these problems is that these frameworks are efficient in 
handling NP-hard as well as NP-complete optimization problems, having non-linear 
characteristics. As compared with heuristic algorithms, metaheuristic algorithms have 
added advantages since metaheuristic algorithms are intelligent enough and also have 
adaptability features; in turn, heuristic algorithms are mainly problem dependent. The 
two main pillars of stochastic algorithms are a deterministic component and a random 
component. Further, the local optimum can be found by a deterministic component, on 
the other hand, with the help of a random component; metaheuristic algorithms also can 
adopt various forms by considering random walk and random sampling. 

In this research article, a novel framework is proposed, namely, a framework ena-
bling fault-tolerant and reliable green communication in next-generation wireless systems 
(FRGNWS), considering a single-tiered EH-WSN with constrained RNs deployment. The 
proposed novel framework consists of two phases. In the first phase of the proposed novel 
framework, maximum node-disjoint routes from all SNs to BS using minimum RNs are 
explored based on a hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO) frame-
work, the HA-GWSCO framework also discovers k-node-disjoint routes from each SN to 
BS with k ≥ 2, which enhances the fault tolerance capability in EH-WSN. In the second 
phase of the proposed novel framework, out of the k-node-disjoint routes from each SN 
to BS with k ≥ 2, the best appropriate reliable route is selected for routing, which enhances 
the reliability in routing for EH-WSN based on the hybrid adapted grey wolf whale opti-
mizer (HA-GWWO). 

The salient contributions of this proposed novel research are listed below in a point-
wise fashion. 
1. The proposed novel research effectively handles both the NP-hard (relay node opti-

mization) as well as NP-complete (fault-tolerant reliable routing) problems, challeng-
ing optimization problems simultaneously in EH-WSN. This salient feature of the 
proposed novel research distinguishes it from other existing literature. 

2. The first phase of the proposed novel framework (FRGNWS) is dedicated for explor-
ing the maximum approximate number of node-disjoint routes from all SNs to BS 
utilizing the least number of RNs in EH-WSNs based on the hybrid adapted grey 
wolf sine cosine optimizer (HA-GWSCO). 

3. The first phase of the proposed novel framework (FRGNWS) also provides a novel 
approach for discovering k-node-disjoint routes from each SN to BS with k ≥ 2 in EH-
WSN. 

4. The second phase of the proposed novel framework (FRGNWS) is dedicated for find-
ing the best appropriate reliable route from each SN to BS out of the available k-node-
disjoint routes from each SN to BS in EH-WSN based on the hybrid adapted grey 
wolf whale optimizer (HA-GWWO). 

5. To assess the effectiveness of the proposed novel framework in EH-WSN, we have 
considered five metrics, namely, the energy consumption, lifetime of the network, 
throughput, delay, and delivery ratio, and analyzed the results by comparing the 
proposed novel framework with other metaheuristic frameworks. The simulation re-
sults attest to the claim that the performance of the proposed novel framework is 
optimal, and this approach can be adopted for enhancing the capability towards fault 
tolerance and reliable green communication in next-generation WSN. 
The proposed novel research article is organized into six sections. The research article 

is introduced in Section 1; this section briefly narrates the various details, including the 
salient contributions, of this research article. Next, all similar works from the literature are 
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illustrated in Section 2; this section is named Related Works. Further, the proposed novel 
research is well explained in Section 3; this section describes both the phases of the pro-
posed novel framework in detail, and is named The Proposed Approach. The validation 
of the effectiveness of the proposed novel framework is carried out in Section 4; this sec-
tion analyzes and explains the evaluated results and is named Results and Discussion. 
Finally, in Section 5, a summary of the proposed novel framework is provided, with future 
research directions, and this section is named Conclusions. 

2. Related Work 
There are two types of relay node placement strategies for EH-WSNs, namely, con-

strained and unconstrained approaches. The constrained approach sets specific objectives, 
namely, enhancing the network life, improving the coverage, and specific location re-
strictions, etc. The unconstrained approach for relay node placement focuses on general-
ized objectives such as connectivity and fault tolerance in EH-WSN. We will first discuss 
the unconstrained strategies for relay node placement. The objective of fault tolerance in 
single-tiered (ST) as well as two-tiered (TT) EH-WSNs can be achieved by providing k-
connectivity with k ≥ 2. Further, if k = 1, then ultimate objective is internode reachability, 
with a focus on generating fully connected EH-WSN. Next, Lloyd et al. [17] have pre-
sented an M1tRNP scheme, which is known as the minimum 1-tiered relay node place-
ment scheme. For single-tiered (ST), the proposed scheme utilized polynomial-time 7-ap-
proximation and on the other hand for two-tiered networks, 5 + ε (ϵ > 0). Here, Kruskal’s 
algorithm is used for constructing the MST. The sensing radius of the relay nodes is uti-
lized for placing the RNs on the edges of the tree. 

Liu et al. [18] proposed an approximation framework for one connected network 
with polynomial time (6 + ε) and two connected networks with (24 + ε). The Steiner mini-
mum tree is utilized for determining the minimum number of RNs, covering the entire set 
of SNs for one connected network. Next, the scheme is further extended for two connected 
networks; here, extra relay nodes are deployed for each relay node in one connected net-
work. Next, we will discuss the constrained strategies for relay node placement. Xu et al. 
[19] have addressed the objective of reducing the cost of a network with improvement in 
network life span. This problem is NP-hard, also known as the minimum set covering 
problem. In the proposed recursive scheme, the divide and conquer strategy is utilized. 
In the proposed scheme, the relay nodes are deployed in the locations where the SNs’ 
ranges intersect. In [19], the focus is on deploying the minimum number of relay nodes 
for a two-tiered architecture with the objective of achieving the load balancing. The loca-
tions are identified where ranges of relay nodes intersect for extra relay node deployment 
and the focus is on achieving k-connectivity. Next, there are four classifications of relay 
node optimization strategies, namely, algorithm-based frameworks, approximation algo-
rithm-based frameworks, frameworks based on heuristics, and frameworks based on me-
taheuristics. We will illustrate each strategy one by one starting from algorithm-based 
frameworks. 

Senturk et al. [20] have proposed two efficient frameworks for the positioning of the 
distributed RNs. These two frameworks are aimed at reducing the cost of movement of 
the RNs for guaranteed recovery of the network. The first proposed framework focused 
on the movements of RNs based on virtual force on the other hand the second proposed 
framework utilized the concept of Game Theory among the partitions of the network. 
Next, Chang et al. [21] have proposed an efficient framework for jigsaw-based placement 
of RNs for indoor WSNs. They aimed at constructing the WSNs, with the minimum num-
ber of RNs and SNs in an indoor space with obstructions. Further, Nitesh et al. [22] have 
proposed an enhanced framework for the placement of RNs. They aimed at optimizing 
the overall cost by utilizing the least possible RNs. The enhanced framework ensures op-
timal k-coverage and s-connectivity with respect to SNs and RNs within the network. The 
next paragraph will illustrate the approximation algorithm-based frameworks for relay 
node optimization. 
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Mishra et al. [23] have conducted extensive studies for the constrained RN placement 
problem (CRNPP) with prior knowledge for candidate locations regarding the potential 
of energy harvesting. Further, they have presented the NP-hard problems of connectivity 
and survivability in EH-WSNs. They aimed at achieving connectivity or survivability in 
EH-WSNs by utilizing the least number of RNs. Next, they proposed the polynomial-time 
O(1)-approximation frameworks for solving NP-hard problems of connectivity and sur-
vivability in EH-WSNs. The proposed approximation frameworks are having low approx-
imation ratios. Next, Ma et al. [24] have presented an efficient local search approximation 
framework for providing the solution to the problem of a RN single cover. The proposed 
connectivity-aware approximation framework for the placement of RNs aimed at reduc-
ing the system overhead. Further, Liu et al. [25] have conducted studies for the RN place-
ment problem. They aimed at achieving the optimal connectivity in ST-WSN by deploying 
the least possible RNs. First, they construct the neighbor components by utilizing the Vo-
ronoi Graph and Delaunay Triangle. Next, they utilized the Steiner heuristic with the 
Spanning tree for optimizing the placement algorithm. In the latter, all these components 
are combined for maintaining effective connectivity. The next paragraph will illustrate the 
heuristics-based frameworks for relay node optimization. 

Han et al. [26] have proposed frameworks for maximizing the fault tolerance in ST-
WSNs. In the proposed frameworks they assumed sensors having different ranges. Next, 
Misra et al. [27] have proposed an efficient framework for achieving effective connectivity 
in ST-EH-WSNs. They aimed at deploying the least possible RNs at a subspace of candi-
date areas. Further, the constrained deployment RNs constitute the constrained RN place-
ment problem. Further, Nigam et al. [28] have proposed an efficient framework for de-
ploying the least possible RNs in ST-WSNs known as the branch-and-cut framework. In 
the proposed framework, they assumed a bound of predefined delay in between the SNs 
and BS. Furthermore, Izadi et al. [29] have proposed an effective coverage scheme for mo-
bile SNs in ST-WSNs, which are randomly deployed. The proposed effective self-healing 
coverage scheme is based on fuzzy logic. The proposed effective scheme is aimed at re-
ducing the coverage hole. First, the proposed effective coverage scheme explores the un-
covered areas of the sensing. In the next step, the coverage hole issue is effectively handled 
by selecting the best mobile SNs. Besides, Sitanayah et al. [30] have proposed dual efficient 
frameworks known as Greedy-MSP and GRASP-MSP for providing the solution to place-
ment problems related to multiple sinks. Further, the two proposed frameworks are also 
used for providing the solution to the problem of RNs’ deployment, with the ultimate aim 
of reducing the cost of deployment. Next, the proposed frameworks assure the double-
coverage of each SN. Moreover, Bagaa et al. [31] have proposed an efficient framework 
for providing the solution to constrained RN placement problems in ST-WSNs by effec-
tively handling the deployment of RNs in ST-WSNs. The proposed framework aimed at 
reducing the outage probabilities during the construction of the routing tree with the ad-
dition of the least possible RNs for effective connectivity. Also, Djenouri et al. [32] have 
proposed an effective heuristic scheme for enhancing the life of the network. The pro-
posed effective heuristic scheme provides the solution to the constrained RN placement 
problem. In the proposed heuristic scheme, the life of the network in ST, as well as TT-
WSNs, has been significantly enhanced with the deployment of extra SNs and RNs. The 
next paragraph will illustrate the frameworks based on metaheuristics for relay node op-
timization. 

Zhao et al. [33] have conducted extensive studies for understanding the problem of 
optimal deployment. They proposed the framework utilizing the particle swarm algo-
rithm for integer planning. In the proposed framework, the relay nodes are deployed op-
timally and therefore the proposed framework achieves significant energy efficiency in 
ST-WSNs by reducing the average length of the route. Next, Perez et al. [34] have pro-
posed a multiobjective model in ST-WSNs. The proposed multiobjective model focused 
on optimizing the RNs as well as energy dissipation simultaneously. Further, they pro-
posed a hybrid evolutionary framework consisting of two local searches for providing a 



Appl. Sci. 2022, 12, 8870 6 of 36 
 

solution to the constrained RN placement problem. Further, Gupta et al. [35] have pro-
posed excellent dual frameworks for RN placement. The proposed frameworks provide 
k-connectivity of the SNs. In the proposed dual frameworks, the Genetic Algorithm (GA) 
is utilized in the first framework while the greedy approach is used in the second pro-
posed framework. Furthermore, George et al. [36] have proposed an optimal framework 
utilizing a modified genetic algorithm for the placement of RNs in ST-WSNs. In this con-
strained RN placement approach, the proposed framework aimed at deploying the least 
possible RNs with effective connectivity. Further, the proposed framework assures fault 
tolerance in ST-WSNs. Besides, Yu et al. [37] have conducted extensive studies for optimal 
deployment of RNs in ST-WSNs. They focused on optimizing the two important metrics, 
namely, the average consumption of energy as well as average reliability of the network 
simultaneously. They utilized three metaheuristics, such as Archive-Based hYbrid Scatter 
Search, Particle Swarm, and Non-dominated Sorting Genetic Algorithm, for addressing 
this multiobjective optimization problem. The metaheuristics that are utilized employ var-
ied evolutional policies. Moreover, Ma et al. [38] have proposed an efficient RN placement 
framework. The proposed framework supports network reconfiguration. The proposed 
framework is based on Differential Evolution (DE)-based algorithms. Further, the pro-
posed framework assures a deterministic approximation ratio along with tight time com-
plexity. Rao et al. [39] also have proposed an optimal RN placement framework that is 
based on the multiobjective Firefly Algorithm. The proposed framework aimed at deploy-
ing the least possible RNs with consideration of three constraints, namely, energy, con-
nectivity, and coverage. 

Few articles recently have been published for contributing towards fault-tolerant 
routing: Chanak et al. [40] proposed a fault-tolerance routing framework for improving 
the QoS in WSNs. In the proposed scheme, faulty nodes are identified, and partial faulty 
nodes are used to handle the faults in WSN. Sharad et al. [41] presented a multipath fault-
tolerant routing framework utilizing clustering for WSN. In the proposed framework, an 
enhanced version of elephant herding optimization is proposed for selecting the multiple 
routes. Next, Gurupriya et al. [42] proposed a multipath fault-tolerant routing framework 
for WSN. In the proposed framework, clustering is performed by using a modified teach-
ing–learning optimization scheme. Further, pigeon optimization based on a nonlinear re-
gression is used for computing the backup node for increasing the fault tolerance. Finally, 
the optimal path was calculated using a deep Kronecker neural network. Furthermore, 
Mansour et al. [43] presented a fault-tolerant routing scheme in WSN. In the proposed 
scheme, clustering was performed using moth flame optimization. Further, the optimal 
routes were selected using social spider optimization (SSO) in WSN. 

Finally, we have selected two existing frameworks, namely, the artificial bee colony-
based framework and the genetic algorithm-based framework, to compare the effective-
ness of our proposed framework (FRGNWS) against them. In the next paragraph, we 
briefly provide the features of these two existing frameworks. 

Hashim et al. [44] have proposed the framework for placing the RNs between CHs 
and the sink. In the proposed framework, two phases exist, namely, first-phase RNs and 
second-phase RNs. In the first phase of the proposed framework, known as first-phase 
RNs, connections were established by RNs among the CHs and sink. Further, in the sec-
ond phase, extra RNs were deployed randomly and in a dense way for achieving the de-
sired connectivity level. In the second phase, the aim of the Artificial Bees Colony (ABC) 
algorithm is to find the optimal location for further deployment of RNs. This framework 
shows effectiveness, but there are few points that need to be highlighted, such as the con-
straints, namely, the coverage, energy, and energy-harvesting environment have not been 
considered in the proposed framework. Next, Gupta et al. [35] have proposed a frame-
work for providing k-connectivity of the SNs. They also proposed the Genetic Algorithm 
(GA)-based framework for k-connectivity. However, GA is suffering from the problem of 
convergence, and extra computational complexity is created to solve the hierarchical prob-
lem. 
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3. Proposed Approach: Fault Tolerance and Reliable Green Communications in Next-
Generation Wireless Systems (FRGNWS) 

In EH-WSNs, the routing framework should use some specific strategies, such as 
node-disjoint routes with shorter route characteristics, for maintaining the QoS require-
ments in high-traffic scenarios. In these scenarios, multipath routing is the best-suited al-
ternative compared with the single route between each SN and BS. Even with the multi-
path routing framework, there is a strict requirement of node-disjoint routes so that RN 
can serve in one particular route and not others. 

Node-disjoint routes in EH-WSNs possess two unique properties, namely, not hav-
ing any common SN nor link among all the detected routes. The main advantage of these 
characteristics lies in the fact that failure of any SN or link in a group of these routes can 
affect the particular route in that when a failure of any SN or link occurs the other routes 
are not affected. The second advantage of node-disjoint routes in EH-WSNs is related to 
maximizing aggregated network resources. These two advantages make node-disjoint 
routes in EH-WSNs a preferred choice as compared with link-disjoint and partially dis-
joint routes. Also, it should be noted that it is always a challenging task to explore the 
large set of node-disjoint routes between SNs and BS since SNs are usually deployed ran-
domly. On the other hand, several common SNs may occur in link-disjoint routes but no 
shared link is allowed between the routes is the main unique property of these types of 
routes. Therefore, any SN failure in these types of routes may affect (deactivate) multiple 
routes, since a failed SN may be shared with multiple routes. Furthermore, partially dis-
joint routes can be easily constructed since these types of routes have multiple routes in 
which several links or SNs between the distinct routes may be shared. Therefore, in these 
types of partially disjoint routes, failure of any link or SN in a group of these routes may 
have an impact on multiple other routes. For the performance requirements, the density 
of the network for the particular application is the key factor in taking the best decision 
for selecting the particular category of disjoint routes. 

Furthermore, the minimum delay is another requirement for optimal performance of 
EH-WSNs that can be achieved with the help of the shortest route, since it uses the mini-
mum hops. Further, the routing routes should be as short as possible in EH-WSNs since 
shorter routing routes result in lower consumption of energy; also, packets delays are al-
ways minimum in shorter routing routes, and consequently the lifetime of the network as 
well as data-delivery ratio will be enhanced. In a multipath routing framework with mul-
tiple sources, the density of the RNs should be high towards the BS side compared to the 
SN side. Therefore, there is a need for careful selection of the distribution strategies for 
RNs, as the most appropriate distribution strategy for RNs is a controlled random distri-
bution strategy with a non-uniform nature. 

The proposed novel framework utilized three metaheuristic optimization algorithms, 
namely grey wolf optimizer, sine cosine optimizer, and whale optimizer. It should be 
noted that metaheuristic algorithms are considered a specific category of stochastic algo-
rithms and the unique features of these algorithms are that they are problem-independent 
techniques. The names of the two pillars of stochastic algorithms are exploration or diver-
sification, and exploitation or intensification. Further, the exploration or diversification 
component aims at exploring the search space while the exploitation or intensification 
component aims at searching a near-optimal solution. These are the main powerful attrib-
utes of these metaheuristic algorithms. There are three classifications of metaheuristics 
algorithms, such as swarm intelligence algorithms, physics-based, and evolutionary algo-
rithms. In the stage of exploration, the complete solution space is covered by the search 
agents with the help of their unique style of random walk. Next, at the stage of exploita-
tion, a local search is carried out with a focused approach for candidate position by cov-
ering only a particular part of the solution space. There does not exist any predefined way 
in which these algorithms can work and therefore their approach is similar to the black-
box approach in which we do not have awareness of the internal structure; instead, we 
give input and get output. Metaheuristic algorithms such as Ant Colony Optimization 
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(ACO), Moth Flame Optimization (MFO), Interior Search Algorithm (ISA), Tabu Search 
(TS), Whale Optimization Algorithm (WOA), Simulated Annealing (SA), Plant Propaga-
tion Algorithm, Genetic Algorithm (GA), Firefly Algorithm, Grey Wolf Optimization 
(GWO), Cuttlefish Algorithm, Bat Algorithm, Particle Swarm Optimization (PSO), Artifi-
cial Bee Colony (ABC), Cuckoo Search (CS), Sine Cosine Algorithm (SCA), and Intelligent 
Weeds Optimization (IWO), etc., have a discrete nature, and therefore these metaheuris-
tics algorithms are suitable for solving discrete-type NP-hard as well as NP-complete op-
timization problems. 

Next, Figure 1. illustrates the phases of the proposed novel framework with steps 
taken in each phase. The proposed novel framework comprises two phases. In the first 
phase of the proposed novel framework, maximum node-disjoint routes from all the SNs 
to BS using minimum RNs are explored based on the hybrid adapted grey wolf sine cosine 
optimizer (HA-GWSCO) framework, utilizing the properly designed efficient fitness 
function, and this HA-GWSCO framework also discovers 𝑘-node-disjoint routes from 
each SN to BS, with 𝑘 ≥ 2, which enhances the fault-tolerance capability in EH-WSN. The 
first phase starts by initializing the EH-WSN. Next, RNs are deployed by adopting the 
strategy of a controlled random distribution with non-uniform nature. The efficient fitness 
function is designed and then the hybrid adapted grey wolf sine cosine optimizer (HA-
GWSCO) framework is applied. The output of this hybrid framework is the maximum 
number of node-disjoint routes from all SNs to BS in EH-WSN using the least number of 
RNs and 𝑘-node-disjoint routes from each SN to BS. This output is given as input to the 
second phase of the proposed novel framework. The aim of the second phase is to discover 
the most appropriate reliable route out of 𝑘-node-disjoint routes from each SN to BS. In 
the second phase of the proposed novel framework, out of 𝑘-node-disjoint routes from 
each SN to BS, with 𝑘 ≥ 2, the most appropriate, reliable route is selected from each SN 
to BS for routing, which enhances the reliability in routing for EH-WSN based on hybrid 
adapted grey wolf whale optimizer (HA-GWWO). Utilizing a novel and efficient fitness 
function covering multiple objective functions, the newly designed efficient fitness func-
tion consists of six objective functions, namely, the remaining available energy of the SNs, 
the distance of the edge, the energy consumption of the edge, delay in communication for 
the node, relay hops, and also the reliability index. 
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Figure 1. A proposed framework consisting of two phases. 

3.1. System Modelling 
There are various advantages to deploying the relay nodes between SNs in EH-

WSNs, namely, network life enhancement by reducing energy consumption, reduced la-
tency, optimal connectivity, optimal load distribution by relieving the overloaded SNs, 
etc. Further, optimal connectivity can be ensured by verifying the inter-node reachability, 
particularly in the disjoint segments of the EH-WSNs. The ultimate aim of deploying the 
relay nodes is to enable or improve the reachability in the EH-WSNs, where relay nodes 
perform the designated task by relaying the data collected by the SNs. Next, we will dis-
cuss the various components in the system model in pointwise fashion. Table 1 depicts 
the various symbols used in the system modeling along with their descriptions. 

Table 1. Symbols with descriptions. 

𝑆𝑁  It represents the set of SNs in EH-WSN where SNs stands for source nodes/sensor nodes 
and 𝑆𝑁 = {𝑆𝑁 , 𝑆𝑁 , … … … 𝑆𝑁 } 

|𝑆𝑁 | The number of SNs in EH-WSN 
𝑅  The set of node-disjoint routes which are existing between all the SNs and BS.  
𝑅  The number of node-disjoint routes in EH-WSN. Also, 𝑅 = |𝑆𝑁 | ∗ 𝑘 with 𝑘 ≥ 2. 
𝑅𝑁  It represents the set of relay nodes and 𝑅𝑁 = {𝑅𝑁 , 𝑅𝑁 , … . . , 𝑅𝑁 ), 𝑑 < 𝑐  

|𝑅𝑁 | The number of RNs in EH-WSN 
𝑆𝑁  One of the sensor node/source node in 𝑆𝑁  
𝐵𝑆 Sink Node/Base Station in EH-WSN 

𝑅𝑁  A set representing candidate locations for RNs placement 
𝐸𝑛𝑒𝑟𝑔𝑦  Maximum harvested energy by the RN 

𝑊𝑒𝑖𝑔ℎ𝑡  It represents the weight of RN for a particular candidate location and 𝐶𝐿 ∈ 𝑅𝑁  
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𝑆𝑁  The state information of all the sensor nodes/source nodes in EH-WSN 
𝑅 ( , ) The set of all the node-disjoint routes between sensor node/source node 𝑆𝑁  and BS 

𝑅 ( , )  The number of node-disjoint routes between sensor node/source node 𝑆𝑁  and BS and 
𝑅 ( , ) ≤ 𝑘  

𝑘 𝑘 is an integer and 𝑘 ≥ 2, for representing 𝑘 node-disjoint routes between each sensor 
node/source node 𝑆𝑁  and BS 

𝑅 (𝑆𝑁 , 𝐵𝑆) The 𝑗  node-disjoint route between sensor node/source node 𝑆𝑁  and BS and 
(1 ≤ 𝑖 ≤ |𝑆𝑁 |), (1 ≤ 𝑗 ≤ 𝑘) 

𝑆𝑁  A sensor node in 𝑅 (𝑆𝑁 , 𝐵𝑆) and 𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆) 

𝑙 The direct edge between any two adjacent sensor nodes in 𝑅 (𝑆𝑁 , 𝐵𝑆) and 𝑙 ∈

𝑅 (𝑆𝑁 , 𝐵𝑆) 
𝑅𝑁( ) Base Station neighboring relay nodes  

𝐴(𝑅𝑁( )) The approximate number of base station neighboring relay nodes 
𝑅𝑁( ) Source Node/Sensor Node (𝑆𝑁 ) neighboring relay nodes 

𝐴 𝑅𝑁( )  The approximate number of source node/sensor node (𝑆𝑁 ) neighboring relay nodes 
CL Candidate Location 

𝐸𝑛𝑒𝑟𝑔𝑦  Energy harvested at particular candidate location 
𝑅𝑎𝑛𝑔𝑒  Range of sensor node 
𝑅𝑎𝑛𝑔𝑒  Range of relay node 

𝐶𝑀( , ) Connectivity matrix between 𝑖  sensor node 𝑆𝑁  and 𝑗  sensor node 𝑆𝑁  
𝑅𝐸  Remaining available energy 

𝐸𝑛𝑒𝑟𝑔𝑦_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  Energy consumption of the edge 𝑙 
ℎ𝑜𝑝( ( , )) The hop counts in 𝑗  node-disjoint route between 𝑖  source node 𝑆𝑁  and BS 

ℎ𝑜𝑝( ( , ))
 The hop counts in the set of all the node-disjoint routes between 𝑖  source node 𝑆𝑁  

and BS 
𝑑𝑒𝑙𝑎𝑦(𝑆𝑁 ) Delay in communication for the sensor node 𝑆𝑁 , 𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆) 
𝑑𝑒𝑙𝑎𝑦(𝑆𝑁) Delay in communication for the sensor node 𝑆𝑁, 𝑆𝑁 ∈ 𝑅 ( , ) 

RI Reliability Index 
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  Link Reliability 

BSRI Best Suitable Route Index 

The EH-WSN is deployed in a two-dimensional area and the single-tiered network 
topology is considered for deploying EH-WSN. The collector node/sink node or base sta-
tion is placed at predetermined location in EH-WSN. The positions of the SNs are also 
fixed in EH-WSN; we are trying to get the optimal locations by deploying the relay nodes. 
Consider 𝑅𝑁  for representing the set of candidate locations for RN placement, and 
where 𝐸𝑛𝑒𝑟𝑔𝑦  represents the maximum energy that RN can harvest. Further, we 
need to find the weight of RN (𝑊𝑒𝑖𝑔ℎ𝑡 ) considering the particular candidate location 
(CL) for optimal placement, as represented by Equation (1). 

𝑊𝑒𝑖𝑔ℎ𝑡 =
𝐸𝑛𝑒𝑟𝑔𝑦 − 𝐸𝑛𝑒𝑟𝑔𝑦

𝐸𝑛𝑒𝑟𝑔𝑦
+ 1 (1)

Here, 𝐶𝐿 ∈ 𝑅𝑁 , 0 ≤ 𝐸𝑛𝑒𝑟𝑔𝑦 ≤ 𝐸𝑛𝑒𝑟𝑔𝑦 , 𝑊𝑒𝑖𝑔ℎ𝑡 ∈ [1,2], and 𝐸𝑛𝑒𝑟𝑔𝑦  
represent the energy harvested at the selected candidate location (CL) 

The candidate locations having a higher potential for harvesting the energy should 
have lower weights and these candidate locations are selected for optimal placement of 
the RNs. Further, the collector node/sink node or base station is designated for accessing 
the complete network information through a centralized mechanism, such as the node’s 
position, executing the algorithm for finding the optimal locations of the relay nodes, etc. 
The deployed EH-WSNs become disjoint after a certain period, and this situation can be 
announced after analyzing the aggregate data collected at the BS. 𝑅𝑎𝑛𝑔𝑒 , 𝑅𝑎𝑛𝑔𝑒  are 
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the sensing range of the SN and RN, respectively, with the condition of 𝑅𝑎𝑛𝑔𝑒 = 2 ∗

 𝑅𝑎𝑛𝑔𝑒 . 
Let 𝑆𝑁  denote the set of SNs that are deployed in a two-dimensional area and 

𝑆𝑁 = {𝑆𝑁 , 𝑆𝑁 , … … … 𝑆𝑁 } . Similarly, 𝑅𝑁  represents the set of relay nodes and 
𝑅𝑁 = {𝑅𝑁 , 𝑅𝑁 , … . . , 𝑅𝑁 ) that are required for maintaining effective connectivity in 
the EH-WSN, with 𝑐 > 𝑑. 

The Euclidean distance ( 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)  between the two sensor nodes 
(𝑆𝑁 , 𝑆𝑁 ) can be calculated by using the following equation: 

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , = 𝑆𝑁 −  𝑆𝑁 + 𝑆𝑁 − 𝑆𝑁  (2)

Furthermore, it is considered that the sensor nodes 𝑆𝑁  𝑎𝑛𝑑 𝑆𝑁  are connected if 

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , ≤ 𝑅𝑎𝑛𝑔𝑒   (3)

𝑅𝑎𝑛𝑔𝑒  represents the range of sensor node. 
Similarly, it is considered that sensor node 𝑆𝑁  is connected to relay node 𝑅𝑁  and 

𝑑 < 𝑐, 
if 

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , ≤ 𝑅𝑎𝑛𝑔𝑒  (4)

𝑅𝑎𝑛𝑔𝑒  represents the range of relay node. 
Next, the connectivity matrix (CM) can be represented as 

𝐶𝑀( , ) =
1, 𝑖𝑓 𝑆𝑁 , 𝑆𝑁  𝑎𝑟𝑒 𝑐𝑜𝑜𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑖 ≠ 𝑗

0,                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

𝐶𝑀( , ) represents the connectivity matrix between the 𝑖  sensor node 𝑆𝑁  and 
𝑗  sensor node 𝑆𝑁 . 

3.2. Phase 1: Exploring the Maximum Node-Disjoint Routes from All SNs to BS Using the Least 
RNs Based on the Hybrid Adapted Grey Wolf Sine Cosine Optimizer (HA-GWSCO) in EH-
WSN 

In the proposed scheme, we have assumed a controlled random approach that is used 
for deploying the sensor nodes in the two-dimensional area, and the locations of deploy-
ment are decided on by collector node (CN), also known as the sink node or base station 
(BS). Whenever one or more SN(s) is/are unable to maintain proper communication with 
the BS through intermediate SNs, due to the dead conditions, then the RNs come to the 
picture, which are deployed by adopting a control random approach with a non-uniform 
nature to maintain the proper flow of data by maintaining the optimal connectivity. In the 
first phase of the proposed scheme, we have used two metaheuristic optimization algo-
rithms, namely, the grey wolf optimizer and sine cosine optimizer, for designing the hy-
brid framework, named the hybrid adapted grey wolf sine cosine optimizer (HA-
GWSCO), for exploring the maximum node-disjoint routes from all SNs to BS in the EH-
WSN; this hybrid framework also discovers 𝑘-node-disjoint routes from each SN to BS, 
with 𝑘 ≥ 2, which enhances the fault-tolerance capability in EH-WSN. This hybrid frame-
work utilizes the fitness function as described by Equation (6) below. 

In EH-WSN, the maximum approximate number of node-disjoint routes 
𝑚𝑎𝑥 𝐴 𝑅  that exists between all the SNs(|𝑆𝑁 |) and BS utilizing the least num-
ber of RNs can be determined by Equation (6). 

𝑚𝑎𝑥 𝐴 𝑅 ≥ 𝑚𝑖𝑛 𝐴(𝑅𝑁( )), 𝐴 𝑅𝑁( )

| |

 (6)

subject to 
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𝐴 𝑅𝑁( ) ≥ 𝑘 𝑖𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑆𝑁𝑠 𝑎𝑟𝑒 ℎ𝑎𝑣𝑖𝑛𝑔 𝑠𝑎𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑘 − 𝑛𝑜𝑑𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑟𝑜𝑢𝑡𝑒𝑠

𝐴(𝑅𝑁( )) ≥ 𝐴 𝑅𝑁( ) ∗ (|𝑆𝑁 |)
(7)

Equation (6) is assumed as the fitness function for exploring all possible maximum 
approximate number of node-disjoint routes 𝑚𝑎𝑥 𝐴 𝑅  that exists between all the 
SNs(|𝑆𝑁 |) and BS utilizing the least number of RNs. 

Now, we will illustrate the role of the adapted GWO and adapted SCO metaheuristic 
optimization algorithms. The natural hunting procedure, as well as the leadership hierar-
chy of grey wolves, are the two main pillars of the population-based grey wolf optimiza-
tion (GWO) algorithm. In this proposed research, the hybrid framework, having GWO 
and SCO, is used for solving the relay node optimization problem, which is considered an 
NP-hard optimization problem. This hybrid optimization framework enhances the con-
vergence performance of the adapted grey wolf optimizer. Further, by boosting the ex-
ploitation stage, the best optimal solution can be found. 

The results of this hybrid optimization framework represent excellence in terms of 
robustness and ability to solve the NP-hard relay node optimization problem. The hybrid 
optimization framework considers the three best candidate solutions as alpha (∝) (repre-
senting the first candidate solution), beta (β) (representing the second candidate solution), 
and delta (δ) (representing the third candidate solution) in the course of the exploitation 
phase. The positions of the other search agents are modified to conform to alpha (∝), beta 
(β), and delta (δ), which are assumed as the positions of the best search agents. In the 
subsequent sections, we explain the adapted grey wolf optimizer, sine cosine optimizer, 
and then the hybrid version in detail. 

3.2.1. Adapted Grey Wolf Optimizer 
The natural hunting behavior and leadership hierarchy of grey wolves are the 

sources of inspiration for the adapted grey wolf optimization framework [2,45]. This op-
timizer was originally proposed by Mirjalili [46]. 

The mathematical model of the adapted grey wolf optimization framework has five 
main components, namely, the leadership hierarchy of grey wolves, method of the prey’s 
encircling, the procedure of searching the prey, mechanism of attacking the prey, and fi-
nally the hunting mechanism. We will explain each component one by one in the next 
paragraph. 

The leadership hierarchy of grey wolves consists of three main categories of grey 
wolves: the first category is known as alpha (∝), the next category is known as beta (β), 
and delta (δ) is known as the third category. Further, the wolves represented as alpha (∝) 
are considered as the leaders of the grey wolf community. The beta (β) wolves are desig-
nated as the second-level leaders of the grey wolves, while the delta (δ) wolves are the 
third-level leaders. 

Grey wolves adopted the mechanism of encircling the prey for hunting, and the fol-
lowing equations mathematically represent this scenario. 

𝑍 = �⃗�. 𝑊 (𝑡) − 𝑊(𝑡)  (8)

𝑊(𝑡 + 1) = 𝑊 (𝑡) − 𝑂. 𝑍 (9)

In the above equation, the position vector of the prey, as well as the grey wolf, is 
represented by 𝑊  and 𝑊, respectively; also, in the mathematical model, 𝑡 represents 
the current iteration. 

The following equations are used to find the value for two vectors 𝑂 and �⃗�. 

𝑂 = 2𝑔. 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑔 (10)

𝑌 = 2. 𝑟𝑎𝑛𝑑𝑜𝑚  (11)
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Here, the random vectors in the range [0,1] are represented by 𝑟𝑎𝑛𝑑𝑜𝑚  and 
𝑟𝑎𝑛𝑑𝑜𝑚 ; also, parameter 𝑔 is linearly decreased from 2 to 0. 

Further, the hunting procedure of the grey wolves is mathematically modeled in the 
below equations. 

𝑍∝ = 𝑌 . 𝑊∝ − 𝑊 , 𝑍 = �⃗� . 𝑊 − 𝑊 , 𝑍 = 𝑌 . 𝑊 − 𝑊             (12) 

𝑊 = 𝑊∝ − 𝑂 . �⃗�∝, 𝑊 = 𝑊 − 𝑂 . 𝑍 /𝑊 = 𝑊 − 𝑂 . 𝑍   (13) 

𝑊(𝑡 + 1) =
𝑊 + 𝑊 + 𝑊

3
 (14) 

Next, the condition for attacking the prey is 𝑂 < 1. Now, the grey wolves start mov-
ing to attack the prey. The condition for searching the prey is 𝑂 > 1. Now, the grey 
wolves start moving away from the prey to search for more competent prey. 

3.2.2. Adapted Sine Cosine Optimizer (SCO) 
The adapted sine cosine optimizer (SCO) is based on sine and cosine functions [47]. 

This optimizer was originally proposed by Mirjalili [48]. It is basically applied in global 
optimization functions for phases of exploitation and exploration. Initially, it generates 
multiple random solutions and these random solutions show fluctuations, either out-
wards or towards the best possible solution. This complete mechanism utilized the sine 
and cosine functions-based mathematical model, as shown by Equations (15) and (16). 

𝑊 (𝑡 + 1) = 𝑊 (𝑡) + 𝜑 ∗ sin(𝜑 ) ∗ 𝜑 ∗ 𝑙 (𝑡) − 𝑊 (𝑡)  (15)

𝑊 (𝑡 + 1) = 𝑊 (𝑡) + 𝜑 ∗ cos(𝜑 ) ∗ 𝜑 ∗ 𝑙 (𝑡) − 𝑊 (𝑡)  (16)

The current position is represented by 𝑊 (𝑡); 𝜑 , 𝜑 , and 𝜑  are random numbers ∈

[0,1], and the targeted global optimal solution is represented by 𝑙 . The conditions 0.5 ≤

𝜑 < 0.5 are also used in Equations (15) and (16) for representing the phases of exploita-
tion and exploration, respectively. 

𝑊 (𝑡 + 1) =
𝑊 (𝑡) + 𝜑 ∗ sin(𝜑 ) ∗ 𝜑 ∗ 𝑙 (𝑡) − 𝑊 (𝑡) , 𝜑 < 0.5 

𝑊 (𝑡) + 𝜑 ∗ cos(𝜑 ) ∗ 𝜑 ∗ 𝑙 (𝑡) − 𝑊 (𝑡) , 𝜑 ≥ 0.5
 (17)

3.2.3. Hybrid Adapted Grey Wolf Sine Cosine Optimizer (HA-GWSCO) Framework for 
Finding the Maximum Node-Disjoint Routes from All SNs in EH-WSN 

The main characteristics of these optimizers, namely, the adapted GWO and SCO, 
are the efficient accuracy. These optimizers usually show efficient performance in provid-
ing solutions to various optimization problems when compared with well-known other 
swarm intelligence optimization frameworks. Further, various pieces of literature attest 
to this claim. The only limitations of these optimizers belong to the fact that these are 
somehow not suitable for handling highly complex functions; also, the second limitation 
belongs to the phenomenon of getting trapped in local optima. For effectively handling 
these limitations, a hybrid version [49] is required. The hybrid version enhances the over-
all searching capability of the framework and consequently can provide the best optimal 
solutions to complex optimization problems. Now, this hybrid framework is called the 
hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO). 

In the hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO) framework, the 
sine cosine optimizer plays a major role in improving the movement of the alpha (∝) 
wolves of the grey wolf optimizer since for the grey wolves community, these wolves are 
assumed as the leaders. The beta (β) wolves are designated as the second-level leaders of 
the grey wolves, while the delta (δ) ones are the third-level leaders. Therefore, the hybrid 
adapted grey wolf sine cosine optimizer (HA-GWSCO) framework has achieved robust 
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search capabilities, and consequently the mechanism behind the global convergence, ex-
ploration, and exploitation is enhanced. 

From the above discussion, it is clear that the ultimate aim of the hybrid adapted grey 
wolf sine cosine optimizer (HA-GWSCO) framework is to replace the worst results in 
finding a new population based on an individual approach, since this hybrid framework 
results in efficient accuracy. There are mainly three procedures (see Equations (18) and 
(19)) responsible for enhancing the capability of the hybrid adapted grey wolf sine cosine 
optimizer (HA-GWSCO) framework for finding the efficient solution of maximum node-
disjoint routes utilizing the minimum RNs from SNs to BS. Next, Figure 2 illustrates Phase 
1 of the proposed framework consisting of HA-GWSCO. 

                                                           

Start

Find the fitness of each search agent 
𝑊∝ is the best search agent 
𝑊𝛽  is the second best search agent 

𝑊𝛿  is the third best search agent 

 Update the position of current search member by using 

𝑊(𝑡 + 1) =
𝑊1+𝑊2+𝑊3

3
,               

 �⃗�1 = 𝑊∝ − 𝑂1. 𝑍∝,  𝑊2 = 𝑊𝛽 − �⃗�2. 𝑍𝛽 ,  𝑊3 = 𝑊𝛿 − 𝑂3. �⃗�𝛿  

Update O and Y by using  

�⃗� = 2𝑔. 𝑟𝑎𝑛𝑑𝑜𝑚1 − 𝑔      ,�⃗� = 2. 𝑟𝑎𝑛𝑑𝑜�⃗�2                                                                                                                          

Determine the fitness of all search agents, update position of 
𝑊𝛽  and 𝑊𝛿  by using   𝑊2 = 𝑊𝛽 − 𝑂2. 𝑍𝛽     , 𝑊3 = 𝑊𝛿 − �⃗�3. 𝑍𝛿   

𝑊∝ is updated as per the following 

𝑖𝑓 𝜑5 < 0.5 

End

Yes

NO

Yes

NO𝑡 < 𝑡𝑚𝑎𝑥  
                          Show    𝑊∝ as best solutions 
        (Maximum node disjoint routes from all Source Nodes (SNs)  
utilizing minimum Relay Nodes (RNs) as well as k-node disjoint  
routes from each Source Node (SN) to Base Station(BS)) 

𝑡 = 𝑡 + 1 

𝑍∝ = 𝜑5 ∗ sin(𝜑5) ∗ �⃗�1 ∗ 𝑊∝ − 𝑊  
𝑊1 = 𝑊∝ − �⃗�1 ∗ (�⃗�∝) 

𝑍∝ = 𝜑5 ∗ cos(𝜑5) ∗ �⃗�1 ∗ 𝑊∝ − 𝑊  
𝑊1 = 𝑊∝ − �⃗�1 ∗ (�⃗�∝) 

Initialize the EH-WSN

Relay Nodes (RNs) are deployed using random distribution 
strategy attributed with non-uniform 

as well as controlled in nature 
 

Initialize the population  and 
parameters g, O, and Y

𝑡 = 1 

 
Figure 2. Phase 1 of the proposed framework consisting of the hybrid adapted grey wolf sine cosine 
optimizer (HA-GWSCO) framework. 
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Consider the position update equation (Equation (17)) of the adapted SCO; this posi-
tion update equation is applied in enhancing the position, speed, and convergence accu-
racy of the alpha (∝) grey wolves of the adapted SCO. This step is taken for maintaining 
an effective balance between the phases of exploration and exploitation. Further, this step 
also helps in extending the convergence performance of the adapted grey wolf optimizer 
framework. The following equations are developed for updating the positions of the alpha 
(∝) grey wolves. 

𝑍∝ =
𝜑 ∗ sin(𝜑 ) ∗ 𝑌 ∗ 𝑊∝ − 𝑊 , 𝜑 < 0.5

𝜑 ∗ cos(𝜑 ) ∗ �⃗� ∗ 𝑊∝ − 𝑊 , 𝜑 ≥ 0.5
 (18)

𝑊 = 𝑊∝ − 𝑂 ∗ 𝑊∝  (19)

3.3. Phase 2: Discovering the Most Appropriate and Reliable Route from the 𝑘-Node-Disjoint 
Routes between Each SN to BS Based on the Hybrid Adapted Grey Wolf Whale Optimizer (HA-
GWWO) Framework 

A sustainable and energy-efficient wireless system is the need of the hour for next-
generation green communication since sensors are mainly suffering from limited energy 
availability caused by limited battery capacity. Prolonging the network lifetime has been 
an evergreen research area for researchers from the last few decades, and efforts are still 
ongoing to design energy-efficient frameworks for routing in wireless systems. Energy 
harvesting techniques have emerged as a solution for handling energy scarcity issues of 
sensors. In this technique, energy is harvested from RF, vibration, thermal, and solar, etc., 
by utilizing an energy-harvesting component. In the energy-harvesting wireless sensor 
networks (EH-WSNs), the dead nodes become alive and resume their operation with the 
help of harvested energy; in this way the life of the network can be extended without 
bound. It is a fact that during real-time applications, many unavoidable incidents may 
occur due to difficult environmental conditions, which results in the breakdown of com-
munication links, malfunctioning of sensor nodes, and partitioning of the network. There-
fore, the network functions can be severely disrupted. In these real-time scenarios, the 
success of green communications majorly depends on the fault-tolerance feature, which 
has become a critical issue for next-generation wireless systems. Further, in the energy-
harvesting environment, the time-varying, unstable, and random nature of the harvested 
energy may compel the nodes to fail. Furthermore, due to this random nature of the har-
vested energy, the nodes’ lifecycle frequently switches between alive and dead, which 
results in dynamic changes in the quality of the routing. Fault-tolerant routing with 
awareness of the quality of routing is the only solution for the optimal performance of 
EH-WSN. Towards enabling fault-tolerant routing, the first step is to establish the multi-
node/link disjoint routes, comparing these with the previous route as well as all other 
alternative routes. In this mechanism, the failure in the previous route due to the break-
down of any or all nodes/links has no impact on the alternative routes. In the proposed 
framework, we are maintaining the 𝑘-node-disjoint routes from each SN to BS by apply-
ing the hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO) framework in the 
first phase of the proposed framework. Furthermore, in the second phase, we have de-
signed the enhanced fitness function, named the best suitable route index (BSRI), to select 
the most reliable node-disjoint route from each 𝑆𝑁  to BS out of available 𝑘-node-disjoint 
routes by utilizing the hybrid adapted grey wolf whale optimizer (HA-GWWO) frame-
work. The fitness function consists of various effective objective functions, namely, the 
first function, representing the remaining available energy of each node in a particular 
route from 𝑆𝑁  to BS; the second function, representing the distance of the edge between 
the adjacent nodes; the third function, representing the energy consumption of the edge 
between the adjacent nodes; the fourth function, representing the delay in communication 
for the node; the fifth function, representing relay hops for the packet in each route; and, 
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finally, the sixth function, representing the reliability index of the particular route from 
SN to BS. The route with the higher best suitable route index (BSRI) is selected for routing 
from each SN to BS out of the available 𝑘 -node-disjoint routes utilizing the hybrid 
adapted grey wolf whale optimizer (HA-GWWO) framework. In the proposed frame-
work, we have estimated the quality of the route by effectively designing the fitness func-
tions, covering the all-important metrics for assessing the route suitability for routing that 
rarely have been considered in the literature for EH-WSN. 

Next, we are going to explain the six objective functions one by one, as below. 
The objective function representing the remaining available energy of each node in 

the node-disjoint route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to BS 𝑓 ,  is represented by 

(𝑓 ) in Equation (21). 

𝑓 , =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦( )∈ ( , )

∑ 𝐸𝑛𝑒𝑟𝑔𝑦( )∈ ,

 (20)

Here, 𝑅𝐸  shows the remaining available energy, 𝑅 (𝑆𝑁 , 𝐵𝑆) represents the 𝑗  
node-disjoint route between the 𝑖  source node 𝑆𝑁  and BS, 𝑅 ( , ) reflects the set 
of all the node-disjoint routes between the 𝑖  source node 𝑆𝑁  and BS, 𝑆𝑁  is one of the 
sensor nodes in the 𝑗  node-disjoint route 𝑅 (𝑆𝑁 , 𝐵𝑆), i.e., 𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆), and 𝑆𝑁 is 
one of the sensor nodes in the set of all the node-disjoint routes between the 𝑖  source 
node 𝑆𝑁  and BS, i.e., 𝑆𝑁 ∈ 𝑅 ( , ). 

𝑓 ,  is the ratio of the remaining available energy (𝐸𝑛𝑒𝑟𝑔𝑦( )) of each 

node 𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆) in route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to BS to keep the remaining avail-
able energy (𝐸𝑛𝑒𝑟𝑔𝑦( )) of each node 𝑆𝑁 ∈ 𝑅 ( , ) in the set of all node-disjoint 
routes from 𝑆𝑁  to BS. 

𝑓 ,   should be maximum for improved life of the wireless system. 

Hence, 

𝑓 = 𝑓 ,  (21)

Next, the second objective function representing the distance of the edge 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙) 
between the adjacent nodes in the node-disjoint route 𝑅 (𝑆𝑁 , 𝐵𝑆)  from 𝑆𝑁  to BS 

𝑓
( )

,  is represented by (𝑓 ) in Equation (23). 

𝑓
( )

, =
∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙)∈ ( , )

∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙)∈ ,

 (22)

Here, 𝑙 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆) reflects the edge in the 𝑗  node-disjoint route between 𝑖  
source node 𝑆𝑁  and BS, 𝑙 ∈ 𝑅 ( , ) represents edge in the set of all the node-disjoint 
routes between 𝑖  source node 𝑆𝑁  and BS, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙) shows the distance of the edge. 

𝑓
( )

,  is the ratio of the distance of the edge 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙) between adja-
cent nodes in the route 𝑅 (𝑆𝑁 , 𝐵𝑆)  from 𝑆𝑁  to BS to the distance of the edge 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙) 
between adjacent nodes in the set of all node-disjoint routes 𝑅 ( , ) from 𝑆𝑁  to BS. 

𝑓
( )

,  should be the minimum for optimal performance of the wireless 
system. 

Hence, 

𝑓 =
1

𝑓
( )

,

 (23)
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Further, the third objective function representing the energy consumption of the edge 
𝑙 (𝐸𝑛𝑒𝑟𝑔𝑦_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ) between adjacent nodes in the node-disjoint route 𝑅 (𝑆𝑁 , 𝐵𝑆) 
from 𝑆𝑁  to BS (𝑓

_
( ( , ))) is represented by (𝑓 ) in Equation (25). 

𝑓
_

( ( , )) =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

( ( , ))

∑ 𝐸𝑛𝑒𝑟𝑔𝑦_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
( ( , ))

 (24)

Here, ℎ𝑜𝑝( ( , ))  represents the hop counts in the 𝑗  node-disjoint route be-
tween the 𝑖  source node 𝑆𝑁  and BS, and ℎ𝑜𝑝( ( , ))

 reflects the hop counts in the 
set of all the node-disjoint routes between the 𝑖  source node 𝑆𝑁  and BS. 

𝑓
_

( ( , ))  is the ratio of the energy consumption of the edge 

(𝐸𝑛𝑒𝑟𝑔𝑦_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ) between adjacent nodes in the node-disjoint route 𝑅 (𝑆𝑁 , 𝐵𝑆) 
from 𝑆𝑁  to BS to the energy consumption of the edge (𝐸𝑛𝑒𝑟𝑔𝑦_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ) between 
adjacent nodes in the set of all node-disjoint routes 𝑅 ( , )  from 𝑆𝑁  to BS. 

𝑓
_

( ( , ))  should be minimum for optimal performance of the 

wireless system. 
Hence, 

𝑓 =
1

𝑓
_

( ( , ))
 (25)

Furthermore, the fourth objective function representing delay in communication for 

the node 𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆) in the route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to BS 𝑓 ,  is 

represented by (𝑓 ) in Equation (27). 

𝑓 , =
∑  𝑑𝑒𝑙𝑎𝑦(𝑆𝑁 )∈ ( , )

∑ 𝑑𝑒𝑙𝑎𝑦(𝑆𝑁)∈ ,

 (26)

Here, 𝑑𝑒𝑙𝑎𝑦(𝑆𝑁 ) represents a delay in communication for the sensor node 𝑆𝑁 , 
𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆), since 𝑆𝑁  is the sensor node in the 𝑗  node-disjoint route between the 
𝑖  source node 𝑆𝑁  and BS. Similarly, 𝑑𝑒𝑙𝑎𝑦(𝑆𝑁) reflects a delay in communication for 
the sensor node 𝑆𝑁, 𝑆𝑁 ∈ 𝑅 ( , ) , since 𝑆𝑁 is the sensor node in the set of all the 
node-disjoint routes between the 𝑖  source node 𝑆𝑁  and BS. 

𝑓 ,  is the ratio of delay in communication for the node 𝑆𝑁 ∈ 𝑅 (𝑆𝑁 , 𝐵𝑆) 

in the route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to BS to the delay in communication for the node 𝑆𝑁 ∈

𝑅 ( , ) in the set of all node-disjoint routes 𝑅 ( , ) from 𝑆𝑁  to BS. 
𝑓 ,  should be minimum for optimal performance of the wireless system. 

Hence, 

𝑓 =
1

𝑓 ,

 (27)

Furthermore, the fifth objective function representing relay hops for the packet in the 
route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to BS 𝑓 ,  is represented by (𝑓 ) in Equation (29). 

𝑓 , =
ℎ𝑜𝑝 𝑅 (𝑆𝑁 , 𝐵𝑆)

∑ ℎ𝑜𝑝 𝑅 (𝑆𝑁 , 𝐵𝑆)
 (28)
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𝑓 ,  is the ratio of the relay hops for the packet in the route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 
𝑆𝑁  to BS to the hops for the packet in the set of all node-disjoint routes 𝑅 ( , ) from 
𝑆𝑁  to BS. 

𝑓 ,  should be minimum for optimal performance of the wireless system. 
Hence, 

𝑓 =
1

𝑓
 (29)

The sixth objective function representing the reliability index (RI) of the particular 
route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to BS 𝑓 ( ( , ))  is represented by (𝑓 ) in Equation (31). 

𝑓 ( ( , )) =
∑

( ( , ))

∑
( ( , ))

  (30)

Here, ℎ𝑜𝑝( ( , ))  represents the hop counts in the 𝑗  node-disjoint route be-
tween the 𝑖  source node 𝑆𝑁  and BS, and ℎ𝑜𝑝( ( , ))

 reflects the hop counts in the 
set of all the node-disjoint routes between the 𝑖  source node 𝑆𝑁  and BS. 

𝑓 ( ( , )) is the ratio of the link reliability (𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ) in the route 𝑅 (𝑆𝑁 , 𝐵𝑆) 
from 𝑆𝑁  to BS to the link reliability (𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ) of the set of all node-disjoint routes 
𝑅 ( , )  from 𝑆𝑁  to BS. 

Here, link reliability (𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 )  is expressed in terms of the signal-to-noise ratio 
(SNR) and 𝑓  should be maximum. 

Hence, 

𝑓 = 𝑓  (31)

Finally, 
 the best suitable route index (BSRI) of the particular route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to 
𝐵𝑆 𝑅 (𝑆𝑁 , 𝐵𝑆)  is represented by Equation (32). 

𝑅 (𝑆𝑁 , 𝐵𝑆) =
𝜓 ∗ 𝑓 + 𝜓 ∗ 𝑓 + 𝜓 ∗ 𝑓 + 𝜓 ∗ 𝑓 + 𝜓 ∗ 𝑓 + 𝜓 ∗ 𝑓

6
 (32)

Further, 
the best suitable route index (BSRI) of the particular route 𝑅 (𝑆𝑁 , 𝐵𝑆) from 𝑆𝑁  to 𝐵𝑆  is 
represented as 𝑅 (𝑆𝑁 , 𝐵𝑆) , which is the maximum for the node-disjoint route, and 
which is selected as the best suitable node-disjoint route for routing out of 𝑘-node-disjoint 
routes from 𝑆𝑁  𝑡𝑜 𝐵𝑆. 

Here, 

𝜓 = 0.25, 𝜓 = 0.10, 𝜓 = 0.20, 𝜓 = 0.10, 𝜓 = 0.10, and 𝜓 = 0.25 (33)

are weight factors. 
Furthermore, 

(𝜓 + 𝜓 + 𝜓 + 𝜓 + 𝜓 + 𝜓 ) = 1 (34)

Finally, we can define the fitness function (𝑓𝑓) as shown by Equation (35) below. 

𝑓𝑓 = max 𝑅 (𝑆𝑁 , 𝐵𝑆)

| |

 (35)

3.3.1. Adapted Whale Optimizer 
The natural social activity of humpback whales is the source of inspiration for the 

adapted whale optimization framework [50]. Wales have a unique hunting procedure 
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known as bubble-net attacking. In this procedure, distinctive bubbles are created along a 
circle. This optimizer is originally proposed by Mirjalili [51]. 

The mathematical model of the adapted whale optimization framework has three 
main components, namely, the mechanism of encircling the prey, a unique attacking 
mechanism known as the bubble-net method, and the procedure of searching for prey. 
We will explain each component one by one in the next paragraph. 

The humpback whales start encircling their prey and update their position for find-
ing the best optimal solution during iterations. This is mathematically modeled by the 
following equations. 

𝑍 = �⃗�. 𝑊 (𝑡) − 𝑊(𝑡)  (36)

𝑊(𝑡 + 1) = 𝑊 (𝑡) − 𝑂. 𝑍 (37)

Further, the humpback whales adopted a bubble-net attacking procedure for attack-
ing the prey, and this procedure is represented by two approaches in the below paragraph, 
which are named the procedure of shrinking encircling and position updating through 
spiral movement. 

Next, the procedure of shrinking encircling can be achieved by reducing the value of 
𝑎 in the below equation. 

𝑂 = 2𝑔. 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑔 (38)

𝑌 = 2. 𝑟𝑎𝑛𝑑𝑜𝑚  (39)

The position-updating mechanism of humpback whales through a helix-shaped spi-
ral movement can be modeled mathematically by Equation (40). 

𝑊(𝑡 + 1) = 𝑍 . 𝑒 . cos(2𝜋ℎ) + 𝑊∗(𝑡) (40)

𝑍 = �⃗�∗(𝑡) − 𝑊(𝑡)  (41)

Here, ℎ ∈[−1,1] is a random number, the logarithmic spiral shape is defined by the 
constant 𝑓, and the position vectors of the prey as well as the humpback whales are rep-
resented by 𝑊∗ and 𝑊, respectively. The humpback whales start swimming around the 
prey. In this swimming event, the humpback whales swim within the shrinking circle with 
a spiral path. 

There exists a probability of 50% for selecting these methods and this can be math-
ematically formulated by the equation below. 

𝑊(𝑡 + 1) =
𝑊∗(𝑡) − 𝑂�⃗�                           𝑖𝑓 𝑞 < 0.5

𝑍 . 𝑒 . cos(2𝜋ℎ) + 𝑊∗ (𝑡)   𝑖𝑓 𝑞 > 0.5
 (42)

Here, 𝑞 ∈ [0,1] is the random number. 
The condition for searching the prey is |𝑂| > 1; also, it should be noted that the ran-

dom approach is adopted by the humpback whales for searching the prey. This is mathe-
matically modeled by the following equations. 

�⃗� = 𝑌. 𝑊 − 𝑊  (43)

𝑊(𝑡 + 1) = 𝑊 − 𝑂𝑍 (44)
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3.3.2. Hybrid Adapted Grey Wolf Whale Optimizer (HA-GWWO) Framework 
The second phase of the proposed framework aimed at selecting the best reliable 

node-disjoint route out of 𝑘-node-disjoint routes available from each 𝑆𝑁  to BS in EH-
WSN. The hybrid adapted grey wolf whale optimizer (HA-GWWO) framework was used 
for discovering the best reliable node disjoint route. Six effective parameters are consid-
ered while designing the efficient fitness function, namely, the first function, representing 
the remaining available energy of each node in a particular route from 𝑆𝑁  to BS; the sec-
ond function, representing the distance of the edge between adjacent nodes; the third 
function, representing energy consumption of the edge between adjacent nodes; the 
fourth function, representing a delay in communication for the node; the fifth function, 
representing the relay hops for the packet in each route; and, finally, the sixth function, 
representing the reliability index of the particular route from 𝑆𝑁  to BS. The hybrid 
adapted grey wolf whale optimizer (HA-GWWO) framework consists of both the adapted 
grey wolf optimizer as well as the adapted whale optimizer. There exist certain salient 
features of both optimizers, motivating us to use them. The basic principle of the grey wolf 
optimizer is simple in nature with easy realization; it has the optimal seeking capability 
with efficient search precision. The grey wolf optimizer, which has high research value, 
can be combined with the large number of distinct engineering problems that exist in the 
real world. In the grey wolf optimizer, all the three solutions comprehensively assessed 
the position of the best solution during the searching mechanism, since in the grey wolf 
optimizer, the leadership hierarchy of the wolves is maintained. This unique property of 
the grey wolf optimizer distinguishes it from other swarm intelligence algorithms in 
which only a single solution takes the lead for searching the best solution and therefore 
the grey wolf optimizer can efficiently handle the issue of trapping in the local optimum 
and the probability of being premature is much less. On the other hand, the whale opti-
mizer has unique characteristics compared with other existing optimization algorithms in 
terms of having fewer adjustment parameters along with simple operation. The whale 
optimizer also effectively handles the issue of the local optimum by maintaining the effi-
cient balance between exploitation and exploration capabilities. Therefore, the hybrid 
adapted grey wolf whale optimizer (HA-GWWO) framework is capable enough for opti-
mally discovering the most-reliable node-disjoint route out of the available 𝑘-node-dis-
joint routes between each 𝑆𝑁  to BS. Further, this hybrid framework utilized the newly 
designed efficient fitness function. Next, Figure 3 illustrates the integrated view of the 
proposed optimization framework, consisting of Phase 2. 

In the EH-WSN, the total number of SNs is |𝑆𝑁 |. Each source node is represented 
by 𝑆𝑁  and BS represents the destination node. The hybrid adapted grey wolf whale op-
timizer (HA-GWWO) framework discovers the best reliable node-disjoint route between 
each 𝑆𝑁  to BS in the EH-WSN out of the available 𝑘-node-disjoint routes. Further, 𝑆 =

{1,2, … … … . , 𝑚} is assumed as the solution vector of the hybrid adapted grey wolf whale 
optimizer (HA-GWWO) framework. Furthermore,  𝑚 = |𝑆𝑁 | ∗ 𝑘, with 𝑘 ≥ 2, where 𝑚 
is the total number node-disjoint routes from all SNs to BS; the hybrid adapted grey wolf 
whale optimizer (HA-GWWO) framework discovers the most-reliable route from each 
𝑆𝑁  to BS in the EH-WSN out of the available 𝑘-node-disjoint routes based on an estima-
tion of the effectively designed fitness function. 

In the next paragraph, we explain the detailed working of the hybrid adapted grey 
wolf whale optimizer (HA-GWWO) framework for selecting the most-reliable node-dis-
joint route from each 𝑆𝑁  to BS in the EH-WSN. 

The hybrid framework starts with the initialization of random solutions. 𝑊 =

{𝑆 , 𝑆 , … , 𝑆 , … , |𝑆𝑁 |), 𝑆  is the 𝑗𝑡ℎ random solution vector, and |𝑆𝑁 | represents the 
total number of random solution vectors. 

Next, the fitness of each solution is determined by using the fitness function (35). The 
solution that has a fine fitness value (maximum best suitable route index (BSRI)) is as-
sumed as the best search agent, which is going to be used in the next optimization step. 
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 Position update based on exploration and the exploitation mechanism. 
In the hybrid framework, two optimizers are integrated, namely, the adapted grey 

wolf optimizer and the adapted whale optimizer. During each iteration, the best optimal 
solutions are determined simultaneously from both optimizers, and these solutions are 
further compared to select the best solution. This best solution is again given to both the 
optimizers to produce new better solutions as compared to previous solutions obtained. 
The cycle is repeated again in the same way. 
 The best search agent update. 

During each iteration 𝑡, the solution vector gets updated. Next, the fitness of each 
solution is determined by using the fitness function (35). The solution that has a fine fit-
ness value (maximum best suitable route index (BSRI)) is assumed as the best search 
agent, which is going to be used in the next iteration. 
 Termination 

When the maximum iterations are achieved (𝑡 ), the best optimal reliable node-
disjoint route from each 𝑆𝑁  to BS is discovered in the EH-WSN. If the maximum itera-
tions are not achieved, then the cycle is again repeated for finding the better solutions. 

From the solution vector, the best solution in terms of the most-reliable node-disjoint 
route is selected after several iterations, simultaneously comparing solutions from both 
optimization algorithms, namely, the whale optimization and grey wolf optimization al-
gorithms. The best solution is one of the solutions from the available solutions in the so-
lution vector, fulfilling all criteria as per the fitness function. 
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Figure 3. Integrated view of the proposed optimization framework, consisting of Phase 2. 
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3.3.3. Complexity Analysis 
The time complexity of the proposed green communication framework FRGNWS 

mainly depends upon three parameters, namely, initialization of the sensor node popula-
tion size |𝑆𝑁 | in the network, the fitness calculation time 𝑡  for green route identifi-
cation, and finally updating the disjoint routes in the sensor node population |𝑆𝑁 |. 
Therefore, the complexity of the FRGNWS framework can be represented as O(|𝑆𝑁 | +

𝑡 x|𝑆𝑁 | + |𝑆𝑁 |x𝑑). Here, |𝑆𝑁 | denotes the total sensor population size, 𝑑 pre-
sents the dimension of the maximum node-disjoint route problem, and 𝑡  is the maxi-
mum number of iterations in the green route identification. Further, the time complexity 
of the proposed framework described in [35] is O (𝑆𝑁 (|𝑆𝑁 | + 𝑡 x|𝑆𝑁 | +

|𝑆𝑁 |x𝑑)). From a comparison point of view, it can be clearly deduced that the complex-
ity of the proposed framework is 𝑆𝑁  times lower than the considered literature tech-
nique. 

4. Results and Discussion 
In this section, we are illustrating a set of simulation experiments conducted for eval-

uating the efficacy of our proposed novel framework. In the simulation experiments, we 
have used network simulator (NS) version 2.34. For illustrating the outstanding perfor-
mance of our proposed novel framework, we present a detailed comparative analysis with 
existing schemes, namely, the ABC-based framework [44] and GA-based framework [35]. 
The detailed setup for the simulation experiments is presented in Table 2. 

Table 2. The parameters along with their respective values used in the simulation. 

Simulator Used and Its Version  Network Simulator Version 2.34 
Variations in the number of SNs (N) 25, 35, 45, 55, and 65 

Variations in size of network (L) 400 × 400, 600 × 600, 800 × 800, 1000 × 1000, 
and 1200 × 1200 (m ) 

SNs distribution strategy in EH-WSN Uniform random distribution 
Type of Antenna Omni Directional 

Propagation model of Radio Two-ray ground 
Communication Model Bidirectional 
Interface (Queue Type) Drop tail 

RNs distribution strategy in EH-WSN 
Controlled random non-uniform distribu-

tion 
Location of Sink Node Centrally placed in the network area 

Transmission Range (R) 1 5⁄  of network area (meter) 
Rate of Data (𝐾) 125 kbps 
Type of Traffic  CBR (Constant Bit Rate) 

Size of Packet (𝑃𝑎𝑐𝑘𝑒𝑡 ) 512 bytes 
Variations in Harvested Energy Supply  

(Uniform) 𝐸  0.4, 0.8, 1.2, 1.6, and 2.0 mW 

Variations in Harvested Energy Supply  
(Random) 𝐸  0.3, 0.5, 0.8, 1.0, and 1.5 mW 

SNs’ initial energy (𝐸 ) 2 J 
Energy required for transmission (𝐸 ) 92 mJ/packet 
Energy required for reception (𝐸 ) 45 mj/packet 

Energy consumption in sleep state 𝐸  15 μJ 
Generated voltage every 15 s 𝑉  1.2 V 

For RN activation energy (𝐸 ) 5.2 V 
Inactivity of RN start below  3.5 V 
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Total time required to charge full (T) 150 s 

Next, Figure 4 illustrates the central methodology adopted for conducting the set of 
experiments. Broadly, we have divided the set of experiments into four categories, 
namely, based on varying the number of SNs, varying the network size, variations in the 
supply of harvested energy, and also varying the number of RNs. We have used a total of 
five metrics for assessing the effectiveness of our proposed novel framework, namely, the 
lifetime of the network, throughput, average hop distance, end-to-end delay, and lastly 
the energy consumption. Further, in the first category of experiments, we conducted four 
simulation experiments, covering the number of RNs vs. variations in the number of SNs; 
the lifetime of the network vs. variations in the number of SNs; the throughput vs. varia-
tions in the number of SNs; and the average hop distance vs. variations in the number of 
SNs. Furthermore, in the second category of experiments, we again conducted four simu-
lation experiments, covering the number of RNs vs. variations in the size of the network; 
the lifetime of the network vs. variations in the size of the network; the throughput vs. 
variations in the size of the network; and the average hop distance vs. variations in the 
size of the network. Next, in the third category of experiments, we conducted two simu-
lation experiments, covering the lifetime of the network vs. variations in the supply of 
harvested energy (uniform); and the lifetime of the network vs. variations in the supply 
of harvested energy (random). Furthermore, in the fourth category of experiments, we 
conducted two simulation experiments, covering the end-to-end delay vs. variations in 
the number of RNs; and the energy consumption vs. variations in the number of RNs. 
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Figure 4. Methodology adopted for conducting the set of experiments. 

Category 1: The first set of simulation experiments were carried out under this cate-
gory. We varied the number of SNs and recorded the outcomes on the number of RNs, 
the lifetime of the network, throughput, and, finally, the average hop distance to sink. 
Next, Figure 5a–d illustrate the efficacy of the proposed novel framework (FRGNWS) with 
existing frameworks, namely, the ABC-based framework and GA-based framework. Fur-
ther, Tables 3–6 give more clarity on the effectiveness of the proposed novel framework 
by providing the average % effectiveness with existing frameworks, considering each met-
ric one by one, namely, the number of RNs, the lifetime of the network, throughput, and, 
finally, the average hop distance to the sink.  
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(a) (b) 

(c) (d) 

Figure 5. The outcomes of the set of simulation experiments conducted with variations in the num-
ber of SNs: (a) number of RNs with variations in the number of SNs; (b) lifetime of the network with 
variations in the number of SNs; (c) average hop distance to the sink with variations in the number 
of SNs; and (d) throughput with variations in the number of SNs. 

Further, considering Figure 5a, it was deduced from the figure that the proposed 
novel framework outperformed the existing frameworks for the metric number of RNs 
with variations in the number of SNs. It is a fact that whenever the number of SNs starts 
increasing in the network then the number of RNs also starts increasing, since the RNs are 
assisting the SNs in transmitting the sensed data properly to the BS. RNs also cover the 
entire network gradually and after achieving a good connectivity level there is no need of 
deploying extra RNs in the network and therefore the RN count becomes constant after a 
particular level of connectivity. Table 3 depicts the average % effectiveness of the pro-
posed novel framework, compared to the ABC-based framework and GA-based frame-
work, at 29.99% and 42.10%, respectively. 

Table 3. The average % effectiveness of the proposed novel framework for the number of RNs metric 
with variations in the number of SNs. 

No. of RNs with No. of SNs 
% Effectiveness of Proposed FRGNWS Framework with 

Existing Frameworks 

No. of SNs ↓ 
GA-Based 

Framework 
ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of FRGNWS 
Framework with ABC-Based 

Framework 

% Effectiveness of FRGNWS 
Framework with GA-Based 

Framework 
25 10 8 5 37.50 50.00 
35 14 12 8 33.33 42.86 
45 23 19 13 31.58 43.48 
55 27 23 17 26.09 37.04 
65 35 28 22 21.43 37.14 

Avg. % Effectiveness→ 29.99 42.10 

Now, we will explain the reason for this outstanding performance of the proposed 
novel framework. The proposed novel framework utilized a hybrid adapted grey wolf 
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sine cosine optimizer (HA-GWSCO) framework with a properly designed objective func-
tion aimed at exploring the maximum number of node-disjoint routes from all SNs to BS 
using the minimum number of RNs. The proposed novel framework also ensures k-node-
disjoint routes from each SNs to BS with k ≥ 2. The ABC-based framework considers the 
two factors, namely, cost and connectivity. However, this framework lacks consideration 
of the energy depletion rate. Therefore, the ABC-based framework results in more RNs 
when compared with the proposed framework since additional RNs are required in the 
case of disconnected SNs due to energy-depleted RNs. On the other hand, the GA-based 
framework considers the connectivity factor, but this framework lacks a consideration of 
the energy level along with coverage issues. Hence, the GA-based framework also results 
in more RNs, since covering all SNs require more RNs. 

Furthermore, considering Figure 5b, we can infer from the figure that there is a grad-
ual decrement in the lifetime of the network with an increase in SNs. The reason for this 
gradual decrement is that, whenever the increase in SNs occurs in the network, there are 
a few specific activities that also start increasing in the network that consume lots of en-
ergy, namely, the retransmission of packets, synchronizations, and high traffic between 
nodes. These activities result in a high energy depletion rate of the nodes and, conse-
quently, the lifetime of the network suffers. Again, the proposed novel framework sur-
passes the existing frameworks. Table 4 shows the average % effectiveness of the proposed 
novel framework compared to the ABC-based framework and GA-based framework as 
27.83% and 43.76%, respectively. 

Table 4. The average % effectiveness of the proposed novel framework for the lifetime of the net-
work metric with variations in the number of SNs. 

Lifetime of Network (Seconds) with No. of SNs. % Effectiveness of Proposed FRGNWS Framework with 
Existing Frameworks 

No. of SNs 
↓ 

GA-Based 
Framework 

ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework with 

ABC-Based Framework 

% Effectiveness of FRGNWS 
Framework with GA-Based 

Framework 
25 9600 11,900 15,000 20.67 36.00 
35 8200 9200 13,000 29.23 36.92 
45 5900 7500 10,000 25.00 41.00 
55 4200 5800 8000 27.50 47.50 
65 2900 4300 6800 36.76 57.35 

Avg. % Effectiveness→ 27.83 43.76 

The proposed novel framework has two phases: the first phase discovers the maxi-
mum node-disjoint routes from all SNs to BS using the minimum RNs having k-node-
disjoint routes from each SN to BS, therefore providing fault-tolerant capabilities; the sec-
ond phase is aimed at selecting the best reliable route out of the available k-node-dis joint 
routes from each SN to BS, hence enhancing reliability in the network, and therefore the 
possibility of selecting the faulty route is low. Moreover, the routes from each SN to BS 
utilized the lowest number of RNs, and therefore less consumption of energy as compared 
with existing frameworks, resulting in an efficient lifetime of the network. Further, the 
ABC-based framework does not consider the energy-depletion rate of the nodes; the GA-
based framework also does not consider the energy factor, instead focusing on the con-
nectivity factor. Further, the existing frameworks do not have the capabilities of energy 
harvesting, so if the level of energy of the nodes is below a particular level, then network 
failure will start. 

Considering Figure 5c, this figure reflects the efficacy of our proposed novel frame-
work for the average hop distance to the sink metric with existing frameworks. It is a fact 
that if we are going to increase the SNs in the network, then there occurs a gradual decre-
ment in the average hop distance to the sink. Here also, our proposed novel framework 
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outrun the existing frameworks. Next, Table 5 shows the average % effectiveness of the 
proposed novel framework compared to the ABC-based framework and GA-based frame-
work as 33.83% and 41.26%, respectively. 

Table 5. The average % effectiveness of the proposed novel framework for the average hop distance 
to the sink metric with variations in the number of SNs. 

Avg. Hop Distance to the Sink with No. of SNs 
% Effectiveness of Proposed FRGNWS Framework with 

Existing Frameworks 

No. of SNs 
↓ 

GA-Based 
Framework 

ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework with 

ABC-Based Framework 

% Effectiveness of 
FRGNWS Framework with 

GA-Based Framework 
25 12 11.5 8.5 26.09 29.17 
35 11 10 7.5 25.00 31.82 
45 9.5 8.5 6.5 23.53 31.58 
55 8.5 7.5 4.5 40.00 47.06 
65 7.5 5.5 2.5 54.55 66.67 

Avg. % Effectiveness→ 33.83 41.26 

Minimum RNs are utilized in the proposed novel framework for exploring the max-
imum number of node-disjoint routes with k-node-disjoint routes from each SN to BS. 
Since the average hop distance to the sink metric depends on the number of RNs, our 
proposed framework shows an efficient, steady performance compared to existing frame-
works. The existing frameworks require a higher number of RNs, resulting in a higher 
average hop distance to the sink. 

Considering Figure 5d, this figure illustrates the fact that throughput increases with 
an increase in SNs. The reason is obvious: more SNs in the network try to send the sensed 
data to the BS using RNs as far as possible. In this entire mechanism, the existence of RNs 
plays a major role. The proposed novel framework outperforms the existing frameworks. 
Next, Table 6 shows the average % effectiveness of the proposed novel framework com-
pared to the ABC-based framework and GA-based framework as 19.79%, and 33.71%, re-
spectively. 

Table 6. The average % effectiveness of the proposed novel framework for the throughput metric 
with variations in the number of SNs. 

Throughput (Kbps) with No. of SNs 
% Effectiveness of Proposed FRGNWS Framework with 

Existing Frameworks 

No. of 
SNs ↓ 

GA Based 
Framework 

ABC Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of FRGNWS 
Framework with ABC-Based 

Framework 

% Effectiveness of FRGNWS 
Framework with GA-Based 

Framework 
25 2500 2800 3400 17.65 26.47 
35 2900 3300 4100 19.51 29.27 
45 3100 4100 5500 25.45 43.64 
55 4200 5300 6800 22.06 38.24 
65 5800 7200 8400 14.29 30.95 

Avg. % Effectiveness→ 19.79 33.71 

The proposed framework utilized the control random strategy with a non-uniform 
nature for deploying the RNs in EH-WSN. The minimum number of RNs is utilized in 
discovering the maximum node-disjoint routes in the network from all SNs to BS. Further, 
the most-reliable node-disjoint route is selected from each SN to BS. The proposed frame-
work efficiently utilized the RNs and relieved the burden of SNs; in this environment, the 
energy level of the nodes does not deplete fast, which results in high throughput. The 
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existing frameworks show poor results for the throughput metric. First, the existing 
frameworks do not have energy-harvesting capabilities. Second, the energy depletion 
rates of the nodes are higher in the existing frameworks. 

Category 2: The second set of simulation experiments were carried out under this 
category. We varied the network size and record the outcomes on the number of RNs, the 
lifetime of the network, throughput, and, finally, the average hop distance to the sink. 
Figure 6a–d illustrate the efficacy of the proposed novel framework (FRGNWS) with the 
existing frameworks, namely, the ABC-based framework and GA-based framework. Fur-
ther, Tables 7–10 give more clarity on the effectiveness of the proposed novel framework 
by providing the average % effectiveness compared to the existing frameworks, consider-
ing each metric one by one, namely, the number of RNs, the lifetime of the network, 
throughput, and, finally, the average hop distance to the sink. 

(a) (b) 

  
(c) (d) 

Figure 6. The outcomes of the set of simulation experiments conducted with variations in the net-
work size: (a) number of RNs with variations in the network size; (b) lifetime of the network with 
variations in the network size; (c) average hop distance to the sink with variations in the network 
size; and (d) throughput with variations in the network size. Tables 7–10 are given below. 

Considering Figure 6a, this figure clearly shows that our proposed novel framework 
again outperforms the existing frameworks for the number of RNs metric with variations 
in the network size. The network usually consists of nodes having a particular fixed range 
of communication; furthermore, if we are going to vary the network size, then, definitely, 
we require the deployment of extra RNs in order to effectively cover the entire network 
area. The proposed novel framework shows gradual increments in RN count and this re-
flects its efficient coverage capabilities. Table 7 exhibits the average % effectiveness of the 
proposed novel framework compared to the ABC-based framework and GA-based frame-
work as 35.59% and 53.85%, respectively. 

The proposed novel framework is energy efficient. Minimum relay nodes are de-
ployed for maintaining the effective coverage in the proposed framework. The remaining 
available energy of each node in the route along with the energy consumption of the edge 
between adjacent nodes in the route are the two main factors out of a total of six factors 
considered while selecting the best reliable node-disjoint route from each SN to BS. There-
fore, the proposed novel framework show efficacy in effective utilization of energy in the 
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network and results in lower energy consumption compared with existing frameworks, 
the latter lacking energy efficiency. 

Table 7. The average % effectiveness of the proposed novel framework for the number of RNs metric 
with variations in the network size. 

No. of RNs with Variations in the Size of the Network 
% Effectiveness of Proposed FRGNWS Framework with 

Existing Frameworks 

Size of Network ↓ 
GA-Based 

Framework 
ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of FRGNWS 
Framework with ABC-Based 

Framework 

% Effectiveness of 
FRGNWS Framework 
with GA-Based Frame-

work 
400 × 400 7 5 3 40.00 57.14 
600 × 600 13 9 5 44.44 61.54 
800 × 800 18 13 8 38.46 55.56 

1000 × 1000 23 16 11 31.25 52.17 
1200 × 1200 28 21 16 23.81 42.86 

Avg. % Effectiveness→ 35.59 53.85 

In the proposed novel framework, the maximum node-disjoint routes from all SNs 
to BS are explored using a minimum number of RNs. Next, from each SN to BS, 𝑘-node-
disjoint routes use the minimum number of RNs. Further, the best reliable node-disjoint 
route is selected out of the 𝑘-node-disjoint routes from each SN to BS for routing. The 
existing frameworks lack in providing efficient coverage capabilities, since the ABC-based 
framework considers only two factors, namely, cost and connectivity; this framework thus 
lack consideration of the energy-depletion rate. On the other hand, the GA-based frame-
work considers the connectivity factor, although this framework lacks considering the en-
ergy level along with coverage issue. 

Furthermore, considering Figure 6b, this figure shows the excellent performance of 
the proposed novel framework for the network lifetime metric with existing frameworks. 
Table 8 exhibits the average % effectiveness of the proposed novel framework compared 
to the ABC-based framework and GA-based framework as 19.46% and 38.52%, respec-
tively. 

Table 8. The average % effectiveness of the proposed novel framework for the lifetime of the net-
work metric with variations in the network size. 

 Lifetime of Network (Seconds) with Variations in the Size 
of the Network 

% Effectiveness of Proposed FRGNWS Framework 
with  

Existing Frameworks 

Size of Network ↓ GA-Based 
Framework 

ABC-Based 
Framework 

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework with 

ABC-Based Framework 

% Effectiveness of 
FRGNWS Framework with 

GA-Based Framework 
400 × 400 13,590 16,250 18,000 9.72 24.50 
600 × 600 10,600 13,120 15,500 15.35 31.61 
800 × 800 8100 11,000 13,800 20.29 41.30 

1000 × 1000 6500 8900 11,900 25.21 45.38 
1200 × 1200 4930 7200 9825 26.72 49.82 

Avg. % Effectiveness→ 19.46 38.52 

Although the network lifetime gradually decreases with an increment in the network 
size, due to the higher consumption of energy, the proposed novel framework still shows 
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excellency in these circumstances. Multiple objective functions are considered while de-
signing an efficient, novel fitness function for selecting the most-reliable node-disjoint 
route from each SN to BS, namely, the remaining available energy of each node in the 
route, the distance of the edge between adjacent nodes in the route, the energy consump-
tion of the edge between adjacent nodes in the route, delay in communication for the node 
in the route, relay hops for the packet in the route, and finally the reliability index (RI) of 
the particular route. Therefore, energy consumption is lower in the proposed novel frame-
work when compared with the existing frameworks. 

Considering Figure 6c, this figure elaborates the fact that the average hop distance to 
the sink increases with an increase in the network size, since the large network size re-
quires more RNs to effectively cover the entire area. The proposed novel framework dom-
inates the existing frameworks for the average hop distance metric. Table 9 exhibits the 
average % effectiveness of the proposed novel framework compared to the ABC-based 
framework and GA-based framework as 32.49% and 43.40%, respectively. 

Table 9. The average % effectiveness of the proposed novel framework for the average hop distance 
to the sink metric with variations in the network size. 

Avg. Hop Distance to the Sink with Variations in the Size 
of the Network 

% Effectiveness of Proposed FRGNWS Framework with 
Existing Frameworks 

Size of Network ↓ 
GA-Based 

Framework 
ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of FRGNWS 
Framework with ABC-Based 

Framework 

% Effectiveness of 
FRGNWS Framework with 

GA-Based Framework 
400 × 400 6.5 4 2 50.00 69.23 
600 × 600 9 7.5 4.5 40.00 50.00 
800 × 800 12.75 10.5 7.5 28.57 41.18 

1000 × 1000 15.7 14 10.4 25.71 33.76 
1200 × 1200 17.5 16.5 13.5 18.18 22.86 

Avg. % Effectiveness→ 32.49 43.40 

The proposed novel framework is has excellent coverage capabilities. The minimum 
number of RNs is utilized for exploring the maximum number of node-disjoint routes 
from all SNs to BS. The existing frameworks do not have effective coverage capabilities 
and a higher number of RNs are required for covering large network areas. Therefore, 
existing frameworks result in a higher average hop distance to the sink. 

Considering Figure 6d, this figure displays the fact that throughput increases with 
an increase in the network size, and our proposed novel framework outrightly performs 
well, considering the throughput metric compared to existing frameworks. Table 10 ex-
hibits the average % effectiveness of proposed novel framework compared to the ABC-
based framework and GA-based framework as 16.05% and 26.71%, respectively. 
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Table 10. The average % effectiveness of the proposed novel framework for the throughput metric 
with variations in the network size. 

Throughput (Kbps) with Variations in the Size of the Net-
work 

% Effectiveness of Proposed FRGNWS Framework 
with Existing Frameworks 

Size of Network ↓ GA-Based 
Framework 

ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework with 

ABC-Based Framework 

% Effectiveness of 
FRGNWS Framework with 

GA-Based Framework 
400 × 400 2500 2600 2800 7.14 10.71 
600 × 600 2800 3120 3650 14.52 23.29 
800 × 800 3100 4000 4980 19.68 37.75 

1000 × 1000 4050 4930 5760 14.41 29.69 
1200 × 1200 4740 5270 6980 24.50 32.09 

Avg. % Effectiveness→ 16.05 26.71 

Throughput depends on various factors in the network, but the primary factor is the 
remaining energy level of the nodes in the network. This factor is effectively considered 
in the proposed novel framework while selecting the best reliable route from each SN to 
BS. The proposed novel framework shows energy efficiency, and therefore the throughput 
gradually increases with an increment in the network size, even though a large network 
area results in a higher consumption of energy. The existing frameworks lack energy effi-
ciency, and therefore show poor results when comparing with the proposed novel frame-
work. 

Category 3: The third set of simulation experiments were carried out under this cat-
egory. We vary the harvested energy supply uniformly and also randomly both ways. 
Further, we recorded the outcomes on the lifetime of the network metric. Figure 7a,b il-
lustrate the efficacy of the proposed novel framework (FRGNWS) with the existing frame-
works, namely, the ABC-based framework and GA-based framework. Tables 11 and 12 
give more clarity on the effectiveness of the proposed novel framework by providing the 
average % effectiveness compared to the existing frameworks, considering the metric the 
lifetime of the network. 

(a) (b) 

Figure 7. The outcomes of the set of simulation experiments conducted with variations in the har-
vested energy supply uniformly as well as randomly: (a) lifetime of the network with variations in 
the harvested energy supply (uniformly); (b) lifetime of the network with variations in the harvested 
energy supply (randomly). Tables 11 and 12 are given below. 

Considering Figure 7a, this figure tries to narrate the effectiveness of the proposed 
novel framework with existing frameworks, considering the network lifetime metric un-
der variations in the harvested energy supply uniformly. Table 11 exhibits the average % 
effectiveness of the proposed novel framework compared to the ABC-based framework 
and GA-based framework as 15.01% and 23.47%, respectively. 
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Table 11. The average % effectiveness of the proposed novel framework for the lifetime of network 
metric with variations in the harvested energy supply (uniformly). 

Lifetime of the Network (Seconds) with Variations in the 
Harvested Energy Supply (Uniform) (mW) 

% Effectiveness of Proposed FRGNWS Framework 
with Existing Frameworks 

Harvested Energy 
Supply (Uniform) 

(mW) ↓ 

GA-Based 
Framework 

ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework 

with ABC-Based Frame-
work 

% Effectiveness of 
FRGNWS Framework with 

GA-Based Framework 

0.4 8000 8800 10,000 12.00 20.00 
0.8 9100 9790 11,700 16.32 22.22 
1.2 10,450 11,500 13,950 17.56 25.09 
1.6 12,340 14,230 16,450 13.50 24.98 
2 14,987 16,870 20,000 15.65 25.07 

Avg. % Effectiveness→ 15.01 23.47 

The network lifetime increases gradually when a uniform supply of harvested energy 
is considered. The reason for this outstanding performance of the proposed novel frame-
work is the optimal energy efficiency of this framework. Although the energy-harvesting 
capability in the network maintains a continuous supply to nodes, optimization of energy 
use is needed for enhanced network lifetime, and the proposed novel framework shows 
this efficacy. The existing frameworks are unable to show strength towards energy effi-
ciency and results in a lower network lifetime in this case. 

Considering Figure 7b, although the network lifetime also increases under variations 
in the harvested energy supply (randomly), the results are somewhat lower when com-
pared with the uniform supply of harvested energy. Table 12 exhibits the average % ef-
fectiveness of the proposed novel framework compared to the ABC-based framework and 
GA-based framework as 20.19% and 32.68%, respectively. 

Table 12. The avg. % effectiveness of the proposed novel framework for the lifetime of the network 
metric with variations in the harvested energy supply (random). 

Lifetime of the Network (Seconds) with Variations in the 
Harvested Energy Supply (Random) (mW) 

% Effectiveness of Proposed FRGNWS Framework 
with Existing Frameworks 

Harvested Energy 
Supply (Random) 

(mW) ↓ 

GA-Based 
Framework 

ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework with 

ABC-Based Framework 

% Effectiveness of 
FRGNWS Framework 
with GA-Based Frame-

work 
0.3 5400 6700 8600 22.09 37.21 
0.5 6730 8340 10,200 18.24 34.02 
0.8 8760 10,230 12,780 19.95 31.46 
1 10,450 12,300 15,790 22.10 33.82 

1.5 13,870 15,450 18,970 18.56 26.88 
Avg. % Effectiveness→ 20.19 32.68 

The proposed novel framework unveils the efficacy for the network lifetime metric 
with existing frameworks due to energy efficiency capabilities that are lacking in the ex-
isting frameworks. 

Category 4: The fourth set of simulation experiments were carried out under this cat-
egory. We varied the number of RNs and recorded the outcomes on the end-to-end delay 
and energy consumption. Figure 8a,b illustrate the efficacy of the proposed novel frame-
work (FRGNWS) compared to the existing frameworks, namely, the ABC-based frame-
work and GA-based framework. Tables 13 and 14 give more clarity on the effectiveness 



Appl. Sci. 2022, 12, 8870 32 of 36 
 

of the proposed novel framework by providing the average % effectiveness compared to 
the existing frameworks, considering each metric one by one, namely, the end-to-end de-
lay and energy consumption. 

  
(a) (b) 

Figure 8. The outcomes of the set of simulation experiments conducted with variations in the num-
ber of RNs: (a) end-to-end delay with variations in the number of RNs; (b) energy consumption with 
variations in the number of RNs. Tables 13 and 14 are given below. 

Considering Figure 8a, the proposed novel framework once again outperforms the 
existing frameworks for the delay metric. Further, the role of RNs in reducing the delay is 
crucial in the network. As the number of RNs are increasing in the network, the data pack-
ets can quickly reach the BS. Table 13 exhibits the average % effectiveness of the proposed 
novel framework compared to the ABC-based framework and GA-based framework as 
21.16 and 32.76%, respectively. 

Table 13. The average % effectiveness of the proposed novel framework for the end-to-end delay 
metric with variations in the number of RNs. 

End to End Delay (ms) with Variations in the No. of RNs % Effectiveness of Proposed FRGNWS Framework with 
Existing Frameworks 

No. of RNs ↓ GA-Based 
Framework 

ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness of 
FRGNWS Framework with 

ABC-Based Framework 

% Effectiveness of 
FRGNWS Framework with 

GA-Based Framework 
6 197 192 182 5.21 7.61 
12 183 176 161 8.52 12.02 
18 166 149 124 16.78 25.30 
24 145 104 83 20.19 42.76 
30 92 49 22 55.10 76.09 

Avg. % Effectiveness→ 21.16 32.76 

The proposed novel framework explores the maximum number of node-disjoint 
routes from all SNs to BS using the minimum number of RNs. The proposed framework 
provides reliability in routing by selecting the best reliable node-disjoint route from each 
SN to BS out of the available 𝑘 −node-disjoint routes from each SN to BS. Therefore, the 
proposed novel framework represents efficient coverage along with effective connectivity 
in the network and consequently results in a lower delay when compared with existing 
frameworks. 

Furthermore, considering Figure 8b, though the energy consumption increases with 
an increase in the number of RNs, our proposed novel framework demonstrates efficacy 
compared to the existing frameworks for the energy consumption metric. More RNs in 
the network result in an increment in the energy utilization in the network, since the traffic 
increases in the network and this further results in various different activities inducing 
higher energy utilization. Table 14 exhibits the average % effectiveness of the proposed 
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novel framework compared to the ABC-based framework and GA-based framework as 
53.64 and 66.24%, respectively. 

Table 14. The average % effectiveness of the proposed novel framework for the energy consumption 
metric with variations in the number of RNs. 

Energy Consumption(nJ/bit) with Variations in the No. 
of RNs 

% Effectiveness of Proposed FRGNWS Framework with 
Existing Frameworks 

No. of RNs ↓ 
GA-Based 

Framework 
ABC-Based 
Framework  

FRGNWS 
Framework 

% Effectiveness Of 
FRGNWS Framework With 

ABC-Based Framework 

% Effectiveness of FRGNWS 
Framework with GA-Based 

Framework 
6 13.4 10.9 4 63.30 70.15 
12 17.6 13.8 7.5 45.65 57.39 
18 25.9 18.9 9.4 50.26 63.71 
24 35.8 22.8 11.5 49.56 67.88 
30 48.7 33.5 13.6 59.40 72.07 

Avg. % Effectiveness→ 53.64 66.24 

The proposed novel framework is energy efficient. Minimum relay nodes are de-
ployed for maintaining the effective coverage in the proposed framework. The remaining 
available energy of each node in the route along with the energy consumption of the edge 
between adjacent nodes in the route are the two main factors out of a total of six factors 
considered while selecting the most-reliable node-disjoint route from each SN to BS. 
Therefore, the proposed novel framework shows efficacy in effective utilization of energy 
in the network and results in lower energy consumption compared to existing frame-
works, the latter lacking energy efficiency. Some recent studies [15,16] critically investi-
gated the theoretical analysis aspects and found that the proposed framework still out-
performs the related research works. The effective performance of the proposed frame-
work is due to its ability to handle NP-hard and NP-complete optimization problems sim-
ultaneously using metaheuristic optimization algorithms, which was not considered in 
the recent literature. 

5. Conclusions 
In this research article, a novel framework is proposed considering single-tiered EH-

WSN with constrained RN deployment. Next, the problem of relay node optimization is 
considered an NP-hard optimization problem. Further, the designing of effective fault-
tolerant routing in EH-WSN constitutes the NP-complete problem. In the proposed novel 
framework, we have used metaheuristic optimization algorithms, namely, adaptive grey 
wolf optimizer, adaptive sine cosine optimizer, and adaptive whale optimizer, to provide 
solutions to the NP-hard and NP-complete problems. The proposed novel framework 
consists of two phases. In the first phase of the proposed novel framework, maximum 
node-disjoint routes from all SNs to BS using minimum RNs are explored based on the 
hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO) framework, utilizing a 
properly designed fitness function; this HA-GWSCO framework also discovers the k-
node-disjoint routes from each SN to BS, with k ≥ 2, which enhances the fault-tolerance 
capability in EH-WSN. In the second phase of the proposed novel framework, out of k-
node-disjoint routes from each SN to BS, with k ≥ 2, the most-appropriate reliable route is 
selected from each SN to BS for routing, which enhances the reliability in routing for EH-
WSN based on the hybrid adapted grey wolf whale optimizer (HA-GWWO), utilizing a 
novel and efficient fitness function covering multiple objective functions. The effective-
ness of our proposed novel framework was assessed by considering five metrics, namely, 
energy consumption, the lifetime of the network, throughput, delay, and the delivery ra-
tio, and the simulation results clearly validate the efficacy of our proposed novel frame-
work. In this way, we finally got the fully connected EH-WSN, ensuring the maximum 
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network life, low latency, efficient distribution of the load for relieving the overloaded 
sensor nodes, and with minimum energy consumption due to the high connectivity. The 
proposed novel research effectively handles both the NP-hard (relay node optimization) 
as well as NP-complete (fault-tolerant reliable routing) optimization problems simultane-
ously in EH-WSN. This salient feature of the proposed novel research distinguishes it 
from others existing in the literature. As a future research direction, we would like to im-
plement this novel framework on a real-time EH-WSN, for real-time analysis of the out-
comes, by utilizing the optimal number of heterogeneous RNs for maintaining k-connec-
tivity. 
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